
Fast Binary Multiplication Method for Modular Exponentiation

Chia-Long Wu, Der-Chyuan Lou* and Te-Jen Chang*

Department of Aviation &
Communication Electronics,

Chinese Air Force Institute of
Technology, Kaohsiung 820, Taiwan,

R.O.C.
E-mail: chialongwu@seed.net.tw

*Department of Electrical
Engineering, Chung Cheng Institute

of Technology, National Defense
University, Tahsi, Taoyuan 33509,

Taiwan, R.O.C.

E-mail: dclou@ccit.edu.tw

Abstract

This paper proposes a new fast technique to

fast evaluate modular exponentiation which

combines a binary exponentiation method, a

complement representation method, and a

signed-digit representation method. Because

modular exponentiation is one of the most

time-consuming operations for many

cryptosystems, we adopt the proposed method to

reduce the computational complexity from
11

8
k

to
13
12

k
, where k is the bit-length of the exponent

E. We can therefore efficiently speed up the

overall performance of the modular

exponentiation.

Keywords: Complement, signed-digit

representation, modular exponentiation, binary

method, public key cryptography.

摘要

本論文結合二元乘法、符號元表示法、以及補

數表示法三種運算技術提出新的快速模指數演

算法。對於大部份的公開金鑰密碼系統而言，

模指數運算是相當耗時且佔記憶體的運算。而

當我們利用本論文所提出的演算法時，我們可

以將整體模指數運算複雜度由
11

8
k
有效降至

13
12

k
，其中 k 為指數 E 的長度。

關鍵詞：補數法、符號元表示法、二元法、模

指數運算、公開密碼學。

1. Introduction

Modular exponentiation plays an important

role in public key cryptosystems. Binary

exponentiation is one of the most frequently used

arithmetic operations in the microprocessor. There

are several modern binary methods which can be

used to fast evaluate modular exponentiation. In

2000, Joye and Yen presented a signed-digit

representation method [14], which was efficiently

signed-digit representations with the digit set {1,

0, 1 } to decrease computational complexity. In

2003, Chang, Kuo, and Lin presented a fast

algorithm, which takes
5

2
4

k  multiplications

by performing complements, where k is the

bit-length of the exponent E [4].

In this paper, we describe a new method for

speeding up the performance of modular

exponentiation. The proposed method combines a

binary method, a complement recoding method,

and a signed-digit recoding method. The

computational complexity of the proposed

algorithm is
13
12

k
.

The rest of this paper is organized as follows.

In Section 2, we first review the binary method,

complement recoding method, and signed-digit

recoding method. The proposed method for fast

evaluate modular exponentiation is detailed

described in Section 3. Finally, we put our

conclusions for the proposed method and state

some future works.

2. Preliminaries

2.1 Binary Method

The exponentiation operation is broken into a

series of squarings and multiplications [12] by

using the binary method. The basic idea of the

binary method is to compute ME using the binary

exponentiation of exponent E.

Assume k denotes the bit-length of the

exponent E, which can be expressed in binary

representation as 1 2 1 0 2(...)k kE e e e e  and

1

0

*2
k

i
i

i

E e




 , where {0,1}ie  .

The binary method (also called the

square-and-multiply method) scans the bits of

exponent E either from right to left (Algorithm 1)

or from left to right (Algorithm 2) to

accomplishes the exponentiation arithmetic [5, 9,

16].

Algorithm 1: Right-to-left square-and-multiply

method.

Input: Exponent: E = 1 2 1 0 2(...)k ke e e e  ;

Message: M

Output: Ciphertext: C = ME

C = 1; S = M;

begin

for i = 0 to k–1 do

/* scan from right to left */

begin

if (ei = 1) C = C * S; /* multiply */

S = S * S; /* square */

end;

end.

Algorithm 2: Left-to-right square-and-multiply

method.

Input: Exponent: E = 1 2 1 0 2(...)k ke e e e  ;

Message: M

Output: Ciphertext: C = ME

C = 1;

begin

for i = k–1 downto 0 do

/* scan from left to right */

begin

C = C * C; /* square */

if (ei = 1) C = C * M; /* multiply */

end;

end.

In each step, a squaring is performed and

depending on whether the scanned bit-value is

equal to 1 or not, a multiplication is also

performed. Therefore, the computational

complexity of both right-to-left and left-to-right

binary methods are 2*
2
k

+1*
2
k

=
3
2
k

multiplications, where k is the bit-length of the

exponent E.

2.2 Complement Recoding Method

To compute the modular exponentiation of

modEM N , we express the exponent E as a

binary representation 1 2 1 0...k ke e e e  . Performing

complements is advantageous in the speedup of

multiplication computations. We consider the

equation shown as follows.

(1)(10...0) kE  bits– E –1, (1)

where E = 1ke  2ke  ... 0e ,

and 0ie  if ie = 1,

1ie  if ie = 0,

for i = 0, 1,…, k–1.

Based on Eq. (1), we can obtain

modEM N

= (1)(100...0) 1[* *]modk bits EM M M N  

= (1)(100...0) 1 1[*() *]modk bits EM M M N  

= (1)(100...0) 1 1[*() *]modk bits EM M M N  

= 1 1[*() *]modE
kM M M N  , (2)

where 1M  is the inverse of M under

modulus N. 1M  can be pre-computed using the

Euclidean algorithm or Euler theory [10]

and kM = (1)(100...0) k bitsM  .

We assume k is the bit-length of the exponent E

and we can compute kM in advance.

If Ham(E) >
2
k

, we apply Eq. (1) to

compute modEM N . If Ham(E) 
2
k

, we use

binary method to compute modEM N

straightforwardly [11].

2.3 Signed-Digit Recoding Method

In a signed-digit number with radix 2, three

symbols {1 , 0, 1} are allowed for the digit set, in

which 1 and 1 in bit position i represented 2i

and 2i respectively [6]. The recoding

representation is called canonical if it contains no

adjacent nonzero digits. The auxiliary carry C0 is

set to 0 and subsequently the binary number A is

scanned two bits at a time. The canonically

recorded digit Bi and the next value of the

auxiliary binary variable Ci+1 for i = 0, 1, 2, …, n

are generated using Table 1.

Table 1 Canonical recoding method

Ai+1 Ai Ci Bi Ci+1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

0

0

1

0

1

1

1

For example, when A = 3038, we compute

the canonical signed-digit vectors B as:

A = (0101111011110) = (101 00001 0001 0) = B

Note that in this example the number A contains

nine zero bits and its canonically recorded version

contains only four nonzero digits. It shows that

the average Hamming weight of a k-bit

canonically recorded binary number approaches

3
k

as k   [15, 19]. We should note that a

number using the digit {1 , 0, 1} is not uniquely

represented in binary signed-digit notation [13].

3 The Proposed Method

In Section 2, we describe a binary method, a

complement recoding method, and a signed-digit

recoding method for exponentiation respectively.

Now the proposed method is described as follows.

We assume there are k bits in exponent E.

For EM , the exponent E should be calculated by

combining a binary method, a complement

recoding method, and a signed-digit recoding

method.

So there are two conditions should be

discussed as following:

Case 1: Ham(E) >
2
k

and

Case 2: Ham(E) 
2
k

.

Then the overall computational complexity of the
EM should be represented as follows.

The computational complexity of EM

=
1
2

* the computational complexity of case 1

+
1
2

* the computational complexity of case 2.

The first and the second items “
1
2
”in the

above equation mean the probabilities of Ham(E)

>
2
k

and Ham(E) 
2
k

.

Now we introduce the computational

complexities of case 1 and case 2 respectively. At

first, we define sgnE a binary signed-digit

representation for E .

 Case 1: Ham(E) >
2
k

When Ham(E) >
2
k

in case 1, we take 1’s

complement for E. In other words, it can be

represented by Ham(E) 
2
k

. We can replace

the pattern for modEM N with

(1)(10...0) 1 modk bits EM N   . If we combine a

complement recoding method and a

signed-digit recoding method, we can obtain

Ham(sgnE) 
2
k

*
1
3

=
6
k

. So we can obtain

modEM N

= (1)(10...0) 1 modk bits EM N  

= (1) sgn(10...0) 1 modk bits EM N  

The computational complexity of case 1 is:

k +
6
k

*
1
2

=
13
12

k
, (3)

where k represents exponent-bit of E.

The first item “k”in Eq. (3) denotes the

computational complexity of squarings and the

second item “
6
k

*
1
2
”in Eq. (3) denotes the

computational complexity of multiplications.

 Case 2: Ham(E) 
2
k

When Ham(E) 
2
k

in case 2, we use a

left-to-right binary method to compute

modEM N straightforwardly. If we combine

a complement recoding method and a

signed-digit recoding method, we can also

obtain

Ham(sgnE) 
2
k

*
1
3

=
6
k

.

The computational complexity is

(k)+(
6
k

*
1
2

)=
13
12

k
(4)

The first item “k”in Eq. (4) denotes the

computational complexity of squarings and the

second item “
6
k

*
1
2
”in Eq. (4) denotes the

computational complexity of multiplications.

From the above case 1 and case 2 depicted

in the proposed method, we can therefore get

the overall computational complexity of

modular exponentiation “ modEM N ” as

following:

(
1
2

*
13
12

k
)+(

1
2

*
13
12

k
)=

13
12

k
. (5)

4 Conclusions and future works

In this paper we propose a new method to

fast evaluate modular exponentiation, which

combines a binary method, a complement

recoding method, and a signed-digit recoding

method.

The computational complexity of the

proposed method is
13
12

k
that are faster than

11
8
k

in [17] and
13
10

k
in [18]. We can

efficiently speed up the overall performance of the

modular exponentiation.

Recently, some new techniques are studied

and proposed to fast evaluate modular

exponentiation such as the unified-multipliers

method [2, 8], elliptic curve encrypt method [20],

and improved Montgomery's method [1, 3, 7]. In

the future works, we will try to research and

properly adopt some techniques mentioned above

to further decrease the modular arithmetic

computational complexity for cryptographic

usages.

References

[1] A. F. Tenca and C. K. Koc, “A Scalable

Architecture for Modular Multiplication

Based on Montgomery's Algorithm,” IEEE

Transactions on Computers, Vol. 52, No. 9,

pp.1215-1221, Sep. 2003.

[2] A. F. Tenca, E. Savas, and C. K. Koc, “A

Design Framework for Scalable and Unified

Multipliers in GF(p) and GF(2^m),”

International Journal of Computer Research,

Vol. 13, No. 1, pp. 68-83, 2004.

[3] A. Z. Alkar and R. Sonmez, “A Hardware

Version of the RSA Using the Montgomery's

Algorithm with Systolic Arrays,”Integration,

the VLSI Journal, Vol. 38, No. 2, pp.

299-307, Dec. 2004.

[4] C.-C. Chang, Y.-T. Kuo, and C.-H. Lin,“Fast

Algorithms for Common-Multiplicand

Multiplication and exponentiation by

performing complements,” Proceedings of

the 17th International Conference on

Advanced Information Networking and

Applications, pp. 807-811, IEEE, March

2003.

[5] C. Heuberger and H. Prodinger, “Carry

Propagation in Signed Digit

Representations,” European Journal of

Combinatorics, Vol. 24, No. 3, pp. 293-320,

April 2003.

[6] C. K. Koc and S. Johnson, “Multiplication of

Signed-Digit Numbers,” IEE Electronics

Letters, Vol. 30, No. 11, pp. 840-841, May

26, 1994.

[7] C.-L. WU, D.-C. LOU, and T.-J. CHANG,

“An Efficient Montgomery Exponentiation

Algorithm for Cryptographic Applications”,

Informatica-Institute of Mathematics and

Informatics, Vol. 16, No. 3, pp. 449-468,

2005.

[8] D.-C. LOU and C.-L. WU, “Parallel Modular

Exponentiation Using Signed-Digit-Folding

Technique,” Informatica-An International

Journal of Computing and Informations, Vol.

28, No. 2, pp. 197-205, 2004.

[9] D.-C. Lou, C.-L. Wu, and C. Y. Chen, “Fast

Exponentiation by Folding the Signed-digit

Exponent in Half,” International Journal of

Computer Mathematics, Vol. 80, No. 10, pp.

1251-1259, Oct. 2003.

[10] D. E. Knuth, The Art of Computer

Programming: Vol. II, Seminumerical

Algorithms, 3rd edition, Addison Wesley,

1997.

[11] F. Huang and Z. H. Guan, “A Modified

Method of a Class of Recently Presented

Cryptosystems,”Chaos, Solitons and Fractals,

Vol. 23, No. 5, pp. 1893-1899, March 2005.

[12] I. Koren, Computer Arithmetic, 2nd edition, A.

K. Peters, Natick, MA, 2002.

[13] M. E. Kaihara and N. Takagi, “A Hardware

Algorithm for Modular Multiplication/

Division”, IEEE Transactions on Computers,

Vol. 54, No. 1, Jan. 2005, pp. 12-21.

[14] M. Joyce and S.-M. Yen, “Optimal

Left-to-Right Binary Signed-Digit

Recoding,”IEEE Transactions on Computers,

Vol. 49, No. 7, pp. 740-748, July 2000.

[15] S. Arno and F. S. Wheeler, “Signed Digit

Representations of Minimal Hamming

Weight,”IEEE Transactions on Computers,

Vol. 42, No. 8, pp. 1007-1010, Aug. 1993.

[16] S. Masui, K. Mukaida, M. Takenaka, and N.

Torii, “Design Optimization of a High-Speed,

Area-Efficient and Low-Power Montgomery

Modular Multiplier for RSA Algorithm,”

IEICE Transactions on Electronics Vol. 88,

N.4, pp. 576-581, April 2005.

[17] S.-M. Yen and C.-S. Laih,

“Common-Multiplicand Multiplication and

its Applications to Public Key

Cryptography,”IEE Electronics Letters, Vol.

29, No. 17, pp. 1583-1584, Aug. 1993.

[18] S.-M. Yen, “Improved Common-

Multiplicand Multiplication and Fast

Exponentiation by Exponent

Decomposition,” IEICE Transactions on

Fundamentals, Vol. 80-A, No. 6, pp.

1160-1163, June 1997.

[19] T. Elgamal,“A Public Key Cryptosystem and

a Signature Scheme Based on the Discrete

Logarithms,” IEEE Transactions on

Information Theory, Vol. 31, No. 4, pp.

469-472, July 1985.

[20] T.-S. Chen, “A Threshold Signature Scheme

Based on the Elliptic Curve Cryptosystem,”

Applied Mathematics and Computation, Vol.

162, No. 3, pp. 1119-1134, March 25, 2005.

