
A Multi User-Interface Generation Plug-in for Visual 

Studio .NET 

Chi-Han Kao   Shyan-Ming Yuan 

Department of Computer and Information Science, National Chiao Tung 
University, 

1001 Ta Hsueh Rd., Hsinchu 300, Taiwan. 
Email: gis92585@cis.nctu.edu.tw

Abstract 

 

With the variety of the mobile devices, the 

specification between devices has become more 

and more different. From the point view of 

programmers, in order to execute the application 

with the same function on the different platform, 

programmers have to rewrite the program in 

another language. The repeated action of 

rewriting is meaning less and unnecessary for 

programmers. Therefore, we want to provide a 

toolkit for programmers. The finished program 

can be translated into the target language 

through the toolkit. 

Keywords : plug-in; user interface; 

transformation� 

 

�� 

�����	
��
�������

������������� �!"#$�

���%&'(")*+,-�./01("

���2 3456�7
�-%89��:

;<� �=3>�(/���?@�ABC

DEFGH:;IJ�K�LMN2 �#

$�O56P����MNQRS2 �T

U�V

��� : WX���YZ<[\�2 MN 

I. Introduction 

 

As the mobile devices are developed 

vigorously in recent years, there are thousands of 

devices have been published in the world. 

Therefore, many mobile applications are coded 

in many different programming languages. There 

is a problem for the people who develop the 

mobile application. If they want to operate 

mobile applications with same function in 

various mobile execution environments, they 

have to edit various versions of program by 

using different programming languages.  

To save the problem, the member of our  

lab – Shen, had proposed a toolkit named 

“XML-based Mobile Application Development 

Kit” [7]. The toolkit is designed in the concept 

“Write Once, Run Anywhere”, the function of 

this toolkit is translating the document to the 

target language users assigned, and the translated 

document can be executed in the mobile 

environment [3]. The document is written in the 

language we defined, and the translated 

document is written in the physical language 

known by public. From now on, programmers 

only have to write the program once, and our 

toolkit can translate the program to various 



 

languages in the public by using our toolkit.  

Although the toolkit proposed by shen 

saves the problem of various mobile execution 

environments, the environment for users to edit 

the document in the language we defined is in 

the text mode. It is not convenient for users to 

edit the document. We want users can edit the 

document in the WYSIWYG [6] development 

environment. When users develop the User 

Interface (UI) of the mobile application, they can 

get the layout of the User Interface immediately 

from the development environment.  

At first, we want to develop the 

development environment ourselves own. But 

there is a problem about this development 

environment. Users who first operate the 

development environment have to learn the 

skills about the environment. It is not convenient 

for users.  

In the next step, we find that there are 

many integrated development environment (IDE) 

have been published in the world. In normal, 

programmers usually use the IDE to develop the 

program. This situation excites our thought to 

embed our toolkit into the IDE known by public. 

In this way, programmers can use the IDE they 

are familiar to edit the document, and our toolkit 

can translate the document to the target language 

they assigned. 

The rest of this thesis is organized as 

follows. In the next chapter, we review a few 

background and related works. The 

characteristics of our implementation are 

provided in II. Part III, we will explain how to 

implement our development in detail. After that, 

we will compare our development with the other 

programs which have the function are similar to 

us in part IV. Final is the conclusions and future 

works. 

 

II. Ideas of Design  

The toolkit that we developed is used to 

translate the program from one language to 

another. For example, according to Figure 1, we 

can edit the program in J2ME, and we can get 

the program written in WML[9] through our 

toolkit[1].   

 

 

Figure 1: example of translating 

program from J2ME to 

WML 

 

This is the usage of our toolkit. In the 

toolkit, we define a language, which was named 

Pervasive User-interface Markup Language 

(PUML). We will introduce the language 

“PUML” roughly in this chapter, and we will 

detail the language in Chapter Four. PUML is 

the intermediary language for translating; we can 

save the developing time of writing the program 

with the same function but in the different 

language. It’s convenient to get the program in 

the language we want through PUML. And if we 

edit the program by PUML directly, we can save 

the translating time.  

 

A. Ideas of Design 

As we mentioned above, in order to make 

user convenient use PUML to edit the program, 

there are some characteristic about our toolkit 



 

(embed PUML in IDE) described as follow: 

� Easy Install Easy Uninstall  

� Tight Combination   

� FamiliarDevelop Environment 

� Click and Generation  

� Easy Drag-and-Drop 

� Visional Set Property 

 

B. The Process of Embedding 

The embedding process of our toolkit into 

Visual Studio .NET can separate into two parts. 

One is the front-end environment combination. 

The other is binding the document that front-end 

environment generated with the back-end 

translation engine.  In the front-end 

combination with Visual Studio .NET[5], we 

have to detect all the UI controls that users put 

on the design form. The action “detect UI 

controls” contains several things, we describe as 

follow: 

  

The number of controls: 

When users use the IDE (in our 

implementation, the target IDE is Visual 

Studio .NET) to edit the User Interface of the 

application, they often modify the User Interface 

layout of the application. At the moment user 

triggers the IDE, ask to generate PUML code 

according to the controls they design, our toolkit 

have to know the modification about the controls. 

For example, user may add a button on the 

design form of the IDE, when generating the 

PUML code, toolkit have to detect that there is 

new control added to the form, and generate the 

PUML code of the button in the PUML 

document. 

  

The modification of the controls: 

When design the application layout, user 

not only modifies the controls, but also the 

attributes of the controls. After detecting the 

modification of the controls, toolkit has to 

generate the attributes of each control.  

 

After users finish the UI design of the 

PUML document, the next step is translating the 

PUML file to the language they wants. In the 

process of translation, the machine that users 

operate must to be connected with the Internet. 

Nowadays, it is not difficult for computers to be 

connected with Internet; therefore; we design 

our translation engine as Web Services, and the 

machine can send the document to the 

translation engine through Internet.  

 

The reason we decide to make our 

translation engine as Web Services is that we can 

simplify the process of embedding our toolkit 

into the IDE. When users need the service of 

translation, they send the document they edit to 

the engine through the internet. After translation 

engine gets the document sanded by users, the 

engine translates the document to the language 

that the user wants. Finally, the engine sends the 

document been translated to the machine that the 

user operate, and the IDE displays the document 

sanded back though the emulator. Users can see 

the result from the emulator, decide whether the 

User Interface is they want or not by the result 

displayed by the emulator. Figure 2 is an 

example about the translation process. 

 



 

 

Figure 2: an example of the translation 

process 

 There are five steps of the translation; we 

describe each action of the steps that users take 

as follow:  

 

Users edit the document with the IDE - 

Visual Studio .NET. The IDE that users use has 

been embedded the translation toolkit we 

developed, and the way to use the IDE to edit the 

User Interface of the application is the same as 

usual.  

 

After users design the User Interface of 

their program by putting controls on the design 

form of the IDE, our toolkit can generate the 

code of the PUML language according to the 

controls that users put automatically. In this step, 

users can edit what action of the control is when 

it is triggered. 

 

When users finish their program, they can 

click the button we build in the IDE to translate 

the program. After users click the button, our 

toolkit will transmit the PUML document to the 

translation engine through Internet. 

 

Translation engine gets the document form 

the toolkit embedded in the IDE, it translate the 

document to the language users want, and send 

the translated document to the toolkit back. 

 

When the toolkit receives the translated 

document, it will display the result to users 

through the emulator.  

 

In this part, we have described the 

combination process of our toolkit. First of all, 

we need to know what controls users have 

dragged on the design form, our toolkit have to 

generate the document corresponding to the 

controls on the design form of the IDE. The 

generated document includes the tags of the 

controls and the attributes of the controls that 

users set in the properties window.  

 

In the following, we will introduce the 

language “PUML” at first. After the part of 

“PUML”, we will explain the implementation 

how we embed our toolkit into Visual 

Studio .NET [4], and transmit the document to 

the back-end translation engine. 

 

III. Implementation   

In this part, we will introduce the core 

implementation – Pervasive User-interface 

Markup Language. After PUML is the section of 

the combination of our toolkit and the IDE. 

 

A. Introduction of Pervasive User-interface 

Markup Language 

PUML is a language for describing the 

User Interface of the application. When we 

divide mobile application into two parts: User 

Interface and Logic Computing, the 

responsibility of PUML is to describe the User 

Interface. 

 

PUML is a XML-based language for 

describing the User Interface. PUML have to 

follow all the rules in XML, and inherit all the 



 

characteristics about XML. We get some ideas 

from XUL, UIML, and WML to design PUML. 

Besides the part we learn from other languages 

described above, PUML also contains our own 

ideas of design. These ideas make PUML more 

suitable for rendering the User Interface in the 

mobile environment. We will introduce these 

ideas in later of this chapter. 

 

After a PUML document has been 

translated by the translation engine, we can get 

the program written in the other language, and 

the program can be executed in the mobile 

environment. That is to say, the User Interface 

described in the PUML document will be 

translated to the target language. When the 

translated document is executed in the mobile 

environment, it will render the layout of the User 

Interface in the PUML document. 

 

B. The document transmission to the 

back-end toolkit 

Because the transmission to the target 

language is based on the PUML document, we 

have to send the PUML document to the 

translation toolkit. The target language we 

provide can be divided into two parts: One is the 

web-based language; the other is the local-side 

language.  

 

The web-based languages supported by 

our translation toolkit are XHTML MP and 

WML. This function is reused from our 

colleague; we deploy the toolkit as the web 

service. The requirement of using our web-base 

translation is the internet connection. After users 

finish the User Interface design, they press the 

button to transmit the PUML document to the 

toolkit we deployed on the internet. The toolkit 

can translates the PUML document to the target 

language we supported, and transmits the result 

back to users.  

 

The other part is the local-side languages. 

The term “local-side” means the entire program 

is executed on the machine. The target languages 

we support in this part is C#[5] and J2ME[8]. 

The requirement of this function is the XSLT[10] 

style sheet. Through the style sheet, users can get 

the User Interface in their assigned language. 

The translation in this part needs no network 

connection. Users only have to download the 

style sheet, put the style sheet in the machine. In 

the process of the translation, our toolkit will 

generate the target language through the style 

sheet automatically.  

 

IV. Conclusion and Future Work 

A. Conclusion 

In the above part, we have introduced all 

the things about this paper. First of all, we have 

described the translation toolkit developed by 

our lab colleague. The motivation of this toolkit 

is similar with the concept of Java. The author 

wants the concept “Write Once, Run Anywhere” 

being realized in the mobile environment. The 

usage of the toolkit is to translate the document 

written in the language we defined, and users 

can assign the target language they want to 

translate the document. The translated document 

can be executed in the mobile environment 

according to the language users assign. This is 

the usage of our toolkit. 

   

For users no matter in the process of 

operation or the installation. The method of 



 

operating the IDE is the same as before. We 

embed our translation toolkit into the IDE, users 

operate the IDE as usual. The IDE embedded 

with our toolkit can generate the PUML code 

according to the dragged controls on the form. 

After users have installed our plug-in, they can 

convenience edit the document in our language, 

and reduce the repeat action of developing.  

 

B. Future Work 

We wish the target IDE that embedded 

with our toolkit could be supported more widely 

and the developing works can be more easily, so 

we propose a few future works that enhance our 

plug-in more complete. 

� Increase the number of IDEs: 

� Improve the combination of the IDE: 

 

References 

[1] Anna Maria Jankowska, and Andrzej 

Dabkowski, "Content Adaptation 

TagLibrary ]  An Approach for User 

Interface Adaptation for Different Devices", 

European University Viadrina, Chair of 

Business Informatics 

[2] Extensible Markup Language, W3C  

http://www.w3.org/XML/ 

[3] Kris Luyten and Karin Coninx, "An 

XML-based runtime user interface 

description language for mobile computing 

devices", 2001 Springer-Verlag 

[4] Les Smith, “Writing Add-Ins for Visual 

Studio .NET” , APress 200 

[5]  Microsoft Visual Studio Developer Center 

http://msdn.microsoft.com/vstudio/  

[6]  Ono, K.; Koyanagi, T.; Abe, M.; Hori, M.; 

Applications and the Internet, 2002. 

(SAINT 2002). Proceedings. 2002 

Symposium on 28 Jan.-1 Feb. 2002 

Page(s):150 - 159  

[7] Sheng-Po Shen, Shyan-Ming Yuan, 

“XML-based Mobile Application 

Development Framework”, �����

���	�
��
����� 93 � 6

� 

[8] Sun Microsystems Inc, Java 2 Platform 

Micro Edition, http://java.sun.com/j2me/ 

[9]  WAP Forum, OMA, Open Mobile Alliance  

http://www.wapforum.org/index.htm 

[10] XSL Transformations (XSLT) Version 1.0, 

W3C Recommendation 16 , November 

1999 , TUhttp://www.w3.org/TR/xsltUT  

 



 

 


