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Abstract 

 
A Mobile Ad-hoc Network (MANET) may suffer 

from various types of transmission medium (TM) 
failure. In order to enhance the fault-tolerance and 
reliability of the MANETs, the consensus problem in 
the MANET model based on hierarchical clustering 
structure (clustered-MANET) is revisited in this paper. 
The proposed protocol is called Dual Consensus 
Protocol (DCP), which can make each correct mobile 
node reach a common value to cope with the faulty 
component in the clustered-MANET. 
Keywords: Consensus, fault-tolerance, distributed 
system, hierarchical clustering structure, MANET 
 
1. Introduction 
 

The MANETs have attracted significant attentions 
recently due to its features of infrastructure less, quick 
deployment and automatic adaptation to changes in 
topology. Therefore, MANET suits for military 
communication, emergency disaster rescue operation, 
and law enforcement [2]. 

The reliability of the environment is one of the 
most important aspects in MANET. In order to 
provide a reliable environment in a MANET, we need 
a mechanism to allow a set of mobile nodes (MNs) to 
agree on a common value [8]. The Byzantine 
Agreement (BA) problem [2,3,8] is one of the most 
fundamental problems to reach a common value in a 
distributed system. 

The BA problem was first introduced by Lamport 
[5] in 1980. With the agreement, many applications [8] 
can be achieved. A closely related sub-problem, 
consensus problem, has been studied extensively in 
the literature [4]. Lamport argued that the consensus 
problem under the assumption of synchronous 
behavior, showing that (3f+1) nodes are required to 

allow f failures [7]. The previous research [3] had 
solved the consensus problem in an unreliable 
communication system, but it treated all faulty TMs 
are malicious. Actually, the symptom of a faulty TM 
can be classified into dormant and malicious fault [8]. 
The dormant fault of a communication always can be 
identified by the receiver if the transmitted message or 
information were encode appropriately (such as by 
NRZ-code and Manchester code [7]) before 
communication, it means that the dormant faulty TM 
can be detected. On the other hand, the malicious 
faulty TM is unpredictable. 

In this paper, we concern the solution of 
consensus problem. The definition of the problem is to 
make the correct nodes in an n nodes distributed 
system to reach consensus. Each node chooses an 
initial value to start with, and communication to each 
other by exchanging messages. A group of multiple 
nodes is referred to make a consensus if it satisfies the 
following conditions [6].  
(Agreement): All correct nodes agree on the same 

value. 
(Validity): If the initial value of all nodes is vi, then all 

correct nodes shall agree on vi. 
In a consensus problem, many results are based 

on the assumption of node failure in a fail-safe 
network [2,4,6]. Based on this assumption, a TM fault 
is unfairly treated as a node fault [5], regardless the 
correctness of an innocent node; hence an innocent 
node does not involve consensus. This is a 
contradiction with the definition of consensus problem, 
which requires all correct nodes to reach consensus. 

In this paper, we consider a distributed system 
whose nodes are reliable during the consensus 
execution in clustered-MANET, while the TM may be 
disturbed by some faults. An efficient and reliable 
protocol to achieve consensus in an unreliable 
communication environment of tradition network 
topology has been proposed [5]. The proposed 
protocol can tolerate   12/ −c  faulty TMs where c is 
the connectivity of network [7]. 

The rest of this paper is organized as follows. 
Section 2 discusses the MANET. Section 3 illustrates 
the concept of DCP by an example. The fault tolerant 
capability and correctness of the proposed protocol is 
shown in Section 4. Finally, the conclusion is given in 
the last section. 

 
2. Mobile Ad-hoc Network (MANET) 

 
MANET is composed of many mobile nodes [1]. 



In MANET, each node can dynamically form a 
network without any infrastructure such as base 
station. Each node connects to each other by 
multi-hop wireless TM. Besides moving randomly, 
each MN acts as a router to help other MN in the 
network transmit data packets. In the MANET, there 
are few cluster managers (CM) to take charge of 
message transmission of all MNs. Therefore, the CMs 
could be crashed due to a large number of work 
burdens and then effect the performance of message 
transmission of whole network. Fortunately, in the 
MANET, nodes often together and further form 
clusters due to common characteristics. 

Fig. 1 shows the network topology, which is a 
hierarchical clustering network framework with 
several layers. Each cluster has its own CM. When the 
child cluster network is established, its CM will 
automatically establish hierarchical relation with its 
parent CM by exchanging data and obtaining its up 
and down layer manager. 

Using this method to establish hierarchical 
manager architecture to manage and provide whole 
network environment to transmit data. When the 
message sender and receiver nodes are in the same 
cluster, it will exchange message directly by the two 
nodes to decrease the burden of the CM. 

If the message sender and receiver nodes are 
located in different clusters, the sender node will 
transmit the message to its CM and then the group 
manager will transmit the message to its up-layer 
group manager according to the hierarchical 
framework. By using the relay between group 
managers, the message package can finally be 
transmitted to the receiver node. 

If the receiver node is located out of the whole 
transmission range, the packet will uniformly be 
transmitted to the highest CM by which exchanges 
data with the highest CM in the other range to reach 
the goal of data delivering. 

 

 
 : correct TM 
 : malicious faulty TM 
 : dormant faulty TM 

 
Fig. 1 MANET based on Hierarchical cluster structure 

 

3. The Dual Consensus Protocol (DCP) 
 

The proposed protocol DCP is used to solve the 
consensus problem due to faulty TMs, which may 
send wrong messages to influence the system to 
achieve consensus in a clustered-MANET. DCP 
protocol consists two phases and needs two rounds of 
message exchange to solve the consensus problem. In 
the first round of the message exchange, each node 
multicasts its initial value through TM and then 
receives the initial value of other nodes as well. In the 
second round, each node acts as the sender, sending 
the vector received in the first round to each other, and 
constructs a matrix, called the MATi, 1≤i≤n. Finally, 
the decision making phase will reach consensus 
among the all nodes. The proposed protocol DCP is 
presented in Fig. 2. Moreover, the procedure for 
setting MATi is shown in Fig. 3. 

 
DCP protocol (for node Pi with initial value vi) 
Message Exchange Phase: 
Round 1: Multicast (vi), then receives the initial value from 

the other nodes, and construct vector Vi. 
Round 2: Multicast (Vi), and then receive column vectors 

broadcasted by other nodes, and construct MATi. 
Decision Making Phase: 
Step 1-1: Each λ value is eliminated and does not join to 

majority. Take the local majority on messages 
received from each cluster of each row k of MATi 
to new MATi. If (local MAJk = ?), then set the 
local majority value = φ. 

Step 1-2: Take the normal majority value of each row k of 
new MATi to MAJk. 

Step 2: Search for any MAJk. If (∃MAJk = ¬vi), then 
DECi:=φ; else if (∃MAJk.=#) AND (vki=vi), then 
DECi:=φ; else DECi:= vi, and terminate. 

Fig. 2. The DCP protocol to reach consensus 
 

Procedure MATRIX (for node Pi with initial value vi) 
1. Receive the initial value vi from node Pj, for 1 ≤ j ≤ n 

and j ≠ i. 
2. Construct the vector Vi=[v1, v2, …, vj, …, vn], 1 ≤ j ≤ n 

and j ≠ i. If a dormant TM, called TMik, was found, 
then vk = λ 

3. Multicast Vi to all nodes, and receive column vector Vj 
from node Pj, 1 ≤ j ≤ n 

4. Construct a MATi (Setting the vector vj in column j, for 
1 ≤ j ≤ n). If a dormant TM, say TMik, was found, then 
Vk = [ λ, λ, …, λ ] 

Fig.3. Procedure for setting MATi on each node Pi 
 

Subsequently, an example of executing the DCP 
in the clustered-MANET is shown in Fig. 1. There are 
eighteen nodes (denoted by P1, P2, …, P18) in the 
clustered-MANET. All nodes in the network are 
joined to the lowest layer (Layer 0). Four of the 
clusters of Layer 0 are shown in the Fig. 1. Nodes P1, 
P6, P11 and P15 are the CM of these clusters. The 
initial value of nodes Pi is 0 (for i = 1, 2, 4, 6, 9, 10, 11, 
13 to 18); the initial value of other nodes is 1. 

In the first round of message exchange, each node 
Pi multicasts its initial value vi through TM to all other 



nodes, where 1≤i≤n, and receives the initial value of 
other nodes as well. Then each node uses the received 
message to construct vector Vi as shown in Fig. 4(a). 
In the second round of message exchange, each node 
multicasts its vector Vi and receives the vectors from 
other nodes to construct the matrix MATi as shown in 
Fig. 4(b). 

The message exchange phase has completed after 
two rounds by DCP. In order to reduce the incorrect 
values of the TM were interfered within dormant or 
malicious. Each node takes majority in Step 1 of 
decision making phase. By the first of Step 1, each 
node takes the local majority on the value received 
from a cluster and constructs an 18*4 matrix. Then 
each node takes the normal majority value from each 
row of 18*4 matrix in the end of Step 2. Then, all 
nodes agree on the same value φ, and consensus is 
reached. 

 
4. Fault tolerance capability analysis 
 

The following lemmas and theorems are used to 
prove the correctness and complexity of DCP. 
Lemma 1: If there is a majority value = ¬vi in MATi, 
then there is at least one node with an initial value 
which disagrees with vi in the network. 
Proof: The majority value in the k-th row = ¬vi means 
that there are at least (n-d+1)/2 ¬vi’s in the k-th row 
where d is the number of dormant faults. Since the 
number of malicious faulty TMs is at most 
(n-d-3)/2-1, and ((n-d+1)/2+1)-((n-d-3)/2-1) = 2. 
Therefore, there exists at least one value ¬vi received 
from a correct TM. In other words, a node has a 
different initial value ¬vi . 
Lemma 2: Let the initial value of node Pi be vi and 
TMij is correct or dormant, then the majority value at 
the i-th row in MATj should be vi. 
Proof: 
Case 1: Since TMij is correct, the node Pj will receive 
vi from node Pi in the first round and vij = vi in MATj. 
Meanwhile, the value vi of node Pi will be broadcasted 
to the other nodes. There are at most (n-d-3)/2-1 
malicious faulty TMs in the network. In the second 
round, node Pj receives at least (n-d-1)- (n-d-3)/2 
=(n-d+1)/2 vi’s in the i-th row of MATj, where d is 
the number of λ which will be eliminated during the 
voting of majority. Hence, there are at least 
(n-d+1)/2 vi’s in the i-th row, and the majority value 
in the i-th row should be equal to vi. 
Case 2-1: TMij is dormant and n is an old number, the 
node j will receive λ fromanode Pi in the first round 
and vij = λ in MATj. Meanwhile, the value vi will be 
broadcasted to other nodes. There are at most 
(n-d-3)/2-1 maliciously faulty TMs and d dormant 
TMs in the network. After the second round, node Pj 
receives at least (d+1) λ’s and at least n-(d+1)- 
(n-d-3)/2-1 = (n-d+1)/2+1 vi’s in the i-th row of 
MATj, where d is the number of λ which will 
eliminated during the voting of majority. Hence, there 

are n = (d+1) non-λ’s and at least (n-d+1)/2 (greater 
than (n-(d+1)+1/2 = (n-d)/2 the majority required 
when n is in odd) vi’s in the i-th row, so, the majority 
value in the i-th should be equal to vi. 
Case 2-2: TMij is dormant and n is an odd number, the 
node Pj will receive λ from node Pi in the first round 
and vij = λ in MATj. Meanwhile, the value vi of node Pi 
will be broadcasted to the other nodes. There are at 
most (n-d+3)/2 malicious faulty TMs and d dormant 
TMs in the system. After the second round, node Pj 
receives at least (d+1) λ’s and at least 
n-(d+1)-((n-d-3)/2-1) = (n-d+1) /2 vi’s in the i-th 
row of MATj, where d is the number of λ which will 
be eliminated during the voting of majority. Hence, 
there are n-(d+1) non-λ’s and at least (n-d+1)/2+1 
(greater than [n-(d+1)+1]/2-1 = (n-d) /2) vi’s in the 
i-th row, so, the majority value in the i-th row should 
be equal to vi. ■ 
Lemma 3: If the initial value of node Pi is vi, whether 
the TMij is correct or dormant, the majority value at 
the i-th row of MATj, 1≤j≤n, should be either be vi or 
not be able to be determined with vij =¬ vi. 
Proof: By Lemma 2, when TMij is correct or dormant, 
the majority value of the i-th row in node Pj is vi, for 
1≤j≤n. When TMij is under the influence of malicious 
fault, we consider the following two cases after 
running the first round. 
Case 1: vij = vi. Since there are at most (n-d-3)/2 
malicious faulty TM connected with node Pj, at most 
(n-d-3)/2 values that may be ¬vi’s in the second 
round. The number of vi’s is [(n-d)-(n-d-3)/2] = 
(n-d+3)/2 in the i-th row where d is the number of λ 
which will be eliminated during the voting of majority; 
therefore, the majority of the i-th row in MATi is vi. 
Case 2: vij = ¬vi. There are at most (n-d-3)/2 
malicious faulty TMs. Therefore, in the second round, 
the total number of ¬vi‘s does not exceed (n-d-3)/2 
+1 = (n-d-1)/2 and the number of vi‘s is at least 
(n-d-1)-((n-d+1)/2) = (n-d-1)/2. If n-d is an even 
number, then (n-d-1)/2 = (n-d-1)/2, the majority of 
the i-th row in MATj cannot be determined. If n-d is 
an odd number, then (n-d-1)/2> (n-d-1)/2. Hence, 
the majority of the i-th row in MATj is vi. 
Lemma 4: If (¬∃MAJk =¬vi) AND {(∃MAJk = ?) 
AND (vki = vi)} in MATi, then DECi =φ is correct. 
Proof: If there has a MAJk = ?, there are exactly 
(n-d)/2 vi’s and (n-d)/2 ¬vi’s in the k-th row. If vki = vi 
in MATi, then all (n-d)/2 ¬vi’s should be received in 
the second round. There are (n-d-3)/2 malicious 
faulty TMs in the system. Therefore, in the second 
round, node Pi at least receives (n-d)/2 - (n-d-3)/2 ≥1 
value ¬vi from node Pk without disturbance. The 
initial value of node Pk should disagree with the initial 
value of node Pi; hence it is correct to choose DECi=φ. 
If vki = ¬vi, we claim that ¬vi ought to be passed 
through malicious TM from node Pi, and the initial 
value of node should be ¬vki = vi. To prove, if TMki is 
correct, then the initial value of node Pk should be ¬vi. 



By Lemma 2, the majority value of the k-th row in 
MATi is ¬vi. This is contradiction with the condition 
of (¬∃MAJk = ¬vi). If the initial value of node Pk was 
¬vi, then by Lemma 3, MAJk should be either ¬vi or ? 
for vki = vi. It is a contradiction.  
Theorem 1: Protocol DCP is correct. 
Proof: By Lemmas 1, 2, 3 and 4, the theorem is 
proved. 
Theorem 2: Protocol DCP can reach a consensus. 
Proof: 
(1) Agreement: 
Part 1: If a correct node agrees on φ, all correct nodes 
should agree on φ. If the correct node Pp with initial 
value vi agrees on φ, by Theorem 1, there is at least a 
correct node Pk with initial value ¬vi in the network. 
By Lemma 4, the majority value in the k-th row of 
MATj, 1≤j≤ n, should be either ¬vi or ? for vkj = vi. All 
correct nodes with initial value vi agree on φ. Similarly, 
for the correct node Pp with initial value ¬vi, the 
majority value of the p-th row in MATj, 1≤j≤n, either 
should be vi or cannot be determined with ¬vij = vi. All 
correct nodes with initial value ¬vi agree on φ, too. 
Part 2: If a correct node agrees on vi, all correct nodes 
should agree on vi. If the correct node Pi with initial 
value vi and DECi = vi, but there exists some correct 
node Pi, j ≠ i, has DECj ≠ vi, then that is impossible. To 
show this, if DECj = φ, by Part 1, then DECi = φ. This 
is a contradiction with the assumption as above. If 
DECj = ¬vi, unless the initial value of node Pi is ¬vi, 
otherwise it is impossible according to the definition 
consensus problem. However, if the initial value of 
node Pj is ¬vi, by Lemma 4, MAJi is equal to ¬vi or ? 
with vij = vi in MATi; then, DECj = φ, which is a 
contradiction. Hence, all correct nodes should agree 
on the same value. 
(2)Validity: The initial value of all nodes should be 
the same. If there is a value ¬vi in MATj, 1≤j≤n, then 
the value must be caused by malicious faulty TM. 
There are at most (n-d-3)/2 malicious faulty TMs, 
hence there are at most (n-d-3)/2 ¬vi’s in each row. 
Since the value received in the first round may be ¬vi, 
the majority of each row for all MATj, should be 
MAJj= ? (If the value received in the first round is ¬vj, 
1≤j≤ n); or vj. By Step 2 of the protocol DCP, all 
correct nodes should agree on vi. 
Theorem 3: The amount of information exchange by 
DCP is O(n2). 
Proof: In the first round, each node sends out (n-1) 
copies of its initial value to other nodes. In the second 
round, an n-element vector is sent to the other n-1 
nodes in the network; therefore, the total number of 
message exchange is (n-1)+(n*(n-1)). Therefore, the 
complexity of information exchange is O(n2)  
Theorem 4: One round of message exchange to 
achieve consensus is impossible. 
Proof: 
Part1: Message exchange is necessary. 

Without message exchange, a node cannot know 
whether or not a disagreeable value exists in other 

nodes; hence, consensus achievement is 
impossible. 

Part2:One round message exchange is not enough 
to achieve consensus. 

If node Pi is connected with node Pj by faulty TMij. 
Node Pi may not know the initial value in node Pj 
by using only one round of message exchange. 
Therefore, it is impossible to achieve consensus by 
using only one round of message exchange. 

�
 

Theorem 5: If the total number of the faulty TMs t > 
m+d, where m≤(n-d+3)/2, achieving consensus is 
impossible. 
Proof: When t>m+d, n is an even number and each 
node has c TMs, c is odd number, in the system. It is 
possible that a node has more malicious faulty TM 
than correct TM even if the influence of d dormant 
faults was eliminated. Regardless of the number of 
rounds of message exchange, this node will always be 
confused by the messages transferred through those 
malicious faulty TMs. The decision making by the 
node may conflict with other nodes. In this case, 
consensus achievement is impossible. 

�
 

Theorem 6: Using the minimum number of rounds, 
DCP can tolerate the maximum number of faulty TMs. 
Proof: From Theorems 2, 4 and 5, the theorem is 
proved. 
 
5. Conclusion 
 

In the past, complex networks had studied in a 
branch of mathematics known as graph theory. The 
network topology developed in recent years [1] shows 
a mobile feature such that the previous protocols such 
as [5] cannot adapt to it. In this paper, the consensus 
problem on dual failure modes in clustered-MANET 
has revisited, the proposed protocol DCP makes all 
correct nodes reach consensus. DCP derives its bound 
of allowable faulty TMs with two rounds of message 
exchange. 

Moreover, previous works about consensus 
problem had based on assumption that nodes are the 
only fallible components in the network, we plan to 
extend our protocol to consider the status (such as 
mobility) of nodes in clustered-MANET in future 
work. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 �  0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 �  1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 � 1 1 �  1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 �  0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 �  1 1 1 1 1 1 1 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig.4 (a) The vector received in the first round 
 

MATi = (Pi, for i=1,4,6,9,17,18) 
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

 

 
MATi = (Pi, for i=2) 
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� �� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� �� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

 

MATi = (Pi, for i=3) 
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� �� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 1���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 0� 1� 0���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� �������� 1� 1� 0���� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

MATi = (Pi, for i=5) 
0� 0� 0���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� 0���� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1���� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 0���� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

 

MATi = (Pi, for i=7) 
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�

 



MATi = (Pi, for i=8) 
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� �� 1� 1� �� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� �� 1� 1� �� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� �� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� �� 1� 1� �� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�

 

MATi = (Pi, for i=10) 
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�

 
MATi = (Pi, for i=11) 
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
1���� 1���� 0���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
0���� 1���� 0���� 1���� 1���� 1� 1� 1� 1� 1� 0� �� 0� 0� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
0���� 0���� 1���� 1���� 0���� 1� 1� 1� 1� 1� 0� �� 0� 0� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 1���� 0���� 1� 1� �� 1� 1� 1� �� 1� 1� 1� 1� 1� 1�
0���� 0���� 0���� 1���� 0���� 1� �� 1� 1� �� 1� �� 1� 1� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 0���� 1���� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 1� 1� 1� 1� 1� �� �� 1� 1� 1� 1� 1� 1�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 1� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�

 

MATi = (Pi, for i=12) 
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 
0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 � 1 1 0 1 1 1 1 1 1 1 
0 0 0 1 0 1 � 1 1 � 0 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 � 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 � 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 
1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 

MATi = (Pi, for i=13) 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 � 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 0 1 � 1 1 � 1 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 � 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 � 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 

 

MATi = (Pi, for i=14) 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 � 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 0 1 � 1 1 � 1 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 � 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 � 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 

 
MATi = (Pi, for i=15) 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 � 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 � 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 � 1 1 � 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 � 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 � 1 1 1 1 1 1 1 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

 

MATi = (Pi, for i=16) 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 � 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 � 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 � 1 1 � 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 � 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 � 1 1 1 1 1 1 1 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

Fig.4(b) MAT constructed at the end of 2nd rounds 
Fig.4 An example of DCP execution 


