
Revisit Consensus in a Dual Fallible Clustered-MANET

K.Q. Yan S.C. Wang Y.F. Tsou
kqyan@cyut.edu.tw scwang@cyut.edu.tw s9414613@cyut.edu.tw

Chaoyang University of Technology

��������

�� � � � � � � 	
 � �
� � � � � � �

� � 	 � � � � � 	 � �
� � ! " # $ % 	 &

'(�) * + , � � � � � � � 	 - . /
0 1 2

� 3 4 5 6 � 	 � � � � � � � 7 8 9 : ; <

=(> ? @ A : ; B 	 C D
E F G 	 H I J K L

� + , (0 1 2 M + N 	 O P
- � E % Q R S T

	 U � V W
X J Y � Q Z [H I J K (
\] ^: ;
H I
_ ` � F G
5 6 � � � �

� � � � a

Abstract

A Mobile Ad-hoc Network (MANET) may suffer

from various types of transmission medium (TM)
failure. In order to enhance the fault-tolerance and
reliability of the MANETs, the consensus problem in
the MANET model based on hierarchical clustering
structure (clustered-MANET) is revisited in this paper.
The proposed protocol is called Dual Consensus
Protocol (DCP), which can make each correct mobile
node reach a common value to cope with the faulty
component in the clustered-MANET.
Keywords: Consensus, fault-tolerance, distributed
system, hierarchical clustering structure, MANET

1. Introduction

The MANETs have attracted significant attentions
recently due to its features of infrastructure less, quick
deployment and automatic adaptation to changes in
topology. Therefore, MANET suits for military
communication, emergency disaster rescue operation,
and law enforcement [2].

The reliability of the environment is one of the
most important aspects in MANET. In order to
provide a reliable environment in a MANET, we need
a mechanism to allow a set of mobile nodes (MNs) to
agree on a common value [8]. The Byzantine
Agreement (BA) problem [2,3,8] is one of the most
fundamental problems to reach a common value in a
distributed system.

The BA problem was first introduced by Lamport
[5] in 1980. With the agreement, many applications [8]
can be achieved. A closely related sub-problem,
consensus problem, has been studied extensively in
the literature [4]. Lamport argued that the consensus
problem under the assumption of synchronous
behavior, showing that (3f+1) nodes are required to

allow f failures [7]. The previous research [3] had
solved the consensus problem in an unreliable
communication system, but it treated all faulty TMs
are malicious. Actually, the symptom of a faulty TM
can be classified into dormant and malicious fault [8].
The dormant fault of a communication always can be
identified by the receiver if the transmitted message or
information were encode appropriately (such as by
NRZ-code and Manchester code [7]) before
communication, it means that the dormant faulty TM
can be detected. On the other hand, the malicious
faulty TM is unpredictable.

In this paper, we concern the solution of
consensus problem. The definition of the problem is to
make the correct nodes in an n nodes distributed
system to reach consensus. Each node chooses an
initial value to start with, and communication to each
other by exchanging messages. A group of multiple
nodes is referred to make a consensus if it satisfies the
following conditions [6].
(Agreement): All correct nodes agree on the same

value.
(Validity): If the initial value of all nodes is vi, then all

correct nodes shall agree on vi.
In a consensus problem, many results are based

on the assumption of node failure in a fail-safe
network [2,4,6]. Based on this assumption, a TM fault
is unfairly treated as a node fault [5], regardless the
correctness of an innocent node; hence an innocent
node does not involve consensus. This is a
contradiction with the definition of consensus problem,
which requires all correct nodes to reach consensus.

In this paper, we consider a distributed system
whose nodes are reliable during the consensus
execution in clustered-MANET, while the TM may be
disturbed by some faults. An efficient and reliable
protocol to achieve consensus in an unreliable
communication environment of tradition network
topology has been proposed [5]. The proposed
protocol can tolerate   12/ −c faulty TMs where c is
the connectivity of network [7].

The rest of this paper is organized as follows.
Section 2 discusses the MANET. Section 3 illustrates
the concept of DCP by an example. The fault tolerant
capability and correctness of the proposed protocol is
shown in Section 4. Finally, the conclusion is given in
the last section.

2. Mobile Ad-hoc Network (MANET)

MANET is composed of many mobile nodes [1].

In MANET, each node can dynamically form a
network without any infrastructure such as base
station. Each node connects to each other by
multi-hop wireless TM. Besides moving randomly,
each MN acts as a router to help other MN in the
network transmit data packets. In the MANET, there
are few cluster managers (CM) to take charge of
message transmission of all MNs. Therefore, the CMs
could be crashed due to a large number of work
burdens and then effect the performance of message
transmission of whole network. Fortunately, in the
MANET, nodes often together and further form
clusters due to common characteristics.

Fig. 1 shows the network topology, which is a
hierarchical clustering network framework with
several layers. Each cluster has its own CM. When the
child cluster network is established, its CM will
automatically establish hierarchical relation with its
parent CM by exchanging data and obtaining its up
and down layer manager.

Using this method to establish hierarchical
manager architecture to manage and provide whole
network environment to transmit data. When the
message sender and receiver nodes are in the same
cluster, it will exchange message directly by the two
nodes to decrease the burden of the CM.

If the message sender and receiver nodes are
located in different clusters, the sender node will
transmit the message to its CM and then the group
manager will transmit the message to its up-layer
group manager according to the hierarchical
framework. By using the relay between group
managers, the message package can finally be
transmitted to the receiver node.

If the receiver node is located out of the whole
transmission range, the packet will uniformly be
transmitted to the highest CM by which exchanges
data with the highest CM in the other range to reach
the goal of data delivering.

 : correct TM
 : malicious faulty TM
 : dormant faulty TM

Fig. 1 MANET based on Hierarchical cluster structure

3. The Dual Consensus Protocol (DCP)

The proposed protocol DCP is used to solve the
consensus problem due to faulty TMs, which may
send wrong messages to influence the system to
achieve consensus in a clustered-MANET. DCP
protocol consists two phases and needs two rounds of
message exchange to solve the consensus problem. In
the first round of the message exchange, each node
multicasts its initial value through TM and then
receives the initial value of other nodes as well. In the
second round, each node acts as the sender, sending
the vector received in the first round to each other, and
constructs a matrix, called the MATi, 1≤i≤n. Finally,
the decision making phase will reach consensus
among the all nodes. The proposed protocol DCP is
presented in Fig. 2. Moreover, the procedure for
setting MATi is shown in Fig. 3.

DCP protocol (for node Pi with initial value vi)
Message Exchange Phase:
Round 1: Multicast (vi), then receives the initial value from

the other nodes, and construct vector Vi.
Round 2: Multicast (Vi), and then receive column vectors

broadcasted by other nodes, and construct MATi.
Decision Making Phase:
Step 1-1: Each λ value is eliminated and does not join to

majority. Take the local majority on messages
received from each cluster of each row k of MATi
to new MATi. If (local MAJk = ?), then set the
local majority value = φ.

Step 1-2: Take the normal majority value of each row k of
new MATi to MAJk.

Step 2: Search for any MAJk. If (∃MAJk = ¬vi), then
DECi:=φ; else if (∃MAJk.=#) AND (vki=vi), then
DECi:=φ; else DECi:= vi, and terminate.

Fig. 2. The DCP protocol to reach consensus

Procedure MATRIX (for node Pi with initial value vi)
1. Receive the initial value vi from node Pj, for 1 ≤ j ≤ n

and j ≠ i.
2. Construct the vector Vi=[v1, v2, …, vj, …, vn], 1 ≤ j ≤ n

and j ≠ i. If a dormant TM, called TMik, was found,
then vk = λ

3. Multicast Vi to all nodes, and receive column vector Vj
from node Pj, 1 ≤ j ≤ n

4. Construct a MATi (Setting the vector vj in column j, for
1 ≤ j ≤ n). If a dormant TM, say TMik, was found, then
Vk = [λ, λ, …, λ]

Fig.3. Procedure for setting MATi on each node Pi

Subsequently, an example of executing the DCP
in the clustered-MANET is shown in Fig. 1. There are
eighteen nodes (denoted by P1, P2, …, P18) in the
clustered-MANET. All nodes in the network are
joined to the lowest layer (Layer 0). Four of the
clusters of Layer 0 are shown in the Fig. 1. Nodes P1,
P6, P11 and P15 are the CM of these clusters. The
initial value of nodes Pi is 0 (for i = 1, 2, 4, 6, 9, 10, 11,
13 to 18); the initial value of other nodes is 1.

In the first round of message exchange, each node
Pi multicasts its initial value vi through TM to all other

nodes, where 1≤i≤n, and receives the initial value of
other nodes as well. Then each node uses the received
message to construct vector Vi as shown in Fig. 4(a).
In the second round of message exchange, each node
multicasts its vector Vi and receives the vectors from
other nodes to construct the matrix MATi as shown in
Fig. 4(b).

The message exchange phase has completed after
two rounds by DCP. In order to reduce the incorrect
values of the TM were interfered within dormant or
malicious. Each node takes majority in Step 1 of
decision making phase. By the first of Step 1, each
node takes the local majority on the value received
from a cluster and constructs an 18*4 matrix. Then
each node takes the normal majority value from each
row of 18*4 matrix in the end of Step 2. Then, all
nodes agree on the same value φ, and consensus is
reached.

4. Fault tolerance capability analysis

The following lemmas and theorems are used to
prove the correctness and complexity of DCP.
Lemma 1: If there is a majority value = ¬vi in MATi,
then there is at least one node with an initial value
which disagrees with vi in the network.
Proof: The majority value in the k-th row = ¬vi means
that there are at least (n-d+1)/2 ¬vi’s in the k-th row
where d is the number of dormant faults. Since the
number of malicious faulty TMs is at most
(n-d-3)/2-1, and ((n-d+1)/2+1)-((n-d-3)/2-1) = 2.
Therefore, there exists at least one value ¬vi received
from a correct TM. In other words, a node has a
different initial value ¬vi .
Lemma 2: Let the initial value of node Pi be vi and
TMij is correct or dormant, then the majority value at
the i-th row in MATj should be vi.
Proof:
Case 1: Since TMij is correct, the node Pj will receive
vi from node Pi in the first round and vij = vi in MATj.
Meanwhile, the value vi of node Pi will be broadcasted
to the other nodes. There are at most (n-d-3)/2-1
malicious faulty TMs in the network. In the second
round, node Pj receives at least (n-d-1)- (n-d-3)/2
=(n-d+1)/2 vi’s in the i-th row of MATj, where d is
the number of λ which will be eliminated during the
voting of majority. Hence, there are at least
(n-d+1)/2 vi’s in the i-th row, and the majority value
in the i-th row should be equal to vi.
Case 2-1: TMij is dormant and n is an old number, the
node j will receive λ fromanode Pi in the first round
and vij = λ in MATj. Meanwhile, the value vi will be
broadcasted to other nodes. There are at most
(n-d-3)/2-1 maliciously faulty TMs and d dormant
TMs in the network. After the second round, node Pj
receives at least (d+1) λ’s and at least n-(d+1)-
(n-d-3)/2-1 = (n-d+1)/2+1 vi’s in the i-th row of
MATj, where d is the number of λ which will
eliminated during the voting of majority. Hence, there

are n = (d+1) non-λ’s and at least (n-d+1)/2 (greater
than (n-(d+1)+1/2 = (n-d)/2 the majority required
when n is in odd) vi’s in the i-th row, so, the majority
value in the i-th should be equal to vi.
Case 2-2: TMij is dormant and n is an odd number, the
node Pj will receive λ from node Pi in the first round
and vij = λ in MATj. Meanwhile, the value vi of node Pi
will be broadcasted to the other nodes. There are at
most (n-d+3)/2 malicious faulty TMs and d dormant
TMs in the system. After the second round, node Pj
receives at least (d+1) λ’s and at least
n-(d+1)-((n-d-3)/2-1) = (n-d+1) /2 vi’s in the i-th
row of MATj, where d is the number of λ which will
be eliminated during the voting of majority. Hence,
there are n-(d+1) non-λ’s and at least (n-d+1)/2+1
(greater than [n-(d+1)+1]/2-1 = (n-d) /2) vi’s in the
i-th row, so, the majority value in the i-th row should
be equal to vi. ■
Lemma 3: If the initial value of node Pi is vi, whether
the TMij is correct or dormant, the majority value at
the i-th row of MATj, 1≤j≤n, should be either be vi or
not be able to be determined with vij =¬ vi.
Proof: By Lemma 2, when TMij is correct or dormant,
the majority value of the i-th row in node Pj is vi, for
1≤j≤n. When TMij is under the influence of malicious
fault, we consider the following two cases after
running the first round.
Case 1: vij = vi. Since there are at most (n-d-3)/2
malicious faulty TM connected with node Pj, at most
(n-d-3)/2 values that may be ¬vi’s in the second
round. The number of vi’s is [(n-d)-(n-d-3)/2] =
(n-d+3)/2 in the i-th row where d is the number of λ
which will be eliminated during the voting of majority;
therefore, the majority of the i-th row in MATi is vi.
Case 2: vij = ¬vi. There are at most (n-d-3)/2
malicious faulty TMs. Therefore, in the second round,
the total number of ¬vi‘s does not exceed (n-d-3)/2
+1 = (n-d-1)/2 and the number of vi‘s is at least
(n-d-1)-((n-d+1)/2) = (n-d-1)/2. If n-d is an even
number, then (n-d-1)/2 = (n-d-1)/2, the majority of
the i-th row in MATj cannot be determined. If n-d is
an odd number, then (n-d-1)/2> (n-d-1)/2. Hence,
the majority of the i-th row in MATj is vi.
Lemma 4: If (¬∃MAJk =¬vi) AND {(∃MAJk = ?)
AND (vki = vi)} in MATi, then DECi =φ is correct.
Proof: If there has a MAJk = ?, there are exactly
(n-d)/2 vi’s and (n-d)/2 ¬vi’s in the k-th row. If vki = vi
in MATi, then all (n-d)/2 ¬vi’s should be received in
the second round. There are (n-d-3)/2 malicious
faulty TMs in the system. Therefore, in the second
round, node Pi at least receives (n-d)/2 - (n-d-3)/2 ≥1
value ¬vi from node Pk without disturbance. The
initial value of node Pk should disagree with the initial
value of node Pi; hence it is correct to choose DECi=φ.
If vki = ¬vi, we claim that ¬vi ought to be passed
through malicious TM from node Pi, and the initial
value of node should be ¬vki = vi. To prove, if TMki is
correct, then the initial value of node Pk should be ¬vi.

By Lemma 2, the majority value of the k-th row in
MATi is ¬vi. This is contradiction with the condition
of (¬∃MAJk = ¬vi). If the initial value of node Pk was
¬vi, then by Lemma 3, MAJk should be either ¬vi or ?
for vki = vi. It is a contradiction.
Theorem 1: Protocol DCP is correct.
Proof: By Lemmas 1, 2, 3 and 4, the theorem is
proved.
Theorem 2: Protocol DCP can reach a consensus.
Proof:
(1) Agreement:
Part 1: If a correct node agrees on φ, all correct nodes
should agree on φ. If the correct node Pp with initial
value vi agrees on φ, by Theorem 1, there is at least a
correct node Pk with initial value ¬vi in the network.
By Lemma 4, the majority value in the k-th row of
MATj, 1≤j≤ n, should be either ¬vi or ? for vkj = vi. All
correct nodes with initial value vi agree on φ. Similarly,
for the correct node Pp with initial value ¬vi, the
majority value of the p-th row in MATj, 1≤j≤n, either
should be vi or cannot be determined with ¬vij = vi. All
correct nodes with initial value ¬vi agree on φ, too.
Part 2: If a correct node agrees on vi, all correct nodes
should agree on vi. If the correct node Pi with initial
value vi and DECi = vi, but there exists some correct
node Pi, j ≠ i, has DECj ≠ vi, then that is impossible. To
show this, if DECj = φ, by Part 1, then DECi = φ. This
is a contradiction with the assumption as above. If
DECj = ¬vi, unless the initial value of node Pi is ¬vi,
otherwise it is impossible according to the definition
consensus problem. However, if the initial value of
node Pj is ¬vi, by Lemma 4, MAJi is equal to ¬vi or ?
with vij = vi in MATi; then, DECj = φ, which is a
contradiction. Hence, all correct nodes should agree
on the same value.
(2)Validity: The initial value of all nodes should be
the same. If there is a value ¬vi in MATj, 1≤j≤n, then
the value must be caused by malicious faulty TM.
There are at most (n-d-3)/2 malicious faulty TMs,
hence there are at most (n-d-3)/2 ¬vi’s in each row.
Since the value received in the first round may be ¬vi,
the majority of each row for all MATj, should be
MAJj= ? (If the value received in the first round is ¬vj,
1≤j≤ n); or vj. By Step 2 of the protocol DCP, all
correct nodes should agree on vi.
Theorem 3: The amount of information exchange by
DCP is O(n2).
Proof: In the first round, each node sends out (n-1)
copies of its initial value to other nodes. In the second
round, an n-element vector is sent to the other n-1
nodes in the network; therefore, the total number of
message exchange is (n-1)+(n*(n-1)). Therefore, the
complexity of information exchange is O(n2)
Theorem 4: One round of message exchange to
achieve consensus is impossible.
Proof:
Part1: Message exchange is necessary.

Without message exchange, a node cannot know
whether or not a disagreeable value exists in other

nodes; hence, consensus achievement is
impossible.

Part2:One round message exchange is not enough
to achieve consensus.

If node Pi is connected with node Pj by faulty TMij.
Node Pi may not know the initial value in node Pj
by using only one round of message exchange.
Therefore, it is impossible to achieve consensus by
using only one round of message exchange.

�

Theorem 5: If the total number of the faulty TMs t >
m+d, where m≤(n-d+3)/2, achieving consensus is
impossible.
Proof: When t>m+d, n is an even number and each
node has c TMs, c is odd number, in the system. It is
possible that a node has more malicious faulty TM
than correct TM even if the influence of d dormant
faults was eliminated. Regardless of the number of
rounds of message exchange, this node will always be
confused by the messages transferred through those
malicious faulty TMs. The decision making by the
node may conflict with other nodes. In this case,
consensus achievement is impossible.

�

Theorem 6: Using the minimum number of rounds,
DCP can tolerate the maximum number of faulty TMs.
Proof: From Theorems 2, 4 and 5, the theorem is
proved.

5. Conclusion

In the past, complex networks had studied in a
branch of mathematics known as graph theory. The
network topology developed in recent years [1] shows
a mobile feature such that the previous protocols such
as [5] cannot adapt to it. In this paper, the consensus
problem on dual failure modes in clustered-MANET
has revisited, the proposed protocol DCP makes all
correct nodes reach consensus. DCP derives its bound
of allowable faulty TMs with two rounds of message
exchange.

Moreover, previous works about consensus
problem had based on assumption that nodes are the
only fallible components in the network, we plan to
extend our protocol to consider the status (such as
mobility) of nodes in clustered-MANET in future
work.

References
[1] Banerjee, S. and Khuller, S., “A Clustering

Scheme for Hierarchical Control in Multi-hop
Wireless Network,” Twentieth Annual Joint
Conference of the IEEE Computer and
Communications Societies, pp.1028-1037, 2001.

[2] T.C. Chiang, H.M. Tsai and Y.M. Huang, “A
Partition Network Model for Ad Hoc
Networks,” IEEE International Conference on
Wireless and Mobile Computing, Networking
and Communications, Vol. 3, pp.467-472, 2005.

[3] M. Fischer, “The Consensus Problem in
Unreliable Distributed Systems (A Brief
Survey),” Technical report, Department of

Computer Science, Yale University, 1983.
[4] M.J. Fischer, N. L. and M. S. Paterson,

“Impossibility of Distributed Consensus with
One Faulty Process,” Journal of the ACM, 32(2),
pp. 374-382, 1985.

[5] L. Lamport, R. Shostak and M. Pease, “The
Byzantine General Problem,” ACM
Transactions on Programming Language and
Systems, Vol. 4, No. 3, pp. 382-401, 1982.

[6] F.J. Meyer, and D.K. Pradhan, “Consensus with
Dual Failure Modes,” IEEE Transactions on
Parallel and Distributed Systems, vol. 2, no. 2,

April 1991.
[7] M. Pease, R. Shostak and L. Lamport,

“Reaching Agreement in Presence of Faults,”
Journal of ACM, Vol. 27, No. 2, pp. 228-234,
1980.

[8] S.C., Wang, K.Q., Yan, and C.F., Cheng,
“Byzantine Agreement under Unreliable
Multicasting Network,” Pakistan Journal of
Information and Technology, Vol. 2, No. 2,
April-June, 2003, pp. 104-115.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 � 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 � 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 � 1 1 � 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 � 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 � 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig.4 (a) The vector received in the first round

MATi = (Pi, for i=1,4,6,9,17,18)
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

MATi = (Pi, for i=2)
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� �� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� �� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� �� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

MATi = (Pi, for i=3)
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� �� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 1���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 0� 1� 0���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� �������� 1� 1� 0���� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �������� 1� 1� 0���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� �������� 0� 0� 1���� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

MATi = (Pi, for i=5)
0� 0� 0���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� �� 0���� 1� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 1���� 1� 1� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 1� 1� �� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 0���� 1� 1� 1� �� 1� 1� �� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� �� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 1� 1� 1� 1� 1� 0���� 0���� 0���� 0���� 1� 1� 1� 1�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
1� 1� 0���� 1� 1� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 1� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 1� 0� 0� 0�
0� 0� 1���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�
0� 0� 0���� 0� 0� 0� 0� 0� 0� 0� 1���� 1���� 1���� 1���� 0� 0� 0� 0�

MATi = (Pi, for i=7)
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�

MATi = (Pi, for i=8)
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� �� 1� 1� �� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� �� 1� 1� �� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� �� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� �� 1� 1� �� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� �� 0� 0� �� 1� 1� 1� 1� 0� 0� 0� 0�

MATi = (Pi, for i=10)
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
0� 0� �� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� �� 1� 1� 0� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�
1� 1� 0� 1� 1� 1� 1� �� 1� 1� 0� 0� 0� 0� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 1� 1� �� 1� 1� 1� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 1� �� �� 1� �� 1� 1� 1� 1� 1� 1� 1� 1�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 1� 1� �� 1� 1� �� 1� 1� 1� 1� 1� 1� 1�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
1� 1� 1� 1� 1� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 1� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 1� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�
0� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 1� 1� 1� 0� 0� 0� 0�

MATi = (Pi, for i=11)
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
1���� 1���� 0���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
0���� 1���� 0���� 1���� 1���� 1� 1� 1� 1� 1� 0� �� 0� 0� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�
0���� 0���� 1���� 1���� 0���� 1� 1� 1� 1� 1� 0� �� 0� 0� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 1���� 0���� 1� 1� �� 1� 1� 1� �� 1� 1� 1� 1� 1� 1�
0���� 0���� 0���� 1���� 0���� 1� �� 1� 1� �� 1� �� 1� 1� 1� 1� 1� 1�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 0���� 1���� 0� 0� �� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 1� 1� 1� 1� 1� �� �� 1� 1� 1� 1� 1� 1�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
0���� 0���� 0���� 0���� 0���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 1� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 1� 0� 0� 0�
1���� 1���� 1���� 1���� 1���� 0� 0� 0� 0� 0� 0� �� 0� 0� 0� 0� 0� 0�
1���� 1���� 1���� 0���� 1���� 0� 0� 0� 0� 0� 1� �� 1� 1� 0� 0� 0� 0�

MATi = (Pi, for i=12)
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 1 � 1 1 0 1 1 1 1 1 1 1
0 0 0 1 0 1 � 1 1 � 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 � 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 � 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

MATi = (Pi, for i=13)
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 � 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 � 1 1 � 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 � 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 � 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

MATi = (Pi, for i=14)
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 � 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 � 1 1 � 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 � 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 � 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

MATi = (Pi, for i=15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 � 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 � 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 � 1 1 � 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 � 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 � 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

MATi = (Pi, for i=16)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 � 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 � 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 � 1 1 � 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 � 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 � 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Fig.4(b) MAT constructed at the end of 2nd rounds
Fig.4 An example of DCP execution

