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a b s t r a c t

A conditional model is a set of conditional distributions, which may be compatible
or incompatible, depending on whether or not there exists a joint distribution whose
conditionals match the given conditionals. In this paper, we propose a new mathematical
tool called a ‘‘structural ratio matrix’’ (SRM) to develop a unified compatibility approach
for discrete conditional models. With this approach, we can find all joint pdfs after
confirming that the given model is compatible. In practice, it is most likely that the
conditionalmodelswe encounter are incompatible. Therefore, it is important to investigate
approximated joint distributions for them. We use the concept of SRM again to construct
an almost compatible joint distribution, with consistency property, to represent the given
incompatible conditional model.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In probability modeling involving n random variables X1, . . . , Xn, it is often simpler to specify the conditional
distributions than to specify the entire joint distribution. Reproducing the associated joint distribution from the specified
conditional distributions is one of the main problems we might encounter. However, there is no guarantee that such
a joint distribution exists. We say that the specified conditional distributions are compatible if there exists a joint
distributionwhose conditional distributionsmatch the specified conditional distributions. For practical circumstanceswhen
the compatibility problem can occur in statistical practice, onemay refer to Arnold et al. [1] and Arnold and Press [5], among
others.

Let X = (X1, . . . , Xn) be a discrete random vector and let π denote its joint pdf. Let Xa (or xa) be the a-component of X
(or x), where a is a nonempty subset of {1, . . . , n}. For disjoint subsets a and b, the conditional pdf of Xa at xa given Xb = xb is
denoted by πa|b(xa|xb), and the pdf of Xa is expressed as πa(xa). If a∪b = {1, . . . , n}, we say that πa|b is a full conditional pdf
of X and πa|b(xa|xb) can also be denoted by πa|b(x). A full conditional model is a model that consists of only full conditional
pdfs. We say that a full conditional model is compatible whenever its members are compatible.

Given a full conditional model, say {fai|āi : 1 ≤ i ≤ k}where k ≥ 2, āi is the complement of ai, and each fai|āi is considered
as a putative conditional pdf of Xai given Xāi , it is natural to ask the following four fundamental questions in relation with
compatibility issues: (Q1) How can we verify whether the model is compatible? (Q2) How can we check whether there is
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a unique joint distribution if the model is compatible? (Q3) How can we find all the possible joint distributions from the
given model if it is compatible? (Q4) How can we find an approximated joint distribution, with reasonable properties, to
represent the given model if it is incompatible?

The issues (Q1)–Q(3) have been studied by many researchers, such as Arnold et al. [1–3], Arnold and Press [5], Berti et al.
[6], Chen [7], Ip andWang [12], Kuo andWang [13], Ng [14], Slavkovic and Sullivant [15], Song et al. [16], Tian and Tan [17],
Tian et al. [18], Wang [19], Wang and Kuo [20], Yao et al. [21], and Ghosh and Nadarajah [11]. For the most part, each of
the above papers focuses on the case ai = {i} and n = k. Here, we address (Q1)–(Q3) without such restrictions. Both of
the approaches given by Arnold et al. [3] and Arnold and Press [5] are based on arrays (multi-dimensional structures) using
scalar labels. However, the computation of arrays may not be easy for users. Moreover, the complexity increases drastically
as n and k increase.

Issue (Q4) has been investigated by Arnold et al. [2], Arnold andGokhale [4], Chen and Ip [8], Chen et al. [9] and Ghosh and
Balakrishnan [10]. These papers discuss themost nearly compatible joint distribution, when the given full conditionalmodel
is incompatible, with various criteria to measure the incompatibility. Arnold and Gokhale [4] consider the Kullback–Leibler
divergence as a measure of incompatibility and then provide an iterative algorithm to find the most nearly compatible
joint distribution so that its conditional distributions have minimal Kullback–Leibler divergence to the given conditional
distributions. Arnold et al. [2] propose the concept of ε-compatibility, based on either one of six differentmeasuring criteria,
to give the most nearly compatible joint distribution. Chen et al. [9] and Chen and Ip [8] propose the approach of Gibbs
ensemble, based on Gibbs sampling, to search the most nearly compatible joint distribution. Ghosh and Balakrishnan [10]
discuss severalmeasurements of incompatibility for determining themost nearly compatible joint distribution. These papers
discuss low-dimensional cases and do not give the explicit general results for any n and k.

To overcome the problems mentioned above, we provide a novel technique based on the Structural Ratio Matrix (SRM),
which uses the (vector) values of conditioning variable(s) in the reference conditional pdf as column labels and uses the
(vector) values of conditioning variable(s) in the non-reference conditional pdf(s) as row labels. This technique of using a
reference conditional pdf to construct a 2-dimensional SRM is critical in solving complex high-dimensional problems and is
described here for the first time. The SRMmethod we propose can be implemented to address the four compatibility issues
for any high-dimensional full conditional models with/without any pattern of structural zeros. This method provides not
only an efficient way to find the joint distribution(s) or an almost compatible joint distribution, but also a unified way that
even a practitioner can easily apply.

2. Structural ratio matrix

Suppose that we have a full conditional model F = {fai|āi : 1 ≤ i ≤ k}, k ≥ 2, for X = (X1, . . . , Xn). We say that F is
compatible with a joint pdf π if πai|āi = fai|āi for all i ∈ {1, . . . , k}. Let Ωi, Ψ and Ψa denote the supports of fai|āi , π and πa,
respectively. Specifically, Ωi = {x : fai|āi(x) > 0}, Ψ = {x : π(x) > 0}, and Ψa = {xa : πa(xa) > 0}.

When F is compatible with π , it follows that Ω1 = · · · = Ωk = Ψ ; see Arnold and Press [5, p. 152]. In addition, based
on the definition of conditional pdf, we have

∀x∈Ψ

fai|āi(x)
faj|āj(x)

=
πai|āi(x)
πaj|āj(x)

=
π(x)/πāi(xāi)
π(x)/πāj(xāj)

=
πāj(xāj)
πāi(xāi)

.

This implies that

fai|āi(x)
faj|āj(x)

=
πāj(xāj)
πāi(xāi)

=
πāj(yāj)
πāi(yāi)

=
fai|āi(y)
faj|āj(y)

,

for any x, y ∈ Ψ provided that xāi = yāi (i.e., the āi-components of x and y are equal) and xāj = yāj . Thus, in addressing the
compatibility issues, we need to assume the following conditions for any given F.
(C1) Ω1 = · · · = Ωk which can be used to define the set Ψ .
(C2) Ratios fai|āi/faj|āj at x ∈ Ψ and at y ∈ Ψ are equal whenever x and y have the same āi- and āj-components.

In other words, if either condition (C1) or (C2) does not hold, then F is automatically incompatible.
Given fai|āi and faj|āj in F, we define the basic SRM (BSRM), denoted by R[i;j]

= [r [i;j]
xāj ,xāi

], of fai|āi over faj|āj as follows:

r [i;j]
xāj ,xāi

=


fai|āi(x)/faj|āj(x) if x ∈ Ψ ,

∗ otherwise,

where r [i;j]
xāj ,xāi

is the entry with row label xāj and column label xāi in R[i;j], and ∗ refers to an undefined entry. The BSRM R[i;j]

has size |Ψāj | × |Ψāi | and uses the elements of Ψāj and of Ψāi as respective row labels and column labels, where |Ψāj | is the
number of elements in the set Ψāj .

To construct a SRM for F, we use one of k conditional pdfs, say fai|āi , as the reference conditional pdf and then build k− 1
BSRMs R[i;j] of fai|āi over faj|āj for j ≠ i as defined above. For convenience, we use fa1|ā1 as the reference conditional pdf. As all
these BSRMs have the same column size, we can construct a 2-dimensional matrix by arranging them in a cascade, as can
be seen in the following definition for SRM.
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Definition 1. Given F, the SRM of fa1|ā1 over {fa2|ā2 , . . . , fak|āk} is defined as

R[1;2,...,k]
=

R[1;2]

...

R[1;k]

 ,

where R[1;j] is the BSRM of fa1|ā1 over faj|āj .

Notice that our SRM is structurally different from the ratio arrays given by Arnold et al. [3] and Arnold and Press [5] when
k > 2, although they are the same when n = k = 2. When k > 2, the conditional pdf ratios considered by Arnold et al. [3]
and Arnold and Press [5] are expressed in several n-dimensional arrays. However, ours are arranged in a specially designed
matrix.

We say that a SRM, say R = [ra,b], has a rank 1 positive extension (ROPE) matrix E = [ea,b] if E has the same size as R, and
satisfies the following three conditions: (i) all entries of E are positive; (ii) ea,b = ra,b for all ra,b ≠ ∗; and (iii) E is of rank 1.
Note that E may not be unique when it exists.

3. Checking compatibility and identifying associated joint distribution(s)

In this section, we will show how to use SRM to check the compatibility and to find the associated joint distribution(s)
for a given F. First, we call a positive vector u = (u1, . . . , um)⊤ a probability vector if u1 + · · · + um = 1, and an inverted
probability vector if 1/u1 +· · ·+ 1/um = 1. Then, we give the following lemma to prove our main result, Theorem 3, which
gives a necessary and sufficient condition for checking compatibility.

Lemma 2. Suppose that R[1;2,...,k] has a ROPEmatrix E. Then there exist an inverted probability vector v (with |Ψā1 | components)
and probability vectors u(2), . . . , u(k) (with |Ψā2 |, . . . , |Ψāk | components, respectively) such that

E =


u(2)

u(3)

...

u(k)

 v⊤. (1)

Moreover, u(j)v⊤ is a ROPE matrix of R[1;j].

Proof. Since E is a ROPE matrix, there exists positive vectors ṽ and ũ(2), . . . , ũ(k) such that E = (ũ(2)⊤ , . . . , ũ(k)⊤)⊤ṽ⊤. For
convenience, we use the column and row labels of R[1;j] to represent the subscripts of components of ṽ and components of
ũ(j), respectively. That is, ṽ = (ṽxā1

: xā1 ∈ Ψā1)
⊤ and ũ(j)

= (ũ(j)
xāj

: xāj ∈ Ψāj)
⊤. For x ∈ Ψ with ā1- and āj-components xā1

and xāj , respectively, we have

∀j∈{2,...,k} ũ(j)
xāj

faj|āj(x) =
fa1|ā1(x)

ṽxā1

.

We then obtain
xāj∈Ψāj

ũ(j)
xāj

=


xāj∈Ψāj

ũ(j)
xāj


y∈Ψ

yāj=xāj

faj|āj(y) =


x∈Ψ

ũ(j)
xāj

faj|āj(x) =


x∈Ψ

fa1|ā1(x)
ṽxā1

=


xā1∈Ψā1

1
ṽxā1


y∈Ψ

yā1=xā1

fa1|ā1(y) =


xā1∈Ψā1

1
ṽxā1

.

Therefore,

ṽ⊕ = ũ(2)
+ = ũ(3)

+ = · · · = ũ(k)
+ ,

where

ṽ⊕ =


xā1∈Ψā1

1
ṽxā1

and ∀j∈{2,...,k} ũ(j)
+ =


xāj∈Ψāj

ũ(j)
xāj

.

Letting v ≡ ṽ⊕ṽ and u(j)
≡ ũ(j)/ũ(j)

+ for all j ∈ {2, . . . , k}, we conclude the proof. �
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Theorem 3. F is compatible if and only if the SRM R[1;2,...,k] has a ROPE matrix.

Once compatibility is confirmed, one may be interested in identifying the associated joint distribution(s). Notice that
R[1;2,...,k] may have many ROPE matrices. By Lemma 2, we can obtain the marginal pdf of Xāi for each i ∈ {1, . . . , k} from the
k−1 probability vectors u(j) or the inverted probability vector v associated with the chosen ROPEmatrix E. Multiplying any
marginal pdf of Xāi with its corresponding conditional pdf fai|āi(x) given in the model F, we then get the joint pdf associated
with E. Hence, we could have k different ways to obtain this joint pdf. The following theorem, which can be proved by
Lemma 2, provides additional formulas for finding the marginal pdfs of Xā1 , . . . ,Xāk directly in terms of the entries in the
chosen ROPE matrix E. Here, we write E as

E =

E2
...
Ek


where xā1 ∈ Ψā1 and for each j ∈ {2, . . . , k}, Ej = [eyāj ,xā1 ], yāj ∈ Ψāj .

Theorem 4. For the chosen ROPEmatrix E, the Xā1-marginal pdf can be expressed as

(F1) πā1(xā1) =


yāj∈Ψāj

eyāj ,xā1

−1
, xā1 ∈ Ψā1 ,

for all j ∈ {2, . . . , k}. In addition, whatever j ∈ {2, . . . , k}, the Xāj-marginal pdf can be expressed as

(F2) πāj(xāj) =


yā1∈Ψā1

1
exāj ,yā1

−1

, xāj ∈ Ψāj .

Moreover, the joint pdf based on E can be obtained from faj|ājπāj for any j ∈ {1, . . . , k}.

Because (F1) holds for any j ∈ {2, . . . , k}, (F1) can be reexpressed as

(F1′) πā1(xā1) = (k − 1)

e+,xā1

−1
,

where e+,xā1
is the sum of the xā1-column of E. In addition, by Lemma 2, for any row of E, say yāj , we have

(F1′′) πā1(xā1) =
1

eyāj ,xā1


zā1∈Ψā1

1
eyāj ,zā1

−1

.

From Theorem 4, we see that one ROPE matrix would generate one joint density when F is compatible. However, as
mentioned earlier, the ROPE matrix of a SRM may not be unique. In the next section, we further show that there is a one-
to-one correspondence between the set of all ROPE matrices of the SRM being used and the set of all possible joint pdfs,
i.e., different ROPE matrices will generate different joint pdfs.

4. Addressing the compatibility issues by using IBD matrix

Given a full conditional model, we have provided a ROPE matrix method for checking its compatibility and finding its
associated joint distribution(s) in the previous section. In this section, wewill use the IBD (irreducible block diagonal)matrix
technique (see Song et al. [16]) of the associated SRM to provide a more efficient procedure for addressing the compatibility
issues. More specifically, by resorting to the IBD matrix technique, it will typically be easier to check compatibility and to
find all joint pdfs for a given conditional model.

A SRM R is said to be reducible if, after interchanging some rows and/or columns, it can be rearranged as
T1 ∗

∗ T2


,

where the entries off the diagonal block matrices T1 and T2 are all ∗. The matrix R is irreducible if it is not reducible. The
concepts of reducibility and irreducibility used here are somewhat different from those in matrix theory. We say that T is
an IBD matrix of R if T can be obtained by interchanging some rows and/or columns of R such that

T =


T1 ∗ · · · · · · ∗

∗ T2 ∗ · · · ∗

... ∗
. . .

. . .
...

...
...

. . .
. . . ∗

∗ ∗ · · · ∗ TL

 ≡ diag(T1, . . . , TL),

where the diagonal block matrices T1, . . . , TL are irreducible.
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The following lemma can be deduced from Lemma 3 and Theorem 6 of Song et al. [16].

Lemma 5. Let diag(T1, . . . , TL) be any IBDmatrix of a SRM R. Then (i) R has a ROPEmatrix if and only if each of T1, . . . , TL has
a ROPEmatrix. (ii) If R has a ROPEmatrix, then the ROPEmatrix is unique if and only if L = 1.

With Theorem 3 and Lemma 5(i), we have the following corollary.

Corollary 6. Suppose that diag(T1, . . . , TL) is any IBDmatrix of R[1;2,...,k]. Then F is compatible if and only if each of T1, . . . , TL
has a ROPEmatrix.

The next theorem shows that there is a one-to-one correspondence between the set of all possible joint pdfs and the set
of all ROPE matrices of the SRM being used.

Theorem 7. Let E be the set of all ROPEmatrices of R[1;2,...,k], and F be the set of all joint pdfs compatible with F. Then there is a
one-to-one correspondence between E and F.

Proof. Define a mapping H : E → F by H(E) = π , where π is the joint pdf obtained by the inverted probability vector
v = (vxā1

: xā1 ∈ Ψā1)
⊤, which is associated with E in Lemma 2, through the following equation

π(x) = fa1|ā1(x)
1

vxā1

, x ∈ Ψ .

We claim that H is bijective.

H is surjective: For each π ∈ F, we can set E ∈ E as Eq. (1) by letting u(j)
= (πāj(xāj) : xāj ∈ Ψāj)

⊤, for all j ∈ {2, . . . , k}
and v = (1/πā1(xā1) : xā1 ∈ Ψā1)

⊤. Hence, H is surjective.
H is injective: Suppose that H(E) = H(F) = π , where

E =

u(2)

...

u(k)

 v⊤ and F =

s(2)
...

s(k)

 t⊤.

We have

fa1|ā1(x)
1

vxā1

= π(x) = fa1|ā1(x)
1
txā1

.

This implies that v = t . By Lemma 2, we also have

∀j∈{2,...,k} faj|āj(x)u
(j)
xāj

= π(x) = faj|āj(x)s
(j)
xāj

.

This implies that u(j)
= s(j). We then have E = F . Therefore, H is injective. �

With Lemma 5(ii) and Theorem 7, we have the following corollary.

Corollary 8. Suppose that diag(T1, . . . , TL) is an IBD matrix of R[1;2,...,k]. Then the following statements are equivalent. (i) The
associated joint distribution is unique. (ii) The ROPE matrix of R[1;2,...,k] is unique. (iii) L = 1 and T1 has a ROPEmatrix.

Multiplying the given conditional pdf fa1|ā1 by all possible marginal pdfs of Xā1 , we could obtain all possible joint pdfs for
the conditional model. Naturally comes the question: how do we find all possible marginal pdfs of Xā1? By using the IBD
matrix technique, we give a potentially easier way to accomplish it in the next theorem.

Theorem 9. Suppose that diag(T1, . . . , TL) is an IBD matrix of R[1;2,...,k] and for all ℓ ∈ {1, . . . , L}, Tℓ, with size Iℓ × Jℓ
has ROPE matrixTℓ = [t(ℓ)ij ]. For each x, with ā1-component xā1 , in Ψ , assume that the column, labeled xā1 , of R[1;2,...,k] has
been interchanged to, say, the jth column of Tℓ. Then, all possible joint pdfs at x can be found by either

fa1|ā1(x)(k − 1)pℓ


Iℓ
i=1

t(ℓ)ij

−1

or fa1|ā1(x)
pℓ

t(ℓ)ij


Jℓ

j∗=1

1

t(ℓ)ij∗

−1

for any i ∈ {1, . . . , Iℓ}, where p1 > 0, . . . , pL > 0 are arbitrary with p1 + · · · + pL = 1.
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Proof. For each ℓ ∈ {1, . . . , L}, letTℓ = αℓβ
⊤

ℓ for some positive vectors αℓ = (αℓ1, . . . , αℓ,Iℓ)
⊤ and βℓ = (βℓ1, . . . , βℓ,Jℓ)

⊤.
Then 

q1α1
...

qLαL

 (q−1
1 β⊤

1 , . . . , q−1
L β⊤

L ) : qℓ > 0, 1 ≤ ℓ ≤ L


is the set of all possible ROPE matrices of diag(T1, . . . , TL). It yields from (F1′) that

π(x) = fa1|ā1(x)(k − 1)


L

m=1

Im
i=1

qm
qℓ

αmiβℓj

−1

= fa1|ā1(x)(k − 1)

Iℓ
i=1

qℓαℓi

L
m=1

Im
i=1

qmαmi


Iℓ
i=1

αℓiβℓj

−1

= fa1|ā1(x)(k − 1)pℓ


Iℓ
i=1

t(ℓ)ij

−1

,

where

pℓ =


Iℓ
i=1

qℓαℓi


L

m=1

Im
i=1

qmαmi


.

Similarly, it yields from (F1′′), for arbitrary i ∈ {1, . . . , Iℓ}, that

π(x) = fa1|ā1(x)
1

αℓiβℓj


L

m=1

Jm
j∗=1


qℓ

qm
αℓiβmj∗

−1
−1

= fa1|ā1(x)

Jℓ
j∗=1

(q−1
ℓ βℓj∗)

−1

αℓiβℓj

L
m=1

Jm
j∗=1

(q−1
m βmj∗)−1


Jℓ

j∗=1

(αℓiβℓj∗)
−1

−1

= fa1|ā1(x)
pℓ

t(ℓ)ij


Jℓ

j∗=1

1

t(ℓ)ij∗

−1

,

where

pℓ =

Jℓ
j∗=1

(q−1
ℓ βℓj∗)

−1
 L

m=1

Jm
j∗=1

(q−1
m βmj∗)

−1

Thus the argument is complete. �

Observe that, when applying the IBD matrix technique to address the compatibility issues, we usually only need to be
concerned with the column labels, and consequently the row labels can be omitted for convenience.

Next, we give an example of a full conditional model with n = 4 and k = 3 to briefly illustrate our method. Consider
a conditional model F = {f12|34, f3|124, f24|13} as follows. Here, for simplicity, f12|34 is used to denote the conditional pdf
f{1,2}|{3,4} and analogous notations for the others.

x1 1 2 1 1 2 3 3 3
x2 1 1 1 2 2 2 1 2
x3 1 1 2 1 1 2 3 3
x4 1 1 1 2 2 2 2 2

f12|34 1/3 2/3 1 3/4 1/4 1 3/4 1/4
f3|124 1/5 1 4/5 1 1 2/3 1 1/3
f24|13 1/4 2/3 1 3/4 1/3 1 3/4 1/4
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The SRM of f12|34 over {f3|124, f24|13} and an associated IBD matrix are given below on the left and right, respectively.

(1, 1)(1, 2)(2, 1)(2, 2)(3, 2)
(1, 1, 1) 5/3 ∗ 5/4 ∗ ∗

(2, 1, 1) 2/3 ∗ ∗ ∗ ∗

(1, 2, 2) ∗ 3/4 ∗ ∗ ∗

(2, 2, 2) ∗ 1/4 ∗ ∗ ∗

(3, 1, 2) ∗ ∗ ∗ ∗ 3/4
(3, 2, 2) ∗ ∗ ∗ 3/2 3/4
(1, 1) 4/3 1 ∗ ∗ ∗

(2, 1) 1 3/4 ∗ ∗ ∗

(1, 2) ∗ ∗ 1 ∗ ∗

(3, 2) ∗ ∗ ∗ 1 ∗

(3, 3) ∗ ∗ ∗ ∗ 1

(1, 1)(1, 2)(2, 1)(2, 2)(3, 2)
(1, 1, 1) 5/3 ∗ 5/4 ∗ ∗

(2, 1, 1) 2/3 ∗ ∗ ∗ ∗

(1, 1) 4/3 1 ∗ ∗ ∗

(2, 1) 1 3/4 ∗ ∗ ∗

(1, 2, 2) ∗ 3/4 ∗ ∗ ∗

(2, 2, 2) ∗ 1/4 ∗ ∗ ∗

(1, 2) ∗ ∗ 1 ∗ ∗

(3, 1, 2) ∗ ∗ ∗ ∗ 3/4
(3, 2, 2) ∗ ∗ ∗ 3/2 3/4
(3, 2) ∗ ∗ ∗ 1 ∗

(3, 3) ∗ ∗ ∗ ∗ 1

The ROPE matrices of the two diagonal block matrices are given in the following table.

(1, 1)(1, 2)(2, 1)(2, 2)(3, 2)
(1, 1, 1) 5/3 5/4 5/4 ∗ ∗

(2, 1, 1) 2/3 1/2 1/2 ∗ ∗

(1, 1) 4/3 1 1 ∗ ∗

(2, 1) 1 3/4 3/4 ∗ ∗

(1, 2, 2) 1 3/4 3/4 ∗ ∗

(2, 2, 2) 1/3 1/4 1/4 ∗ ∗

(1, 2) 4/3 1 1 ∗ ∗

(3, 1, 2) ∗ ∗ ∗ 3/2 3/4
(3, 2, 2) ∗ ∗ ∗ 3/2 3/4
(3, 2) ∗ ∗ ∗ 1 1/2
(3, 3) ∗ ∗ ∗ 2 1

By Corollary 6, F is compatible. In addition, the associated joint pdf is not unique by Corollary 8. Using Theorem9, all possible
joint pdfs can be expressed as

x1 1 2 1 1 2 3 3 3
x2 1 1 1 2 2 2 1 2
x3 1 1 2 1 1 2 3 3
x4 1 1 1 2 2 2 2 2

π1234 p1/11 2p1/11 4p1/11 3p1/11 p1/11 p2/3 p2/2 p2/6

where p1 + p2 = 1.

5. Almost compatible joint distributions

In practice, it is likely that a full conditionalmodel of observed conditional pdfs is not compatible even if they are sampled
from the same joint distribution, since theymaybe contaminatedby sampling errors. In this section,wewill focus on thenear
compatibility issue and provide a method to construct almost compatible joint distributions for incompatible conditional
models.

Recall that if F = {fai|āi : 1 ≤ i ≤ k} is a compatible model, then the corresponding SRM, by Theorem 3, has a ROPE
matrix. This ROPE matrix can be expressed, by Lemma 2, as the product of a column vector, which is composed of k − 1
probability vectors, and an inverted probability row vector. We can then construct a joint pdf by using any one of these k−1
probability vectors or the inverted probability vector together with its corresponding conditional pdf.

Now, assume that F = {fai|āi : 1 ≤ i ≤ k} is an incompatible model and the SRM in use is R = R[1;2,...,k]. We will find a
vector u⊤

= (u(2)⊤ , . . . , u(k)⊤), with each u(j) a probability vector, and an inverted probability vector v so that the following
squared quasi-Frobenius norm L is minimized:

L =
R[1;2,...,k]

− uv⊤
2
qF =

k
b=2


(i,j)∈Λb

(r (b)
ij − ubivj)

2.

Here, r (b)
ij is the (i, j)th entry of the sub-matrix R[1;b] of the SRM R[1;2,...,k], Λb = {(i, j)|r (b)

ij ≠ ∗}, u⊤
= (u(2)⊤ , . . . , u(k)⊤),

u(b)
= (ub1, . . . , ub,|Ψāb |)

⊤ for all b ∈ {2, . . . , k} and v = (v1, . . . , v|Ψā1 |)
⊤.

We call anyminimizer (u, v) of L as a quasi-Frobenius solution of R. Hence, we can find k approximated joint distributions
for an incompatible model via any quasi-Frobenius solution of R. Note that when the model is compatible, the above quasi-
Frobenius norm is zero and the set of vectors u(2), . . . , u(k) and v in Lemma 2 form a quasi-Frobenius solution of R.
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Since we may use any one of k conditional pdfs as the reference conditional pdf to construct a SRM, we can construct k
different SRMs. Overall, we can have k2 approximated joint distributions.

Let f [ni]
ai|āi

be the sample conditional pdf of fai|āi with sample size ni. Then the sample conditional model

Fn = {f [ni]
ai|āi

: 1 ≤ i ≤ k},

where n = (n1, . . . , nk), may not be compatible and its corresponding SRM matrix Rn may not have a ROPE matrix.
As mentioned above, we can find k approximated joint distributions for Fn via any quasi-Frobenius solution of Rn. For
convenience, we use n → ∞ to mean that each ni → ∞. Next, we shall show that each of these k approximated joint
pdfs has the consistency property, in the sense that when the sample sizes n → ∞, each of the obtained approximated
joint pdfs would approach the joint pdf associated with F, when its SRM is irreducible.

Lemma 10. If the matrix Rn = R[1;2,...,k]
n is the SRM of sample conditional model Fn = {f [ni]

ai|āi
: 1 ≤ i ≤ k}, which is from the

compatible conditional model F = {fai|āi : 1 ≤ i ≤ k} with sample sizes n = (n1, . . . , nk), then any quasi-Frobenius solution
(u[n], v[n]) of Rn has the following property: For each entry of R without ∗,

lim
n→∞

u[n]v[n]
⊤

= R a.s.,

where R = R[1;2,...,k] is the SRM for F and a.s. means almost surely.

Proof. Because F is compatible, there exists (u∗, v∗) so that ∥R − u∗v∗
⊤

∥qF = 0. Hence,

inf
u,v

∥Rn − uv⊤
∥qF ≤ ∥Rn − u∗v∗

⊤

∥qF ≤ ∥Rn − R∥qF + ∥R − u∗v∗
⊤

∥qF = ∥Rn − R∥qF .

Since (u[n], v[n]) is a quasi-Frobenius solution of Rn, i.e.,

inf
u,v

∥Rn − uv⊤
∥qF = ∥Rn − u[n]v[n]

⊤

∥qF ,

then ∥Rn − u[n]v[n]
⊤

∥qF ≤ ∥Rn − R∥qF . By the previous inequality and the fact that

∥R − u[n]v[n]
⊤

∥qF ≤ ∥R − Rn∥qF + ∥Rn − u[n]v[n]
⊤

∥qF ,

we have ∥R − u[n]v[n]
⊤

∥qF ≤ 2∥R − Rn∥qF . However, as the sample sizes n tend to infinity, Rn converges to R a.s., for
each entry of R without ∗. That is, ∥R − Rn∥qF → 0 a.s. when n → ∞. Therefore, limn→∞ u[n]v[n]

⊤

= R a.s., for each entry
without ∗. �

Next, we give the following consistency result.

Theorem 11. Under the same notations as those in Lemma 10, we further assume that the SRM R is irreducible. Then all
approximated joint pdfs based on (u[n], v[n]), which is a quasi-Frobenius solution of Rn, converge to the true joint pdf associated
with F a.s. when the sample sizes n tend to infinity.

Proof. Since R is irreducible, there is a unique ROPE matrix of R, say E. By Lemma 2, E can be expressed as

E =


u(2)

u(3)

...

u(k)

 v⊤
= uv⊤,

where each probability vector u(i) gives the values of the marginal pdf of Xāi for i ∈ {2, . . . , k}, and the inverted probability
vector v gives the marginal pdf of Xā1 . Furthermore, by Lemma 10, we have, for each entry of E

lim
n→∞

u[n]v[n]
⊤

= E a.s.

It follows that limn→∞ v[n]
= v a.s. and limn→∞ u[n]

= u a.s. In addition, limni→∞ f [ni]
ai|āi

(x) = fai|āi(x) a.s. Hence, we can
conclude that all approximated joint pdfs based on (u[n], v[n]) converge to the true joint pdf associated with F a.s. when the
sample sizes n tend to infinity. This concludes the argument. �

As mentioned earlier, we can have k2 approximated joint distributions for any full incompatible conditional model. A
mixture of these k2 approximated joint distributions is also an approximated joint distribution. If all mixing weights are
constants, then this new approximated joint distribution would also have the consistency property. For simplicity, we take
the equal mixing weight for this mixture distribution, and call it the almost compatible joint distribution. Of course, one
may adopt other mixing weights, e.g., using the divergence measure given by Chen et al. [9] to decide the mixing weights,
to find a new approximated joint distribution.
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6. Conclusion remark

Ourmethod is easy to implement and can address the compatible and incompatible tasks for any family of full conditional
distributions with/without any pattern of structural zeros.
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