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In this project, my main research is focused on the
critical two-point functions for long-range percolation,
self-avoiding walk and Ising model in high dimensions. This
1s joint work with professor Akira Sakai in the mathematics
department at Hokkaido university. We obtained the rate of
convergence and asymptotic behavior of two point functions
and 1t has been published at Journal of ann. Probab. In
2015. We are doing this kind of problem now. In addition,
[ and professor Shu-Chiuan Chang in the physics department
at national Cheng Kung university have some results for a
version of directed percolation on the triangle lattice and
honeycomb lattice. We obtained the upper and lower bounds
of two point functions and our results bas been published
J. Stat. Phys. and Physica A. I are doing the similar
problems now.

: percolation, self-avoiding walk, Ising model, critical

behavior, Lace expansion, Large derivation, Berry-Esseen
theorem
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1 Work with professor Akira Sakai
Given a symmetric probability distribution

D(x) = O(LY) [l ", (1.1)
and there are v, = O(L*?) and € > 0 such that

D(k) = Z e TD(x) = 1 — va |k x

x€Z4

$+m@ww @2

logﬁ +0(1) [a=2].

Note that if & > 2, then v, = 0*/(2d) where 0® = > ;4 |z|*D(z). Moreover, if L > 1,
there is a constant A € (0, 1) such that

<2-A [k€[-mn]Y,

oA ezzy

ID™ oo <O(L~n"w% [n>1],  1—D(k) {

The goal of this project is to overcome those difficulties and derive an asymptotic
expression of the critical two-point function for the power-law decaying long-range models
above the critical dimension, using the lace expansion. We have investigated crossover
in the asymptotic expression when the power of the 1-step distribution of the underlying
random walk changes.

Self-avoiding walk (SAW) is a model for linear polymers. We define the two-point
function for SAW on Z? as

||

G (x)= > p HD(% —wj1) [T = bu o) (1.4)

w:0—T s<t

where p > 0 is the fugacity, |w]| is the length of a path w = (wo,w1,...,wy) and D :
7% — [0,1] is the Z%-symmetric non-degenerate (i.e., D(0) # 1) 1-step distribution for
the underlying random walk (RW); the contribution from the 0O-step walk is considered
to be d,, by convention. If the indicator function [[,_,(1 — du,.,) is replaced by 1,
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then G3* () turns into the RW Green’s function G (z), whose radius of convergence
peV s 1, as gV = D e GpV(z) = (1 —p)~! for p < 1 and x;V = oo for p > 1.
Therefore, the radius of convergence pi* for G3*V(z) is not less than 1. It is known that

oM = D 1eze G () < o0 if and only if p < pi*Y and diverges as p T pi*". Here, and
in the remainder of the paper, we often use “=" for definition.

Percolation is a model for random media. Each bond {u, v}, which is a pair of vertices
in Z%, is either occupied or vacant independently of the other bonds. The probability that
{u,v} is occupied is defined to be pD(v — u), where p > 0 is the percolation parameter.
Since D is a probability distribution, the expected number of occupied bonds per vertex
equals p> -, D(z) = p(1— D(0)). The percolation two-point function G}**(x) is defined
to be the probability that there is a self-avoiding path of occupied bonds from o to x;
again by convention, G®**(0) = 1.

The Ising model is a model for magnets. For A C Z% and ¢ = {@, }pen € {F1}1, we
define the Hamiltonian (under the free-boundary condition) as

HA(QD) = - Z Ju,vSOuSOvy (15)
{u,v}CA

where J,, = Jou—y > 0 is the ferromagnetic pair potential and inherits the properties
of the given D, as explained below. The finite-volume two-point function at the inverse
temperature 5 > 0 is defined as

(Popr)sn =D @opg e P [N B, (1.6)
pe{£1}A pe{£1}A

It is known that (@,¢.)sa is increasing in A + Z%. Let p =Y, ;4 tanh(8J,,). The Ising
two-point function G;"#(x) is defined to be the increasing-volume limit of (0o.)sa:
GE(x) = lm (Yo ) .- 1.7
() MZd(SO Dz)B.A (1.7)
Let D(z) = p~tanh(8.J,.).

For percolation and the Ising model, there is a model-dependent critical point p. > 1
(from now on, we omit the superscript, unless it causes any confusion) such that

_ <oo [p<pd, o —0 [p<pd
XpZ%%le(x){_m [p > pe; o= |a:thooGp(x){>0 b > pdl. (1.8)

The order parameter 65 is the probability that the occupied cluster of the origin is
unbounded, while ;7" is the spontaneous magnetization, which is the infinite-volume limit
of the finite-volume single-spin expectation <900>Z§’ A under the plus-boundary condition.
The continuity of 6, at p = p. in a general setting is still a remaining issue.

We are interested in asymptotic behavior of G, (x) as |r| — oco. For the “uniformly
spread-out” finite-range models, e.g., D(z) = Lyjz=13/(2d) or D(z) = Lyjjp|<ry/(2L+1)*
for some L € [1,00), it has been proved [14, 17, 26] that, if d > 4 for SAW and the Ising
model and d > 6 for percolation, and if d or L is sufficiently large (depending on the
models), then there is a model-dependent constant A (=1 for RW) such that

aq/o?

Gpc (517) |x|:oo A’I‘|d_2 ’

(1.9)



where “~” means that the asymptotic ratio of the left-hand side to the right-hand side is
1, and
dr(%2)
g = sz , o’ =" |z’ D(z) = O(L?). (1.10)

x€Z4

This is a sufficient condition for the following mean-field behavior [1, 2, 3, 4, 23]:

(pe —p)~" 0, = {Vp_pc [sing), (1.11)

v ppe 7 Pplpe | p— pe [percolation],

where “<” means that the asymptotic ratio of the left-hand side to the right-hand side is
bounded away from zero and infinity.
Let

q. — {2(a A2) [Ising], | (112)
3(aA2) [percolation].

The proof of the above result is based on the lace expansion (e.g., [18, 23, 26]). The core
concept of the lace expansion is to systematically isolate interaction among individuals
(e.g., mutual avoidance between distinct vertices for SAW or between distinct occupied
pivotal bonds for percolation) and derive macroscopic recursive structure that yields the
random-walk like behavior (1.9). When d > d. and d V L > 1 (i.e., d or L sufficiently
large depending on the models), there is enough room for those individuals to be away
from each other, and the lace expansion converges [18, 23, 26]. The resultant recursion
equation for G, is the following:

Ox+ZpD Gp(z —v) [RW],
vEZY
box + D (PD(v) +7p(v)) Gp(z — v) [SAW],
Gp() = % /) (1.13)
() + Z mp(u) pD(v — u) Gp(z — v) [Ising & percolation],
u,veZ?
\ (Uiv)

where 7, is the lace-expansion coefficient. To treat all models simultaneously, we introduce
the notation f * g to denote the convolution of functions f and g in Z¢:

(f*g)(x Zf g(x —v) (1.14)

veZd
Then the above identities can be simplified as (the spatial variables are omitted)
0+ pD G, [RW],

Gy, =40+ (pD+m,) G, [SAW], (1.15)
Ty + Ty % p(D — D(0)d) * G, [Ising & percolation].



Repeated use of these identities yields!

Gp=1I1I,+ I, x pD % G,,, (1.16)
where
(G0 [RW],
o) =) (mp*x---xm,) () [SAW],
Z (- pD(o))n_lﬂ;”(x) [Ising & percolation],
\ n=1

with the convention f*°(x) = 4,, for general f. When d > d. and d V L > 1, there
is a p > 0 such that |II, (z)| is summable and decays as |z|~%27* [14, 17, 26] The
multiplicative constant A in (1.9) and p. can be represented in terms of 17, (x) as

p=(Tmw) . asa(ESerne) o

rEZd

In addition to the above properties (1.1)-(1.3), the n-step transition probability obeys
the following bound:

< Ou™) {1 o 7 2], (1.19)

*n( ) < .
[llif2 loglzlr  [o=2].

This is due to the following two facts: (i) the contribution from the walks that have at
least one step which is longer than c|z||;, for a given ¢ > 0 is bounded by O(L*)n/||z||$";
(ii) the contribution from the walks whose n steps are all shorter than ¢f|x||,, is bounded,
due to the local CLT, by O(om)~#2e~1#F/0@m) < O(om)/||z|¢* (times an exponentially

1For SAW, since ||m,[l1 = o(1) as dV L — oo and |G|« < oo for every p < p. [14, 17],

Gp=0+pD=xGy+mpx Gy =0+pD*Gpy+m,* (6 +pD x Gy +mpxGy)
~
replace

=(0+m) + (0 +mp) *pD x Gy + 1% % G = — (1.16).
~—~

replace

For percolation and the Ising model, since D(0) = o(1) and p||mpll1 = 1+ o(1) as d VL — oo and
IGplloe <1 for every p < p. [14, 17, 26],

Gp =7y + 7 * pD x G, — pD(0)mp * G
~—

replace
=T, + mp * pD * G, — pD(0)my * (7 + mp % pD % G, — pD(0)my x Gp)
* * 2 &
= (mp — pD(0)m}?) + (mp — pD(0)m?) * pD + Gy + (— pD(0)) "my* * Gp =--- — (1.16).

P
~—

replace



small normalization constant), where o is the variance of the truncated 1-step distribution
D(y) = D(y)L{jy|<cloy and equals

~ ol [ < 2],
7= [y*D(y) <O(L*?) x {logllzll.  [a=2], (1.20)
yezZd 1 [Oé > 2].

For o # 2, the inequality (1.19) is a discrete space-time version of the heat-kernel bound
on the transition density ps(x) of an a-stable/Gaussian process:

Ak, arz _ O(s)
= " ptka—slk|*® . 1.21
ps(z) /Rd (2m)d € = |z|dton? ( )

We also assume the following bound on the discrete derivative of the n-step transition
probability:

*M *N _ aN2 2
pro(a) - T =) O

< a [yl < gla]- (1.22)
2 [l Vs ’

Here is the summary of the required properties of D.

Assumption 1.1. The Z%-symmetric 1-step distribution D satisfies the properties (1.1),
(1.2), (1.3), (1.19) and (1.22).

Under the above assumption on D, we can prove the following theorem (c.f. [8]):
Theorem 1.2. Let a >0, a # 2 and

F( d—g/\Q )

- QN2 d/2T (282)”

Yo (1.23)

and assume all properties of D in Assumption 1.1. Then, for RW with d > a A 2 and
any L > 1, and for SAW, percolation and the Ising model with d > d. and L > 1, there
are pp € (0, AN2) and A = A(a,d, L) € (0,00) (A =1 for random walk) such that, as
|z| — oo,
" o O L—a/\2+u
Gy () = - AT ) (1.24)

- A’x|dfa/\2 ’x|d7a/\2+,u

As a result, by [?], x, and 0, exhibit the mean-field behavior (1.11). Moreover, p. and A
can be expressed in term of II,, in (1.17) as

0 la < 2],

pc:Hc(O)_l> A=p.+ p<2:
: B S i@ [a>2)

(1.25)

Remark 1.3. (a) The finite-range models are formally considered as the o = oo model.
Indeed, the leading term in (1.24) for o > 2 is identical to (1.9).
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(b) Following the argument in [14, 26], we can “almost” prove Theorem 1.2 for av > 2
without assuming the bounds on D**(z). The shortcoming is the restriction d > 10,
not d > 6, for percolation. This is due to the peculiar diagrammatic estimate in [14],
which we do not use in this paper.

(c) The asymptotic behavior of G, () in (1.9) or (1.24) is a key element for the so-called
1-arm exponent to take on its mean-field value [16, 19, 22, 25]. For finite-range critical
percolation, for example, the probability that o € Z% is connected to the surface of
the d-dimensional ball of radius r centered at o is bounded above and below by a
multiple of 7=2 in high dimensions [22]. The value of the exponent may change in a
peculiar way depending on the value of « [19].

(d) As described in (1.25), the constant A exhibits crossover between o < 2 and a > 2;
in particular, A = p. for a < 2. According to some rough computation, it seems that
the asymptotic expression of G, (x) for @ = 2 is a mixture of those for a < 2 and
a > 2, with a logarithmic correction:

Gpulw) ~ —2l (1.26)
lz|so0 pe|z|?2log |z

One of the obstacles to prove this conjecture is a lack of good control on convolutions

of the RW Green’s function and the lace-expansion coefficients for o = 2. As hinted

in the above expression, we may have to deal with logarithmic factors more actively

than ever. We are currently working in this direction.

2 Work with professor Shu-Chiuan Chang

Domany and Kinzel [10] defined a solvable version of compact directed percolation on
the square lattice in 1981 as follows. For a fixed p € (0,1), each vertical bond is di-
rected upward with occupation probability p (independently of the other bonds) and each
horizontal bond is directed rightward with occupation probability 1. Furthermore, it is
known that the boundary of the Domany-Kinzel model has the same distribution as the
one-dimensional last passage percolation model [12]. Recently, one of the authors consid-
ered a version of directed percolation on the square lattice whose vertical edges occupied
with a probability p, and horizontal edges in the n-th row occupied with a probability
1 if n is even and py, if n is odd [6]. Particularly for p, = 0 or 1, that model reduces to
the Domany-Kinzel model. In this article, we generalize further to consider a triangular
lattice as follows. Instead of using regular triangles, it is easier to start from a square
lattice with vertical probability y and horizontal probabilities 1 and x alternatively, then
add diagonal edges from lower-left to upper-right or from lower-right to upper-left with
probability d

Domany and Kinzel [10] defined a solvable version of directed percolation on the square
lattice in 1981 as follows. For p € (0,1) fixed, each nearest neighbour vertical bond is
directed upward with occupation probability p ( independently of the other bonds) and
each nearest neighbour horizontal bond is directed rightward with occupation probability
one. It’s known that the Domany-Kinzel model is a compact directed percolation and the
boundary of the Domany-Kinzel model has the same distribution as the one dimensional



last passage percolation model [12]. However the Domany-Kinzel model is essentially of a
one-dimensional nature due to the restricted freedom in one spatial direction. To uncover
the genuine nature of a two-dimensional directed percolation it is necessary to relax this
unit-directional restriction. In this article, we consider a version of directed percolation on
the square lattice whose vertical edges occupied with a probability p, and horizontal edges
in the n-th row occupied with a probability 1 if n is odd and py, if n is even. Particularly,
for p, = 0 or 1 the model reduces to the Domany-Kinzel model. Besides, the model is not
compact directed percolation for p, € (0, 1) since the percolating configuration may has
isolated vertices (as shown in Figure 1). However the volume of isolated vertices is finite
almost surely, it is believed that the critical behavior of the model refer to the compact
directed percolation universality class and not to the habitual directed percolation class.

The vertices (sites) of the triangular lattice are now located at a two-dimensional
rectangular net {(m,n) € ZxZ, : =M < m < M and 0 < n < N}. Consider the
probabilities z € [0,1], y € [0,1) and d € [0,1) but (1 —y)(1—d) # 1, i.e., d and y should
not be zero simultaneously, throughout this article, and the percolation always starts
from the origin (0,0). We say that the vertex (m,n) is percolating if there is at least
one connected-directed path of occupied edges from (0,0) to (m,n). Given any a € R,
let N, = |aN| =sup{m € Z: m < aN} with N € Z,. Tt is clear that o > 0 for the
triangular lattice with diagonal edges from lower-left to upper-right and o > —1 with
diagonal edges from lower-right to upper-left. Let us define

S 0  if diagonal edges from lower-left to upper-right ,
i —1 if diagonal edges from lower-right to upper-left .

Denote P as the probability distribution of the bond variables, and define the two point
correlation function
T(Ny, N) = P((N,, N) is percolating) .

It is appropriate to define some of the standard critical exponents and to sketch the
phenomenological scaling theory of 7(N,, N). For a < a. and « close to «., the scaling
theory of critical behavior asserts that the singular part of 7(N,, N) varies asymptotically
as (c.f. [15])

—BN
@ .

where the notation fi (V) & fo,(/N) means that imy_, log f1.4(N)/log fou(N) = 1.
The constants B and critical exponent v € (0,00) are universal constants and do not
depend on « [11]. Note that there has been no general proof of the existence of the
critical exponents. For a < «., the critical exponent of the correlation length v = 2 as
shown below is the same as what was found in the Domany-Kinzel model [10, 27, 21, 20].
The consideration here generalizes and amends the corresponding results for the square
lattice in Ref. [6]. The main purpose of this article is to find the critical value

d—y—dy 1—(1-d)*1 -y
Qe =
2(d+y — dy) 2(d +y —dy)?
for the triangular lattice with diagonal edges from lower-left to upper-right, and the critical
value

7(Na, N) = exp(

(2.2)

3d+y—dy 1—(1—-d)*(1—y)*z
2(d +y — dy) 2(d +y — dy)?

(2.3)

Qe = —



for the triangular lattice with diagonal edges from lower-right to upper-left, such that

if a > a.,
if o < a,, (2.4)

lim 7(2N,,2N) =
N—o0 .
if o =a, .

o= O =

Notice that we use the same symbol «. to denote the critical value for the triangular
lattice with diagonal edges either from lower-left to upper-right or from lower-right to
upper-left, because (2.4) and the following theorems apply to both cases. The meaning
will be clear from context. We also obtain the values of v and B for the triangle lattice.
We use large derivation argument and the Berry-Esseen theorem to quantify the rate.

First we study the rate of convergence of 7(2N,,2N) for a fixed a. For notation
convenience, define

a=1+b—(d+y—dy)?, b=(1-d)?*(1—y)x (2.5)
from now on, thus (2.2) and (2.3) can be written as

1 Y 1—-0
= —

2_d+y—dy+2ﬂ—a+®

for the triangular lattice with diagonal edges from lower-left to upper-right, and the critical
value

1 d 1-0
e = —=

2 dty—dy 20—atb)

for the triangular lattice with diagonal edges from lower-right to upper-left. Moreover,

we define
: 3 o
a_{amin if ac<_Z+§a
=) -3++y/(4ac+3)2—402 . 3 p
1 if ac2—-1+7,
where the variance is given by
21— y)dy—1—0 1—0b)?

l—a+0b (1 —a+b)?
for the triangular lattice with diagonal edges from lower-left to upper-right, and

261 —dydy—1—b  (1—0)?
2 _ 2.7
’ —atb  (—a+bp 27)

for the triangular lattice with diagonal edges from lower-right to upper-left. Here we again
use the same symbol 02 to denote the variance for the two cases. Furthermore it is easy
to see that a < a., and for a € (a, a,.) we have

(4(a +a.)+6

p Jae—a)<1.



Theorem 2.1. Given z € [0,1], y € [0,1), d € [0,1) with (1 —y)(1 —d) # 1 and
the critical aspect ratio o, in (2.2) or (2.3), the asymptotic behavior of the two point
correlation function is

7(2N,, 2N) ~exp(—2NI(a)) for a<a.,
T(2N,, 2N) =1+ O(\/LN) for a=a., (2.8)
1—7(2N,,2N) = exp(—2NI(a)) for a>a.,

where
1
;(ac —a)? <I(a) < —Iny for a€ (amm,ac) (2.9)
1 5 L (a, — a)?
(e, — <7J < g € (o, a, 2.10
o2 (e —a)* < I(a) < 1_ (4(a+0r12c)+6)(ac —a) for a € (a;a.) ( )
S(a. — a)? 1
o2 ¢ < I(a) < —=(a. —a)? for a>a.. 2.11
14 (Hetoet6) (o — @) (a) 02( ) (2.11)
Furthermore,
7(2Na, 2N) < exp(=Z¥(a, — a)?) for ae€(a, ),

=2N (4. —a)? (2.12)

1—7(2N,,2N) < exp(Q(af%)) exp( z

o? 1+(74(a+0050)+6)(a—ac)

) for a>a..

By Theorem 2.1, we have the following theorem:

Theorem 2.2. Given x € [0,1], y € [0,1), d € [0,1) with (1 —y)(1 —d) # 1 and the
critical aspect ratio o in (2.2) or (2.3), inequalities

T(2Na, 2N +1) _ r(2Na,2N +2) _
7(2N4,2N) = 7 T(2N,,2N) —

hold and the asymptotic behavior of the two point correlation function is

T(Ng, N) ~exp(—NI(a)) for a<a.,
7(Ny, N) = %+O(\/Lﬁ) for a=a.,
1—7(Na,N) mexp(=NI(a)) for a>a..

Remark 2.3. Theorem 2.1 and Theorem 2.2 lead to the following information:

1. The function I(a) for a # o, does not have a simple expression. However, for the
original Domany-Kinzel model on the square lattice (i.e., d =0, x = 1), it is given
by

I(a) = aln( ) —In(y(1+a)) . (2.13)

(1-y)(1+a)

2. For d =0, the expressions of a. in (2.2), (2.3) and the expressions of o in (2.6),
(2.7) reduce to those for the square lattice in [6].



3. For x = 1, our model corresponds to a Domany-Kinzel model on the 2N, x 2N
triangular lattice. (2.2) and (2.6) lead to a. = (1 —y)/(d +y — dy), 0? = 2(1 —
y)(1—d+dy)/(d+y—dy)? for the triangular lattice with diagonal edges from lower-
left to upper-right. (2.3) and (2.7) lead to a. = (1 —2d —y + dy)/(d +y — dy),
02 =2(1—d)(1—y+dy)/(d+y—dy)?* for the triangular lattice with diagonal edges
from lower-right to upper-left.

4. Our result gives that T(Ny, N) with o < o, and 1 —7(N,, N) with o > «. both decay
exponentially to zero. Furthermore, we obtain B = 1/0* and the critical exponent
v=21in (2.1) for a < a.

5. We obtain the similar result on the honeycomb lattice (c.f. [7]).

Finally, we investigate the asymptotic phenomena of T(Na]—v, N) and T(Nax , N') where
o} | acand ay T a. as N 1 oo. A sequence {£,,}°°, is called a regularly varying sequence
if for any A € (0,00), limy, o0 £|xn)/€n = 1. For example, ¢, =logn or ¢, = c € (0, 00) for
all n. For convenience, we denote ®(z) = \/%7 ffoo e’% du as the standard cumulative
distribution function of Gaussian distribution with mean 0, variance 1 and let ¥(x) =

w2
1—®(x) = \/%7 [T du. It is not difficult to see that

M

z_
2

U(z) =

(1+O(z™?)) when x is large.
2rw
Theorem 2.4. Given x € [0,1], y € [0,1), d € [0,1) with (1 —y)(1 —d) # 1, p € (0,00)
and a positive reqularly varying sequence {£,}°%,. Denote ay = a. — o NPy /\/2 and
= ae+ oN~ly/\/2, then both

T(NQN,N) , 1—T(Na3; N)

([ mexp(-N"*TR) if pe(0,3)
~ exp(—/3;) if p=1i Iy— o0

) \I/(€)+O(1)max{f 10— tn|} if p=13, Iy — L€ 0,00)
= % + O(l)lN*PHEN if pe (3,1)

| =T O0(F) if p€ll o00)

Note that p = % is a critical value and we have the following corollary.

Corollary 2.5. Under the same assumptions of Theorem 2.2, we have

)

8 =

lim 7(N,-,N)= lim (1_T<Na$,N>>:{2 e
2 2

N-o0 N-oo if pe€(5,00) .
When p =1/2 and {y — { € [0, 0], we have

: _ 2 : 1 2
]\}gllmT(Naj—v,N)—exp( ), ]\}I_I;Icl)OT(NaJ-Q\—],N)—l exp(—£7) .
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