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structure dependence for financial/economic time
series with emphasis on imprecise data such as fuzzy
data. The current practice in, say, forecasting
economic phenomena from observed time series data, 1S
based upon the methods of copulas and their
optimization techniques such as maximum entropy. This
can be achieved when data are precise. However,
observed time series data in econometrics/finance are
often coarse, 1i.e. of low quality, due to errors in
measurements, missing data, sample selection,
imprecision in observations. We propose to
investigate the use of copula techniques for coarse
data on this research project. And compare off even
the structure and the advantages and disadvantages of
the fuzzy correlation coefficient, the asset
allocation of the correlation coefficient is more
properly described, such as portfolio management,
risk management and financial derivatives pricing
strategies, as well as to enhance the reliability of
financial analysis. Application domains: Risk
management in financial econometrics, actuarial
sciences, credit management decision.

®~ M4 copulas, portfolio management, financial time series,
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This research proposal aims at investigating structure dependence for financial/economic time series with
emphasis on imprecise data such as fuzzy data. The current practice in, say, forecasting economic phenomena
from observed time series data, is based upon the methods of copulas and their optimization techniques such
as maximum entropy. This can be achieved when data are precise. However, observed time series data in
econometrics/finance are often coarse, i.e. of low quality, due to errors in measurements, missing data, sample
selection, imprecision in observations. We propose to investigate the use of copula techniques for coarse data
on this research project. And compare off even the structure and the advantages and disadvantages of the
fuzzy correlation coefficient, the asset allocation of the correlation coefficient is more properly described,
such as portfolio management, risk management and financial derivatives pricing strategies, as well as to
enhance the reliability of financial analysis. Application domains: Risk management in financial econometrics,

actuarial sciences, credit management decision.

Keywords: copulas, portfolio management, financial time series, fuzzy data



How to evaluate an appropriate correlation with fuzzy data is an important topic in the economics.
Especially when the data illustrate uncertain, inconsistent and incomplete type. Traditionally, we use
Pearson’s Correlation Coefficient to measure the correlation between data with real value. However, when the
data are composed of fuzzy numbers, it is not feasible to use such a traditional approach to determine the
fuzzy correlation coefficient. This study proposes the calculation of fuzzy correlation with of fuzzy data:
interval, triangular and trapezoidal. Empirical studies are used to illustrate the application for evaluating fuzzy
correlations. More related practical phenomena can be explained by this appropriate definition of fuzzy

correlation.

Keywords: copulas, portfolio management, financial time series, fuzzy correlation, fuzzy data, evaluation,

psychometrics

1. Introduction

Traditional statistics reflects the results from a two-valued logic world, which often reduces the accuracy
of inferential procedures. To investigate the population, people’s opinions or the complexity of a subjective
event more accurately, fuzzy logic should be utilized to account for the full range of possible values.
Especially, when dealing with psychometric measures, fuzzy statistics provides a powerful research tool.
Since Zadeh (1965) developed fuzzy set theory, its applications have been extended to traditional statistical
inferences and methods in social sciences, including medical diagnosis or stock investment systems. For
example, a successive series of studies demonstrated approximate reasoning methods for econometrics
(Lowen, 1990; Ruspini, 1991;Dubois & Parde ,1991) and a fuzzy time series model to overcome the bias of
stock markets was developed (Wu & Hsu,2002).

Within the framework of classical statistical theory, observations should follow a specific probability
distribution. However, in practice, the observations are sometimes described by linguistic terms such as "Very
satisfactory," "Satisfactory," "Normal," "Unsatisfactory," "Very unsatisfactory”, or are only approximately
known, rather than equating with randomness. How to measure the correlation between two variables
involving fuzziness is a challenge to the classical statistical theory. The number of studies which focus on
fuzzy correlation analysis and its application in the social science fields has been steadily increasing (Bustince
and Burillo,1995; Yu, 1993; Liu and Kao, 2002; Hong, 2006). For example, Hong and Hwang (1995) and Yu
(1993) define a correlation formula to measure the interrelation of intuitionist fuzzy sets. However, the range
of their defined correlation is from 0 to 1, which contradicts with the conventional awareness of correlation
which should range from -1 to 1. Wang and Li (1999)’s article also has the same problems of lying the
correlations between 0 and 1 for the interval valued fuzzy numbers. In order to overcome this issue, Chiang
and Lin (1999) take random sample from the fuzzy sets and treat the membership grades as the crisp
observations. Their derived coefficient is between -1 and 1; however, the sense the fuzziness is gone. Liu and
Kao (2002) calculated the fuzzy correlation coefficient based on Zadeh’s extension principles. They used a
mathematical programming approach to derive fuzzy measures based on the classical definition of the
correlation coefficient. Their derivation is quite promising, but in order to employ their approach, the

mathematical programming is required.

In addition, most previous studies deal with the interval fuzzy data, their definitions cannot deal with

triangle or trapezoid data. In addition, formulas in these studies are quite complicated or required some
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mathematical programming which really limited the access of some researchers with no strong mathematical
background. In this study, we give a simple solution of a fuzzy correlation coefficient without programming or
the aid of computer resources. In addition, the provided solutions are based on the classical definition of
Pearson correlation which should quite easy and straightforward. The definitions provided in this study can

also be used for interval-valued, triangular and trapezoid fuzzy data.

Traditionally, if one wishes to understand the relationship between the variables x and y, the most direct
and simple way is to draw a scatter plot, which can approximately illustrate the relationship between these
variables: positive correlation, negative correlation, or zero correlation. In this study, we have proposed three
kinds of fuzzy correlation which are based on the Neyman Person's correlation as well as the extension
principle Definition 2.1, Definition 2.2 and Definition 2.3, the advantages are that we can compute various

samples with fuzzy type, such as interval, triangle and trapezoid the type for the continuous sample.

The issue at hand is how to measure the relationship in a rational way. Statistically, the simplest way to
measure the linear relationship between two variables is using Pearson’s correlation coefficient, which
expresses both the magnitude and the direction of the relationship between the two variables with a range of
values from 1 to -1. However, Pearson correlations can only be applied to variables that are real numbers and

is not suitable for a fuzzy dataset.

When considering the correlation for fuzzy data, two aspects should be considered: centroid and data
shape. If the two centroids of the two fuzzy dataset are close, the correlation should be high. In addition, if
the data shape of the two fuzzy sets is similar, the correlation should also be high. An approach to dealing with
these two aspects simultaneously will be presented later in this study. Before illustrating the approach of

calculating fuzzy correlations, a review of fuzzy theory and fuzzy datasets are presented in the next section.

2. Copula and Fuzzy Correlation

Copula for correlation analysis of fuzzy data

The focus of our research proprosal is upon the development of techniques to use copulas in imprecise
data of many economic phenomena. This is a new research area. First, fuzzy data are realizations of fuzzy
random set time series. We need to extend copulas (e.g., Sklar.s theorem) to this new setting, as well as
study ways to quantify correlation of fuzzy data.

First, we step back to investigate a popular but neglected domain in applications, namely copulas for
DISCRETE variables. Second, we extend .nite variable to .nite random sets, where random sets are models of
imprecise observed data in the sense that, we only observe a set containing our desirable measurements, and
not the measurements themself. How to carry out statistical analysis with these available data?

Third, we extend random sets to fuzzy random sets, i.e., processes which give fuzzy data. We will develop

concepts of correlation among fuzzy events and their quanti.cations using copulas.

The correlation coefficient is a commonly used statistics that presents a measure of how two random
variables are linearly related in a sample. The population correlation coefficient, which is generally denoted
by the symbol pis defined for two variables x and y by the formula:

_Ooxy Cov(X,Y)

OxOy OxOy

In this case, the more positive p is, the more positive the association is. This also indicates that when p
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is close to 1, an individual with a high value for one variable will likely have a high value for the other, and an
individual with a lower value for one variable will likely to have a low value for the other. On the other hand,
the more negative pis , the more negative the association is, this also indicate that an individual with a high
value for one variable will likely have a low value for the other when pis close to -1 and conversely.
When pis close to 0, this means there is little linear association between two variables. In order to obtain the
correlation coefficient, we need to obtaino,”, o,” and the covariance of x and y. In practice, these parameters

for the population are unknown or difficult to obtain. Thus, we usually user,, , which can be obtained from a

Xy s
sample, to estimate the unknown population parameter. The sample correlation coefficient r,, is expressed as:

> (0~ )77)
ry = —e—r (1)
%(xi_)_c)zx/é(yi _J_’)z

where (x;y;) 1is the ith pair observation value, i=123........ ,n. x,y are sample mean for x and y

respectively.

Pearson correlation is a straightforward approach to evaluate the relationship between two variables.
However, if the variables considered are not real numbers, but fuzzy data, the formula above is problematic.
For example, Mr. Smith is a new graduate from college; his expected annual income is 50,000 dollars.
However, he can accept a lower salary if there is a promising offer. In his case, the annual income is not a
definite number but more like a range. Mr. Smith’s acceptable salary range is from 45,000 to 50,000. We can
express his annual salary as an interval [45000, 50000]. In addition, when Mr. Smith has a job interview, the
manager may ask how many hours he can work per day. In this case, Mr. Smith may not be able to provide a
definite number since his everyday schedule is different. However, Mr. Smith may tell the manger that his
expected working hours per day is an interval [8, 10].

We know Mr. Smith’s expected salary ranges from [45000, 50000] and his expected working hours are [8,
10]. If we collect this kind of data from many new graduates, how can we use this data and calculate the
correlation between expected salary and working hours? Suppose!, is the expected salary for each new
graduate, /,is the working hours they desired, then the scatter plot for these two sets of fuzzy interval

numbers would approximate that shown in Figure 1.

uy
i

-
i

0« I

Figure 1. Fuzzy correlation with interval data

For the interval valued fuzzy number, we need to take out samples from population X and Y. Each fuzzy
interval data for sample X centroids has x;, and for sample Y has centroids yi. For the interval data, we also

have to consider whether the length of interval fuzzy data are similar or not. In Mr. Smith’s example, if the
5



correlation between the expected salary and working hours are high, then we can expect two things: (1) the
higher salary the new employee expects, the more working hours he can endure. (2)The wider the range of the
expected salary, the wider the range of the working hours should be. However, how should one combine the
information from both centroid and length? If they are combined with equal weight, it is possible that the
combined correlation would exceed the boundaries of 1 or -1. In addition, the effect of length should not be
greater than the impact of centroids. In order to get the rational fuzzy correlations, we used natural

logarithms to make some adjustments.
Let (X; =[a;,b;1,Y; =[c;,d;]; i=1,2,...n) be a sequence of paired trapezoid fuzzy sample on population

Qwith its pair of center (cx;,cy;)and pair of area (||xi|| =area(x,), y,." =area(y;). The adjust correlation for

the pair of area will be

Definition 2.1

Let (X; =[a;,b;1,Y; =[c;,d;]; i=1,2,...n) be a sequence of paired trapezoid fuzzy sample on population
yi" = area(y;) -

Qwith its pair of center (cx;,cy;)and pair of area ||xl|| = area(Xx;,),
el i -
e

I (ex-T= -
Ty = - {=1(6X—TX)(CF—T)

F b
JERa(ex-T02 [TE (e~ 772

ar,, =

Then fuzzy correlation is defined as as ,

FC=Pycryy + Paary,, (B +pr =1)

We choose a pair of (f#;,8,) depend on the weight of practical use. For instance, if we think the location

correlation is much more important than that of e scale, g; = 0.7, 8, = 0.3. will be a good suggestion.

Example 1. Suppose we have the following data as shown in Table 1.

Table 1. Numerical example for interval-valued fuzzy data

student X Y
Data  center length data center length
A [23,25] 24 2 [1,2] 1.5 1
B [21,26] 23.5 5 [0,3] 1.5 3
C [29,35] 32 6 [0,1T 0.5 1
D [28,30] 29 2 [1,4] 2.5 3
E [26,28] 27 2 [2,3] 2.5 1
(fuzzy) mean 27.1 34 1.7 1.8

In this case, the correlation between the two centers is

n
2 (ex; =27.1)(cy; —1.7)
Cryy = —— =-0.26,
< 2 |5 2
\/Z(cxi -27.1) \/Z(cyi -1.7)
i=1 i=1
and the correlation between the two length is




n
2 (il =34y -1
ary, =—=—1 =0.05.

[Eal-207 Sl -17

Table 2 is a list of conbinations for chosing f,,f;. The fuzzy correlation will be computed by eryy and ar,

with 0< 8,8, <1.Suchas, when f,=0.7 and p, =03 then FC=0.7x(-0.26)+0.3x0.05=-0.17.

Table 2. Different conbinations of [, fa.

(1,0) | (9, | (8,.2) ] (7.3) ] (64 | (5.5 ] (4,6) | (3.7 (2.8) ] 1,9 | ©,1)
FC| 026 | -023 | 020 | -0.17 | -0.14 | -0.11 | -0.08 | -0.05 | -0.01 | 0.02 | 0.05

Considering the contribution of (area) length correlation to the fuzzy correlation, the idea of correlation

interval is proposed. Suppose we fix the (area) length correlation by the following adjusted values.

) Sl -l - 17
; where ar,, = = =l ,
JE G- £ -

since —1<ar, <1, therange of Ar, willbe 0<Ar,<0.3069. We will have the following definition for

In(1+

ar,,

Ary, =1~ ; )

arxy

fuzzy correlation interval.

Definition 2.2

Let (X; =[a;,b;1,Y; =[c;,d;]; i=1,2,...n) be a sequence of paired trapezoid fuzzy sample on population
yi" = area(y;) -

Q with its pair of center (cx;,cy;)and pair of area ||xl|| = area(Xx;),

Ziei(ex; — ) (cy — ©p)

T R - R Tl — TP
n
o ) Sl -l
Aary, =1- ; where ary, = p = . )
JE -t |l
i= i=

Then fuzzy correlation is defined as,
(i) When cr,, 20, Aar,, >0, fuzzy correlation = (cr,,, min(1, cr,, +Zar,))
(i) When cr, 20, Aar,<0, fuzzy correlation = (cr,, - Zar,, cr,,)
(iii) When cr,, <0, Aar, >0, fuzzy correlation = (cr,,, cr,, + Aar,,)

(iv) When cr, <0, Zar, <0, fuzzy correlation = (max(-1, c,, - Aar,,), cr,)

Example 2. Suppose we have the following data as shown in Table 3.



Table 3. Numerical example for interval-valued fuzzy data

student X Y
Data  centroid Area(length) data centroid Area(length)
A [23,25] 24 2 [1,2] 1.5 1
B [21,26] 23.5 5 [0,3] 1.5 3
C [29,35] 32 6 [0,1] 0.5 1
D [28,30] 29 2 [1,4] 2.5 3
E [26,28] 27 2 [2,3] 2.5 1
(fuzzy) mean 27.1 3.4 1.7 1.8

In this case, the correlation between the two centroids is

n
(ex; —27.2)(cy; —1.7)
j=1

Clyy = = =-0.26.
\/ > (ex; - 27.2)? \/ > (ey; - 1.7)%

i=1 i=1

Similarly, the correlation between two lengths is

% (il =360 -1

ary, = =0.05

[lsl-207 (£ -197

In(1+0.05
iarxy =1——( 0.05 )

=0.02
Since the centers correlation ar,, 20, and the area(length) correlation Aar,, 20, thus, fuzzy correlation = (r,
r+2ar,)) =(-0.26, -0.26+0.02)=(-0.26, -0.24). This implied that the relationship between the X and Y are

quite small.

Another interesting idea is taking all possible correlations into consideration. That is we calculate the
correlations for all endpoints of intervals. Then we take the mean of all possible correlations as our center of
3(rmin _ rmax )2

the fuzzy correlation. While the range is chosen by the three standard deviation, that is . Here we

apply the idea of three standard deviation from quality control.

Definition 2.3

Let Xy = [ay.az2:] and Yy = [by.bot] be a sequence of paired fuzzy sample on population Q. Let
?}fc — zﬁlﬂajf‘aj)ﬂﬁkf‘gk)_ ,j :],2’ k :]’2
JERs(apm))2 (B B

Then fuzzy correlationis [ 1, 1,, 1with nr,,=r-s, and r,=r+s,, where



2 2 2 2 _
DI agl(rjk 7P
=t and s, =472
4 4

Example 3. Suppose we have the following data as shown in Table 4.

Table 4. Numerical example for interval-valued fuzzy data

X Y Correlation coefficient
student [ar,a2]  [b1,b2]  Faiml alb2 Fa2b1 ra2b2
A [23,25] [1,2] -0.07 -0.07 -0.32 -0.09
B [2126] [0,3]
C 3235 [0,1]
D [28,30] [1.4]

E [26,28] [2,3]
interval 7=-0.14, 5,=0.12

Since the mean and Standard Deviation of 1y, are -0.14 and 0.12, thus, fuzzy correlation = ( -0.26,-0.02).

This implied that the relationship between the X and Y are small.

A correlation coefficient is a number between -1 and 1 which measures the degree to which two variables
are linearly related. If there is perfect linear relationship with positive slope between the two variables, we
have a correlation coefficient of 1; if there is positive correlation, whenever one variable has a high value.

Thus, base on the measure of evaluation, the degree of the population correlation coefficient, we will be

considered for the correlation of fuzzy interval. As the correlation of fuzzy interval, [r,,, 7, ], is computed

then the value of fuzzy correlation can be evaluated that is defined as,
(i) When [ 1w, Tuple[-0.10,0.10 ], the fuzzy correlation is not significant.
(it) When [7iow, Tuple[-0.39,-0.11 Jor [0.11, 0.39 ], the fuzzy correlation is low value.
(iti) When [1ow, Tuple[-0.69,-0.40 ] or [0.40, 0.69 ], the fuzzy correlation is middle value.
(iv) When [1iow, Tuple[-0.99,-0.70 ] or [0.70, 0.99 ], the fuzzy correlation is high value.

3. Empirical studies
In this section, there are two empirical example will be considered to study the relationship with three
schemes. In the first part, we employ the fuzzy interval data to investigate the relationship between climate
and the price of vegetable from 2009 to 2011 in Taiwan. In the second part, we apply the exchange rate and

the price of agriculture in Thailand.

3.1 Correlation between Climate and Agriculture Price in Taiwan
Having 33 samples are collected from the Central Weather Bureau and Agriculture and Food Agency

Council of Agriculture Executive Yuan in Taiwan. We want to study which factors will impact the relationship
between climate (X) and the price of vegetable (Y). The result presents the correlation for fuzzy data and in

comparison with the price of vegetable.

Table 5 Correlations interval based on temperature and the price of vegetable in Taiwan
9



Scheme Correlation coefficient

Fuzzy Correlation by definition

212
1
Fuzzy Interval by definition 2 (.339, .489)
Fuzzy Interval by definition 3 (.348, .480)

Based on Table 5, we have the following findings. First, besides the correlation of temperature and
vegetable price is positive, this result present that the temperature is increasing, the price of vegetable can be
affected increasing. Second, the correlation coefficient of both new method and length and center are close.

This means there is almost middle relationship between temperature and vegetable price in Taiwan.

3.2 Correlation of both pair Agriculture Price
There are 17 samples are collected from Thailand bank and Agriculture and Food Agency Council in
Thailand. The results show the correlation for the exchanges rate and various price of agriculture with three

approaches of evaluation of correlation coefficient. The results are listed in Table 6.

Table 6 Correlations interval based on Temperature and the price of Agriculture in Thailand

Fuzzy . US:TB  Sugar Corn Wheat Rice
correltaion
-.373!
(-.540, -.551! -.545! -.013!
US:TB - -.532)? (-850, -.783)* (-.893,-.780)> (-.019, .083)
(-.560,  (-.868,-815) (-.902,-.868) (.015,.143)}
-.500)°
0.750! 0.585! 0.659!
Sugar - (684, .972)>  (.542,.781)*>  (.648, .886)
(.578,.705)  (468,.556)  (.567,.663)>
0.797" 0.741'
Con ] (829, 1.0002 (767
(.744, .833)° 1.000)
S (.683, .765)}
0.518!
Wheat ] (.561,.725)?
(.512,.554)°
Rice )

Note: ! denote the value of definition 1 under £, = 0.7,8, = 0.3.

2 denote the value of definition 2.
3 denote the value of definition 3.

In the Table 6, we have the following findings. First, besides the correlation of exchange rate and the price
of agriculture is negative, and this result denotes that the exchange rate decreases then the price of agriculture
increase. Second, the correlation coefficient is high level for exchange rate and the price of corn, wheat, this
means the price of corn and wheat have a lot of effect to exchange rate. In addition, the price of sugar will
affect a little by exchange rate, and the price of race can not be influenced by exchange rate. Third, the any
both price of agriculture are positive, and there are at the least middle relationship for any pair price of
agriculture. This result show that one price of agriculture will affect other price of agriculture, such as the

price of wheat can be affected by the price of rice.

10



4. Conclusions

Correlation between any two variables has wide applications in many applications. Previous studies have
derived some solutions for calculating the correlation coefficient for fuzzy numbers. A common deficiency of
those studies is that the correlation coefficients calculated are crisp values, instead of the intuitively believed
fuzzy numbers. This paper uses a simple way to derive fuzzy measures based on the classical definition of
Pearson correlation coefficient which are easy and straightforward. Moreover, the range of the calculated
fuzzy coefficient is a fuzzy number with domain [-1, 1], which consist with the conventional range of Pearson
correlation. In the formula we provided, when all observations are real numbers, the developed model
becomes the classical Pearson correlation formula.

There are some suggestions for future studies. First, the main purpose of this study is to provide the
formula of calculating fuzzy correlations. Only few samples are collected to illustrate how to employ the

formula. Future interested researchers can use formula and collect a large-scale fuzzy questionnaires to make

this formulas implement in practice. Second, when calculating the fuzzy correlation, we adopt Aar, to adjust

the correlations, but researchers can set up their own Aar, values if there are defensible reasons. However, it is

suggested that the impact of length correlation should not exceed the impact of centroid correlation. Third,
this study only considered the fuzzy correlation for continuous data. It would be interested to investigate the
fuzzy correlation for discrete fuzzy data.

In practice, many applications are fuzzy in nature. We can absolutely ignore the fuzziness and make the
existing methodology for crisp values. However, this will make the researcher over confident with their
results. With the methodology developed in this paper, a more realistic correlation is obtained, which provides
the decision maker with more knowledge and confident to make better decisions.
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bringing together researchers in Management Engineering for an opportunity to present and discuss
theoretical and applied research problems as well as to foster research collaborations. The main theme of
this Tenth International Meeting is Financial Econometrics and the conference is open to any topics in
economics. The Tenth Conference will feature two keynote addresses: (1) Professor Junzo Watada,
Waseda University (2) Professor Kuldeep Kumar, Bond University:
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are greatly concerned with engineering. The production cannot only be discussed from the
perspective of production engineering but also should be decided from the scope of management,
marketing, economy, etc. Many research topics are multidirectional. This conference perspective
should influence production engineering from the perspective of the management and
information as same as management and information should not be self-contained and
self-absorbed science. All the fields are interrelated. Therefore, we have to work on
interdisciplinary fields proposed in this IMIP symposium.. LK —EE¥#H2400: Perception
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Abstract: This study devised and applied a novel defuzzification method to generate and review
calculations of fuzzy values derived from the scores of 2 student mathematical tests. For similar
or identical score averages containing variable differences that are not typically detected using
traditional measurement tools, we assigned a “progress value” to distinguish the scores. This new
progress value was then used to select students with differing academic potentials to participate in
math competitions. From each of the 3 classes that participated in the study, we chose 10 students
as subjects, 30 in total. We used nonparametric statistics to analyze and compare the obtained

defuzzification values. Also can test the school whether in accordance with provisions of
Ministry of Education to implement normal class. The conclusions of major findings were
summarized as follows. First, although the averages are equal, but their progress value may be
different. Second, we can sort from the group of same average student, and according to the
sorting to find who suit to take part in math competition.Third, we find the school implements the
normal class in accordance with the provisions of Ministry of Education.

Keywords: defuzzification, progress value, sort, normal class

1. Introduction

The question of how to distinguish
students based on similarly averaged test
scores for determining who is most suitable to
participate in other scholastic competitions
has not been addressed by studies on the use
of fuzzy logic in educational assessment. A
comparison between students is difficult when
the list lacks discrimination. This study
presents a comparison of sorted scores by
using a unique form of discrimination analysis
based on a novel definition of interval fuzzy
scores to calculate a defuzzification value
(Harloff, 2011). The new definition and score
analysis method were used to assess the
performance levels among several similar
student tests. This effectively overcomes the

problem of sorted-score comparison.

Student interval fuzzy scores were
defined as (a, b), where a and b are two test
scores for the same student. Interval fuzzy
scores were then transformed to
defuzzification scores based on Harloff (2011).
This strategy enabled using the defuzzification
value to compare both the sorted scores in and
among themselves, and the sorted scores with
those that, by using traditional scoring
measurements, generated similar or identical
averages. It also enabled nonparametric
analysis of the defuzzification values. Thus,
medians between groups could be tested.

A review of relevant literature was
divided into three parts. The first part
concerned the development of fuzzy statistical
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theory. Zadeh’s fuzzy theory explains several
phenomena; and since its inception, the theory
has been well developed. Recent research has
developed new concepts and methods related
to fuzzy theory statistical analysis (Wu & Lin,
2002; Dubois et al., 2005; Sun & Wu, 2007;
Wang & Chen, 2010; Hsu et al., 2009). The
second part of the literature review consisted
of researching interval fuzzy numbers and
enhanced methods for applying fuzzy theory
(Suleman & Suleman, 2012; Liu et al., 2008;
Harloff, 2011; Yager et al., 2001; Fan, 2010).
The third part of the literature review
consisted of researching the sorting of fuzzy
numbers, which has resulted in the proposal of
many new methods (Sengupta & Pal, 2000;
Lin & Chen, 2004; Nguyen & Wu, 2006; Lee
& Lee, 2001; Hung et al., 2011; Ravi et al.,
2010; Chu & Lin, 2009; Lin et al., 2006). This
study similarly proposes a novel model for
comparing student scores by transforming
interval fuzzy scores into a defuzzification
value, which enables a more precise sorting of
students. This study solved the problem of
sorting scores that, by using traditional
measuring tools, generate identical or similar
averages. Therefore, this paper proposes a
defuzzification method for discriminating
student scores containing identical or similar
averages.
2. Research methods
2.1. Interval fuzzy number
Definition 2.1 of interval fuzzy scores.

This study  presents a novel definition
of interval fuzzy scores that can be used as an

analytical tool in discriminating student scores.

We defined student performance interval
fuzzy scores as (a, b), where a and b are two
test scores for one student and a <b. For
example, a student achieved 88% and 78% as
his or her scores on two math tests. Therefore,
his or her interval fuzzy scores are (80, 90)
and the students' mathematical ability is
between 80 and 90 points. Using a mean of
(80 +90) / 2 = 85 is simpler, but interval
fuzzy scores are a closer measurement of
actual performance capabilities because
human abilities typically include subtle
differences that distinguish one from another
and, therefore, require nuanced or “fuzzy”
descriptions. This study used a novel interval

fuzzy score model to sort and analyze
indicators of student performance.

Definition 2.2 defines the defuzzification of
interval fuzzy scores.

Let X = (a, b) be an interval fuzzy
number; ¢ is the range center; and |X | = |b-q|
is the entire distance. The defuzzification

value of the interval fuzzy number is x,, .

e Bl )
| 2xIn(e+|X])

L (2.2)
2xIn(e+ |X|)

Equation 2.2 is the defuzzification function of
the interval length. Ifa — b, then x,

a+b
approaches the range center value .

2.2. Calculating the Domain of x . by Using
Equation 2.1

If test scores are expressed as
percentages, then the domain of x, is

calculated using Equation 2.1, because
Equation 2.2 has a maximal value of 10.8 and
a minimal value of 0. The domain is
calculated using the following process:

x| lim|X| 0

X0 el

I _ _0_
0 2 Ine + X)) lim(2x In(e +[X])) ~ 2

BY lim || 100

X100

lim =— = =10.8
-] xIn(e+ m xIn(e + xIn(e +
%100 2 x In(e + | X1) lim (2xIn( |X) 2xIn(e+100)

Thus, Equation 2.2 has a minimal value of 0
and a maximal value of 10.8. Therefore,
Equation 2.1 has a minimal value of ¢ and a
maximal value of ¢ + 10.8. If test scores are
expressed as percentages, then we let x,

maximal value be min (100, ¢ +10.8) and their
minimal value be ¢, where the domain of x ;
matches educational requirements and habits.
2.3 The same average and |X | , but
different progress value
X

T ey Y
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X

2><lnie+|X|i

When the score increases, then X is positive;
when the score decreases, then X is negative.
For examples, refer to Table 2.1.

(2.4)

2.4 The same average but different

potential. For examples, refer to Table

2.2
2.5 Why We Use Fuzzy Statistics

Since fuzzy theory was first introduced
by Zadeh in 1965, its application in every
research field employing fuzzy statistics has
grown rapidly, similar to mushrooms after a
rain storm. Many research fields employ fuzzy
logic as a theoretical foundation and extend
the logical concepts of the two-valued
(bivalent) logic of traditional mathematics,
thus breaching the limited thinking of binary
logic. The concern of a scholar of fuzzy
statistics is that human thinking cannot be
measured or described using a single (truth
value) option. In other words, human thinking
should include each variable in a truth value
range (from completely true to completely
3. Research Method

3.1. Study Flow Chart

false), thereby revealing the relative
importance of each variable (Law, 1997;
Nguyen & Wu, 2006; Wu, 2005).

In contrast to the traditional quantized
questionnaire, the fuzzy questionnaire can
reflect more accurately the possibilities
inherent in a fuzzy thinking specialty. Because
human thinking and behavior more often
reflect the uncertain or “fuzzy” nature of life
situations and considerations, all languages
can be deemed “fuzzy languages” because
they employ tools for addressing uncertainty
or variability (Wu, 2005). Applying fuzzy
logic to the application and analysis of a
questionnaire offers a novel approach to
collecting and analyzing data. It therefore
validates the varied experiences and abilities
of people (Jiang, Wu & Hu, 2008).

Relative to traditional data, we can know
the final or true/false value of a participant’s
response, as well as his or her more precise
“fuzzy” thinking. In other words, a
participant's true thoughts, beliefs, and even
preferences are reflected more accurately in
fuzzy logic.
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Selected the student’s the last two math scores of percentile system

v

First score as a ] [ Second score as b

v
The fuzzy scores a,b, where a=b,a<b,or a>b,and ¢= (at+b) /2

A 4

Transformed a, b to defuzzification value, X=b-a

v v

Formula (2.3) Defuzzification Formula (2.4) Defuzzification
function function
X X

xj‘:C+2xlnie+|X|i 2xlnie+|X|i

\ 4 \ 4 v
If a=b, then X=0 Ifb>a, then X>0 Ifb<a, then X<0

A 4

Progress Progress Progress
value=0 value>0 value <0

Defuzzification
value>c¢

Defuzzification

value=c Defuzzification

value<c

FIG. 3.1 Flow chart of the study process

4. Empirical Study Scores
In table 4.1, although the average of No.3
4.1. Sort Ten Students’ Scores in Three student was larger than to the average of No.4
Classes According to Defuzzification student, but the progress value of No.3 student
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was less than to the progress value of No.4
student, then we obtain defuzzification scores
of No.3 student was less than to
defuzzification scores of No.4 student.The
meanings of education imply that No.4
student had more potential than No.3 student .

In table 4.2, although the average of No.6
student was equal to the average of No.10
student, but the progress value of No.6 student
was less than to the progress value of No.10
student, then we obtain defuzzification scores
of No.6 student was less than to
defuzzification scores of No.10 student.The
meanings of education imply that No.10
student had more potential than No.6 student .

In table 4.3, although the average and
interval length of No.1 student was equal to
the average of No.4 student, but the progress
value of No.1 student was positive and
increasing ; the progress value of No.4 student
was negative and decreasing, then we obtain
defuzzification scores of No.4 student was
less than to defuzzification scores of No.1
student. The meanings of education imply that
No.1 student had more potential than No.4
student .

4.3. Fuzzy Wilcoxon Rank-sum Test

4.3.1. Class 1 and Class 2

Results was shown in Table 4.4.Test class 1
and class 2 by Wilcoxon rank-sum Test ,the
median of those two classes were not
significantly different.

4.3.2. Class 2 and Class 3

Results was shown in Table 4.5.Test class 2
and class 3 by Wilcoxon rank-sum Test ,the
median of those two classes were not
significantly different.

4.3.3. Class 1 and Class 3

Results was shown in Table 4.6.Test class 1
and class 3 by Wilcoxon rank-sum Test ,the
median of those two classes were not
significantly different.

4.4. Fuzzy Kruskal-Wallis Test

Results was shown in Table 4.7.Test class 1,
class 2 and class 3 by Kruskal-Wallis test ,the
median of those three classes were not

significantly different.

4.5. Discussion

We can use the new approach to find
who suit to part in math competition? In table
4.1,4.2 and 4.3 showed that we can effectively
overcomes the problem of sorted-score
comparison. There were three types to be
divided. Frist, although the average of “A”
student was larger than to the average of “B”
student, but the progress value of “A” student
was less than to the progress value of “B”
student, then we obtain defuzzification scores
of “A” student was less than to defuzzification
scores of “B” student.The meanings of
education imply that “B” student had more
potential than “A” student .Second, although
the average of “A”student was equal to the
average of “B” student, but the progress value
of “A” student was less than to the progress
value of “B” student, then we obtain
defuzzification scores of “A”student was less
than to defuzzification scores of “B”
student.The meanings of education imply that
“B” student had more potential than “A”
student .Third, although the average and
interval length of “A” student was equal to the
average of “B” student, but the progress value
of “A” student was positive and increasing ;
the progress value of “B” student was
negative and decreasing, then we obtain
defuzzification scores of “B” student was less
than to defuzzification scores of “A”
student.The meanings of education imply that
“A” student had more potential than “B”
student .

How to find the school whether to
implement the normal class in accordance
with the provisions of Ministry of Education
in Taiwan? In table 4.4,4.5 ,4.6 and 4.7, we
test class 1 and class 2 ; class 3 and class 2;
class 3 and class 1 by Wilcoxon rank-sum Test,
the median of those two classes were not
significantly different. And we test class 1,
class 2 and class 3 by Kruskal-Wallis test, the
median of those three classes were not
significantly different. We can find this school
is in accordance with the provisions of
Ministry of Education in Taiwan.
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5. Conclusion

This study solved two research problems.
The first is the problem of sorting scores when
score discrimination is low or when score
means are equal. The second is the problem of
conducting nonparametric analysis by using
fuzzy scores. The defuzzification value of the
fuzzy scores solves both of these research
problems. A novel fuzzy score definition,
expressed in Equation 2.3, was used to
conduct defuzzification sorting analysis. The
results obtained from such analysis can be
used to solve the problem of distinguishing
identical scores and scores containing a low
degree of discrimination, and can be used to
accommodate the progress value to identify
student potential more accurately. This
method can also be used to evaluate schools
and their compliance with stipulations by the
Ministry of Education in implementing core
curriculum classes.
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Table 2.1 The same average and |X

, but different progress value

Ith score  2th score Average 1X] X progress value  defuzzification value
80 90 85.0 10 10 1.97 86.97
90 80 85.0 10 -10 -1.97 83.34

Table 2.2 The same average but different potential.

Ith score  2thscore  average 1] X progress  defuzzification  sorting
value value
85 85 85 0 0 0.00 85.00 6
84 86 85 2 2 0.65 85.65 5
86 84 85 2 ) -0.65 84.36 7
83 87 85 4 4 1.05 86.05 4
87 83 85 4 -4 -1.05 83.95 8
82 88 85 6 6 1.39 86.39 3
88 82 85 6 -6 -1.39 83.62 9
81 89 85 8 8 1.69 86.69 2
89 81 85 8 -8 -1.69 83.31 10
80 90 85 10 10 1.97 86.97 1
90 80 85 10 -10 -1.97 83.03 11

Table 4.1 Class 1 (ten students) - Sorting by defuzzification scores

Student First Second a+b Interval Sort
code math math ) ) h Defuzzification b
score score engt X Progress scores Xx T y X,
a b =C ‘X ‘ value
1 76 85 80.5 9 9 1.83 82.33 5
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2 84 82 83.0 2 -2 -0.64 82.36 4
3 68 74 71.0 6 6 1.39 72.39
4 66 80 73.0 14 14 2.49 75.49 7
5 57 50 535 7 -7 -1.54 51.96 10
6 90 97 93.5 7 7 1.54 95.04 1
7 48 62 55.0 14 14 2.49 57.49 9
8 87 94 90.5 7 7 1.54 92.04 2
9 93 80 86.5 13 -13 -2.36 84.14 3
10 81 81 81.0 0 0 0.00 81.00 6
Table 4.2 Class 2 (ten students)-Sorting by defuzzification scores
Student First Second a+b Interval Progress Defuzzification Sort
code math math 2 scores
score score = length X value by Xy
X
. B X,
1 6 7 7 1 2.2 74.23 6
6 8 2.0 2 2 3
2 7 6 6 9 -1. 66.67 7
3 4 8.5 9 83
3 8 8 8 2 0.6 83.64 4
2 4 3.0 4
4 9 9 9 4 1.0 93.05 1
0 4 2.0 5
5 5 4 5 6 -1. 49.61 10
4 8 1.0 6 39
6 8 9 9 4 1.0 92.05 3
9 3 1.0 5
7 6 5 6 6 -1. 58.61 8
3 7 0.0 6 39
8 7 8 7 2 0.6 79.64 5
8 0 9.0 4
9 6 5 5 9 -1. 56.67 9
3 4 8.5 9 83
1 8 9 9 6 1.3 92.39 2
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1.0

Table 4.3 Class 3 (ten students)-Sorting by defuzzification scores

Student  First  Second  atb  Interval Progress  Defuzzification Sort
code :C‘f)tr}; ;‘C‘itr}; :Tc length X value scores X, by X,
a . ]

] 66 73 69.5 7 7 1.54 71.04 5
2 80 85 82.5 5 5 1.22 83.72 4
3 56 62 59.0 6 6 139 60.39 9
4 74 68 71.0 6 -6 -1.39 69.61 6
5 91 95 93.0 4 4 1.05 94.05 1
6 70 63 66.5 7 7 154 64.96 7
7 54 57 55.5 3 3 0.86 56.36 10
8 88 92 900 4 4 1.05 91.05 2
9 78 89 83.5 11 1 210 85.60 3
10 69 63 66.0 6 -6 -1.39 64.61 8

Table 4.4 Class 1 and Class 2 -Wilcoxon rank-sum Test

Test statistic

grade
Lever
class  number median  Rank sum
Defuzzification 1 10 10.90 109.00
value 2 10 10.10 101.00
sum 20
Result:

Test class 1 and class 2 by Wilcoxon rank-sum
Test ,the median of those two classes were not

significantly different.

Defuzzification
value

Mann-Whitney U Statistics 46.00

Wilcoxon W Statistics 101.00
Z test -.30
Asymptotic significance .76

(two-tailed)

Precise significance [2 * .80

(one-tailed significance)]
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Table 4.5 Class 2 and Class 3 -Wilcoxon rank-sum Test

grade
Lever  Rank
class number median  sum
Defuzzification 2 10 10.60 106.00
value 3 10 10.40  104.00
sum 20

Result:

Test class 2 and class 3 by Wilcoxon rank-sum
Test ,the median of those two classes were not
significantly different.

Test statistic

Defuzzification

value

Mann-Whitney U Statistics 49.00

Wilcoxon W Statistics 104.00

Z test -.076
Asymptotic significance 94

(two-tailed)

Precise significance [2 * 97

(one-tailed significance)]

Table 4.6 Class 1 and Class 3-Wilcoxon rank-sum Test

grade Test statistic
Lever Defuzzification
class number median Rank sum value

Defuzzification 1 10 11.20 112.00 Mann-Whitney U Statistics 43.00

value 3 10 9.80 98.00 Wilcoxon W Statistics 98.00

sum 20 Z test -.53
Result: Asymptotic significance .60
Test class 1 apd class 3 by Wilcoxon rank-sum (two-tailed)
Test ,the median of those two classes were not
significantly different. Precise significance [2 * 63
(one-tailed significance)]
Table 4.7 Classes 1, 2, and 3-Fuzzy Kruskal-Wallis Test
Standard
number median deviation min max

Defuzzification 30 75.41 14.04 49.61 95.04

value

Class 30 2.00 .830 1 3
Kruskal-Wallis test

Grade Test statistic
class number Level median Defuzzification

Defuzzification 1 10 16.60 value

value 2 10 15.20 Chi-square 25

3 10 14.70 Freedom 2
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sum 30 Asymptotic .88
Result: significance
Test class 1, class 2 and class 3 by
Kruskal-Wallis test ,the median of those three
classes were not significantly different.
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