
Fast Modular Squaring Method for Public Key Cryptosystems

Chia-Long Wu
Department of Aviation &

Communication Electronics, Chinese Air
Force Institute of Technology, Kaohsiung

82042, Taiwan, R. O. C.
E-mail: chialongwu@seed.net.tw

Der-Chyuan Lou*, and Te-Jen Chang*
*Department of Electrical Engineering,
Chung Cheng Institute of Technology,

National Defense University, Tahsi,
Taoyuan 33509, Taiwan, R. O. C.

E-mail: dclou@ccit.edu.tw

Abstract
The squaring algorithm acts an important role in

large integer arithmetic. The standard squaring

algorithm is quite well-known, but there is an

improper carry handling bug in it. The

Guajardo-Paar’s squaring algorithm fixes the carry

handling bug, but generates error-indexing bug. In

this paper, we propose a novel efficient squaring

algorithm that not only avoids the bugs between the

standard squaring algorithm and the Guajardo-Paar’s

squaring algorithm but also improves the

performance in squaring computation for

Yang-Hseih-Laih squaring algorithm. For base b, the

products of *i jx x can be pre-computed on-line,

that is, 1*2, 1*3, …, (b-1)(b-1) are pre-computed.

Some results will be determined and stored in a

look-up table before the computation and we can

speed up the performance of squaring algorithm. Our

proposed algorithm is about 1.77 times faster in

comparison with the Yang-Hseih-Laih’s algorithm,

and also faster than the standard squaring algorithm.

Keywords: Modular squaring, public key

cryptosystem, algorithm, Look Up

Table, shift.

摘要

平方演算法在大整數的運算，扮演很重要的

角色。標準的平方演算法眾所週知，但有“錯誤進

位”的疑慮發生。Guajardo 與 Paar 學者提出的平方

演算法修正了這項缺點，但是又延生出“錯誤索引”

的問題。在本篇論文中，我們提出一個有效的平

方方法，不僅可以解決以上所述兩項問題，亦可

改進 Yang、Hseih 與 Laih 三位學者所提出的演算

法。對於基底 b 而言， *i jx x 的乘積可以事先計

算並儲存之，即 1*2, 1*3, …, (b-1)(b-1)可以在實際

運算前，事先儲存之，進而加速平方演算法的執

行效率。本文所提出的演算法與 Yang、Hseih 與

Laih三位學者所提出的演算法相較之下，快了 1.77

倍，當然這個演算法比標準的平方法亦快的多。

關鍵詞：模平方運算、公開金鑰密碼系統、演算

法、查表法、移位。

1. Introduction
Many applications of large integer arithmetic,

such as public key cryptography [3, 8], integer

squaring and multiplying are significant operations.

Multiplication and squaring operations can be used to

construct modular multiplication, modular

exponentiation, inverse generation, and elliptic curve

addition, etc. Some of the methods [2, 3] of squaring

are discussed in this paper. The performance of large

integer multiplication and squaring operations mainly

depends on the number of single-precision

multiplications (SPMs). Squaring is a special case of

multiplying, yet squaring operations are much faster

than multiplications [3].

Many exponentiation algorithms [4, 5] can reduce

the number of multiplications, but they cannot reduce

the number of squaring operations. This shows that

efficient squaring algorithms are very important in

many public key cryptosystems. In this paper, we

present some squaring algorithms, such as the

standard squaring algorithm, the Guajardo-Paar

squaring algorithm, and the Yang-Hseih-Laih

algorithm [2, 4, 5]. In this paper, we propose a novel

squaring algorithm which both improves the

performance of these squaring algorithms and also

avoids both carry handling bug and the

error-indexing bug. The performance of the proposed

squaring algorithm is nearly 1.65 times faster in

comparison with squaring computation which uses

the standard squaring algorithm and 1.77 times faster

compared to the Yang-Hseih-Laih squaring

algorithm.

The rest of this paper is organized as follows. In

Section 2, we first review the squaring algorithm

computation by using the standard squaring

algorithm. In addition, we also introduce the

Guajardo-Paar squaring algorithm and the

Yang-Heih-Laih squaring algorithm. In Section 3, we

present a novel squaring algorithm which can avoid

the bugs mentioned in [2, 4]. The details of our

analyses are described in Section 4. Finally, we

conclude this paper in Section5.

2. Review of Previous Works
Among the standard squaring algorithm, the

Guajardo-Paar algorithm, and the Yang-Hseih-Laih

algorithm are important methods for speeding up the

computation of squaring. These squaring algorithms

will be introduced in the following.

2.1 The Standard Squaring Algorithm

Squaring is an easier operation than

multiplication since half of the single-precision

multiplications can be skipped. This is due to the fact

that *ij i j jis x x s . The standard squaring

procedures are described in Algorithm 1 [2]. Thus,

we can modify the standard multiplication procedure

to take advantage of this property of the squaring

operation.

However, the carry-sum pair produced by

operation (,) 2 * *i j j iu v s x x v may be one

bit longer than a single-precision number which

requires w bits. Since

2 1 1

(2 1) 2 * (2 1) * (2 1) (2 1)

2 2

w w w w

w w

and
2 2 1 1 2 12 1 2 2 2 1w w w w ,

the carry-sum pair requires 2w+1 bits instead of 2w

bits for its representation. Thus, we need to

accommodate this ‘extra’ bit during the operation

execution in Algorithm 1. The resolution of this carry

may depend on the way the carry bits are handled by

the particular processor’s architecture.

2.2 The Guajardo-Paar’s Squaring

Algorithm

The square of a multi-precision number uses an

intermediate value of the form (uv)b where b is the

base in which uv is represented and u is a

double-precision number, i.e., u itself is the form of

(rs)b where both r and s are single- precision

quantities. This algorithm fixes the error carry

handling bug in the standard squaring algorithm [4].

Algorithm 1 (The standard squaring algorithm)

Input: x

Output: *S x x

begin

0iS for i = 1 to 2n

for i = 1 to n

(,) *i i i iu v s x x

for j = i+1 to n

(,) 2 * *i j j iu v s x x u

i js v

i ns u

return
2 2 1 1(...)n n bS s s s

end.

Let
1 2 1(...)n n bX x x x x be a multi-precision

integer in base-b representation. Then
2

2 2 1 2 1(...)n n bS X x x x x can be computed by using

the following algorithm [4].

Algorithm 2 (The Guajardo-Parr’s squaring

algorithm)

Input: Integer
1 2 1(...)n n bX x x x x

Output: Integer 2
2 2 1 2 1(...)n n bS X s s s s

begin

si = 0 for i = 1 to 2n

for i = 1 to n
2

2 1(,)
ib iu v s x

2 1is v , d u , 0e

for j=i+1 to n

(,) *i jp q x x

1(,) (,)b i ju v s p q d ,
1i js v , d u

1(,) (,)b i ju v s p q e ,
1i js v , e u

(,) bu v d e , d v , e u

1(,) b i nu v s d ,
1i ns v

i ns e u

return
2 2 1 2 1(. . .)n n bS s s s s .

end.

Example:

Here let us assume n = 3 and b = 10.

The procedures performed by Algorithm 2 in

squaring x=876 are shown in Table 1.

The bug of Algorithm 1 is caused by the extra

carry of 2 *i j j is x x u [2]. Algorithm 2 fixes the

carry handling bug in the Algorithm 1 by using many

extra SPAs (single-precision additions) to record the

carry state. The strategy of Algorithm 2 is to employ

an extra addition to repair this bug and it needs many

extra additions and four extra registers (p, q, d, e).

Table 1. The procedures performed by Algorithm

2 in squaring where x=876.

i j
s2i

+xi
2

si+j

+xixj

+a

u v s1 s2 s3 s4 s5 s6

1 - 0+36 - 3 6 6 0 0 0 0 0

2 -
2+6*7

+3
4 7 6 7 0 0 0 0

3 -
2+6*8

+4
5 4 6 7 4 0 0 0

0 4 6 7 4 1 0 0

2 - 4+49 - 5 3 6 7 3 2 0 0

2 -
2+7*8

+0
5 8 6 7 3 8 0 0

0 9 6 7 3 9 0 0

3 - 1+64 - 6 5 6 7 3 7 5 6

1 1 6 7 3 7 6 7

2.3 The Yang-Hseih-Laih Algorithm

The Yang-Hseih-Laih algorithm avoids both the

improper carry handling bug [2] in the Algorithm 1

and the error-indexing bug [4] in the Algorithm 2.

The Yang-Hseih-Laih algorithm is described as

Algorithm 3 [5].

Yang, Hseih, and Laih separate the SPMs of

Algorithm 1 into two parts. The first part is *i jx x

and the second part is * .j ix x Compute these two parts

separately then combine these two parts. Because the

second part should be doubled, if it is firstly

computed then doubled together, the improper carry

bug disappears. Therefore Yang, Hseih, and Laih

firstly compute the multiplication *j ix x (i j),

then double this part instep by shifting w. Finally

Yang, Hseih, and Laih compute the first part,

*i jx x .

All the SPSs (single-precision shifts) of

Algorithm 1 are handled in Algorithm 3. Therefore,

there is no carry propagation in Algorithm 3. This

strategy eliminates all the extra carry propagation of

2* *j ix x without any extra register operation. Yang,

Hseih, and Laih proposed this algorithm to fix these

bugs as shown in Algorithm 2 and Algorithm 3. It

needs
2

2
n n SPMs, 22 2n n SPAs, and

22 3 4n n assignments in Algorithm 3.

Algorithm 3 (The Yang-Hseih-Laih squaring

algorithm)

Input: Integer
1 2 1(.. .)n n bX x x x x

Output: Integer 2
2 2 1 2 1(...)n n bS X s s s s

begin

si = 0 for i=1 to 2n

for i=1 to n

0u

for 1j i to n

1(,) *i j j iu v s x x u

i js v

i ns u

2s s (Shift s left 1 bit)

0u

for 1i to n

2(,) *i i iu v s x x u ,
2is v

2 1(,) iu v s u , 2 1is v
return

2 2 1 2 1(...)n n bS s s s s .

end.

3. The Proposed Squaring Algorithm
In this section, we propose a novel algorithm to

avoid both the improper carry handling bug in

Algorithm 1 [2] and error-indexing bug in Algorithm

2 [4]. The proposed squaring algorithm not only

avoids the improper carry handling bug and

error-indexing bug but also improves the

performance of all the squaring algorithms in Section

2. The proposed squaring algorithm is described as

Algorithm 4.

The proposed squaring algorithm fixes the carry

handling bug in Algorithm 1 and the error-indexing

bug in Algorithm 2. At first, we pre-compute the

products of 1*1, 1*2, …, 1*(b-1), 2*1,…, …,

(b-1)(b-1), and store the corresponding products 1, 2,

3, …, 2(1)b in the initial LUT. The numbers of

the products are at most 2(1)b . If b is smaller than n

far, the space used is very small and the time can be

omitted. There are n assignments in Algorithm 4. In

Algorithm 4, there are 2n2 SPAs and 2n assignments.

The other analyses in detail are shown in Table 3.

The execution processes are shown in Table 2.

Algorithm 4 (Proposed squaring algorithm):

Input: Integer
1 2 2 1(...)n n n bX x x x x x

Output: Integer 2
2 2 1 2 2 2 1(...)n n n bS X S S S S S

begin

compute the products of 1*2, …, 1*(b-1), 2*1,…,

(b-1)(b-1), and store these results along with the

corresponding products 1, 2, 3, …, 2(1)b in the

initial LUT (Look-Up Table)

0iS for i=1 to 2n

for i=1 to n

for j=1 to n

*i jx x from LUT (Look-Up Table)

() *b i juv x x

i j i jS S u

1 1i j i jS S v

if
1i jS b

then 1i j i jS S

1 1i j i jS S b

else
1 1i j i jS S

if
i jS b

then
1 1 1i j i jS S

i j i jS S b

else
i j i jS S

return
2 2 1 2 2 2 1(...)n n n bS S S S S S

end.

Table 2. The execution processes for proposed

algorithm.

i j u v s1 s2 s3 s4 s5 s6

1 1 8 1 0
→1

0
→8

2 7 2 8
→0

0
→7
→11
→8

3 6 3 8
→1

6
→7

2 1 7 2 0
→2

1
→8

2 6 4 12
→2

13
→1
4
→4

0
→1

3 5 6 10
→0

6
→7

3 1 6 3 5 6

2 5 6 12
→2

12
→1
3
→3

1

3 4 9 12
→2

5
→6

Table 3. The complexity comparisons of squaring

algorithms.

Algorithms
Oper-
ation 1 2 3

4(Pro-
posed)

Execut-
ion

Time
Weight

SPM
2

2
n n 2

2
n n 2

2
n n × 11

SPA 22n 23 4n n 22 2n n 23n 2

SPS
2

2
n n 0 n 0 3

Assig-

nment

2 7
2

n n
27 6n n

22 3 4n n
2

3
2
n

n
1

Total
estim-
ated

221 15
2

n n 218.5 19.5n n 211.5 15.5 4n n 26.5 3n n ×

Extra
Regis-

ters
2 6 2 2 ×

4. Complexity Analyses
Table 3 shows the number of single precision

operations of Algorithm 1, 2, 3, and 4. Because the

SPM is the most time-consuming operation in these

algorithms, we can replace SPM with LUT (Look-Up

Table) to reduce the time complexity. So we only

consider the effect of SPAs, SPSs, and assignments

for performance estimation. Let us suppose that the

execution-time weight of an assignment is 1, and

then the execution-time weight can be estimated as 2,

3, and 11 for SPA, SPS, and SPM respectively. Here

SPM is used only for Algorithm 1, 2, and 3.

According to these estimations, we can estimate the

overall weight of these algorithms in Table 3. If we

assume the performance factor of Algorithm 1 is 1.00,

then the performance factors of the Algorithm 1, 2, 3,

and 4 will be those shown in Table 4. The results for

Algorithm 1, 2, 3, and 4 are shown in Table 5.

Table 4. The performance comparisons of

squaring algorithms.

Algorithms
Digits

1 2 3 4(Proposed)

1 1 0.474 0.581 1.89

2 1 0.504 0.704 1.78

4 1 0.529 0.792 1.678

8 1 0.546 0.847 1.664

16 1 0.556 0.879 1.64

32 1 0.562 0.895 1.628

64 1 0.565 0.904 1.622

128 1 0.566 0.909 1.619

∞ 1 0.568 0.913 1.615

The proposed squaring algorithm not only avoids

the bugs among the standard squaring algorithm, the

Guajardo-Paar squaring algorithm, and

Yang-Hseih-Laih squaring algorithm but also

improves the performance in squaring computation.

So the proposed method is superior to the Algorithm

1, 2, and 3.

Table 5. The comparison results for the analyses

of squaring algorithms in Table 3.

Algorithms
Digits

1 2 3 4
(Proposed)

1 18 38 31 9.5
2 57 113 81 32
4 198 374 250 118
8 732 1,340 864 440

16 2,808 5,048 3,196 1,712
32 10,992 19,568 12,276 6,752
64 43,488 77,024 48,100 26,816

128 172,992 305,600 190,404 106,880
∞ 10.5 18.5 11.5 6.5

Now there are still many more novel methods [1,

2] issued in computer security journals and reports

for computer arithmetic operations analyses. In the

future, we can incorporate modular arithmetic and

some novel methods to reduce the number of

multiplications or squarings for modern

cryptographic applications.

Table 3 shows the analyses of squaring

algorithms. The weight estimation is not very good.

The execution time of the single precision operations

depends on the operands. For example, the clocks of

SPA are 1, 2, or 3 clocks for register-to-register,

memory-to-register, and register-to-memory

respectively [5].

5. Conclusions
In this paper, we propose a novel squaring

algorithm. The performance of our proposed

squaring algorithm is 1.65 and 1.77 times faster than

squaring computation by using the standard squaring

algorithm and the Yang-Hseih-Laih squaring

algorithm. Moreover, this algorithm can apply to fast

modular arithmetic in public key cryptosystems such

as RSA cryptosystem.

References
[1] B. Cao, T. Srikanthan, and C.-H. Chang, “A

New Design Method to Modulo 2n-1

Squaring,”Proceedings of IEEE International

Symposium on Circuits and Systems 2005, Vol.

1, May 2005, pp. 664-667.

[2] C. K. Koc, Tech. Notes, High-Speed RSA

Implementation, RSA Labs. Tech. Note TR

201, Available in http://www.rsasecurity.com

/rsalabs/tech-notes, 1994.

[3] D. Zuras, “More on Squaring and Multiplying

Large Integers,” IEEE Transactions on

Computers, Vol. 43, No. 8, pp. 899-908,

August 1994.

[4] J. Guajardo and C. Paar, “Modified Squaring

Algorithm,” Available from

http://www.crypto.ruhr-uni-bochum.de/guajard

o/cv.html#pubs.

[5] P.-Y. Hseih and C.-S. Laih, An Exception

Handling Model and Its Application to the

Multiple-Precision Integer Library, Master

Thesis, June 2003.

[6] S. Yasuyuki and S. Kouichi, “Simple Power

Analysis on Fast Modular Reduction with

Generalized Mersenne Prime for Elliptic Curve

Cryptosystems,”Side Channel Analysis A: on

Fundamentals of Electronics, Communications

and Computer Sciences, Vol. E89-A, No.1,

pp.231-237, Jan. 2006.

[7] W. Choi and T. K. Sarkar, “Minimum Norm

Property for the Sum of the Adaptive Weights

for a Direct Data Domain Least Squares

Algorithm,”IEEE Transactions on Antennas

and Propagation, Vol. 54, No. 3, pp.

1045-1050, Mar. 2006.

[8] W.-C. Yang, P.-Y. Hseih, and C.-S. Laih,

“Efficient Squaring of Large integers,” IEICE

Transactions on Fundamentals, Vol. E87-A,

No. 5, May 2004.

