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: Let X_1j be an independent gamma random variable with known

shape parameter 7 _i and unknown scale parameter 6 _i for
1=1,--,p and j=1,---,n_1. Consider the simple?order testing
problem of testing H 0: 6_1 2?6 _(i+l) for “some “
1=1,---,p versus 7H_1: @?_1<??? ?<6?_p. For any 0<a<0.4,
we construct a new test that has the same size as the
likelihood ratio test (LRT) and is uniformly more powerful
than the LRT. To our knowledge, this is the first a
uniformly more powerful test described for these problems.
The proposed test is an intersection?union test (IUT). We
apply the results to test the scale parameters of
two?parameter exponential distributions.

Intersection?union test; likelihood ratio test; simple
order; two-parameter exponential distribution; uniformly
more powerful test.



MORE POWERFUL TESTS FOR SIMPLE-
ORDER TESTING PROBLEM WITH SCALE
PAREMETERS IN GAMMA DISTRIBUTIONS

Abstract: Let X;; be an independent gamma random variable with
known shape parameter 7; and unknown scale parameter 6; for i =
1,..,p and j =1, ...,n;. Consider the simple-order testing problem of
testing Hy: 0; = 6,4, forsomei =1,...,p versus H;: 0; <= < 0,.
Forany 0 < a < 0.4, we construct a new test that has the same size as
the likelihood ratio test (LRT) and is uniformly more powerful than the
LRT. To our knowledge, this is the first a uniformly more powerful test
described for these problems. The proposed test is an intersection-
union test (IUT). We apply the results to test the scale parameters of
two-parameter exponential distributions.

Key words: Intersection-union test; likelihood ratio test; simple order;
two-parameter exponential distribution; uniformly more powerful test.
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1. Introduction

Let Xji, ..., Xiy, denote as independent random samples from gamma
distributions with probability density function (pdf) given by

xlitt
. — Y
f(xll’ Ty 91) I—v(,l.l)glfl e
where t; is a known shape parameter and 6; is an unknown scale
parameter for i =1,---,p (p = 3). We consider the simple-order
testing problem of testing
Hy:0; = 6;,, forsomei=1,..,p
versus (1.1)
Hy: 0, < <6,
We use the symbol H, to denote the set of 6;, i = 1,---, p, specified
by the hypothesis, as well as the statement of the hypothesis. Li and
Sinha (1995) discussed the hypotheses and gave the motivations why we
want to test the hypotheses. Consequently, they derived the likelihood
ratio test (LRT) and failed to construct a test that is uniformly more
powerful than the LRT.

The related literatures for testing problem (1.1) are much less to find.
Regarding the similar testing problem, there are a fewer literatures.
Tripathi et al. (1993) proposed a test based on a generalized minimum
chi-squared procedure for testing the homogeneity of the scale
parameters versus general unrestricted alternatives when p > 2 and
shape parameters are unknown. Their test is applicable in versatile
testing problem with general unrestricted alternatives and it is
asymptotic in nature. For the null hypothesis is the homogeneity for
scale parameters versus alternative hypothesis is order constraint with at
least one strict equality, Bhattacharya (2001) proposed a simple
procedure based on Fisher’s method of combing probability values to
test the hypotheses with a common shape parameter but unknown when,
p = 3. Bhattacharya (2002) proposed two tests where one is to use
quadratic forms involving ratios of cumulants as test statistic and the
other is a stepwise procedure which uses Fisher’s method combining
probability values when shape parameters are equal but unknown. The
similar testing problem is to test the order of normal variances. Several
researchers have studied the homogeneity for normal variances against
the restricted nondecreasing order alternatives such as Bartlett (1937),
Cochran (1941), Chacho (1963), Hartley (1940,1950), Vincent (1961),
Fujino (1979), Mudholkar et al. (1993), Mudholkar et al. (1995)..

For the testing problem (1.1), Li and Sinha (1995) showed that the
size-a LRT that rejects H, if

27311 Xiv1j/ (Tig1Nis1)

Z;'lilxij /Tin;
for all i=1,..,p—1, where [y, n;,2em; 1S the 100(1 — a)
percentile of central F distribution with 2t;,,n;,; and 2t;n; degrees
of freedom. As mentioned in Berger (1989) and Liu and Berger (1995),
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the LRT has drawbacks in some cases. Hence, researchers have tried to
improve the LRT by enlarging the rejection region of the LRT in order
to increase its power. Until now, the study about uniformly more
powerful test only focus on one-sided or two-sided testing problem for
normal means under various conditions are because it can be to show
that the size of the proposed test is a. These studies are including
Gutmann (1987), Nomakuchi and Sakata (1987), Berger (1989), lwasa
(1991), Shirley (1992), Liu and Berger (1995), Liu (1999, 2000),
McDermott and Wang (2002), and Saikali and Berger (2002). Sasabuchi
(2007) proposed some tests that are more powerful than the LRT derived
by Sasabuchi et al. (2003) for testing problem about homogeneity of
multivariate normal mean vectors when the covariance matrices are
common but unknown.

For the case of the sign testing about gamma scale parameters or
normal variances, Li and Sinha (1995) and Liu and Chan (2012)
constructed more powerful tests than the LRT, respectively; the tests
proposed by Liu and Chan (2010) are more powerful than the test
proposed by Li and Sinha (1995) under some conditions. To our
knowledge, uniformly more powerful test for testing problem (1.1) has
not been obtained yet. From the past studies or techniques, they
considered that there is no way to construct a uniformly more powerful
test for testing problem (1.1). Even if constructing a uniformly more
powerful test, it is most difficult to prove the size of the uniformly more
powerful test is « under null hypothesis. Different from the past, we
employ two statistics, sufficient statistic and ancillary statistic, and use
the independence of two statistics to construct a uniformly more
powerful test. Importantly, we can show that the size of our proposed
testis a.

In this paper, for testing problem of the form (1.1), we proposed a
new test that has the same size as the LRT and is uniformly more power
than the LRT. First, we consider the testing problem (1.1) when
Hli:9i < 0i+1 < 9i+2 y P = 3. The new test, ¢i+2,i+1,i , 1=
1,2,--,p — 2,is constructed. The rejection region of the new test
contains the rejection of the LRT and an additional set, but the size of
the new test is still a. So the new test is uniformly more powerful than
the LRT. Then, by recognizing that p > 3, H; can be written as the
intersection of sets each defined by two inequalities, we use the
intersection-union method to combine tests of the form ¢;,,;41; tO
obtain a test ¢, that is uniformly more powerful for general problem
(1.2).

The rest of the paper is organized as follows. In Section 2, we
address some definitions and a lemma that will later be used to construct
more powerful tests and show that various tests are size-a tests. In
Section 3, we describe the testing problem for p = 3 and construct test
Pi+2i+1:- Also, we demonstrate the power of the new test. In Section
4, we construct a uniformly more powerful test based on ¢; 5 ;41 for
testing problem (1.1) for p > 3. Section 5 gives applications with two
distributions and an illustrative data example. We give a comment and

I ——
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conclusions in Section 6. Proof of the lemma is outlined in the Appendix.
Finally, we draw our concluding remarks in Section 5 and collect the
proofs in the appendices.

Our notation will be simplified by considering these transformed

Zzn_L Xij
data. Let ¥; = —=2 2

5 , 1=1,..,p, then Y;~Gamma(n;n;, 26;/6;,).
io

Y;s are central Chi-square random variables with k;(= 2n;n;) degree

of freedom as 90_:1 Let Si = Z—E,Vi = kiSi + ki+1Si+1 and Wi =

i0

% Throughout the remainder of this paper, we will express our results

14

in terms of the §;s,V;s. and W;s The complete data vector will be
denoted by S,V and W; s, vand w will denote observed. Throughout
the remainder of this paper, fi.,(-) and Fy,,(-) denote the pdf and cdf
of a central F random variable with k and m degrees of freedom,
respectively. Also, Fy(-) denotes the inverse of Fj ,(-)value and
fami denotes (1-a) x100% percentile of the fi ., (*).

2. Preliminary definitions and lemmas
Before describing our proposed test, we define the functions and sets

which are used to construct the rejection region of the test and give two
lemmas where one is to ensure that the size of the test is «.The
following definitions and lemma will be in subsequent section to define
a couple of tests and prove those tests are size-a tests.

Definition 2.1 For any s; >0 and k; >0, let L; be the three-
dimensional set defined by
Si+1 Si+2

2 fO_’,ZkH_l,Zki ) 2 fa,Zki+2,2ki+1}'
i Si+1

L = {(si'5i+1'5i+2):

The set L; is atriangular pyramid. We will eventually express the
LRT intermsof L; i =1,2,--,p —
2. for testing problem (1.1) as subhypotheses any p > 3.

Let L denote a cross sectional plane of L; as S; =s and LY
denote a vertical plane of L;as S;,,=s.

All three sets are equivalent. {(S;, Si4+1,Si4+2) € Li} = {(V;, W}, Si42) €
L;i} = {(Vi41,Wi41,S;) € L;}. That can be ckecked from definition 2.2.
N
HUIMEI LIU 4



Definition 2.2 For any s;,., > 0,v;,w; and k; > 0, let L¢(s;,,)and
L:(s;) be the two-dimensional sets defined by

C _ . Si+2
Li(Siz2) = {(Vi» Wi, Siv2)t fazkipq 2k < Wi 0 <oy < Kipaciy, } v

ki

(Wi, Wi, Siv2): fazkipp2ly S Wi <—g———
Sit2 1+1
i+2,a

Si+2
,ki+1ci+2'a S 171 <

ki Si+2
Ci+1,aci+2,a ’ (2-1)

L _ .
Li(s) = {(vi+1'Wi+1'si )-fa,zki+2,2ki+1 < Wip <

sia
Vis1/C 1 ~Kiv1  Kipaa spa
——c. 2y < 2.2
Kito rEi42 i+1 i+1(, (2.2)
Si+2  _— ki =
Where Ci+2,a - Si+2/flx.2ki+z.2ki+1’ Ci+1,a - (ki+1 + ki/fa,ZkH_l,Zki)l

spa iyz.a

Ciy1 = Sifa,zki_,_l,zki and ¢, ;3" = (ki+2fa,2ki+2,2ki+1 + kiy1)

Also, the set L; can be expressed as L; = f0°° LS (Si42)dSipp =

f()oo Lli (Si) dsi'

For i =1, kys, + kys; = vy is a plane perpendicular to the S, —S;
coordinate plane with any v; > 0. For i = 2, k3s; + kys, = v, is a
plane perpendicular to the S; — S, coordinate plane with any v, > 0.
Examples of L$(3) and L5(2) kys, + kys; = vy, for s; =3 and
s; = 2,when k; =k, = k; =5, are shown in Figure 1. In Figure 1(a),
the dotted line is kys; +kys; =v;  with vy = (ky +ky/
fa2kp,2k, )53/ fa,2ks 2k, Cibp e Css - 1IN Figure 1(b), the dotted line is
k3ss + kys; =v,  with v, = CI%3,sz51 . vy = (kafazrs2k, T

k2)51fa,2k2,2k1-

Definition 2.3 For any given s;,, and v;,that are defined in
Definition 2.2 such that s;;, > 0 and v; >, we define

Cc — — i .
PViSi+2 =a fc sz'k1 (Wl )dwl ’
L; Wi.Sit2)
I ——
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whereL§ (v, s;12) = {wi: (v, Wy, s142) € LE(s142)  }- Specifically,

Si+2
( 0, 0 <v; ki1
pc —{1—-F ki k: Si+2 <v < k; Si+2
ViSivz kivq.k; Si+2 k ’ l+1Ci+2,a =U; Ci+1,aci+2,a'
| Vi/C o — Kivt
ki Si+2
k a, Civ1,aCir2.a =

Definition 2.4 For any given s; and v;,4, such that s; > 0 and

(Kiyz + kir1)s; < viyq < o, we define

L —
PVi+15i =a-— fL fki+2,ki+1 (Wi+1)dwi+1'
Ly (vit1,51)

where Lt (v;41,5)) = Wip1: (Vip1, Wirr, Si) € LE(s)}. Specifically,

L
Pvi+15i
kivi1.a _sia

a, (kivz + kiz1)si S vipq < 570 ¢,
— Si,a
- 1—-F vi+1/ci - ki+1 kiv1,a _spa < 1.

kitz2.Kit1 kiio ’ i+2 ¢ SVin
i

The specific formulas for P,,Cisi”and P,,Liﬂsiare verified by using the

definition of LS (s;;,) and LY(s;), respectedly. Note that 0 <
Pvci.sin <a forall v; >0 and s;;, > 0,and 0< P,,Lmsi < a forall
Vig1 = (Kiy2 + kiz1)s; and s; > 0. The line between (s;;,/
(fa,zki_,_l,zkifa,zki_,_z,2ki+1)' 53/fa,2ki+2,2ki+1r Si+2) and (Sit2, Si+2, Si+2)
with a fixed s;,, or that between

(St Sifa,2kipq,2k S1fa2kiy g 2k fa2kisn 2ki0,) AND (Si,Si,S;) with a
fixed s; satisfies the equation s;,, = bs;,; — as;, where a =
fa,ZkH_l,Zki(fa,zki+2,2ki+1 - 1)/(fa,2ki+1,2ki —1) and b=
(fa2kipp2kiss fa2kisy,2k; — D/ (fa2kiyq,2k; — 1)- Two cases of the line
are given in Figure 1 for k; = k, = k; = 5. When s3 or s; moves
from 0 to oo, it becomes a plane between the line s3/fy 2k, 2k, =
Sy = S1fa2k, 2k, the edge of Ly, and the line s3 = s, = s;. We now
define the two sets that contain this plane and are used to construct

the first proposed test.

Definition 2.5 For 0 < a < 0.4, s;,,>0and 0 <d <1, let A¢(s;y7)
be the set defined by

- ___________________________________________________________________________________________|
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c.D
AiC(Si+z) = {(Vi'WirSHZ): lvi,st =w;

cU
< Ly sivnr 0 <v; < (kiys + ki)Sizan}
where
cU
VisSi+2
s
( 0, 0< v; < ki+1Ci_|l_-'Za,
Fyl F L + dPy, . (v4,53) kjpic? << ol S
2k3,2ky | * 2k2,2kq ka,k1\¥1r°3 ’ i+1% 42,0 = Vi i+1,a%i+2

= v1/cs, — k2 ' ' '

bvl - k153

avy + kqs k:s:
. -1 1 1°3 2i+2 k;
min F2k2,2k1 <F2k2,2k1 <—) + de2,k1(v1‘S3)> ,—————,, C t
\

lgégiu = maX{FZ_klzlzh (F2k2'2k1 (lgégnz) - 0{), 1}'

_ ky
allcz,kl (v1,83) = F2k12,2k1 <F2k2,2k1 <—> + dez,kl(U1,S3)>

vl/CS3 - k2
And
: avy + kys;3
i, e, (V1,53) = Foit ok, <F2k2,2k1 (m) + dPy, x,(v1,53) |,

fori=1,2,---,p — 2.

Definition 2.6 For 0 < a < 0.4 and 0 < d < 1, let Ak(s;) be the

set defined by
L _ LL
A;(sy) = {(vi+1;Wi+1)- lvi+1,si < Wit
LU
Sl sp 0 <V < (kivp + kiya)si)
where
LU
Vi+1,5i

v, + bkss; i

CSH'2 < U; < (kl

i+La”i+2,a —
vy — K3Si4

( . _ bvz —_ akzsl U'+1
| min{Fst ok, | Faies 2k, <—) + dPy, k,(V2,51) |, ; —Kiv1 (o (kipz + kip1)s; S vigq <o

vy/cs, — ka ;
-1 1 1 Si,a
Fiey 2k, <F2k3,2k2 <—k3 + dPy, k,(V2,51) |, Chivokiss i = Vit

LL _ -1 1
lvi+1,si = max {F2k3,2k2 (F2k3,2k2 (lk3,k2 (172,51)) - 0!) ) 1},

_ bv, — ak,s;
A, 1, (V1,83) = Faps an, <F2k3,2k2 (m) + dPy, k,(V2,51)

HUIMEI LIU 7



and

V2/Csy—K2

a,2(3,k2 (vl’s3) = F2_k13,2k2 <F2k3,2k2 (k—g) + de3,k2 (vz’ Sl)>LEt

ASS = f AS (si42)dsi, and AF = fOOOA{-‘(si)dsi

Examples of the two sets with a given s; =3 and s; = 2 are shown
in Figures 1(a) and 1(b), respectively.

Subsequently, we define sets that are used to construct the
second test; the idea is from Berger (1989). Before defining sets, we
need an integer |/ to determine how many additional sets of a
constructed more powerful test. For 0 < a < 0.4 and i = 1,2, let J;
be the integer that satisfies f, ka,z,{. > foa2kiyg2k; > >
flia,2k;,,,2k; > 1. Define | = min{J;}, i = 1,2..

Definition 2.7 For 0 <a < 0.4 and j=1,..,], let B , . bethe

three-dimensional set defined by

B = ) < Si+1
i = (Si'Si+1r5i+2)-max{f(j+1)a,2k- 2k } =
i+1.4Ki S:
l
Si+2
S f}a,zki+1,2ki’ max{f(]+1)a,2kl+z,2kl+1‘ 1} — Sl+1

= f}“'2ki+2'2ki+1}

Also, Bij, j=1,..,], can be expressed in terms of (v,,wy,S3) given
by

j_ Lk j j
B = {(v1,wy,53): T S W1 < fja2ky2ker Ciey g, Cs3 < V1 <

S3

j+1 .
Chy kg s31 0<s3pU {(UlerS3)-f(j+1)a,2kz,2k1 =w; <

j+1 j

< ]+1
f}'tx,Zkz,Zkl:Ckz,klcs3 U1 Ck ky Cs

0<s3}U

) kq J j+1
{(vl,Wl,53).max{f(j+1)a,2k2'2k1, 1} w < —Fr— 2 Ciey ey Cs <
S3 —R2

j+1 ]+1
V1 < Cie, 1, Cs, ,0< 53},

HUIMEI LIU 8



J o —__ss 1 A k1

where c; and

7
fja2ks 2k fiaz2ky 2k,

J+1 j . .
Cieyley = K2+ kq, 01 By, kykyy J = 1,00], can be expressed in terms

of (v,, wy,s;) given by
Bi] = {(Vz»Wz'51):max{f(j+1)a,2k3,2k2' 1} Swy =

j+1
Vz/Csl —k; Jj+1 ]+1

]+1
o Cks e Csy <v1<ckk 0<sl}

. jooJ¥1
{2, w2, $0): fianyas 2k, < W2 < fia, 2k3,2ky1 Cieg ky G5y = V2 <

j+1 Vz/Cgl_kz
Chs ky 51 0<s3}u (172,W2,sl):—k3 <w; <

j+1 J J
fja,2k3,2k2' Ck3 k2C51 vy < Ck3'k2C51; 0< 51},

i _ J+1 _ j —
where ¢g = 81 fjg2k,2k, Cs; = S1/ Ciaky, = k3fja2ks,2k, + k2 and

J+1
Ck3 kZ k3 +k2.

An example of Blj is presented in Figure 2 for k3 = k, = k; = 10,
a =0.1, s3 =2 and s; = 2.In thisexample, | = 4, each additional

region B’ s like diamond for j=1,-- 4.

The following lemmas are the keys to ensure that the size of
proposed tests are «; its proof is given in Appendix A
Lemma 2.1 Let W; = S;,1/S; and V; = ki 1S;:1 + k;S; for i =
1,2,-+,p — 1, where S;~I'(k;, 0;/k;). hy,v,(W;i;v;,6;11,6;) denotes as
the conditional pdf of W; given V;. Then (i) For w; = 1 and 6; = 0,4,
Py o, (Wi V3, 0141, 01) < By, (Wis 13, 05, 0;).
(ii) For 8; = 8;,1 = 0;,, V; and W; are complete sufficient statistic and
ancillary statistic for 0;,, respectively.

(i) For 8; = 0,,41, V; and W; are statistical independent.

It can be proved easily by Basu’s theorem, and we thus omit its proof

in this paper.

- ___________________________________________________________________________________________|
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If 8;p=06;,,1 =0;, i =12, then, W; has arespective central F
distribution with 2k;,; and 2k; degrees of freedom, and
hw v, (Wi; 650, 0i0) = fak,,,2k;(W;) based on Lemma 2.2. Hence,
Inequality (2.3) is rewritten as

hw,v,(Wi; 0:41,0;) < fory, 21, (Wi)
(2.4)
for 6; = 0,1 when w; > 1.

{(Si,Si+1,Si+2) € A7C}is equivalent to {(V;, W;, Siy) € A7¢}

{(SirSi+1rSi+2) € A{-“G}is equivalent to {(Vi+1, Wiiq1,S;) € ALLG}
(Si)Si+1,Si+2) isone-to-one (V;, W;, Si2)
Lemma2.2let 0<a <04, 6, <60y and 65 > 0.
Then, ()Pg, 0;,,,6112) (St Sis1, Siv2) € AF%) < @,
(i)P6,6,,1,61) (St i1, Sivz) EA[Y) S @
Lemma23let 0 <a <04, 6; <0, and 6; > 0. Then,
P6,6141,00:2)((Sir Si1, Sivz) € Apszinn) < .
Proof. For V, = k3S3 + k;S, and W, = S3/S;, P((Sy,S2,S3) €
Aeyie,) = P(Le, 1, (V1,S3) S Wy < I, i, (V1 S3), (k3 +
ky)S; <V,,0< Sl). Let f,(v2) and fs (s;) be the pdfsof V, and
S1, respectively, and V, and S; are independent. For
6; = 0, = 0,, the first inequality of the following equations is based
on Lemma 2.1 and Inequality (2.4), and W, follows a central F with

2k; and 2k, degrees of freedom.

Peo,,6,,04) ((51;52'53) € Akg,kz)

© b lkg,kz (172,31)
= f j f hW2|VZ (wy; 63, 60,) szsz (Uz)fsl(51)d172d51
0 J(

2
k3+k2)s1 gk, (V2,51)

o o lkg,kz (172,31)
< f f f f2k3,2k2 (wy) szsz (Uz)f51 (sp)dv,ds,
0 (k3+k2)51 l

2
k3,k2 (VZ'Sl)

R o lllc3,k2 (vZ'Sl)
< f f f2k3,2k2 (w,) szfv1 (U1)fs3 (s3)dv,ds;
o Jo i

2
k3,kp (1‘72'51)

= f f [F2k3,2k2 (lllcg,kz (v2, 51))
o Yo
— For, 2k, ! li3,k2 (v2,51) 2| dWlfV1 (vl)f53 (s3)dvydss

HUIMEI LIU 10



(2.4)
The expression in brackets in (2.4) is clearly bounded above by a for
(k3 + ky)s; < v, < oo because

1 2
Fok, ok, (lk3,k2 (Uz;51)) — For, 2k, (lk3,k2 (02»51)) <

Fok, ok, (lllc3,k2 (Uz;51)) — For, 2k, <F2_k13,2k2 (F2k3,2k2 (lig,kz (V2;51)) -
a)) =a

3. Uniformly more powerful test for p = 3

In this section, we consider the testing problem (1.1) when p = 3; that
is given as follows
Hy: 041 < 0;0r 04, < 0i44
versus (3.1)
_ Hy:0; <041 <6iyp
For testing problem (3.1), the null hypothesis can be expressed as the
union of two sets and the alternative hypothesis can be expressed as the
intersection of two sets. The hypotheses (3.1) is expressed as
Ho: {041 < 6;,0;42 > 0} or {612 < 0;44,6; > 0}
versus (3.2)
Hy:{0;41 > 0;,0;,, > 0} and {0;4, > 0;44,6; > 0}
Subsequently, we construct a new test ¢;;.1;4, that is a size-a test
and uniformly more powerful than the LRT. To simply the notation, here
we only state the case i = 1.
Before defining the test ¢5,,, we give the following definition.

Definition 3.1 Let x;;, i = 1,23, j=1,..,n; be observed values.
Define Si = Z;ilxu/kl with ki =T;Nn; for i = 1,2,3, and s =
(51,82,53) . Also, define the corresponding random variable S; =
Z;’ilxij/ki and a three-dimension random vector S = (5;,5,,S3).

Since X;;, i=123 and j=1,..,n;, are independent gamma
random variables, S;, i = 1,2,3, are independent random variables and
2k;S;/0; , i=1,23, follow a respective central Chi - squared
distribution with 2k; degrees of freedom. From preceding section,
Wi = Si+1/Si and Vi = ki+1Si+1 + kiSi1 i =1,2. Note that Vl and
S5 are independentand V, and S; are independent.

Based on Lemma 2.2, for 6;,; = 6; = 6;y, i = 1,2, the random
variable W, have a central F with k;,, and k; degrees of freedom.
The following two lemmas show that the probability of belonging S to
A, and As,, respectively, is lessthan a for 6; = 0,4, i = 1,2.

- ___________________________________________________________________________________________|
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Lemma 31 Let 0<a<04 , 6,<6;, and 65;>0
Then P(91’92’93)((51,52,53) € Akz,k1) <a.
PrOOf FOI’ Vl = szz + k]_Sl and Wl = SZ/SI y P((Sl, Sz, 53) €
Ay ,) = P(lllcz,kl(VpSg) SWy <Gk, (V1,83),0 < Vp < (kyp +
ky)Ss, 0 < S3). Let fy, (v;) and fs, (s3) be the pdfs of V; and Ss,
respectively. V; and S5 are independent. For 6; = 8, = 0,,, the first
inequality of the following equations is based on Lemma 2.1 and
Inequality (2.4), and W, follows a central F with 2k, and 2k,
degrees of freedom.

Po,,6,,04) ((51'52'53) € Akz,kl)

= P(6,,0,05) (U ky (V1,S3) < Wy < I, (V1,83),0 < Vg < (kp + k1)S3,0 < S3)

w (katk1)ss rli, ky (V1,53)
= .[ f f hW1|V1 (wy; 0,0,) dW1fV1 (U1)fs3 (s3)dv,ds;
o Jo !

1
ko,kq (vlrSS)

w (kptke)ss (li,k, (V1,53)
< f f .[ f2k2,2k1(W1) dW1fV1(V1)fs3 (s3)dvyds;
o Jo

1
lkz,kl (vlrSS)

®© ™ liz,kl (v1,53)
= f f f2k2,2k1 (wy) dWlfV1 (vl)f53 (s3)dv,ds;
o Jo i

1
k. kq (V1,53)

= .[000 J:o [szz,Zkl (liz:h (v1, 53))

— For, ok, (lllcz,kl (1, 53))] dW1fV1 (V1)fs3 (s3)dvyds;
(3.3)
The expression in brackets in (3.3) is clearly bounded above by a for
0 <v; < (ky+ kqy)s; < oo because

2 1
Faky 2k, (lkz,kl (vy, 53)) = Fak, 2k, (lkz,k1 (vy, 53)) <

Faky 2k, (liz,k1 (171»53)) — Fak, 2k, <F2_k12,2k1 (F2k2,2k1 (lliz,kl (171»53)) -
@) =« O

Lemma 32 Let 0<a<04 , 6;<6, and 6,>0
ThenP(gl'gz'gs)((Sl,Sz,53) € Aks.kz) < a.

PrOOf FOI’ VZ = k3S3 + szz and WZ = 53/52 y P((Sl, Sz, 53) €
Azpq) = P(l11c3,k2 (V,S3) =W, < lI€3,kZ(V1r53)r(k3 + k3)8: <
V,,0<S;). Let f, (v,) and fs (s;) be the pdfs of V, and S,
respectively. V, and S; are independent. For 8, = 85 = 0,,, the first
inequality of the following equations is based on Lemma 2.1 and
Inequality (2.4), and W, follows a central F with 2k; and 2k,
degrees of freedom.

- ___________________________________________________________________________________________|
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P(91,92,93) ((Sll Sz‘ 53) E Ak3,k2)
= P(91,92,93)(lllc3,k2 (VZ’S].) S WZ S li3,k2 (VZ’S].)’ (k3 + kZ)Sl < VZ' 0 < Sl)

By © lig,kz (172,51)
= .[ f f hW2|VZ (wy; 63,0;) szfvZ (Uz)f51 (s)dv,ds,
0 (k3+k2)51 l

1
k3,k2 (VZ'Sl)

R o lig,kz (172,51)
< f f f f2k3,2k2 (W) szfv2 (Vz)fs1 (s1)dv,ds;
0 (k3+k2)51 k

3.k (v2,51)

R R llzc3,k2 (vZ'Sl)
< f f f2k3,2k2 (w,) szfv1 (U1)fs3 (s3)dvyds;
o Jo i

1
k3,kp (1‘72'51)

= _[OOO j:o [sz3,2k2 (lis,kz (vz‘sl))

— For, ok, (lllc3,k2 (2, 51))] dWlfV1 (vl)f53 (s3)dvydss
(3.4)
The expression in brackets in (3.4) is clearly bounded above by a for
(k3 + ky)s; < v, < oo because

2 1
Fok, 2k, (lk3,k2 (U2:51)) — Fopy 2k, (lk3,k2 (U2’51)) <

Fok, ok, (li3,k2 (172;51)) — For, 2k, <F2_k13,2k2 (F2k3,2k2 (lig,kz (Vz;51)) -
a)) =a []

We now define test ¢y, x, k, . In fact, we can define the whole family of

tests indexed by constant d, where 0<d < 1; this appears in
Definitions 2.4 and 2.5.

Definition 3.2 Consider the testing problem (3.2). For any a that
satisfies 0 <@ < 0.4 and 0 <d <1, we define ¢y, 1, r, asthe test
that rejects Hy if S =R, NR,, where Ry = {s:(sy,5,,53) € Ay, 1, }
and R, = {s: (51,52,53) € Ak3'k2}.

The following lemma shows that the rejection region of the LRT is a
subset of that of ¢y, i, «, -

Lemma 3.3 Consider the testing problem (3.1) and 0 < a < 0.4. Let
R, = {s:(s1,5,,53) € L3,1} be the rejection region of the size-a LRT.
Then R, c R;, i = 1,2. Hence, the rejection region of ¢y, x, k., R1 N
R,, contains R;.

Proof. For vy, wy,and s;,theset Ly, x,, ISexpressedas (2.1). From

Definition 2.4, for 0<w; <kycs, . li,p,(v1,53) =0 and
1 —

Ly ey (V1,83) = fakp2k, - FOU kacs, < vy < (kg + kv /fa2k,,2k,)Csy
2 kq 1

Uiy e, (V1,83) > R and  foak,2k, > Ly, (V1,53) . Hence

Ly, i,k © Ry FOr vy, wy, and sy, the set Ly, . ., is expressed as

(2.2). From Definition 2.5, for (ksfgok,2k, T k2)Cs, SV,
|
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va/csy—k2

Ui, i, (V2,81) > and fy 2126, > Uiy i, (V2,51). and  Hence,

Licy ke, © Ry. Since Ly, x,x, € Ri, i = 1,2, the rejection region of
Bry iy R1N Ry, contains Ry, []

The following theorem shows that ¢y, x,x, IS a size-a test and
uniformly more powerful than the LRT.

Theorem 3.1 Consider the testing problem (3.2). When 0 < a < 0.4,
@iz, k, has the size of exactly a, and ¢y, x, k, is uniformly more
powerful than the size-a LRT.
Proof. From Lemma 3.3, we know that the rejection region of the size-
a LRT, R,, is a subset of the rejection region of ¢y, ,x, . Hence,
ks kyk, 18 Uniformly more powerful than the size-a LRT. Also,
the size of ¢y, x,x, = thesize of LRT=a.
(3.5)

For 6, <6; and 65 > 0,

P(o,.6,6,)(S € Ry N Ry) < P, 6,6,)(S €Ry) =P, p,0,)(S €
Akz,kl) <a. (3.6)
The last inequality in (3.6) is based on Lemma 3.1. In addition, for
0; <6, and 6; > 0,
P(0,,0,,65(S € Ri N Ry) < P(g, 6,6,)(S € Ry) = Pig,0,6,)(S €
Agr,) <a.  (3.7)
The last inequality in (3.7) is based on Lemma 3.1. Because (3.6) and
(3.7) are true for any (04,6,,03) € Hy, the size of ¢y, ., k, IS less
than or equal to a. Along with (3.5), this implies that the size of
Ok iy k, 1S €XaCtly equal to a. []

Figure 3 shows an example of the rejection region of ¢5,,; for
s3 = 3. The example shown is for « = 0.1, k; =k, = k; =5, and
d=1/2 when s;=3. In Figure 3, the solid lines represent
Uk, 1, (v1,53) and I, (vy,s3), and the area surrounded by the two
linesis R; with given s;. The dotted lines represent lllc3,k2(v2r51) and
l,2(3,k2 (v,,s1), and the area surrounded by the two lines is R, with given
s3. The intersection of the two areas is the rejection region of ¢y, i, k.
with given s, and it will become a cube as s; moves from 0 to oo,
For testing problem (3.2), numerical results regarding the power of the
two tests, the LRT and ¢y, «, «,, are provided in Table 1.

In this case, we select « = 0.1, d =1/2, and k; =k, = ks =
10, and let 6, =6,/6, and 6, = 65/6,. Further, £,.(8;,8,) and
Bn(61,62) denote the power functions of the LRT and ¢y, k, «,
respectively. The first two rows of Table 1 lists the values of (§;,8,) =
(61,1). These values represent the boundary points for 8; = 8, and
6, > 0, and the computed powers are lesser than 0.1. These values
imply that both the two tests are biased, and the difference between the

- ___________________________________________________________________________________________|
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powers of ¢y, x,k, and a is considerably smaller than that between
the powers of the LRT and a. Test ¢y, x,x, improves greatly on the
LRT; By(0.9,1) = 0.0352 and B,(0.9,1) = 0.0004. The rest of the
table provides powers for different values of (§;,8,). 6, =1
represents the boundary points for 6, = 6, and 65 > 0; the values of
the boundary points are shown in boldface. A larger improvement in the
power of ¢y, x,k, oOccurs for lower values of (6;,8,) such as
(0.9,1) or (0.9,0.9). It is noteworthy that when (§,,45,) = (1.5,1.5),
the power of the LRT does not exceed 0.1, whereas that of ¢y, «, «,
does. A comparison of the numerical results on the power of the two
tests reveals that ¢y, i, x, is uniformly more powerful than the LRT.

4. More powerful test in general problem

Considering testing problem (1.1) with 0 < a < 0.4, we describe a
size-a test that is uniformly more powerful than the size-a LRT. We
denote this test as ¢, . The intersection-union method is used to
construct ¢,. Asummary of this method may be found in Berger (1982),
Liu and Berger (1995), Berger (1997), and Saikali and Berger (2002).
To use the intersection-union method, the testing problem (1.1) is
expressed as
Ho: UP_, Hyo versus Hy: NP_, Hyy

where p* = (p—1)/2 if p isodd and p* =p/2 if p iseven. If p
is odd, Hj:0, <6y_q0r0y,4 <6,  versus H;:0, >
0,;_1and 0,;,1 > 0,;, i =1,...,p"; there exists only one expression
for representing (1.1). However, when p is even, there exists several
ways to represent (1.1); one of them is H;y: 05; < 65,1 or 04,41 < O5;
versus H;:0,; > 0,_1and0,;,, >06,, i=1,.,p"—1, and
Hye0: 0,1 < 60,_,0r6, <6, 4, Vversus Hy:6,_ 1> 6, ,andb, >
6,-1. Note that p* is the total number of any divisions of the indices
{1,...,p} into the minimal number of subset of size three such that
each value 1,...,p appears at least once. To construct a uniformly
more powerful test, any such division of {1,...,p} will work, but
different divisions lead to different tests especially if p is even.

Consider testing H;, versus H;; for i =1,...,p". Let C; denote

the size-a rejection region of ¢y .. k). k,,_, (for some d) from
Section 3. Because Hy: Ufz*lHiO , we can define an IUT based on the
C;.

Here S = (Sy,...,S,) is denoted as a p-dimensional random vector

where Si = Z;ll:l(XU —)?i)z/ki, i=1, -, P, and ki =1Tin;.

Definition 4.1 For the testing problem (1.1) and 0 < a < 0.4, let ¢,
be the test that rejects H, if S € N?_, C;.

Theorem 4.1 For 0 < a < 0.4, the test ¢, is a size-a test of H,
I ——
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versus H,, and is uniformly more powerful than the size-a LRT.

Proof. Because each C; is a size-a rejection region of for testing H;,,
by Theorem 1 in Berger (1982), the size of ¢, is < a. The rejection
region of the size-a LRT is

— lq.Sir1 P _ .52
R, = {S- s = faoky2kpt =1 p 1} - {S-sl = fa,2ky,2k,

fa,2k3,2k2} c ¢,

for i =1,..,p" Hence, R, iscontained in the rejection region of ¢,,
the size of ¢, = the size of the LRT «, and ¢, is uniformly more
powerful than the LRT. [ ]

S3

Sz_

5. Application to two distributions and an illustrative
example

For a simple-order testing problem of normal variances stated as (1.1),
we construct a test that is uniformly more powerful than the LRT. In this
section, by using the same technique, we can easily construct a
uniformly more powerful test for a simple-order testing problem of the
scale parameters in two-parameter exponential distributions and normal
distributions, respectively.

5.1 Two-parameter exponential distributions

Consider Xy, ..., X, follow a two-parameter exponential distribution
with pdf

fxig) = eiie(x”_”")/g", Xij = Wi,
where u; and 6; are location and scale parameter, respectively, for
i=1,..,p and j=1,..,n;. The distribution is the case of gamma
distribution with 7; =1 and a location parameter y; is considered in
the distribution for i =1, ..., p.

Let S, = Z;l;l(XL] — Yl)/(nl — 1), where Y, =
min{X;y, ..., X, } for i =1,..,p. Then 2(n; — 1)S;/6;, i =1,...,p,
follow a central Chi-square distribution with 2(n; — 1) degrees of
freedom because (n; —1)S;/6, , i=1,..,p follow a gamma
distribution with shape parameter n; — 1 and scale parameter unity
from Sinha (1986). From Li and Sinha (1995), the LRT of the testing
problem (1.1) can be modified and the test that rejects H,, if

S

§_+,1 2 fa2mi-1200-1),

1i

for i=1,..,p—1. Therefore, a more power test ¢, can be
constructed from Section 2 and 3 for the testing problem (3.2).
Subsequently, we illustrate the test ¢, on a data which following a two-
parameter exponential distribution. An illustrative example is given in
subsection 5.3.

- ___________________________________________________________________________________________|
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5.2 An illustrative example

The following data, taken from Proschan (1963), represents time of
successive failures of the air-conditioning system of each member of a
fleet of Boeing 720 jet airplanes. For each airplane, the interval between
their successive failures was shown to follow a two-parameter
exponential distribution, where the location parameter u; is guarantee
time of the successive failures and the scale parameter 6; is the
expected mean time in addition to guarantee time, i =1,2,3. The
interval data are listed below in the order of occurrence w.r.t. planes 7908,
7914, and 8044. For plane 7908, it is taken by last ten observations.
Plane 7908 (1, and 6,): 34, 31, 18, 18, 67, 57, 62, 7, 22, 34;

Plane 7914 (u, and 6,) : 50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79,
88, 46, 5, 5, 36, 22, 139, 210, 91, 30, 23, 13, 14;

Plane 8044 (u; and 63) : 487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130;
Considering the testing problem (5.1) when p = 3, the test ¢;g4622
can be constructed. It shows that the null hypothesis is not rejected by
the LRT, but is rejected by test ¢;g4622. The respective computed
values are s,/s; = 2.1741, s3/s, = 1.7262, v; = 3304.25, v, =
5112.083, 13,.5(vy, 53) = 1.8212, 13,5(vy, 53) = 2.2282,
B0 (vy,51) = 1.7061, 12,,(vy,51) = 21725, foos4622 = 2.0450,
and fo.05.2246 = 1.778. Thus, we reject H, because of 13,.5(vy,s3) <
2.1741 < 132 5(vq, s3) and 13, (v, 51) < 1.7262 < 12,1 (v, 51).
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Table 1. Power of the LRT, and ¢3,;, for p =3, a =0.1,d = 1/2and
kl = kz = k3 = 10 With 81 = 62/61 and 82 = 93/62.

0.9 0.95 1 15
B,.(6,1) 0.0004 0.0006 0.0008 0.0065
By (5, 1) 0.0352 0.0397 0.0440 0.0692
B, (81,8, 0.0002 0.0004 0.0008 0.0531
Br (81,8, 0.0266 0.0350 0.0440 0.1390
B (81,1.41426,) 0.0021 0.0039 0.0068 0.1539
Bn(64,1.41426;) 0.0549 0.0652 0.0753 0.2172
B,(6,,2.41425,) 0.0216 0.0323 0.0459 0.3038
By (8,,2.4142) 0.0715 0.0820 0.0942 0.3170
B, (6,,105,) 0.0656 0.0818 0.0999 0.3465
By (5,,108,) 0.0657 0.0819 0.1000 0.3465
w=0.1 w=0.1
L"*""':.f
.';_;,-!v,.n,l—J .ré— T4y V2, 50)
., . ‘ .,I’:I-'.
\ . jl.f::.l
5 \.'u‘\ "'f 837 &
Sy { .l‘);i-\
.’r If\?':sj =h ?‘:/ﬂl S
-
ks I.’{l':f e ‘\._;. Ky Sy + Ko 8g =¥y
- T
(@) s3 =2 (b) s; =1

Figure 1. (a) The sets Ly, x,x, and A,q.3 andfunctions s; = bs, — abs;y,
kys, + kys; = vy, B13(vy,s3) and 13,3(vy,s3) for a =01, k=
k, =k; =5,and d = 1/2 when s3 = 2; (b) the sets Ly, ,r, and As,4
and functions s; = bs, — abs;, k3ss+kys, =v,, 13,4(vy,s,), and
12,,(vy,51) for a =01, ky =k, =k; =5, and d =1/2 when s; =
1.
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Figure 2. The rejection region of ¢y, x, for a = 0.1, ks =k, = k3 =
5,and d = 1/2 when s; = 3.
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