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The  existing  measures  of  phase  clustering  suffer  from  sample  size  bias.
Cosine  similarity  (CS)  is  robust  against  sample  size  variation.
CS  could  detect  inherent  nature  of  phase  clustering  between  datasets.
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Background:  Phase  clustering  within  a single  neurophysiological  signal  plays  a  significant  role in  a wide
array  of cognitive  functions.  Inter-trial  phase  coherence  (ITC)  is commonly  used  to assess  to  what  extent
phases  are  clustered  in a similar  direction  over  samples.  However,  this  measure  is  especially  dependent  on
sample  size.  Although  ITC  was  transformed  into  ITCz,  namely,  Rayleigh’s  Z,  to “correct”  for  the sample-size
effect  in  previous  research,  the  validity  of this  strategy  has  not  been  formally  tested.

New  method  This  study  introduced  cosine  similarity  (CS)  as  an  alternative  solution,  as  this  measure
is  an  unbiased  and consistent  estimator  for finite  sample  size  and  is  considered  less sensitive  to  the
sample-size  effect.
Results: In  a series  of studies  using  either  artificial  or  real datasets,  CS  was robust  against  sample  size
variation  even  with  small  sample  sizes.  Moreover,  several  different  aspects  of  examinations  confirmed
that  CS  could  successfully  detect  phase-clustering  differences  between  datasets  with  different  sample
sizes.

Comparison with  existing  methods  Existing  measures  suffer  from  sample-size  effects.  ITCz  produced  a

mixed  pattern  of bias  in assessing  phase  clustering  according  to sample  size,  whereas  ITC  overestimated
the  degree  of phase  clustering  with  small  sample  sizes.
Conclusions:  The  current  study  not  only  reveals  the  incompetence  of the  previous  “correction”  measure,
ITCz,  but  also  provides  converging  evidence  showing  that  CS  may  serve  as an  optimal  measure  to quantify

phase  clustering.

. Introduction

A growing body of evidence shows that phases of brain oscilla-
ions, as revealed by neurophysiological signals, play a significant
ole in neural coding and communication (Sauseng and Klimesch,

008; van Rullen et al., 2011). In principle, there are two qualita-
ively different approaches to study phase information. One focuses
n examining the phase relationship between two signals from sep-
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arate sensors or brain areas, such as the index “phase-locking value”
(Lachaux et al., 1999), whereas the other focuses on examining how
phases behave within a single signal. A standard tool in the latter
approach relies on assessing to what extent phases are clustered
in a similar direction over samples (e.g., trials or time points) to
determine whether a “preferred” angle is present in the signal. To
date, phase clustering is associated with a wide array of cognitive
functions, including attention (Lakatos et al., 2008), conscious per-
ception (Palva et al., 2005), music perception (Doelling and Poeppel,
2015), object recognition (Tallon-Baudry et al., 1996), speech dis-

crimination (Luo and Poeppel, 2007), reaction time (Drewes and
van Rullen, 2011), and working memory (Bonnefond and Jensen,
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ig. 1. A schematic diagram illustrating the computation of (A) ITC and (B) CS ov
omplex plane, whereas the CS measure computes the mean cosine angle of all give

012). Phase clustering is even thought to serve as a potential
ource for event-related potentials (Makeig et al., 2002).

In most previous research, inter-trial phase coherence (ITC or
hase-locking factor (Tallon-Baudry et al., 1996)) was commonly
sed to quantify phase clustering. However, the ITC measure is
roblematic because it especially depends on sample size (Edwards
t al., 2009). This major problem arises because ITC computation
rst involves time-frequency analysis of neurophysiological sig-
als to derive a phase vector for each sample on a unit complex
lane. Next, ITC values are computed by averaging the lengths of
hase vectors across samples (Fig. 1A). However, ITC is a biased and
onsistent estimator. An estimator is unbiased if its expected value(
Î
)

equals I, but ITC is estimated as Î = E(ei�j ) (see the “Materials

nd methods” section) and is thereby biased because E
(
Î
)

≥ I, and

t is consistent when lim
n→∞

Î = I and lim
n→∞

Var(Î) = 0 (see (Kutil, 2012)

or the mathematical proof). To see this bias, consider phase vec-
ors randomly scattered around a complex plane with an expected
alue of zero. During ITC computation, it is unlikely that these vec-
ors could be perfectly arranged to sum to 0 due to variance. As a
esult, the ITC measure suffers from a sample-size bias.

In practice, ITC values are calculated for each experimental
ondition in which trial samples are grouped according to asso-
iated behavioral responses or task demands. The sample-size bias
resent in the ITC measure may  thus have a deleterious impact
n interpretation of the results, particularly when ITC is compared
etween conditions that greatly differ in trial count. Although the
ptimal situation is to design an experiment in which trial num-
ers are balanced between conditions, this is not always possible.
or example, during the preprocessing procedure in magnetoen-
ephalography (MEG) analyses, the number of trials surviving
rtifact rejection may  vary across experimental conditions. In addi-
ion, the behavioral outcomes may  not be under the control of
he experimenter. For example, in a typical conscious perception
xperiment, even though a stimulus is presented at threshold, the
roportions of consciously detected and undetected trials may  still
ary as a result of fluctuations in participants’ performance from
oment to moment.

Several strategies have been employed to address this issue.
ne straightforward strategy is to randomly delete trials from an
xperimental condition with a greater number of trials such that
he trial numbers are matched between the two conditions being
ompared. Then, ITC values can be assessed between conditions

ith equal trial counts. This procedure could be performed in com-

ination with a bootstrap method to ensure reliability (Hsu and
ang, 2017 in press; van Diepen et al., 2015). Here, we refer to this
rial reduction in combination with the bootstrapping approach as
hase samples. ITC computes the mean resultant length of phase vectors on a unit
rs of phase vectors.

ITCe. Unfortunately, the ITCe measure is computationally demand-
ing and consequently time-consuming. In addition, ITCe comes at
the cost of decreasing statistical power due to fewer trials being
used. Moreover, in some situations, such as developmental stud-
ies with infants wherein data are scarce, this strategy becomes
particularly problematic and impractical.

A different line of reasoning is to keep original trials while
performing some “correction” methods to mitigate the sample-
size effect. One widely adopted approach is to transform ITC to
ITCz, namely, Rayleigh’s Z (Fisher, 1993). This procedure involves
weighting original ITC values with trial number to correct the
bias. Despite its current application (Bonnefond and Jensen, 2012;
Cohen, 2014; Samaha et al., 2015), the validity of this strategy has
surprisingly not been formally tested.

In addition to the ITCz measure, cosine similarity (CS) may  pro-
vide another potential solution to “correct” for the sample-size
effect. CS is commonly used to measure cohesion within vectors
in the fields of text mining (Baeza-Yates and Ribeiro-Neto, 1999;
Hotho et al., 2005), machine learning (Pang-Ning et al., 2006)
and even rhythmic neuronal synchronization (Vinck et al., 2010).
Specifically, this measure computes the similarity of any two  vec-
tors vi and vj in terms of their cosine angle � using the following
equation:

cos�vivj = vi · vj
||vi||||vj||

The zero value indicates that the vectors are orthogonal and have
low similarity, −1 indicates that the vectors are totally opposite,
and 1 indicates that the vectors are highly similar and point in the
exact same direction. Given that phases of neurophysiological sig-
nals can be represented in terms of vectors on a complex plane,
we reason that the CS measure allows quantification of phase clus-
tering by computing the mean cosine angle of all given pairs of
phase vectors (Fig. 1B). In other words, phase clustering is assessed
by examining how similar the phase vector observed in one data
sample is to the phase vectors observed in other data samples.
As a result, a CS value close to 1 would reflect that phase vec-
tors across samples are highly similar and thus converge around
a similar direction (i.e., high phase clustering). More importantly,
unlike ITC, the expected value of the estimated CS is equal to CS,

i.e., E
(
ĈS

)
= CS, and lim

n→∞
Var

(
ĈS

)
= 0. To demonstrate that ĈS is

an unbiased estimator of CS,  we  can obtain
E
(
ĈS

)
= 2
n (n − 1)

n−1∑
i=1

n∑
j=i+1

E(cos
(
�i − �j

)
) = CS
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Therefore, ĈSis an unbiased estimator of CS.  To demonstrate that

Ŝ is a consistent estimator of CS,  we can obtain

Var(ĈS) = Var(
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

cos(�i − �j))  = 4

n2(n − 1)2

n−1∑
i=1

n∑
j=i+1

V

lim
n→∞

P(|ĈS − CS|  < ε) = 1, ∀ε > 0

Therefore, CS is a consistent estimator because lim
n→∞

Var
(
ĈS

)
=

 and E
(
ĈS

)
→ CS as n → ∞.  Therefore, mathematically speaking,

he CS measure is an unbiased and consistent estimator for finite
ample size and is considered less sensitive to the sample-size
ffect.

In this article, CS is introduced as an alternative method to
ompute phase clustering and resolve the sample-size effect. We
rst systematically examined the validity of the existing correc-

ion measure ITCz as well the traditional measure ITC. Then, we
valuated the performance of the CS measure against that of other
easures to probe the optimal measurement of phase cluster-

ng. In the context of both artificially constructed and real MEG
atasets, we demonstrate that compared with previous measures,
S may  serve as a better phase-clustering measure to “correct”

or sample-size effects and indicate its practicality for analyzing
europhysiological data.

. Materials and methods

.1. Datasets

.1.1. Study I: phase-clustering measures as a function of sample
ize

Artificial data were created using the CircStat toolbox (Berens,
009) by randomly sampling phase samples (-� to �) from a von
ises distribution, which is the circular analog of a normal distribu-

ion. Both sample size (size 1–100) and levels of � (� = 0.01, 0.1, 0.2,
.5) were manipulated. The parameter � indicates the dispersion
f the von Mises distribution. As � approaches 0, the data points
ecome uniformly distributed on the phase circle. After the sam-
ling procedure, the phase-clustering values of each measure (i.e.,

TC, ITCz, and CS) were computed across samples, yielding a total of
00 (sample size) ×4 (�) datasets. To ensure reliability, the above
rocedure was repeated 1000 times. For each of the 1000 iterations,
he von Mises distribution had a randomly selected mean direction.
inally, the phase-clustering values were averaged over iterations
nd subjected to statistical analysis.

Study I-2 used a previous experimental dataset to examine
ow the phase-clustering measures performed in actual data (Hsu
nd Yang, 2017 in press), particularly given that in real situations,
hases comprise different frequency ranges. In our previous exper-

ment, each trial began with the presentation of a fixation cross for
00–1000 ms,  followed by a forward mask for 300 ms,  a stimulus
or 17 ms,  and a backward mask for 33 ms.  After a blank for 250 ms,

 response window with three options was displayed. Participants
ad up to 3000 ms  to report (1) that they could recognize the facial

dentify of the target stimulus by selecting the option “Liu” (face
dentification hit trials, FI), (2) that they could detect the presence
f the target face but could not recognize the facial identity of the
arget by selecting the option “Face” (face detection hit trials, FD), or
3) that they could not see a face by selecting the option “No” (face

iss trials, FM). Thirteen participants participated in the exper-

ment (8 males, mean age ± STD = 26.38 ± 3.23 years, range = 21–
1), while MEG  signals were recorded (Yokogawa, Co., Tokyo). The
ignals were digitized at 1000 Hz and filtered with 0.3-Hz high-pass
nd 500-Hz low-pass cutoffs and a 60-Hz notch. Continuous MEG
i=1 j=i+1

data were segmented into 2000-ms epochs starting from 1000 ms
before the onset of the forward mask. Trials contaminated with eye
movements, eye blinks, and muscular artifacts were rejected via
visual inspection. Time-frequency representations of phase infor-
mation in the MEG  signals were computed using Morlet’s wavelets
(m = 7) on every sensor, frequency (8–100 Hz, step: 2 Hz) and time
point (step: 10 ms)  in each trial. Fieldtrip (Oostenveld et al., 2011)
and MATLAB (MathWorks, Natick, MA)  software was  used for data
processing.

Because our previous results indicated high ITC values in FI tri-
als, for every participant, we  selected the peak data points at 400 ms
after first mask onset, the sensor AG098 and all frequency ranges
in FI trials for the analyses. Next, real datasets were created by ran-
domly drawing samples from the above data pool with sample sizes
ranging from 1 to 30 (the minimum number of FI trials among par-
ticipants). The phase-clustering values of each measure were then
computed across samples, leading to 30 (sample size) ×47 (fre-
quency) datasets for each participant. We repeated the sampling
procedure 1000 times and averaged the phase-clustering values
across iterations and participants for further analysis.

2.1.2. Study II: validity of phase-clustering measures in
simulation studies

To validate whether each measure could successfully differenti-
ate datasets with different degrees of phase clustering when sample
sizes differ between two  datasets, we deliberately constructed two
artificial datasets in Study II-1. In one dataset (data20 low), 20 data
points were randomly sampled from a von Mises distribution with
� = 0.01. In the other dataset (data100 high), 100 data points were
randomly sampled from a von Mises distribution with � = 0.2. As
such, phases were de facto better aligned in “data100 high” due to
the higher concentration of the von Mises distribution (see Section
3.1 for details).

To further validate whether each measure could reflect that in
reality, the two datasets had the same degree of phase clustering
over samples when sample sizes differed between datasets, we
additionally constructed two datasets drawn from the same von
Mises distribution with � = 0.2 in Study II-2. One dataset had a sam-
ple size of 20 (data20 same), and the other had a sample size of 100
(data100 same). As a result, these two datasets had the same phase
clustering but differed in sample sizes.

For Study II-1 and Study II-2, the sampling procedure was
repeated 1000 times to generate sampling distributions for sta-
tistical testing. For each of the 1000 iterations, each type of
phase-clustering values was computed based on the samples
drawn from the von Mises distribution with a randomly selected
mean direction.

2.1.3. Study III: validity of phase-clustering measures in a real
experimental setting

The finding from our previous experiment, as described in Study
I, was used as a benchmark to evaluate how the phase-clustering

measures performed in a real experimental setting. In this previous
finding, stronger phase clustering was found in FI trials than in FM
trials. This significant effect occurred at 10 Hz in the right frontal-
parietal-temporal sites between 240 and 580 ms after the onset of
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he first mask. Because there were fewer FI trials (mean number of
rial ± SD = 55 ± 6) than FM trials (96 ± 14) for 12 of 13 participants,
n a previous analysis, we employed ITCe (i.e., the trial-reduction
nalysis approach in combination with the bootstrap procedure) to
ddress the issue of unbalanced trial counts. Specifically, the trials
ere randomly selected without replacement from the condition
ith a greater number of trials such that the trial numbers were
atched between the two conditions being compared. This proce-

ure was repeated 2000 times, and for each iteration, an ITCe value
as computed. As a result, a distribution of ITCe was  generated for

very sensor-time-frequency point. The obtained distribution was
hen characterized by its mean, which was submitted to cluster-
ased permutation tests (see Section 2.3.3).

.2. Phase-clustering measure

.2.1. ITC measure
ITC values were computed by the following equation:

TC = | 1
n

n∑
j=1

zj|

Here, n denotes the sample size. zjis a complex vector represent-
ng a given sample in a time-frequency domain after normalization
o unity as follows:

j = ei�j = cos �j + isin�j

where j = 1, . . . n, and �j is the phase of the samplezj. Accord-
ngly, ITC can be construed as totaling the straight-line distance
rom the starting point to the ending point of samples and dividing
y the sample size. In other words, ITC indicates the mean resul-
ant length of samples. The ITC values are bounded between 0 and
. An ITC close to 0 reflects low phase clustering (i.e., the distri-
ution of phase angles across samples is uniform), whereas an ITC
lose to 1 reflects strong phase clustering (i.e., all samples exhibit
he same phase). For all artificial data, the complex vector zjwas
erived by transforming phase samples from von Mises distribu-
ions using Euler’s formula. For all real data, complex vectors were
erived from wavelet analysis of every sensor, frequency and time
oint in each trial, as previously described.

.2.2. ITCz measure
To compute ITCz (aka, Rayleigh’s Z), we transformed the

btained ITC values using the following formula:

TCz = n × ITC2

where n is the sample size. Therefore, unlike ITC, ITCz values can
e larger than 1.

.2.3. CS measure
For any two samples (zi = ei�i = cos �i + isin �i and

j = ei�j = cos �j + isin �j) on a unit complex plane, similarity between
hese two samples can be represented in terms of their cosine
ngle:

os
(
�i − �j

)
= ei(�i−�j) + e−i(�i−�j)

2
= cos�icos�j + sin�isin�j

To obtain CS values, we  computed the cosine angle of all possible
ample pairs as follows:

S = 2
n−1∑ n∑

cos
(
�i − �j

)

n (n  − 1)

i=1 j=i+1

Here, the constant 2
n(n−1) is the number of sample pairs being

easured. A CS close to 0 reflects low phase clustering, whereas
nce Methods 295 (2018) 111–120

a CS close to 1 reflects strong phase clustering. CS may also yield
negative values when the sample size is small due to high variance.

2.3. Statistical analysis

2.3.1. Study I: phase-clustering measures as a function of sample
size

Slope tests were performed for both artificial and real datasets
to examine whether the values of each phase-clustering measure
changed over sample size as follows:

t =
ˆ̌ 1√∑n

i=2

(
Ii−Î

)2

n−2 /
∑n

i=2

(
Ni − N̄

)2

Idenotes the phase-clustering value of a given dataset.N rep-
resents the sample size of the dataset. ˆ̌ 1is the estimated slope:

ˆ̌ 1 =
∑n

i=2IiNi −
(∑n

i=2
Ii

)(∑n

i=2
Ni

)
n∑n

i=2

(
Ni − N̄

)2

If a given dataset is susceptible to sample-size effects, the
amount of change in Ishould be statistically significant over sample
size N. If not, we would expect the regression line to be horizontal,
i.e., a zero slope.

To complement the slope tests (particularly the null effects),
Bayes factors were calculated to determine how much evidence
exists in favor of the null hypothesis, i.e., phase-clustering values
did not change across sample sizes, as follows:

B10 = P(D|H1)
P(D|H0)

Here, D in the numerator and denominator respectively denotes
the phase-clustering values under the alternative and the null
hypotheses. Evidence of different hypotheses can be calculated
in terms of marginal likelihoods. The ratio of these likelihoods is
a Bayes factor. During the computation implemented by R soft-
ware (http://www.R-project.org.) with the “BayesFactor” package
(Morey and Rouder, 2015), the choice of a prior distribution is
subjective. In practice, a Standard Cauchy prior width of r = 1 was
used as the scale of prior distribution for computing Bayes fac-
tors (Jeffreys, 1961). To draw conclusions, a conventional cut-off
was used (Jeffreys, 1961). A Bayes factor close to one indicates that
the data are equally consistent with both the null and alternative
hypotheses. A value greater than one indicates increasing evidence
for the alternative hypothesis, and values approaching zero indicate
increasing evidence for the null.

2.3.2. Study II: validity of phase-clustering measures in
simulation studies

In Study II-1, independent, two-sample, two-tailed t-tests were
conducted to examine whether the sampling distribution of each
type of phase-clustering values in “data20 low” differed from
that in “data100 high”. In Study II-2, Bayes factors, as previously
described, were calculated for each phase-clustering measure to
determine how much evidence exists in favor of the null hypothe-
sis, i.e., the same degree of phase clustering between “data20 same”
and “data100 same”.

2.3.3. Study III: validity of phase-clustering measures in a real
experimental setting
Similar to our previous study, cluster-based permutation tests
were employed for statistical testing while controlling for multiple
comparisons to determine whether phase clustering derived from
each measure differed significantly between FI and FM trials. In the

http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
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ests implemented by Fieldtrip software (Oostenveld et al., 2011),
hase-clustering differences between trial groups were quantified
y means of paired t-tests for every sensor-time-frequency sample.
he samples with t values exceeding the threshold (p < 0.05) were
hen clustered in connected sets based on spatial, temporal or fre-
uency adjacency with a minimum of two neighborhood sensors.
he cluster with the maximum sum of t values was  used as a test
tatistic. A distribution was generated by randomly permuting the
ata across the conditions for each participant and then recalcu-

ating the test statistic 1000 times using a Monte Carlo estimate.
inally, p values (two-sided, p < 0.05) were determined by evalu-
ting the proportion of the distribution resulting in a test statistic
arger than the observed statistic.

To quantify and compare the statistical results among the phase
lustering measures, we used our previous finding as a benchmark
nd evaluated how each measure performed against the bench-
ark finding. Two indices, sensitivity and specificity, which were

efined according to signal detection theory, were adopted for
his evaluation (Grandchamp and Delorme, 2011). Sensitivity was
dopted to assess to what extent each measure could “accurately”
etect the significant results as indicated by the benchmark finding,
hereas specificity assessed to what extent each measure could

accurately” detect the non-significant results as indicated by the
enchmark finding. These two indices can be formalized as follows:

ensitivity = TP
(TP + FN)

pecificity = TN
(FP + TN)

Here, true positive (TP) represents the number of significant
ensor-time-frequency points identified by a given phase-
lustering measure inside the benchmark finding; false positive
FP) represents the number of significant sensor-time-frequency
oints outside the benchmark finding; false negative (FN) repre-
ents the number of non-significant sensor-time-frequency points
nside the benchmark finding; and true negative (TN) represents
he number of non-significant sensor-time-frequency points out-
ide the benchmark finding.

To better evaluate the validity of phase clustering measures,
eceiver operating characteristic (ROC) analysis was additionally
erformed. In previous cluster-based permutation tests, we  speci-
ed a minimum number of 2 neighborhood sensors required for a
elected sample (i.e., a sample with a t-value exceeding the thresh-
ld) to be included in the clustering algorithm. For this analysis,
e varied this criterion by changing the parameter from 1 to 4

eighborhood sensors as these 4 levels of parameters produced sig-
ificant results. Therefore, four hit (aka, Sensitivity)  and false alarm
ates (1-Specificity)  could be computed and used to construct a ROC
urve. The area under the ROC curve (AUC) was  then obtained for
ach of the three measures. The obtained value represents how
ell a given measure could predict the benchmark finding, with a

hance level of 0.5 and a maximal performance of 1.

. Results

.1. Study I: phase-clustering measures as a function of sample
ize

Study I examined how phase-clustering measures, CS, ITC and
TCz, varied as a function of sample size in either a well-controlled

ontext (Fig. 2, left panel) or in a real situation in which phases
omprised different frequency ranges (Fig. 2, right panel). For each
ample size, � (the level of distribution dispersion) or frequency
ange, the phase-clustering values of measure were computed
nce Methods 295 (2018) 111–120 115

across samples randomly drawn from a von Mises distribution or
from our previous experimental data (see Section 2.1.1 for details).
This sampling process was repeated 1000 times to ensure relia-
bility. Next, the values were averaged across 1000 iterations in
artificial datasets and across 1000 iterations and 13 participants
in real datasets for the following analyses.

For both artificial and real datasets, ITC values were high
with small sample sizes but gradually decreased when sample size
increased. Visual inspection also revealed that the values continued
to drop even when sample size reached a reasonable number, such
as 30 samples. This pattern of results persisted regardless of the
levels of dispersion of the von Mises distributions used in artificial
datasets (slope tests on the slope changes, all p values <0.001;
Fig. 2A, left panel) or levels of frequency ranges in real datasets (all
p values <0.001; Fig. 2A, right panel). Additional analysis provided
further support for the latter report, showing that even for each
participant, the ITC values also varied according to sample size
at all frequency ranges (all p values <0.001). Moreover, notably,
as revealed by the absolute values of the slope estimates, the
sample-size effects became much more evident with lower levels

of distribution dispersion (� = 0.01:abs
(

ˆ̌ 1

)
= 0.0025376 > � = 0.1:

abs
(

ˆ̌ 1

)
= 0.0024405 > � = 0.2:abs

(
ˆ̌ 1

)
= 0.0021842 > �

= 0.5:abs
(

ˆ̌ 1

)
= 0.0014491); however, no clear pattern was

observed between the sample-size effects and frequency ranges.
ITCz values also significantly differed across sample sizes for all

levels of distribution dispersion (all p values <0.001; Fig. 2B, left
panel) and frequency ranges (all p values <0.05; Fig. 2B, right panel;
for individual participants, over 90% of the frequency points with p
values <0.05). However, distinct from ITC, ITCz produced a distinct
pattern of results according to sample size for artificial datasets.
The ITCz values were drastically enhanced when the sample size
increased, and this phenomenon was evident with higher levels

of distribution dispersion (� = 0.01: abs
(

ˆ̌ 1

)
= 3.064e–04 < � = 0.1:

abs
(

ˆ̌ 1

)
= 0.0019557 < � = 0.2:abs

(
ˆ̌ 1

)
= 0.0086609 < �

= 0.5:abs
(

ˆ̌ 1

)
= 0.0569799). For actual datasets, the results

were somewhat mixed. ITCz values decreased with increasing
sample size in some frequency ranges (14–24, 34–50, 54, 58–72,
76–78, and 98–100 Hz), whereas the values exhibited the opposite
pattern in the remaining frequency ranges.

For the CS measure, a distinct pattern was observed. In gen-
eral, the CS values did not change according to sample size for both
artificial datasets (all p values >0.1, except for � = 0.2, p = 0.005;
Fig. 2B, left panel) and real datasets (all p values >0.05, except for
the datasets at 32, 40, 60, 62, 70, 74, 82, 84, 86, and 96 Hz, with p val-
ues <0.05). To further examine these null effects, Bayes factor tests
were additionally conducted. Consistent with previous analyses,
the obtained values indicated strong evidence that the CS results
favored the null hypothesis (artificial dataset: � = 0.01,B10 = 0.27;
� = 0.1,B10 = 0.37; � = 0.2,B10 = 5.74, � = 0.5,B10 = 0.12; real dataset:
all B10<1 with a mean = 0.35, except for the datasets at 20, 32, 40, 48,
50, 60, 62, 70, 74, 82, 84, 86, 96 Hz with B10 = 1.15, 1.42, 1.48, 1,12,
1.15, 77.70, 2.50, 3.70, 16.37, 4.06, 1.42, 36.66, 15.46). A closer visual
inspection revealed strong fluctuations in CS values with extremely
small sample sizes. Given this, we performed the tests on the val-
ues with a sample size greater than 11 and 8, respectively, for those
artificial and real datasets with B10>1. The null hypothesis was now
supported for all frequency ranges (all B10<1 with a mean = 0.45).

We  also confirmed that this pattern of results persisted in the real
datasets at the level of individual participants (more than 90% of
the frequency points with B10<1 with a mean = 0.32 after excluding
the values with a sample size less than 13).
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Fig. 2. (A) ITC, (B) ITCz and (C) CS values as a function of sample size. The left panel shows the phase-clustering values derived from artificial phase samples that were
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.2. Study II: validity of phase-clustering measures in simulation
tudies

In practice, whether phase-clustering differences between two
iven datasets can be accurately detected is the major focus of
ost research. Therefore, Study II aimed to validate to what extent

ach measure could reveal the inherent nature of phase clustering
etween datasets with different sample sizes. For this purpose, the
ollowing possible scenarios could be considered: (1) a dataset with
igher phase clustering but smaller sample size relative to a dataset
ith lower phase clustering but larger sample size, (2) a dataset
ith lower phase clustering but smaller sample size relative to a

ataset with higher phase clustering but larger sample size and (3)
wo datasets with the same degree of phase clustering but differing
ample sizes. Given that the first scenario is redundant because it
oes not allow us to properly address the issue of the sample-size
ias present in the ITC measure (i.e., high phase clustering for small
ample size), we considered only the latter two scenarios in Study
I.

In Study II-1, we first examined which measure could bet-
er detect the true difference in phase clustering between two

atasets that had different degrees of phase clustering but differ-
nt sample sizes (i.e., the second scenario). Two artificial datasets,
data20 low” and “data100 high”, were deliberately constructed.
he former had 20 samples drawn from a von Mises distribu-
f dispersion. The right panel shows the phase-clustering values derived from real
erent sample sizes and frequency ranges. The values represent the mean over 1000
ipants for real datasets.

tion with � = 0.01, whereas the latter had 100 samples drawn
from a von Mises distribution with � = 0.2. Therefore, “data20 low”
with a smaller sample size had lower phase clustering relative to
“data100 high” with a larger sample size due to the nature of �
indicated in Fig. 2. For both datasets, we  computed the phase-
clustering values of each measure across randomly drawn samples
and repeated this procedure 1000 times to generate two  sampling
distributions for statistical testing (Fig. 3, left panel).

Not surprisingly, in opposition to the known fact, the ITC mea-
sure revealed significantly higher phase clustering in “data20 low”
(mean value ± SD = 0.20 ± 0.10) than that in “data100 high”
(0.12 ± 0.06; independent two-sample t-test on mean difference,
t(1632.7) = 20.673, p < 0.001; Fig. 3A, left panel). This finding
reflected a sample-size bias in which phase clustering indexed by
ITC in “data20 low” was overestimated due to small sample sizes.
By contrast, both the ITCz and CS measures revealed the known fact
and showed significantly higher phase clustering in “data100 high”
(ITCz: 1.91 ± 1.70, CS: 0.0091 ± 0.02; Fig. 3B and C, left panel) than
that in “data20 low” (ITCz: 1.01 ± 0.94, CS: 0.0006 ± 0.05; ITCz:
t(1557.8) = 14.612, p < 0.001, CS: t(1236.2) = 5.2046, p < 0.001).

A complementary approach to validate phase-clustering mea-

sures is to probe to what extent each measure could better detect
the similarity of phase clustering between datasets that have the
same degree of phase clustering but differing sample sizes (i.e.,
the third scenario). In Study II-2, we  examined two  deliberately
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Fig. 3. The validity of the (A) ITC, (B) ITCz and (C) CS measures in detecting datasets with different (left panel) or the same degree (right panel) of phase clustering. The
left  panel shows the density distributions of the phase-clustering values of two datasets, “data20 low” and “data100 high”. The distribution of “data20 low” was  created by
computing values across 20 phase samples that were randomly drawn with 1000 repetitions from a von Mises distribution with �=0.01. The distribution of “data100 high”
was  created by computing values across 100 samples that were randomly drawn with 1000 repetitions from a von Mises distribution with �=0.2. Therefore, “data20 low”
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nherently had lower phase clustering than did “data100 high”. The right panel sho
nd  “data100 same”. The distributions were created by respectively computing valu
he  same von Mises distribution with �=0.2. Therefore, both datasets inherently ha

onstructed artificial datasets “data20 same” and “data100 same”.
lthough the former had 20 samples, and the latter had 100 sam-
les, all samples were randomly drawn from the same von Mises
istribution and thereby had an identical degree of phase cluster-

ng. As before, the sampling procedure was repeated 1000 times,
nd for each iteration, the phase-clustering values were computed
cross the samples, yielding two sampling distributions (Fig. 3, right
anel).

As expected, the ITC measure could not detect the true nature
f phase clustering in the datasets. Different from the known fact,
igher phase clustering was found in “data20 same” (0.22 ± 0.11)
han in “data100 same” (0.13 ± 0.06; Fig. 3A, right panel). A Bayes
actor also indicated strong evidence that the ITC results supported
his alternative hypothesis (B10 = 4.67e + 97) rather than the null
ypothesis (i.e., the known fact). For the ITCz measure, higher phase
lustering was  similarly found in “data100 same” (1.99 ± 1.68)
ompared to “data20 same” (1.22 ± 1.16), which also provided
trong evidence for the alternative hypothesis (B10 = 4.75e + 97).
owever, distinct from the above two measures, the CS mea-
ure accurately revealed comparable degrees of phase clustering
etween the two datasets and was in favor of the null hypoth-
sis (“data20 same”: 0.64 ± 0.023, “data100 same”: 0.64 ± 0.005;
 density distributions of the phase-clustering values of the datasets “data20 same”
oss 20 or 100 phase samples that were randomly drawn with 1000 repetitions from
ame degree of phase clustering.

B10 = 0.04). Taken together, the overall results showed that when
sample sizes differed, the CS measure exhibited better sensitiv-
ity to detect the inherent nature of phase clustering between the
datasets, regardless of whether these datasets had different or the
same degree of phase clustering.

3.3. Study III: validity of phase-clustering measures in a real
experimental setting

Although Study I and II addressed the main issue regarding
to what extent these phase-clustering measures are immune to
the sample-size effect, how each of these measures perform in
real situations in which the results are assumed is unclear. In
other words, could these measures detect proper or “accurate” data
points that have been previously shown significant phase cluster-
ing? Using the trial-reduction analysis approach in combination
with the bootstrap procedure (i.e., ITCe) to address different trial
counts, our previous finding demonstrated significantly enhanced

ITCe values when participants could consciously recognize the
facial identity of the target stimulus (FI trials: the mean number
of trials ± SD = 55 ± 6) compared with those when they could not
see the target (FM trials: 96 ± 14; cluster-based permutation test,
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Fig. 4. Phase-clustering differences between FI and FM trials as indicated by (A) the benchmark finding, (B) CS, (C) ITC and (D) ITCz measures. The black asterisks in the
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are sampled from and the frequency ranges in which real data are
located. On the other hand, ITCz overestimates the degree of phase
calp  topographies highlight a cluster of sensors exhibiting significant differences
ime-frequency representations of the representative sensors, the black lines indica
rackets highlight the time-frequency window exhibiting significant differences.

 < 0.001). This significant effect occurred at the alpha (10 Hz) fre-
uency in the right frontal-parietal-temporal sites between 240
nd 580 ms  after the onset of the first mask (Fig. 4A). In Study III, we
sed this previous finding as a benchmark to evaluate the extent to
hich the ITC, ITCz and CS measures could properly replicate the

revious finding.
After computing the CS, ITCz or ITC values on every sensor-

ime-frequency data point, cluster-based permutation tests were
onducted to compare the values between FI and FM trials. Com-
arable to the benchmark finding, the CS measure revealed higher
hase clustering in FI trials than that in FM trials (p = 0.03, Fig. 4B);
his finding was similarly observed at 10–12 Hz in the right frontal-
arietal-temporal sites between 250 and 520 ms  after the onset of
he first mask. Although phase clustering, as indexed by the classic
TC measure, was also enhanced in FI trials, the effect was widely
pread over most of the sensor-time-frequency window (p < 0.001,
ig. 4C). In contrast to the CS and ITC measures, the ITCz measure
howed higher phase clustering in FM trials than that in FI trials.
his opposite observation was found at 12–28 Hz between 370 and
80 ms  after the onset of the first mask and was mainly located
ver the occipital sensors but extended to the right temporal and

eft central-parietal sensors (p = 0.005, Fig. 4D).
To illustrate the obtained results relative to the benchmark find-

ng, we respectively calculated two indices, the sensitivity and
pecificity, of each measure (Fig. 5A and B). Here, sensitivity denotes
o what extent each measure could “accurately” detect the sig-
ificant results as indicated by the benchmark finding, whereas
pecificity denotes to what extent each measure could “accurately”
etect the non-significant results as indicated by the benchmark
nding (see Section 2.3.3 for details). On the one hand, the ITC mea-
ure exhibited the greatest sensitivity, followed by the CS measure,
ith zero sensitivity for the ITCz measure. On the other hand, the

S measure exhibited the greatest specificity, followed by the ITCz
easure, with the lowest specificity for the ITC measure. In sum,
hen the previous finding was used as a benchmark, the CS mea-
ure outperformed the ITCz and ITC measures and provided the
ost satisfactory results in terms of sensitivity and specificity.
) 10 Hz:390 ms,  (B) 10 Hz:390 ms, (C) 47 Hz:660 ms  and (D) 20 Hz:490 ms.  In the
 onset of the first mask, and the dotted lines indicate the onset of the stimulus. The

ROC analysis was further conducted to better evaluate the valid-
ity of each phase clustering measure (see Section 2.3.3 for details).
In previous cluster-based permutation tests, the criterion that
defined cluster selection was fixed (i.e., a minimum number of 2
neighborhood sensors). For this analysis, we  manipulated this cri-
terion so that ROC curves could be constructed and AUC values
were subsequently calculated. In support of a previous report, the
AUC values indicated that CS (AUC = 0.801) effectively predicted the
benchmark finding, whereas ITC (0.5012) and ITCz (0.5021) only
exhibited chance performance in prediction (Fig. 5C).

4. Discussion

To “correct” for the problem of sample size effects in the
phase-clustering measurement of a single brain signal, this study
introduced CS as a new measure. In addition, we  systematically
examined the previous “correction” measure, ITCz (Bonnefond and
Jensen, 2012; Cohen, 2014; Samaha et al., 2015), and the classic
measure, ITC (Tallon-Baudry et al., 1996). After comparing their
performances in a series of studies using either artificial or real
datasets, the overall results suggest that CS may serve as an optimal
measure to quantify phase clustering.

The current study first provides a novel insight into the nature
of the previous “correction” measure, ITCz. Similar to the classic ITC
measure, ITCz values vary as a function of sample size, as shown in
Study I. Moreover, in most of the parametric conditions, the sample-
size effects persist even when a reasonable number of sample sizes
are accumulated. However, the general patterns of the sample-size
effects differ between ITCz and ITC. On the one hand, consistent
with prior literature (Edwards et al., 2009), ITC tends to overesti-
mate the degree of phase clustering with small sample sizes, but
the exact degree of a sample-size bias depends on the nature of
the distribution (i.e., distribution concentration) that artificial data
clustering with larger sample sizes for artificial datasets, whereas
for actual datasets, the sample-size bias varies according to fre-
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Fig. 5. (A) Sensitivity, (B) specificity and (C) the AUC of the phase-clustering measures. For the results obtained from the cluster-based permutation tests with a fixed cluster
selection criterion, sensitivity denotes to what extent each measure could “accurately” detect the significant results as indicated by the benchmark finding, whereas specificity
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uency ranges, but there is no systematic relationship between the
wo.

To further explore the validity of ITCz compared with that of
TC, we additionally evaluated how ITCz and ITC performed in situa-
ions where two artificial (Study II) or two actual datasets (Study III)
ad known or assumed real effects in phase clustering. The overall
esults agree with the phenomena observed in Study I. First, for the
TC measure, because of serious overestimation with small sample
izes, the results in Study II show that the ITC measure misiden-
ified datasets with smaller sample sizes (i.e., “data20 low” and
data20 same”) as having stronger phase clustering and thereby
ould not accurately assess phase-clustering differences between
he datasets. In Study III, because there were fewer FI trials than FM
rials (Hsu and Yang, 2017 in press), when FI trials are compared
ith FM trials, ITC overestimates the degree of phase clustering

n FI trials and thereby produces a large number of false positive
ffects outside the benchmark finding, leading to low specificity.

Importantly, the ITCz measure also appears to be an unreli-
ble measure even though it has been previously used to address
ample-size bias. Although ITCz is able to “correct” the bias present
n ITC and in turn differentiate two datasets with different degrees
f phase clustering and different sample sizes (Study II-1), its ability
o detect two datasets with the same degree of phase clustering but
ifferent sample sizes is unsatisfactory (Study II-2). This unsatisfac-
ory outcome could be attributed to overestimation of the degree

f phase clustering in artificial datasets with large sample sizes by

TCz. For real datasets, because the ITCz measure produces a mixed
ias in assessing phase clustering between 12 and 28 Hz as revealed
y Study I, this complex pattern of effects yields a significant con-
lts as indicated by the benchmark finding. The AUC was  obtained by varying the
alues denote how well each measure could predict the benchmark finding, with a

sequence. As evident in Study III, in contrast to the benchmark
and all other findings, the result direction is completely reversed
(i.e., stronger phase clustering in FM trials instead of in FI trials).
Moreover, all the significant sensor-time-frequency data points
identified by ITCz fall outside the benchmark finding, indicating
the low sensitivity of this measure.

Compared with ITC and ITCz, CS is robust against the sample
size effect, and the values converge to a steady state even with
small sample sizes (Study I). Moreover, several different aspects
of examinations (Study II and III) further confirm that CS may
successfully detect the true nature of phase clustering between
datasets with differing sample sizes. However, the CS measure also
exhibits some limitations. First, CS is not completely free from
sample-size effects. Study I indicates that the CS values become
unstable with extremely small sample sizes. We  suggest that this
phenomenon could be attributed to the fact that when a sample
size is extremely small, samples located at the extremes of a given
population spectrum could be occasionally selected, such as sam-
ples with a completely opposite or identical angle. This situation
may  consequently result in highly negative or positive CS, lead-
ing to measurement instability. Accordingly, we parsimoniously
suggest employing the CS measure when there are at least 20 sam-
ples for analysis. Second, Study III shows that although CS exhibits
stronger specificity in detecting non-significant benchmark results,
its sensitivity in detecting significant benchmark results is imper-

fect. These observations suggest that CS has less power in detecting
real effects compared with ITCe when a sufficient number of tri-
als remains after trial reduction in ITCe. Alternatively, CS may  be
regarded as a better measure, as the same finding can be interpreted
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