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 Abstract 
Quantification of operational risk has led to significant concern regarding regulation in the 
financial industry. Basel Accord II and III for banks and Solvency II for insurers require 
insurance companies and banks to allocate capital for operation risk. Because the risk 
measure used for Basel regulatory capital purposes reflects a confidence level of 99.9% 
during one year and the loss distribution of operational risk has high skewness and kurtosis, 
it is almost infeasible to get an accurate estimate of such a risk measure if a crude Monte 
Carlo approach is used. Therefore, we develop a novel importance sampling method for 
estimating such a risk measure. Numerical results demonstrate that the proposed method is 
very efficient and robust. The main contribution of this method is to provide a feasible and 
flexible numerical approach that delivers highly accurate estimates of operational risk with a 
high confidence level and meets the high international regulatory standard for quantification 
of operational risk. 
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 1. Introduction 
In 2004, operational risk was injected into the Basel Accord by the Basel Committee on 
Banking Supervision. BCBS (2004) defined Operational risk as “the risks of losses resulting 
from inadequate or failed internal processes, people and systems or from external events.” 
Furthermore, BCBS (2004) outlined eight business lines and seven event types as exposure 
to operational risk. Given the issues involved and the calculations required, operational risk 
is more complicated than credit risk and market risk. Hence, the quantification of operational 
risk is a continually important issue for regulations in the financial industry. 
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Basically, there are three methods for measurement of the capital charges for operational 
risk - Basic Indicator Approach (BIA), Standardized Approach (SA), and Advanced 
Measurement Approach (AMA). Levels of model sophistication and risk sensitivity are 
increased correspondingly. Banks using the BIA must hold capital for operational risk equal 
to the average over the previous three years of a fixed percentage (denoted alpha) of positive 
annual gross income. If banks choose SA, the capital charge for each business line is 
calculated by multiplying gross income by a factor (denoted beta) assigned to that business 
line. Beta serves as a proxy for the industry-wide relationship between the operational risk 
loss experience for a given business line and the aggregate level of gross income for that 
business line. It should be noted that in the SA, gross income is measured for each business 
line, not the whole institution. Finally, supervisors expect that AMA banking groups will 
continue efforts to develop increasingly risk-sensitive operational risk allocation techniques, 
notwithstanding initial approval of techniques based on gross income or other proxies for 
operational risk. Although the AMA allows banks to develop their own models for assessing 
their operational risk exposures, it is required to cover their yearly operational risk exposure 
with a confidence level of 99.9% (BCBS 2006).  
Although the international regulatory standard demands a high confidence level when 
calculating operational risk, there is no obvious numerical approach that can achieve this 
goal. Crude Monte Carlo can achieve this goal in some sense because of its flexibility and 
easy implementation. However, crude Monte Carlo can only provide a rough estimate with 
low accuracy even using a lot of computing power because the operational risk loss 
distribution has high skewness and kurtosis; see Jorion (2007). Therefore, our goal is to 
provide a feasible numerical approach that can deliver highly accurate estimates of 
operational risk with a high confidence level. This contribution is important for financial 
institutions that have adopted the international regulatory standard. 
In the wake of the financial crisis, BCBS (2011) proposes supervisory guidelines associated 
with the development and operation of key internal governance, data and modelling 
frameworks underlying an AMA. Furthermore, BCBS (2014, 2016) aims to propose a simpler 
approach called the Standardized Measurement Approach (SMA) to replace all the currently 
available options for computing regulatory capital (BIA, SA, AMA). But Mignola, Ugoccioni, 
and Cope (2016) argues that SMA does not respond appropriately to changes in the risk 
profile of a bank, and results generally appear to be more variable across banks than the 
previous AMA option of fitting the loss data. 
Based on the above, AMA is still the most risk sensitive approach for calculating the 
Operational Capital-at-Risk (OpCaR). Therefore, we focus on the Loss Distribution Approach 
(LDA), which is the main method of AMA. LDA is a statistical method that has been used 
widely in actuarial science for computing aggregate loss distributions, so it is also known as 
the Actuarial Model. LDA concerns the measurement of risk for random losses generated 
from a matrix whose element corresponds to a combination of business line and event type 
in a one-year horizon. In practice, it is hard to collect the sufficiency data of all business lines; 
hence, the financial institutions usually separately model the number of loss events in a given 
year and the loss amount of a single loss event by the frequency distributions and severity 
distributions. Furthermore, the frequency and severity distributions are usually assumed to 
be independent or modeled through copulas models (Chavez-Demoulin, Embrechts, and 
Nešlehová, 2006). Then, the convolution of these two distributions gives rise to the loss 
distribution in a given year. 
There are many studies that use LDA to access operational risk: Frachot, Georges, and 
Roncalli (2001) use the severity distribution, which follows lognormal, the frequency 
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distribution, which follows Poisson, and the Gaussian copula, which describes the correlated 
aggregate loss distributions. Chapelle et al. (2008) chooses Pareto, Weibull lognormal 
distribution to model severity, negative binomial (NB) distribution to model frequency, and 
linear Spearman copula to model the dependence of aggregate losses. Temnov and 
Warnung (2008) assumes the loss severity and the loss frequency are independent, and 
then uses the Weibull distribution and generalized Pareto distribution (GPD) to fit loss 
severity and negative binomial distribution and the Poisson distribution to fit loss frequency. 
Fantazzini, Dalla Valle, and Giudici (2008) uses gamma, exponential, and Pareto 
distributions to model loss severity; negative binomial and Poisson distributions to model 
loss frequency; and Gaussian copula and t copulas to describe the dependence structure 
among the losses.  
Traditional studies explore the estimation of the combination of different severity 
distributions, frequency distributions and dependence structures. They almost adopt the 
naïve Monte Carlo simulation method because the building blocks of the operational risk 
model are very diverse and complex. But the risk measure used for regulatory capital 
purposes reflects a holding period of one-year and a confidence level of 99.9% (BCBS, 
2006); it is almost infeasible to get an accurate estimate of such risk measures if a naïve 
Monte Carlo approach is used (Asmussen and Glynn, 2007). Therefore, the main objective 
of this paper is to propose an efficient Monte Carlo simulation (a novel variance reduction) 
algorithm for computing such a risk measure. Except for the assumption that a common 
factor driving operational risk events exists, we do not impose any additional restrictions. 
The method can therefore be applied to a wide range of operational risk models. The rest of 
this paper is organized as follows. Section 2 defines the problem to be solved. Section 3 
elaborates on the simulation algorithm developed in this study. Section 4 presents numerical 
results by a real case. Section 5 concludes the paper. 

 2. Problem Formulation 
BCBS (2004) defined eight business lines and seven event type exposures of operational 
risk (Table 1). For each single risk cell (a combination of business line and event type), the 
total loss ܮ௜௝ follows the standard LDA approach and is the sum of individual losses: 

௜௝ܮ = ෍ ௜ܺ௝௞
ே೔ೕ
௞ୀଵ , 

where: ௜ܺ௝௞ is individual loss (severities) and ௜ܰ௝ is the number of losses (frequency) in cell 
(i , j). The aggregate operational loss is then defined by ܮ =෍ܮ௜௝௜,௝ . 
Let the marginal distribution function of ௜ܺ௝௞, ௜ܰ௝ and ܮ௜௝ be denoted by ௜ܵ௝(.), ܥ௜௝(.) and ܪ௜௝(.), 
respectively. Depending on the fitting of actual loss data, there are different distributions that 
can be used. Table 2 surveys the distribution to model loss severity and loss frequency from 
the past research. 
According to the past research about operational risk, we can sum up the distributions that 
are suitable to loss severity or loss frequency. The distributions are used to model loss 
severity as follows: lognormal, exponential, Weibull, gamma, Pareto, generalized Pareto 
(GPD). In addition, the distributions are used to model loss severity as follows: Poisson and 
negative binomial. 
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Table 1 
Business Lines and Event Types Matrix 

Event 
types 

 
 

Business  
lines 

Internal 
fraud 

External 
fraud 

Employment
Practices 

Clients, 
Products, 

and 
Business 
Practice 

Damage to 
physical 
assets 

Business 
Disruption 

and 
Systems 
Failures 

Execution, 
Delivery, and 

Process 
Management 

Corporate 
finance 

 ଵ଻ܮ ଵ଺ܮ ଵହܮ ଵସܮ ଵଷܮ ଵଶܮ ଵଵܮ

Trading and 
sales 

 ଶ଻ܮ ଶ଺ܮ ଶହܮ ଶସܮ ଶଷܮ ଶଶܮ ଶଵܮ

Retail 
banking 

 ଷ଻ܮ ଷ଺ܮ ଷହܮ ଷସܮ ଷଷܮ ଷଶܮ ଷଵܮ

Commercial 
banking 

 ସ଻ܮ ସ଺ܮ ସହܮ ସସܮ ସଷܮ ସଶܮ ସଵܮ

Payment and 
settlement 

 ହ଻ܮ ହ଺ܮ ହହܮ ହସܮ ହଷܮ ହଶܮ ହଵܮ

Agency 
services 

 ଺଻ܮ ଺଺ܮ ଺ହܮ ଺ସܮ ଺ଷܮ ଺ଶܮ ଺ଵܮ

Asset 
management 

 ଻଻ܮ ଻଺ܮ ଻ହܮ ଻ସܮ ଻ଷܮ ଻ଶܮ ଻ଵܮ

Retail 
brokerage 

 ଻଼ܮ ଺଼ܮ ହ଼ܮ ସ଼ܮ ଷ଼ܮ ଶ଼ܮ ଵ଼ܮ

Source: BCBS (2004).  
Table 2 

Marginal Distribution Function Setting 
Literature ܨ௜௝(.) ܩ௜௝(.) 
Böcker  and Klüppelberg (2008) generalized Pareto Poisson 
Embrechts and Puccetti (2008) Pareto 

lognormal 
Poisson 

Fantazzini et al. (2008) gamma 
exponential  
Pareto 

negative binomial  
Poisson  

Guégan et al. (2011) lognormal  
generalized Pareto 

Poisson 

Chapelle et al. (2008) Pareto 
Weibull 
lognormal 

negative binomial 
Poisson 

  
After we fit the marginal distribution of severity and frequency, we need to model the 
dependence. Table 3 shows some copula setting of loss severity and loss frequency from 
past studies. 
There are three approaches to implementing a dependent structure in LDA model 
(Chernobai, Rachev, and Fabozzi, 2007; Cope and Antonini, 2008): 

1. The frequency distribution between cells are dependent; 
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2. The severities between cells are dependent; 
3. The aggregated loss between cells is dependent. 

 
Table 3 

Copula Setting of Loss Severity and Loss Frequency 
Literature Copula Model 
Böcker and Klüppelberg (2008) Lévy copula to describe dependence in frequency and 

severity between different cells 
Embrechts and Puccetti (2008) Gumbel copula and Gaussian copula to describe 

dependence in severity distribution 
Fantazzini et al. (2008) Gaussian copula and t copula to describe the 

dependence structure among the losses 
 

Frachot, Roncalli, and Salomon (2004) argues that the dependence considered by the Basel 
Committee is most likely to be the aggregate loss dependence since the form of the 
dependence structure becomes important primarily at the stage when capital charges from 
different groups are to be aggregated. Hence, we concentrate on the discussion of the 
aggregate loss dependence in the rest of this paper. 
Assume that the joint behaviors of total loss ܮ௜௝ within cell (i, j) can be described by Gaussian 
factor copulas that include Gaussian copulas and t copulas (Asmussen and Glynn, 2007). 
As suggested by Asmussen and Glynn (2007), copulas provide a possible approach for 
modeling multivariate distributions in which one has a well-defined idea of the marginal 
distributions but a vague one on the dependence structure.  
There are several copulas that have been used in past research, including Gaussian copulas 
and t copulas, Gumbel copula, Lévy copula, to model the dependence structures of ܮ௜௝. In 
addition to the above copula settings, we can use factor copula models to fit the dependence. 
It is clear that ܪ௜௝ depends on ܥ௜௝ and ௜ܵ௝. The function form of ܥ௜௝ and ௜ܵ௝ can be estimated 
from data and are assumed to be given. If the fitted distributions of ܥ௜௝ and ௜ܵ௝ are commonly 
used distributions, then it is likely that the distributions of ܮ௜௝ are also known. If ܪ௜௝ is 
unknown, we can generate independent empirical distributions of ܮ௜௝ first. When the 
dependence structure can be described by Gaussian factor copulas, we may express ܮ௜௝ = )௜௝ିଵ(Φܪ ௜ܺ௝)) 
where: Φ(.) is the CDF of the standard Gaussian random variable and ௜ܺ௝ are the latent 
variables used to model the joint distributions of ܮ௜௝. The dependence among ௜ܺ௝ is induced 
through common factors ܯ௕ and ܯ௘ as follows: 

௜ܺ௝ = ௕ܯܽ + ௘ܯܾ + ඥ1 െ ܽଶ െ ܾଶܼ௜௝ 
where: ܯ௕, ܯ௘, and ܼ௜௝ are independent standard Gaussian random variables and a and b 
denote constant factor loadings. The common factor ܯ௕ represents the common factor within 
a business line, while ܯ௘ represents the common factor within an event type. On the other 
hand, ܼ௜௝ are specific factors pertaining to each risk cell. 
We can also model the dependence structure via ݐ௩ factor copulas. In particular, ܮ௜௝ = )௩ݐ)௜௝ିଵܪ ௜ܺ௝)) 
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where: ݐ௩(.) is the CDF of the t distributed random variable with v degrees of freedom. The 
t-copula is more powerful in terms of capturing tail dependence (Klugman et al., 2012). The 
dependence among ௜ܺ is induced through common factors ܯ௕ and ܯ௘ as follows: 

௜ܺ௝ = ටܴݒ ௕ܯܽ) + ௘ܯܾ + ඥ1 െ ܽଶ െ ܾଶܼ௜௝) 
where: ܴ is an independent Chi-square random variable with ݒ degrees of freedom. 

 3. The Proposed Algorithm 
In this paper, we focus on the inverse function of operational VaR that is the probability of 
large portfolio losses (denoted by PPL or ( )P L y ). PPL is easier to check the computation 
efficiency than the original measure. Without loss of generality, we assume the dependent 
structure follows the one-factor Gaussian copula model; then, a crude Monte Carlo (CMC) 
procedure for estimating the PLL can be easily implemented as follows: 
Algorithm 1. The CMC Algorithm for PLL 

 Draw independent r.v. ௜ܰ௝ from ܥ(∙), where ܥ(∙) is a selected frequency 
distribution. 

 Draw independent r.v. ܺ ௜௝௞ from ܵ (∙), where ܵ (∙) is a selected severity distribution. 
 Compound ܰ and ܺ to a mixture distribution ܪ(∙), where ܪ(∙) is a hybrid 

distribution of ܥ(∙) and ܵ(∙). 
 Generate independent r.v.: ܯ~Φ(∙) and ܼ௜௝~Φ(∙), where Φ(∙) is the CDF of 

Gaussian distribution. 
 ⟹ ௜ܺ௝ = ܯߩ + ඥ1 െ  .is given ߩ ଶܼ௜௝, whereߩ
 ⟹ ௜௝ܮ = )ଵ൫Φିܪ ௜ܺ௝)൯. 
 Compute ܮ = ∑ ∑ ௜௝௝௜ܮ  

 Repeat the above procedure K times, and then we can calculate the ܲ(ܮ ൐ ܾ) =ଵ௄ ∑ ૚൛௅ೖவ௕ൟ௄௞ୀଵ  where ܾ is given. 
Algorithm 1 provides simple point estimates for PLL, denoted by ߙො୔୐୐ = ෍ܭ1 ௉௅௅௞௄௞ୀଵߙ = ෍ܭ1 ૚൛௅ೖவ௕ൟ௄௞ୀଵ  

and its associated standard errors is ݁ݏ(ߙො୔୐୐) = ඨܭ√1 ܭ1 െ 1෍ ୔୐୐௞ߙ) െ ො୔୐୐)ଶ௄௞ୀଵߙ , 
K is the total number of simulation trials. 
Although the CMC is suitable for solving complex problems, it is hard to efficiently estimate 
the rare-event quantities. This is because the CMC gives equal weight to all replications, 
while the Monte Carlo method hardly samples in the very low probability regions. A 
refinement of this method, known as importance sampling (IS), involves drawing the points 
randomly, but drawing more frequently where the integrand is large. However, Asmussen 
and Glynn (2007) argue that most IS algorithms are inefficient in high-dimensional spaces 
because the variance of the likelihood ratio easily blows up. Therefore, we scale down the 
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multi-dimensional rare event to a one-dimensional question by utilizing a two-step approach. 
First, we must establish a method of selecting an appropriate IS distribution from among the 
set of possible measures to ensure default events of interest on every generated path. 
Second, we must ensure that the gain in variance reduction of the proposed algorithm always 
outweighs that of a CMC. 
Let ݂(∙) be the density function of L, and suppose that ݃(∙) is also a density function, such 
that ݃(∙) ൐ 0. Let ܴܮ(∙) = ݂(∙)/݃(∙), which is the likelihood ratio, and ܮ௞ be independent 
values sampled ݃(∙). Then, it is well known that ߚመ୔୐୐ = ෍ܭ1 ૚൛௅ೖவ௕ൟ ∙ ௄௞ୀଵ(௞ܮ)ܴܮ = ෍ܭ1 ૚൛ெೖழି௠∗ൟ ∙ ௄௞ୀଵ(௞ܮ)ܴܮ  

is an alternative estimator for the PLL. 
The point estimator ߚመ୔୐୐ is known as an IS estimator (Glynn and Iglehart 1989; Asmussen 
and Glynn 2007), and its variance depends on the choice of the IS density ݃(∙). To select an 
appropriate ݃ (∙), we derive a simple alternative characterization for the operational risk event ሼܮ ൐ ܾሽ. 

Proposition 1. The loss event ሼܮ ൐ ܾሽ is equivalent to the event ሼܯ ൑ െ݉∗ ሽ, where ݉∗  is 
the root of the ܮ െ ܾ = 0; that is, conditional on ௜ܺ௝ and ܼ௜௝, the event of interest can be 
determined solely by the common factor ܯ. 

Proof. 

Let us consider the event of interest ሼܮ ൐ ܾሽ. Given ௜ܺ௝ and ܼ௜௝, ૚ሼ௅வ௕ሽ = 1 ⇔ ૚൛∑ ∑ ௅೔ೕೕ೔ வ௕ൟ = 1 ⇔ ૚ቄ∑ ∑ ுషభቀ஍൫௑೔ೕ൯ቁೕ೔ வ௕ቅ = 1 ⇔ ૚൛∑ ∑ ுషభ൫஍(௑೔ೕ)൯ೕ೔ வ௕ൟ = 1 ⇔ ૚ቄ∑ ∑ ுషభቀ஍(ఘெାඥଵିఘమ௓೔ೕ)ቁೕ೔ வ௕ቅ = 1 ⇔ ૚
۔ۖەۖ
∑ۓ ∑ ுషభۈۉ

஍൮ቆ೉೔ೕషටభషഐమೋ೔ೕቇഐۇ ൲ۋی
ೕ೔ۊ வ௕ۙۖۘ

ۖۗ = 1 

⇔ ૚൛ெஸି௠∗ ൟ = 1 

 

By finding the root of ݉∗  such that ∑ ∑ ଵିܪ ൬Φ ቀ൫ ௜ܺ௝ െ ඥ1 െ ቁ൰௝௜ߩ/ଶܼ௜௝൯ߩ = ܾ, we see that ሼܮ ൐ ܾሽ if and only if ሼܯ ൑ െ݉∗ ሽ. 
Proposition 1 guides us to skillfully choose the probability measure for ܯ. It provides a simple 
way to ensure that, for every path generated, default events (L > y) always happen. With this 
specific truncated IS density, Algorithm 2 presents the novel IS (NIS) procedure for 
estimating the PLL. 
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Algorithm 2. The NIS Algorithm for PLL 

• Draw independent r.v. ௜ܰ௝ from ܥ(∙), where ܥ(∙) is a selected frequency 
distribution. 

• Draw independent r.v. ܺ ௜௝௞ from ܵ (∙), where ܵ(∙) is a selected severity distribution. 
• Compound ܰ and ܺ to a mixture distribution ܪ(∙), where ܪ(∙) is a hybrid 

distribution of ܥ(∙) and ܵ(∙). 
• Generate independent r.v.: ௜ܺ௝~Φ(∙) and ܼ௜௝~Φ(∙), where Φ(∙) is the CDF of 

Gaussian distribution. 
 ⟹ ௜ܺ௝ = ܯߩ + ඥ1 െ  .is given ߩ ଶܼ௜௝, whereߩ
 ⟹ ௜௝ܮ = )ଵ൫Φିܪ ௜ܺ௝)൯. 
• Compute ܮ = ∑ ∑ ௜௝௝௜ܮ  

Repeat the above procedure K times, and then we can calculate the ܲ(ܮ ൐ ܾ) =ଵ௄ ∑ ૚൛௅ೖவ௕ൟ௄௞ୀଵ  where ܾ is given. 

 4. Numerical Experiments 
We define the performance evaluation criterions of the estimators first. Then, we describe 
the details of the numerical examples and compare the simulation results for CMC and our 
method. 

4.1. Performance Evaluation Criterions 
Variance ratio (V.R.) is a common standard to measure computational efficiency (Asmussen 
and Glynn 2007). V.R. is defined by the ratio of the variance of the CMC estimator over that 
of our estimator, i.e. V. R.= ௩௔௥ి౉ి௩௔௥ొ౅౏ ,

 
where: ݎܽݒ୑ୣ୲୦୭ୢ is the variance of a specific method (CMC or NIS). It is clear that if V. R. is 
greater (or less) than one, then the computation efficiency of the NIS is higher (or lower). 
In addition to using the V.R. measure, we also utilize the concept of bounded relative error 
(BRE) to test the robustness of our estimator. Let us consider an unbiased estimator p̂  of p 

taken from a sample having size K. BRE states that the standard error of p̂divided by p is 
bounded as p tends to 0 (for a fixed sample size K).  
Definition 1. Bounded Relative Error (BRE) 
Let ߪ௄ଶ denote the variance of ̂݌ for a fixed sample size K. The coefficient of variation (C.V.) 
is defined by C. V.= ఙ௣಼ . 

We say that the estimator has the property of bounded relative error if C. V. remains 
bounded as ݌ → 0. 

4.2. Numerical Setting and Results 
We adopted the numerical examples from Fantazzini et al. (2008). These examples are used 
to compare the computation efficency and robustness between the CMC estimator and our 
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estimator. Exponential, Gamma, Pareto, and lognormal distributions are used to fit the loss 
severity. Poisson, negative binomial distributions are used to fit the loss frequency. We 
model the dependency structure by one-factor Gaussian copula. We choose two 
representative values for factor loading (ߩ) settings (0.5 = ߩ means the moderately correlated 
condition; 0.9 = ߩ represents the highly-correlated condition). Furthermore, we examine two 
confidence levels (99% is the typical confidence level for regular statistical tests; 99.9% is 
the standard set by the international regulation BCBS 2006). The number of replications for 
CMC and NIS are 1,000,000 and 1,000, respectively. These numbers of replications are 
sufficient to make these estimators with the desired accuracy. These numerical examples 
represent a wide range of possible loss distributions of operational risk based on real loss 
data. The models of loss distributions can fit real loss data of each business line/event type 
well, and the dependence structure among business line/event type can be very flexible by 
using various copula models. Therefore, these numerical examples can cover almost all 
situations facing financial institutions. 
Table 4 presents the PLL estimation results. The values of V.R. range from 4.3 to 603.4 
under the different marginal distributions of business/event type and different settings of 
dependence structure. The values of V.R. are the speedup of our method compared to crude 
Monte Carlo simulation (CMC). That is, the values of V.R. represent the great computational 
cost saving of financial institutions. To be more precise, the computational cost is only 
1/603.4 to 1/4.3 of that of CMC.  
These results also show that our method is more efficient than CMC in all scenarios, 
especially in highly correlated conditions and a high confidence level. In addition, the pattern 
of V.R. results is irrelevant to the combinations of frequency distribution and severity 
distribution. That means our method is flexible in arbitrary combination of frequency 
distribution and severity distribution.  
From Table 4, the values of C.V.NIS grow slowly when the confidence level goes to 1 (or loss 
probability goes to zero). Such results indicate the estimator of NIS is robust and possesses 
the property of bounded relative error, which is the best class of estimators in rare event 
simulation; see Asmussen and Glynn (2007) for more details. In summary, numerical results 
show that our method is efficient, flexible, and robust for computing the operational risk, 
especially in highly correlated conditions and high confidence level.  

Table 4 
Simulation Results between the CMC and the NIS Method 

Frequency 
Dist. 

Severity 
Dist. 

 ߙ-1 ߩ
(%) 

b ̂݌ ̂݌୒୍ୗ se seIS V.R. C. V.େ୑େ C. V.୒୍ୗ 
Poisson Gamma 0.5 99 5.6E+06 1.000% 0.993% 0.00010 0.00104 9.1 9.9 3.3 
Poisson Gamma 0.5 99.9 9.6E+06 0.100% 0.099% 0.00003 0.00017 35.4 31.6 5.4 
Poisson Gamma 0.9 99 7.7E+06 1.000% 0.992% 0.00010 0.00026 150.8 9.9 0.8 
Poisson Gamma 0.9 99.9 1.4E+07 0.100% 0.102% 0.00003 0.00004 603.4 31.6 1.3 
Poisson Pareto 0.5 99 2.5E+07 1.000% 0.987% 0.00010 0.00111 8.1 9.9 3.5 
Poisson Pareto 0.5 99.9 8.2E+07 0.100% 0.097% 0.00003 0.00009 113.9 31.6 3.1 
Poisson Pareto 0.9 99 3.3E+07 1.000% 1.008% 0.00010 0.00030 113.8 9.9 0.9 
Poisson Pareto 0.9 99.9 1.1E+08 0.100% 0.100% 0.00003 0.00004 599.7 31.6 1.3 
NB Gamma 0.5 99 5.6E+06 1.000% 0.998% 0.00010 0.00113 7.7 9.9 3.6 
NB Gamma 0.5 99.9 9.7E+06 0.100% 0.101% 0.00003 0.00011 80.4 31.6 3.5 
NB Gamma 0.9 99 7.9E+06 1.000% 0.997% 0.00010 0.00026 144.7 9.9 0.8 
NB Gamma 0.9 99.9 1.4E+07 0.100% 0.103% 0.00003 0.00004 562.3 31.6 1.3 
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Frequency 
Dist. 

Severity 
Dist. 

 ߙ-1 ߩ
(%) 

b ̂݌ ̂݌୒୍ୗ se seIS V.R. C. V.େ୑େ C. V.୒୍ୗ 
NB Pareto 0.5 99 4.7E+07 1.000% 0.986% 0.00010 0.00152 4.3 9.9 4.9 
NB Pareto 0.5 99.9 1.3E+08 0.100% 0.099% 0.00003 0.00016 39.0 31.6 5.1 
NB Pareto 0.9 99 5.3E+07 1.000% 1.003% 0.00010 0.00040 61.4 9.9 1.3 
NB Pareto 0.9 99.9 1.5E+08 0.100% 0.099% 0.00003 0.00006 310.4 31.6 1.8 

Note: NB is the negative binomial distribution; ߩ is the factor loading of the one-factor Gaussian copula model; 
b is the threshold losses; (1 െ  .is the confidence level; S.E. is the standard error of the estimator; C.V %(ߙ
is the coefficient of variation; V.R. is the variance ratio. 

 5. Conclusions 
The empirical distribution of the aggregate operational loss L can be estimated by repeated 
sampling from the stochastic model through a crude Monte Carlo procedure. However, the 
converge rate of the Monte Carlo method is ݊(ିଵ ଶ⁄ ), which is slow if each replication is 
expensive to generate. Therefore, the technique of variance reduction can be used to 
accelerate the Monte Carlo method. Variance reduction typically involves a fair amount of 
both theoretical study of the problem in question and additional programming effort 
(Asmussen and Glynn 2007). 
Since the Basel accord requires that the financial institutions quantify their operational risk 
measures with a high confidence level, the estimation problem becomes a rare event 
simulation problem and makes the computation much harder. To overcome the 
computational difficulties and complexity, this study develops a novel importance sampling 
(NIS) method to estimate the operational risk exposure. The NIS has a conceptually 
convincing mechanism feature for implementation. In addition, NIS is feasible for any factor 
copula model that is constructed by arbitrary numbers of mutually independent factors. The 
columns of V.R. of Table 4 show that the NIS method can estimate operational risk fast with 
desired accuracy. Furthermore, the columns of C.V. reveal that the NIS estimator has 
bounded relative errors. In summary, various numerical results show that our NIS is an 
efficient, flexible, and robust approach for estimating operational risk, especially in highly 
correlated conditions and a high confidence level. More importantly, our method can serve 
as a useful tool of financial institutions to meet the international regulatory standard of 
quantifying operational risk. 
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