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ABSTRACT 

Unmanned Aircraft Systems (UASs) can collect high resolution and high 
quality images for local mapping.  Before the UAS images can be used for 
accurate mapping tasks in local areas, the precise position and orientation of the 
UAS images should first be determined.  Direct georeferencing by POS 
(Position and Orientation System), a combination of GPS (Global Positioning 
System) and IMU (Inertial Measurement Unit), is the best choice; however, most 
commercial UASs cannot carry highly accurate IMUs because of the limited 
payload.  Therefore, this study will discuss the accuracy of indirect 
georeferencing for UAS images.  One approach for indirect georeferencing is 
general aerial triangulation (AT) by using well-distributed ground control points 
(GCPs).  The other one is GPS-supported AT with GPS observations as 
airborne controls.  In this paper, the camera is calibrated by the field method, 
and the accuracy of these two approaches for indirect georeferencing is 
presented.  Based on 20 horizontal check points and 29 vertical check points, 
this study shows the stereoscopic viewing accuracy of general AT for UAS 
images, collected by Canon EOS 5D Mark II camera with 24 mm F/1.4L II USM 
lens at a flying height of 550 m, is about 0.26 m (ca. 1.73 pixels) in planimetry 
and 0.27 m (ca. 1.80 pixels) in height.  GPS-supported AT produced the 
stereoscopic viewing accuracy about 0.44 m (ca. 2.93 pixels) in planimetry and 
0.55 m (ca. 3.67 pixels) in height.  The test results show that the accuracy of 
these two indirect georeferencing approaches of fixed-wing UAS images can be 
used for updating local 1/5,000 topographic maps in Taiwan. 

UAS 影像精確間接地理定位精度研究 

邱式鴻 

關鍵詞：虛擬基站即時動態定位、光束法平差、空中三角測量、無人飛行載具系統。 

摘  要 

無人飛行載具系統 UAS 可以蒐集高解析度和高品質的影像提供局部製圖。以 UAS 影

像用來局部區域製圖時，UAS 影像必須先經精確定位定向。利用衛星定位系統 GPS 結合

慣性導航單元 IMU 的定位定向 POS 系統執行直接地理定位是最佳的方法，然而受限於酬

載能力，一般民間 UAS 無法酬載高精度的 IMU 執行直接定理定位。因此，本研究將討論

UAS 影像的間接地理定位精度。間接地理定位的第一個處理方法是完全使用分布良好的地
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面控制點，而不使用 GPS 觀測量做為空中控制的一般的空中三角測量平差 (簡稱空三平差)；

另一個處理方法是則是使用 GPS 觀測量做為空中控制的 GPS 輔助空三平差。本文中，以野

外率定場執行相機率定，並提出兩種 UAS 影像間接地理定位的精度。根據 20 個平面和 29

個高程檢核點檢核成果顯示，用 Canon EOS 5D Mark II 搭配 24 mm F/1.4L II USM 鏡頭於航

高 550 公尺所蒐集的 UAS 影像，執行一般空三平差後的立體製圖平面精度 0.26 公尺 (約

1.73 像元)、高程 0.27 公尺 (約 1.80 像元)；而執行 GPS 輔助 UAS 影像空三平差後的立體

製圖平面精度則為 0.44 公尺 (約 2.93 像元)、而高程精度為 0.55 公尺 (約 3.67 像元)。結果

顯示兩種 UAS 影像間接地理定精度均能滿足台灣地區 1/5,000 地形圖之製圖精度要求。 
 
 

1.  INTRODUCTION 

The UAV is an acronym for Unmanned Aerial Vehicle, 
which is an aircraft with no pilot on board.  UAVs can be 
remote controlled aircraft (e.g. flown by a pilot at a ground 
control station) or can fly autonomously based on pre- 
programmed flight plans or more complex dynamic automation 
systems.  The acronym UAV has been expanded in some 
cases to UAVS (Unmanned Aircraft Vehicle System).  The 
FAA (Federal Aviation Administration) has adopted the 
acronym UAS (Unmanned Aircraft System) to reflect the fact 
that these complex systems include ground stations and other 
elements besides the actual air vehicles [1].  Nowadays, 
Unmanned aerial systems (UASs) are commonly used in 
military applications for recognition, environmental 
observation, maritime surveillance, and mine removal 
activities [2].   

Compared with regular photogrammetric applications, 
UASs are a novel platform for carrying sensors and flying at 
required heights based on mission goals.  UASs can carry 
optical sensors, thermal sensors, multispectral sensors and 
Lidar sensors [3,4].  Compared with traditional aerial vehicles, 
as UASs can fly at low altitude and on cloudy days to collect 
high resolution and high quality images, UAS technology for 
low altitude photogrammetric mapping can be further 
developed for the purpose of updating topographic products 
over specific local area [5], including orthoimages [6], 
topographic maps [7] and digital elevation models [8].   

In order to achieve accurate photogrammetric mapping 
requirement, no matter traditional aerial vehicle or UAS was 
employed, aerial images should firstly be positioned and 
oriented.  Normally two approaches including direct and 
indirect georeferencing can be adopted.  Direct 
georeferencing employs GPS/IMU (Inertial Measurement Unit) 
instruments, i.e. POS (Position and Orientation System) 
systems, to determine the exterior orientation parameters of 
UAS images by post-processing mode.  Conversely, if the 
position and orientation of images are determined by 
performing aerial triangulation (AT) by using ground control 
points (GCPs) or airborne controls [12], it is called indirect 
georeferencing methodology. 

Although some studies have focused on direct 
georeferencing of UAS images [10,11], it is realized that most 
commercial UASs cannot carry highly accurate IMUs due to 
the limited payload.  Therefore, indirect georeferencing 
method becomes the main approach for accurate mapping tasks 
using UAS images. 

To carry out this indirect georeferencing approach, it is 
essential to survey the appropriate number of control points, 
including GCPs and airborne controls from GPS observations.  
Then the corresponding image coordinates of GCPs and the 
imaging points of the same object points in the overlap areas 
between adjacent aerial images, i.e. tie points, should be 
measured manually or automatically.  Together with the 
accurate camera parameters, they are used simultaneously to 
determine the exterior parameters of UAS images and the 3-D 
coordinates of tie points by using the least squares method 
based on collinearity equations [12], which is known as the 
bundle adjustment AT.  Two approaches can be adopted for 
bundle adjustment AT.  One approach is called general AT 
without GPS observations as airborne controls.  The other one 
is called GPS-supported AT with GPS observations as airborne 
controls.  When performing GPS-supported AT, GPS 
observations are introduced in a combined block adjustment as 
eccentric observations [13] of the positions of the camera 
projective center.  With a small number of GCPs for geodetic 
control, GPS-supported AT can substantially reduce the 
demands on GCPs based on the previous studies on AT [14-16].  
Table 1 shows the pros and cons of general AT, GPS- 
supported AT and direct georeferencing of UAS images. 

Table 1 Pros and cons of the general AT, GPS-supported AT 
and direct georeferencing of UAS images 

Items 
Indirect 

georeferencing:

general AT 

Indirect 
georeferencing: 
GPS-supported 

AT 

direct 
georeferencing

Ground 
controls

Well-distributed 
ground control 

points 

At least one 
ground control 
points in each 

corner of block 

Unnecessary in 
theory 

Additional 
devices on 

UAS 
No 

Yes, 
double-frequency 

GPS receiver 

Yes, POS (GPS 
IMU) system

Multi-path 
and 

interference
No Yes Yes 

Costs for 
ground 
survey 

expensive Inexpensive No 

Time-saving No Yes Yes 
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Therefore, this study will present our tests related to the 
accuracy of indirect georeferencing for UAS images, in which 
general bundle adjustment AT and GPS-supported bundle 
adjustment AT is conducted respectively.  Precisely measured 
ground points are used as check points for evaluating the 
accuracy of these two indirect georeferencing approaches.  In 
addition to the root mean square errors (RMSEs) of ground 
check points, the accuracy of stereo viewing will also be 
applied to examine the potential of stereo mapping for 1/5,000 
maps using these two indirect georeferencing approaches.  
Section II presents the theories and methods related to the 
indirect georeferencing approach, including camera calibration 
and AT.  Section III describes the tests and offers the 
discussion.  Section IV offers conclusions. 

2.  THEORIES AND METHODS OF 
INDIRECT GEOREFERENCING 

METHODOLOGY 
2.1  Camera Calibration 

Because of commercial UAS payload limitations, only 
non-metric cameras can be installed.  Non-metric cameras use 
low-cost lenses and provide autofocus functions.  To meet 
accurate indirect georeferencing demands, non-metric cameras 
should first be calibrated.  When the camera is calibrated, the 
autofocus function should be disabled in order to fix the focus 
length.  Otherwise, the UAS images will be taken by different 
imaging principal distance and it will make the camera 
calibration difficult or failed.  Additionally, the calibration of 
the lens of a camera for aerial photogrammetric application is 
required at infinity focus, thus, the field method [12] is suitable 
to be adopted for camera calibration.  The calibration 
principle is basically an extension of the mathematical bundle 
adjustment model, called self-calibration bundle adjustment.  
The basic collinearity equation is augmented by additional 

terms, x and y, in Eq. (1) to formulate the basic camera 

calibration equation: 
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 xa,ya : The photo coordinates of point A 
 x0,y0 : The principal point coordinates 

 x, y : Additional terms for the point photo 

coordinates 
 f : The focal length of the lens 
 XA, YA, ZA : The object space coordinates of point A 
 XL, YL, ZL : The object space coordinates of the exposure 

station 
 mij  : The elements of rotation matrix formed by 

rotation angles 

The x and y terms consist of various additional 

parameters based on different models.  This study will use 

SOCKET SET Orientation Management (SOCKET SET 
ORIMA) photogrammetric software for camera calibration, 
which adopts the Brown physical model [17].  Equation (2) 
denotes the Brown mathematical model that was originally 
developed for frame camera calibration.   
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  (2) 

 x, y : The correction of image point coordinate 

observations 
 x0, y0 : The principal point coordinates 
 c : The calibrated focal length 
 r, r0 : The radial distances from the measured point 

to the image center and the principal point, 
respectively 

 a1, a2, a3 : The radial lens distortion polynomial 
coefficients 

 b1, b2 : The affinity and non-orthogonality of the 
image system 

 c1, c2, c3 : The non-flatness of the image plane 
 d1, …, d10 : Regular and irregular film deformations 

As the lens distortion mainly results from the radial 
distortion [18], the set of radial lens distortion parameters   
(a1, a2, a3) listed in Eq. (2), together with the calibrated focal 
length (c), principal point coordinates (x0, y0), are introduced in 
the camera calibration task to be determined in this study. 

When performing camera calibration using the field 
method, two equations combined with Eqs. (1) and (2) can be 
formed for each pair of image points, in which unknowns are 
all exterior parameters of images, calibrated camera parameters, 
and ground 3-D coordinates of terrain tie points.  With proper 
GCP configuration, camera calibration solutions are 
determined based on the least squares method after the related 
weights of the image point observations and GCPs are given.  
Because photogrammetric software, SOCKET SET ORIMA, is 
used for camera calibration, automatic and manual tie point 
measurement and blunder detection is also performed by using 
this photogrammetric software.  Wolf and Dewitt [12] 
described the adjustment principle in more detailed.  The 
RMSEs of ground check points in the E, N and H directions are 
used to verify the quality of camera calibration. 

2.2  Aerial Triangulation (AT) 
To evaluate the performance of indirect georeferencing 

using UAS images, bundle adjustment with and without GPS 
support, that is general AT and the GPS-supported AT, are 
carried out in this study.  For the processing, the SOCKET 
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SET ORIMA photogrammetric software is applied.  The basic 
theory of general AT and the GPS-supported AT is shortly 
described as the following subsections 2.2.1 and 2.2.2. 

2.2.1  General AT 

For general AT using the proper GCP configuration, two 
basic coordinate observation equations for each image point 
based on Eq. (1) can be formed for each ray after the 

systematic error x, y for x, y coordinates are corrected.  

Unknowns are all exterior parameters of images, and the 
ground 3-D coordinates of terrain tie points,  the solutions are 
determined by indirect observation adjustment based on the 
least squares method after the related weights of the image 
point observations and GCPs are given.  The GCPs are 
basically allocated according to the traditional configurations 
for aerial photogrammetry by using the metric camera.  
However, using GPS techniques to collect 3-D GCP control 
information is fast and easy.  Some modification will be made 
in this study.  It means all the GCPs are full controls.  
Meanwhile, natural points, instead of artificial targets, are 
selected as full control points.  Similarly, after finishing 
general AT, the RMSEs of check points in the E, N and H 
directions are used to verify the accuracy of general AT. 

2.2.2  GPS-supported AT 

(1) GPS Observation Equations 

For GPS-supported AT, any GPS observations 
interpolated from an accurate trajectory based on the exposure 
time and GPS recorded time are corresponding to the antenna 
phase center.  The phase center of the antenna and the rear 
nodal point of the aerial camera lens cannot occupy the same 
point in space [19].  For traditional aerial vehicles, this offset 
can be surveyed by terrestrial surveying techniques, such as the 
free station method using the total station instrument [20], by 
using fiducial marks as controls.  This offset, which is based 
on the fiducial coordinate system, is then transformed into the 
offset based on the ground coordinate system [21].  However, 
a charge coupled device (CCD) or complementary metal oxide 
semiconductor (CMOS) sensor used by the non-metric camera 
for recording the image data is not of fiducial marks and is also 
too small to make precise offset surveys by total station 
instrument.  Compared to conventional GPS-supported AT, 
this study should overcome this problem.  Only Hinsken et al. 
[22] used the constant parameters in drift parameters to survey 
the GPS antenna-camera offset and to decrease the influence of 
system errors caused by GPS antenna-camera offset.  
Therefore, GPS antenna-camera offset problems in the sensor 
system can be solved by including drift parameters in the 
bundle adjustment.  Blankenberg [23] also stated that drift 
parameters can be used to solve problems caused by inaccurate 
determination of cycle ambiguity because of cycle slips during 
the kinematic positioning process, and to overcome the 
systematic error caused by inaccurately surveying GPS 
antenna-camera offset.   

Additionally, according to Ackerman [24], a 
photogrammetric camera equipped with a shutter synchronized 
electronic signal should provide accuracy better than 1 ms for 
GPS-supported AT.  In this study, GPS observations will be 

obtained from flying trajectories by interpolation based on 
GPS times and the exposure time of UAS images to support 
AT of UAS images; it is impossible to make the difference 
between the GPS time and imaging exposure time less than   
1 ms for the UAS.  If the time difference is 10 ms, the 
interpolation error is about 0.3 m, based on a UAS speed of 
approximately 100 km/h.  According to Blankenberg [23], 
time shifts and interpolation error can be also eliminated by 
adding drift parameters. 

In addition to the abovementioned advantages, some 
errors can be compensated through drift parameters, such as 
various systematic geodetic data.  The 3-D coordinate system 
for GPS observations is based on the World Geodetic System 
1984 (WGS84), however, the horizontal mapping coordinate 
system is a projection system, such as Taiwan Datum 1997 
(TWD97), and the vertical data mapping system is the Taiwan 
Vertical Datum 2001 (TWVD2001).  The data differences 
between the GPS and mapping system can be transformed by 
fewer GCPs, and drift parameters can compensate for the 
system error caused by this transformation [24]. 

The drift parameters can also be attributed to the 
uncertainties in the a priori corrections (e.g., atmospheric 
refraction) and unmodelled error effects (e.g., satellite orbit 
errors), despite applying various techniques.  During a time 
interval, such as 10 to 15 min, this drift error is approximately 
linear [16].  Therefore, six parameters can be used to model 
these systematic errors: three constant parameters and three 
time-dependent parameters per strip.  That is, including the 
stripwise linear drift parameters allows for compensation of 
these systematic errors.  Six linear unknown parameters per 
strip (three offsets and three drifts) are added to the exposure 
station observation equations to manage the systematic errors 
introduced by the GPS measurements.  In this study, the six 
linear drift parameters per strip will be estimated during bundle 
adjustment AT based on the GPS values from interpolating the 
flying trajectory data collected by the Virtual Base Station 
Real Time Kinematic Positioning (VBS RTK) GPS technique.  
As the horizontal accuracy of the present VBS RTK GPS is 
about 2 cm, and the elevation accuracy is about 5 cm [25]; 
therefore, the interpolated GPS values are treated as 
observations; thus, the GPS observation equation is 
represented by Eq. (3) [22]: 
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4.  CONCLUSIONS 

In this paper, the accuracy of the two approaches for 
indirect georeferencing is presented.  This study shows that 
the accuracy of general AT for UAS images, collected by 
Canon EOS 5D Mark II camera with 24 mm F/1.4L II USM 
lens at a flying height of 550 m, is about 0.23 m (1.53 pixles) 
in planimetry and 0.37 m (2.47 pixels) in height, based on the 
6 check points.  Additionally, a Trimble BD970 GNSS OEM 
is carried on the UAS to collect L1/L2 carrier phase data for 
capturing highly accurate and precise flying trajectories by 
using the VBS RTK GPS technique.  GPS observations are 
then interpolated based on image exposure times as airborne 
controls to support AT of UAS images.  GPS-supported AT 
produced accuracy about 0.23 m (1.53 pixels) in planimetry 
and 0.59 m (3.93 pixels) in height, based on the 6 check points.  
Based on 20 horizontal check points and 29 vertical check 
points, this study shows that the stereoscopic viewing accuracy 
about the results of general AT for UAS images, collected by 
Canon EOS 5D Mark II camera with 24 mm F/1.4L II USM 
lens at a flying height of 550 m, is about 0.26 m (ca. 1.73 
pixels) in planimetry and 0.27 m (ca. 1.80 pixels) in height.  
GPS-supported AT produced the stereoscopic viewing 
accuracy about 0.44 m (ca. 2.93 pixels) in planimetry and  
0.55 m (ca. 3.67 pixels) in height.  In Taiwan, the planimetric 
accuracy requirement for 1/5,000 topographic maps is 1.25 m 
and the vertical accuracy requirement for 1/5,000 topographic 
maps is 1 m in normal terrain [26].  The test results also 
imply the following: 

 1. In this study, non-metric camera is used and calibrated by 
field method.  The test results verify the applicability of 
the calibrated camera parameters.  From the analysis of 
stereo viewing based on 20 horizontal ground check 
points and 29 vertical ground check points, although 
some systematic errors remain, the test results still show 
that the accuracy of these two indirect georeferencing 
approaches of fixed-wing UAS images can be used for 
updating local 1/5,000 topographic maps in Taiwan. 

 2. This study confirms the feasibility of VBS RTK GPS- 
supported AT for UAS images.  The VBS RTK GPS 
technique only requires a GPS double frequency carrier 
receiver to be carried on the UAS for capturing highly 
accurate and precise flying trajectories.  Setting up a 
physical GPS reference base station on site within the 
mapping area is unnecessary, especially in inaccessible 
areas such as mountainous areas; this reduces the ground 
survey demands placed on GCPs, saving mapping costs 
and improving mapping efficiency.   

 3. The non-metric camera installed on the UAS for 
recording the image data is CMOS sensor.  It is not of 
fiducial marks and is also too small to make precise offset 
surveys by total station instrument.  This study verifies 
that the GPS antenna-camera offset problem can be 
overcome by including linear drift parameters in GPS 
observation equations on each strip, while performing 
GPS-supported AT for UAS images.   

 4. Using two cross strips to strengthen block geometry 
decreases the number of GCPs.  Therefore, two cross 
strips with eight GCPs at the corners of the mapping area 
are an appropriate GCP configuration for VBS RTK 
GPS-supported AT for UAS images.  This GCP 
configuration is efficient, especially for inaccessible 
mapping areas. 
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