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Abstract

This paper presents a review of different theoretical approaches to the optimal futures hedge ratios.
These approaches are based on minimum variance, mean-variance, expected utility, mean extended-Gini
coefficient, as well as semivariance. Various ways of estimating these hedge ratios are also discussed,
ranging from simple ordinary least squares to complicated heteroscedastic cointegration methods. Under
martingale and joint-normality conditions, different hedge ratios are the same as the minimum variance
hedge ratio. Otherwise, the optimal hedge ratios based on the different approaches are different and there
is no single optimal hedge ratio that is distinctly superior to the remaining ones.
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1. Introduction

One of the best uses of derivative securities such as futures contracts is in hedging. In the
past, both academicians and practitioners have shown great interest in the issue of hedging with
futures. This is quite evident from the large number of articles written in this area.
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One of the main theoretical issues in hedging involves the determination of the optimal
hedge ratio. However, the optimal hedge ratio depends on the particular objective function to
be optimized. Many different objective functions are currently being used. For example, one
of the most widely-used hedging strategies is based on the minimization of the variance of the
hedged portfolio (e.g., seeEderington, 1979; Johnson, 1960; Myers & Thompson, 1989). This
so-called minimum variance (MV) hedge ratio is simple to understand and estimate. However,
the MV hedge ratio completely ignores the expected return of the hedged portfolio. Therefore,
this strategy is in general inconsistent with the mean-variance framework unless the individuals
are infinitely risk averse or the futures price follows a pure martingale process (i.e., expected
futures price change is zero).

Other strategies that incorporate both the expected return and risk (variance) of the hedged
portfolio have been recently proposed (e.g., seeCecchetti, Cumby, & Figlewski, 1988; Howard
& D’Antonio, 1984; Hsin, Kuo, & Lee, 1994). These strategies are consistent with the mean-
variance framework. However, it can be shown that if the futures price follows a pure martin-
gale process, then the optimal mean-variance hedge ratio will be the same as the MV hedge
ratio.

Another aspect of the mean-variance-based strategies is that even though they are an improve-
ment over the MV strategy, for them to be consistent with the expected utility maximization
principle, either the utility function needs to be quadratic or the returns should be jointly normal.
If neither of these assumptions is valid, then the hedge ratio may not be optimal with respect
to the expected utility maximization principle. Some researchers have solved this problem by
deriving the optimal hedge ratio based on the maximization of the expected utility (e.g., see
Cecchetti et al., 1988; Lence, 1995, 1996). However, this approach requires the use of specific
utility function and specific return distribution.

Attempts have been made to eliminate these specific assumptions regarding the utility func-
tion and return distributions. Some of them involve the minimization of the mean extended-Gini
(MEG) coefficient, which is consistent with the concept of stochastic dominance (e.g., see
Cheung, Kwan, & Yip, 1990; Kolb & Okunev, 1992, 1993; Lien & Luo, 1993a; Lien & Shaffer,
1999; Shalit, 1995). Shalit (1995)shows that if the prices are normally distributed, then the
MEG-based hedge ratio will be the same as the MV hedge ratio.

Recently, hedge ratios based on the generalized semivariance (GSV) or lower partial moments
have been proposed (e.g., seeChen, Lee, & Shrestha, 2001; De Jong, De Roon, & Veld, 1997;
Lien & Tse, 1998, 2000). These hedge ratios are also consistent with the concept of stochastic
dominance. Furthermore, these GSV-based hedge ratios have another attractive feature whereby
they measure portfolio risk by the GSV, which is consistent with the risk perceived by managers,
because of its emphasis on the returns below the target return (seeCrum, Laughhunn, & Payne,
1981; Lien & Tse, 2000). Lien and Tse (1998)show that if the futures and spot returns are
jointly normally distributed and if the futures price follows a pure martingale process, then the
minimum-GSV hedge ratio will be equal to the MV hedge ratio.

Most of the studies mentioned above (exceptLence, 1995, 1996) ignore transaction costs
as well as investments in other securities.Lence (1995, 1996)derives the optimal hedge ratio
where transaction costs and investments in other securities are incorporated in the model. Using
a CARA utility function, Lence finds that under certain circumstances, the optimal hedge ratio
is zero; i.e., the optimal hedging strategy is not to hedge at all.
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In addition to the use of different objective functions in the derivation of the optimal hedge
ratio, previous studies also differ in terms of the dynamic nature of the hedge ratio. For example,
some studies assume that the hedge ratio is constant over time. Consequently, these static
hedge ratios are estimated using unconditional probability distributions (e.g., seeBenet, 1992;
Ederington, 1979; Ghosh, 1993; Howard & D’Antonio, 1984; Kolb & Okunev, 1992, 1993). On
the other hand, several studies allow the hedge ratio to change over time. In some cases, these
dynamic hedge ratios are estimated using conditional distributions associated with models such
as ARCH and GARCH (e.g., seeBaillie & Myers, 1991; Cecchetti et al., 1988; Kroner & Sultan,
1993; Sephton, 1993a). Alternatively, the hedge ratios can be made dynamic by considering a
multi-period model where the hedge ratios are allowed to vary for different periods. This is the
method used byLien and Luo (1993b).

When it comes to estimating the hedge ratios, many different techniques are currently being
employed, ranging from simple to complex ones. For example, some of them use such a sim-
ple method as the ordinary least squares (OLS) technique (e.g., seeBenet, 1992; Ederington,
1979; Malliaris & Urrutia, 1991). However, others use more complex methods such as the
conditional heteroscedastic (ARCH or GARCH) method (e.g., seeBaillie & Myers, 1991;
Cecchetti et al., 1988; Sephton, 1993a), the random coefficient method (e.g., seeGrammatikos
& Saunders, 1983), the cointegration method (e.g., seeChou, Fan, & Lee, 1996; Ghosh,
1993; Lien & Luo, 1993b), or the cointegration-heteroscedastic method (e.g., seeKroner &
Sultan, 1993).

It is quite clear that there are several different ways of deriving and estimating hedge ratios.
In the paper we review these different techniques and approaches and examine their relations.

The paper is divided into five sections. InSection 2alternative theories for deriving the
optimal hedge ratios are reviewed. Various estimation methods are discussed inSection 3.
Section 4presents a discussion on the relationship among lengths of hedging horizon, maturity
of futures contract, data frequency, and hedging effectiveness. Finally, inSection 5we provide
a summary and conclusion.

2. Alternative theories for deriving the optimal hedge ratio

The basic concept of hedging is to combine investments in the spot market and futures
market to form a portfolio that will eliminate (or reduce) fluctuations in its value. Specifi-
cally, consider a portfolio consisting ofCs units of a long spot position andCf units of a
short futures position.1 Let St andFt denote the spot and futures prices at timet, respectively.
Since the futures contracts are used to reduce the fluctuations in spot positions, the result-
ing portfolio is known as the hedged portfolio. The return on the hedged portfolio,Rh, is
given by:

Rh = CsStRs − CfFtRf
CsSt

= Rs − hRf , (1a)

whereh = CfFt/CsSt is the so-called hedge ratio, andRs = (St+1 − St)/St andRf =
(Ft+1 − Ft)/Ft are so-called one-period returns on the spot and futures positions, respectively.
Sometimes, the hedge ratio is discussed in terms of price changes (profits) instead of returns.
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In this case the profit on the hedged portfolio,
VH , and the hedge ratio,H, are respectively
given by:


VH = Cs 
St − Cf 
Ft and H = Cf

Cs
, (1b)

where
St = St+1 − St and
Ft = Ft+1 − Ft.
The main objective of hedging is to choose the optimal hedge ratio (eitherh or H). As

mentioned above, the optimal hedge ratio will depend on a particular objective function to be
optimized. Furthermore, the hedge ratio can be static or dynamic. InSections 2.1 and 2.2, we
will discuss the static hedge ratio and then the dynamic hedge ratio.

It is important to note that in the above setup, the cash position is assumed to be fixed and we
only look for the optimum futures position. Most of the hedging literature assumes that the cash
position is fixed, a setup that is suitable for financial futures. However, when we are dealing
with commodity futures, the initial cash position becomes an important decision variable that
is tied to the production decision. One such setup considered byLence (1995, 1996)will be
discussed inSection 2.3.

2.1. Static case

We consider here that the hedge ratio is static if it remains the same over time. The static
hedge ratios reviewed in this paper can be divided into eight categories, as shown inTable 1.
We will discuss each of them in the paper.

2.1.1. Minimum variance hedge ratio
The most widely-used static hedge ratio is the MV hedge ratio.Johnson (1960)derives this

hedge ratio by minimizing the portfolio risk, where the risk is given by the variance of changes

Table 1
A list of different static hedge ratios

Hedge ratio Objective function

MV hedge ratio Minimize variance ofRh
Optimum mean-variance hedge ratio MaximizeE(Rh)− 1

2AVar(Rh)

Sharpe hedge ratio Maximize
E(Rh)− RF√

Var(Rh)
Maximum expected utility hedge ratio MaximizeE[U(W1)]
Minimum MEG coefficient hedge ratio MinimizeΓv(Rhv)
Optimum mean-MEG hedge ratio MaximizeE[Rh] − Γv(Rhv)
Minimum GSV hedge ratio MinimizeVδ,α(Rh)
Maximum mean-GSV hedge ratio MaximizeE[Rh] − Vδ,α(Rh)

Notes: (1)Rh: return on the hedged portfolio;E(Rh): expected return on the hedged portfolio; Var(Rh): variance of
return on the hedged portfolio;A: risk aversion parameter;RF : return on the risk-free security;E(U(W1)): expected
utility of end-of-period wealth;Γv(Rhv): mean extended-Gini coefficient ofRh; Vδ,α(Rh): generalized semivariance
of Rh. (2) With W1 given byEq. (15), the maximum expected utility hedge ratio includes the hedge ratio considered
by Lence (1995, 1996).
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in the value of the hedged portfolio as follows:

Var(
VH) = C2
s Var(
S)+ C2

f Var(
F )− 2CsCf Cov(
S,
F ).

The MV hedge ratio, in this case, is given by:

H∗
J = Cf

Cs
= Cov(
S,
F )

Var(
F )
. (2a)

Alternatively, if we use definition (1a) and use Var(Rh) to represent the portfolio risk, then
the MV hedge ratio is obtained by minimizing Var(Rh) which is given by:

Var(Rh) = Var(Rs)+ h2 Var(Rf )− 2hCov(Rs, Rf ).

In this case, the MV hedge ratio is given by:

h∗
J = Cov(Rs, Rf )

Var(Rf )
= ρ σs

σf
, (2b)

whereρ is the correlation coefficient betweenRs andRf , andσs andσf are standard deviations
of Rs andRf , respectively.

The attractive features of the MV hedge ratio are that it is easy to understand and simple
to compute. However, in general the MV hedge ratio is not consistent with the mean-variance
framework since it ignores the expected return on the hedged portfolio. For the MV hedge ratio
to be consistent with the mean-variance framework, either the investors need to be infinitely
risk averse or the expected return on the futures contract needs to be zero.

2.1.2. Optimum mean-variance hedge ratio
Various studies have incorporated both risk and return in the derivation of the hedge ratio.

For example,Hsin et al. (1994)derive the optimal hedge ratio that maximizes the following
utility function:

max
Cf
V(E(Rh), σ;A) = E(Rh)− 0.5Aσ2

h, (3)

whereA represents the risk aversion parameter. It is clear that this utility function incorporates
both risk and return. Therefore, the hedge ratio based on this utility function would be consistent
with the mean-variance framework. The optimal number of futures contract and the optimal
hedge ratio are respectively given by:

h2 = −C
∗
fF

CsS
= −

[
E(Rf )

Aσ2
f

− ρ σs
σf

]
. (4)

One problem associated with this type of hedge ratio is that in order to derive the optimum
hedge ratio, we need to know the individual’s risk aversion parameter. Furthermore, different
individuals will choose different optimal hedge ratios, depending on the values of their risk
aversion parameter.

Since the MV hedge ratio is easy to understand and simple to compute, it will be interesting
and useful to know under what condition the above hedge ratio would be the same as the
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MV hedge ratio. It can be seen fromEqs. (2b) and (4)that if A → ∞ or E(Rf ) = 0,
thenh2 would be equal to the MV hedge ratioh∗

J . The first condition is simply a restatement
of the infinitely risk-averse individuals. However, the second condition does not impose any
condition on the risk averseness, and this is important. It implies that even if the individuals are
not infinitely risk averse, the MV hedge ratio would be the same as the optimal mean-variance
hedge ratio if the expected return on the futures contract is zero (i.e., futures prices follow a
simple martingale process). Therefore, if futures prices follow a simple martingale process,
then we do not need to know the risk aversion parameter of the investor to find the optimal
hedge ratio.

2.1.3. Sharpe hedge ratio
Another way of incorporating the portfolio return in the hedging strategy is to use the

risk-return tradeoff (Sharpe measure) criteria.Howard and D’Antonio (1984)consider the
optimal level of futures contracts by maximizing the ratio of the portfolio’s excess return to its
volatility:

max
Cf
θ = E(Rh)− RF

σh
, (5)

whereσ2
h = Var(Rh) and RF represents the risk-free interest rate. In this case the optimal

number of futures positions,C∗
f , is given by:

C∗
f = −Cs (S/F )(σs/σf )[(σs/σf )(E(Rf )/(E(Rs)− RF))− ρ]

[1 − (σs/σf )(E(Rf )ρ/(E(Rs)− RF))] . (6)

From the optimal futures position, we can obtain the following optimal hedge ratio:

h3 = −(σs/σf )[(σs/σf )(E(Rf )/(E(Rs)− RF))− ρ]

[1 − (σs/σf )(E(Rf )ρ/(E(Rs)− RF))] . (7)

Again, if E(Rf ) = 0, thenh3 reduces to:

h3 = σs

σf
ρ, (8)

which is the same as the MV hedge ratioh∗
J .

As pointed out byChen et al. (2001), the Sharpe ratio is a highly non-linear function of
the hedge ratio. Therefore, it is possible thatEq. (7), which is derived by equating the first
derivative to zero, may lead to the hedge ratio that would minimize, instead of maximizing, the
Sharpe ratio. This would be true if the second derivative of the Sharpe ratio with respect to the
hedge ratio is positive instead of negative. Furthermore, it is possible that the optimal hedge
ratio may be undefined as in the case encountered byChen et al. (2001), where the Sharpe ratio
monotonically increases with the hedge ratio.

2.1.4. Maximum expected utility hedge ratio
So far we have discussed the hedge ratios that incorporate only risk as well as the ones

that incorporate both risk and return. The methods, which incorporate both the expected return
and risk in the derivation of the optimal hedge ratio, are consistent with the mean-variance
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framework. However, these methods may not be consistent with the expected utility maximiza-
tion principle unless either the utility function is quadratic or the returns are jointly normally
distributed. Therefore, in order to make the hedge ratio consistent with the expected utility
maximization principle, we need to derive the hedge ratio that maximizes the expected utility.
However, in order to maximize the expected utility we need to assume a specific utility function.
For example,Cecchetti et al. (1988)derive the hedge ratio that maximizes the expected utility
where the utility function is assumed to be the logarithm of terminal wealth. Specifically, they
derive the optimal hedge ratio that maximizes the following expected utility function:∫

Rs

∫
Rf

log[1 + Rs − hRf ]f(Rs, Rf )dRs dRf ,

where the density functionf(Rs, Rf ) is assumed to be bivariate normal. A third-order linear
bivariate ARCH model is used to get the conditional variance and covariance matrix, and a
numerical procedure is used to maximize the objective function with respect to the hedge ratio.2

2.1.5. Minimum mean extended-Gini coefficient hedge ratio
This approach of deriving the optimal hedge ratio is consistent with the concept of stochastic

dominance and involves the use of the MEG coefficient.Cheung et al. (1990), Kolb and Okunev
(1992), Lien and Luo (1993a), Shalit (1995), andLien and Shaffer (1999)all consider this
approach. It minimizes the MEG coefficientΓv(Rh) defined as follows:

Γv(Rh) = −vCov(Rh, (1 −G(Rh))v−1), (9)

whereG is the cumulative probability distribution andv is the risk aversion parameter. Note
that 0≤ v < 1 implies risk seekers,v = 1 implies risk-neutral investors, andv > 1 implies
risk-averse investors.Shalit (1995)has shown that if the futures and spot returns are jointly
normally distributed, then the minimum-MEG hedge ratio would be the same as the MV hedge
ratio.

2.1.6. Optimum mean-MEG hedge ratio
Instead of minimizing the MEG coefficient,Kolb and Okunev (1993)alternatively consider

maximizing the utility function defined as follows:

U(Rh) = E(Rh)− Γv(Rh). (10)

The hedge ratio based on the utility function defined byEq. (10)is denoted as the M-MEG
hedge ratio. The difference between the MEG and M-MEG hedge ratios is that the MEG hedge
ratio ignores the expected return on the hedged portfolio. Again, if the futures price follows
a martingale process (i.e.,E(Rf ) = 0), then the MEG hedge ratio would be the same as the
M-MEG hedge ratio.

2.1.7. Minimum generalized semivariance hedge ratio
In recent years a new approach for determining the hedge ratio has been suggested (seeChen

et al., 2001; De Jong et al., 1997; Lien & Tse, 1998, 2000). This new approach is based on
the relationship between the GSV and expected utility as discussed byFishburn (1977)and
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Bawa (1978). In this case the optimal hedge ratio is obtained by minimizing the GSV given
below:

Vδ,α(Rh) =
∫ δ

−∞
(δ− Rh)α dG(Rh), α > 0, (11)

whereG(Rh) is the probability distribution function of the return on the hedged portfolioRh.
The parametersδ andα (which are both real numbers) represent the target return and risk
aversion, respectively. The risk is defined in such a way that the investors consider only the
returns below the target return (δ) to be risky. It can be shown (seeFishburn, 1977) thatα < 1
represents a risk-seeking investor andα > 1 represents a risk-averse investor.

The GSV, due to its emphasis on the returns below the target return, is consistent with the
risk perceived by managers (seeCrum et al., 1981; Lien & Tse, 2000). Furthermore, as shown
byFishburn (1977)andBawa (1978), the GSV is consistent with the concept of stochastic dom-
inance.Lien and Tse (1998)show that the GSV hedge ratio, which is obtained by minimizing
the GSV, would be the same as the MV hedge ratio if the futures and spot returns are jointly
normally distributed and if the futures price follows a pure martingale process.

2.1.8. Optimum mean-generalized semivariance hedge ratio
Chen et al. (2001)extend the GSV hedge ratio to a mean-GSV (M-GSV) hedge ratio by

incorporating the mean return in the derivation of the optimal hedge ratio. The M-GSV hedge
ratio is obtained by maximizing the following mean-risk utility function, which is similar to
the conventional mean-variance-based utility function (seeEq. (3)):

U(Rh) = E[Rh] − Vδ,α(Rh). (12)

This approach to the hedge ratio does not use the risk aversion parameter to multiply the GSV
as done in conventional mean-risk models (seeHsin et al., 1994andEq. (3)). This is because the
risk aversion parameter is already included in the definition of the GSV,Vδ,α(Rh). As before,
the M-GSV hedge ratio would be the same as the GSV hedge ratio if the futures price follows
a pure martingale process.

2.2. Dynamic case

We have up to now examined the situations in which the hedge ratio is fixed at the optimum
level and is not revised during the hedging period. However, it could be beneficial to change
the hedge ratio over time. One way to allow the hedge ratio to change is by recalculating
the hedge ratio based on the current (or conditional) information on the covariance (σsf) and
variance (σ2

f ). This involves calculating the hedge ratio based on conditional information (i.e.,
σsf|Ωt−1 andσ2

f |Ωt−1) instead of unconditional information. In this case, the MV hedge ratio is
given by:

h1

∣∣∣∣∣Ωt−1 = σsf|Ωt−1

σ2
f |Ωt−1

.

The adjustment to the hedge ratio based on new information can be implemented using such
conditional models as ARCH and GARCH (to be discussed later) or using the moving window
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estimation method. Alternatively, we can allow the hedge ratio to change during the hedging
period by considering multi-period models, which is the approach used byLien and Luo (1993b).

Lien and Luo (1993b)consider hedging withT periods’ planning horizon and minimize the
variance of the wealth at the end of the planning horizon,WT . Consider the situation whereCs,t
is the spot position at the beginning of periodt and the corresponding futures position is given
byCf,t = −btCs,t. The wealth at the end of the planning horizon,WT , is then given by:

WT =W0 +
T−1∑
t=0

Cs,t[St+1 − St − bt(Ft+1 − Ft)],

=W0 +
T−1∑
t=0

Cs,t[
St+1 − bt 
Ft+1]. (13)

The optimalbt ’s are given by the following recursive formula:

bt = −Cov(
St+1,
Ft+1)

Var(
Ft+1)
−

T−1∑
i=t+1

(
Cs,i

Cs,t

)
Cov(
Ft+1,
Si+1 + bi 
Fi+1)

Var(
Ft+1)
. (14)

It is clear fromEq. (14)that the optimal hedge ratiobt will change over time. The multi-period
hedge ratio will differ from the single-period hedge ratio due to the second term on the right-hand
side ofEq. (14). However, it is interesting to note that the multi-period hedge ratio would be
different from the single-period one if the changes in current futures prices are correlated with
the changes in future futures prices or with the changes in future spot prices.

2.3. Case with production and alternative investment opportunities

All the models considered inSections 2.1 and 2.2assume that the spot position is fixed or
predetermined, and thus production is ignored. As mentioned earlier, such an assumption may
be appropriate for financial futures. However, when we consider commodity futures, production
should be considered in which case the spot position becomes one of the decision variables.
In an important paper,Lence (1995)extends the model with a fixed or predetermined spot
position to a model where production is included. In his model,Lence (1995)also incorporates
the possibility of investing in a risk-free asset and other risky assets, borrowing, as well as
transaction costs. We will briefly discuss the model considered byLence (1995)below.

Lence (1995)considers a decision maker whose utility is a function of terminal wealthU(W1),
such thatU ′ > 0 andU ′′ < 0. At the decision date (t = 0), the decision maker will engage
in the production ofQ commodity units for sale at terminal date (t = 1) at the random cash
price P1. At the decision date, the decision maker can lendL dollars at the risk-free lending
rate (RL− 1) and borrowB dollars at the borrowing rate (RB− 1), investI dollars in a different
activity that yields a random rate of return (RI − 1) and sellX futures at futures priceF0. The
transaction cost for the futures trade isf dollars per unit of the commodity traded to be paid at
the terminal date. The terminal wealth (W1) is therefore given by:

W1 = W0R = P1Q+ (F0 − F1)X− f |X| − RBB + RLL+ RII, (15)
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whereR is the return on the diversified portfolio. The decision maker will maximize the expected
utility subject to the following restrictions:

W0 + B ≥ v(Q)Q+ L+ I, 0 ≤ B ≤ kBv(Q)Q, kB ≥ 0,

L ≥ kLF0|X|, kL ≥ 0, I ≥ 0,

wherev(Q) is the average cost function,kB is the maximum amount (expressed as a proportion
of his initial wealth) that the agent can borrow, andkL is the safety margin for the futures
contract.

Using this framework,Lence (1995)introduces two opportunity costs: opportunity cost of
alternative (sub-optimal) investment (calt) and opportunity cost of estimation risk (eBayes).3 Let
Ropt be the return of the expected-utility maximizing strategy and letRalt be the return on
a particular alternative (sub-optimal) investment strategy. The opportunity cost of alternative
investment strategycalt is then given by:

E
U(W0Ropt)� = E[U(W0Ralt + calt)]. (16)

In other words,calt is the minimum certain net return required by the agent to invest in the al-
ternative (sub-optimal hedging) strategy rather than in the optimum strategy. Using the CARA
utility function and some simulation results,Lence (1995)finds that the expected-utility maxi-
mizing hedge ratios are substantially different from the minimum variance hedge ratios. He also
shows that under certain conditions, the optimal hedge ratio is zero; i.e., the optimal strategy is
not to hedge at all.

Similarly, the opportunity cost of the estimation risk (eBayes) is defined as follows:

Eρ
E(U{W0[Ropt(ρ)− eBayes
ρ ]})� = Eρ
E(U(W0R

Bayes
opt ))�, (17)

whereRopt(ρ) is the expected-utility maximizing return where the agent knows with certainty
the value of the correlation between the futures and spot prices (ρ),RBayes

opt is the expected-utility
maximizing return where the agent only knows the distribution of the correlationρ, andEρ[·]
is the expectation with respect toρ. Using simulation results,Lence (1995)finds that the
opportunity cost of the estimation risk is negligible and thus the value of the use of sophisticated
estimation methods is negligible.

3. Alternative methods for estimating the optimal hedge ratio

In Section 2we discussed different approaches to deriving the optimum hedge ratios. How-
ever, in order to apply these optimum hedge ratios in practice, we need to estimate these hedge
ratios. There are various ways of estimating them. In this section we briefly discuss these
estimation methods.

3.1. Estimation of the MV hedge ratio

3.1.1. OLS method
The conventional approach to estimating the MV hedge ratio involves the regression of the

changes in spot prices on the changes in futures price using the OLS technique (e.g., seeJunkus
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& Lee, 1985). Specifically, the regression equation can be written as:


St = a0 + a1
Ft + et, (18)

where the estimate of the MV hedge ratio,HJ , is given bya1. The OLS technique is quite
robust and simple to use. However, for the OLS technique to be valid and efficient, assumptions
associated with the OLS regression must be satisfied. One case where the assumptions are not
completely satisfied is that the error term in the regression is heteroscedastic. This situation
will be discussed later.

Another problem with the OLS method, as pointed out byMyers and Thompson (1989),
is the fact that it uses unconditional sample moments instead of conditional sample moments,
which use currently available information. They suggest the use of the conditional covariance
and conditional variance inEq. (2a). In this case, the conditional version of the optimal hedge
ratio (Eq. (2a)) will take the following form:

H∗
J = Cf

Cs
= Cov(
S,
F )|Ωt−1

Var(
F )|Ωt−1
. (2a*)

Suppose that the current information (Ωt−1) includes a vector of variables (Xt−1) and the spot
and futures price changes are generated by the following equilibrium model:


St = Xt−1α+ ut, 
Ft = Xt−1β + vt.
In this case the maximum likelihood estimator of the MV hedge ratio is given by (seeMyers
& Thompson, 1989):

ĥ|Xt−1 = σ̂uv

σ̂
2
v

, (19)

whereσ̂uv is the sample covariance between the residualsut andvt, andσ̂2
v is the sample variance

of the residualvt. In general, the OLS estimator obtained fromEq. (18)would be different from
the one given byEq. (19). For the two estimators to be the same, the spot and futures prices
must be generated by the following model:


St = α0 + ut, 
Ft = β0 + vt.
In other words, if the spot and futures prices follow a random walk with or without drift, then the
two estimators will be the same. Otherwise, the hedge ratio estimated from the OLS regression
(18) will not be optimal.

3.1.2. ARCH and GARCH methods
Ever since the development of ARCH and GARCH models, the OLS method of estimating

the hedge ratio has been generalized to take into account the heteroscedastic nature of the
error term inEq. (18). In this case, rather than using the unconditional sample variance and
covariance, the conditional variance and covariance from the GARCH model are used in the
estimation of the hedge ratio. As mentioned above, such a technique allows an update of the
hedge ratio over the hedging period.
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Consider the following bivariate GARCH model (seeBaillie & Myers, 1991; Cecchetti et al.,
1988):[


St


Ft

]
=

[
µ1

µ2

]
+

[
e1t

e2t

]
⇔ 
Yt = µ+ et,

et|Ωt−1 ∼ N(0, Ht), Ht =
[
H11,t H12,t

H12,t H22,t

]
,

vec(Ht) = C + A vec(et−1e
′
t−1)+ B vec(Ht−1).

The conditional MV hedge ratio at timet is given byht−1 = H12,t/H22,t. This model allows the
hedge ratio to change over time, resulting in a series of hedge ratios instead of a single hedge
ratio for the entire hedging horizon.

The model can be extended to include more than one type of cash and futures contracts (see
Sephton, 1993a). For example, consider a portfolio that consists of spot wheat (S1t), spot canola
(S2t), wheat futures (F1t) and canola futures (F2t). We then have the following multi-variate
GARCH model:



S1t


S2t


F1t


F2t


 =



µ1

µ2

µ3

µ4


 +



e1t

e2t

e3t

e4t


 ⇔ 
Yt = µ+ et, et|Ωt−1| ∼ N(0, Ht).

The MV hedge ratio can be estimated using a similar technique as described above. For example,
the conditional MV hedge ratio is given by the conditional covariance between the spot and
futures price changes divided by the conditional variance of the futures price change.

3.1.3. Random coefficient method
There is another way to deal with heteroscedasticity. This involves use of the random co-

efficient model as suggested byGrammatikos and Saunders (1983). This model employs the
following variation ofEq. (18):


St = β0 + βt 
Ft + et, (20)

where the hedge ratioβt = β̄+vt is assumed to be random. This random coefficient model can,
in some cases, improve the effectiveness of hedging strategy. However, this technique does not
allow for the update of the hedge ratio over time even though the correction for the randomness
can be made in the estimation of the hedge ratio.

3.1.4. Cointegration and error correction method
The techniques described so far do not take into consideration the possibility that spot price

and futures price series could be non-stationary. If these series have unit roots, then this will
raise a different issue. If the two series are cointegrated as defined byEngle and Granger (1987),
then the regressionEq. (18)will be mis-specified and an error-correction term must be included
in the equation. Since the arbitrage condition ties the spot and futures prices, they cannot drift
far apart in the long run. Therefore, if both series follow a random walk, then we expect the
two series to be cointegrated in which case we need to estimate the error correction model. This
calls for the use of the cointegration analysis.
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The cointegration analysis involves two steps. First, each series must be tested for a unit root
(e.g., seeDickey & Fuller, 1981; Phillips & Perron, 1988). Second, if both series are found to
have a single unit root, then the cointegration test must be performed (e.g., seeEngle & Granger,
1987; Johansen & Juselius, 1990; Osterwald-Lenum, 1992).

If the spot price and futures price series are found to be cointegrated, then the hedge ratio
can be estimated in two steps (seeChou et al., 1996; Ghosh, 1993). The first step involves the
estimation of the following cointegrating regression:

St = a+ bFt + ut. (21)

The second step involves the estimation of the following error correction model:


St = ρut−1 + β
Ft +
m∑
i=1

δi 
Ft−i +
n∑
j=1

θi 
St−j + ej, (22)

whereut is the residual series from the cointegrating regression. The estimate of the hedge
ratio is given by the estimate ofβ. Some researchers (e.g., seeLien & Luo, 1993b) assume that
the long-run cointegrating relationship is (St −Ft), and estimate the following error correction
model:


St = ρ(St−1 − Ft−1)+ β
Ft +
m∑
i=1

δi 
Ft−i +
n∑
j=1

θi 
St−j + ej. (23)

Alternatively,Chou et al. (1996)suggest the estimation of the error correction model as follows:


St = αût−1 + β
Ft +
m∑
i=1

δi 
Ft−i +
n∑
j=1

θi 
St−j + ej, (24)

whereût−1 = St−1−(a+bFt−1); i.e., the serieŝut is the estimated residual series fromEq. (21).
The hedge ratio is given byβ in Eq. (24).

Kroner and Sultan (1993)combine the error-correction model with the GARCH model
considered byCecchetti et al. (1988)andBaillie and Myers (1991)in order to estimate the
optimum hedge ratio. Specifically, they use the following model:[


loge(St)


loge(Ft)

]
=

[
µ1

µ2

]
+

[
αs(loge(St−1)− loge(Ft−1))

αf (loge(St−1)− loge(Ft−1))

]
+

[
e1t

e2t

]
, (25)

where the error processes follow a GARCH process. As before, the hedge ratio at time (t − 1)
is given byht−1 = H12,t/H22,t.

3.2. Estimation of the optimum mean-variance and Sharpe hedge ratios

The optimum mean-variance and Sharpe hedge ratios are given byEqs. (4) and (7), respec-
tively. These hedge ratios can be estimated simply by replacing the theoretical moments by their
sample moments. For example, the expected returns can be replaced by sample average returns,
the standard deviations can be replaced by the sample standard deviations, and the correlation
can be replaced by sample correlation.
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3.3. Estimation of the maximum expected utility hedge ratio

The maximum expected utility hedge ratio involves the maximization of the expected utility.
This requires the estimation of distributions of the changes in spot and futures prices. Once the
distributions are estimated, one needs to use a numerical technique to get the optimum hedge
ratio. One such method is described inCecchetti et al. (1988)where an ARCH model is used
to estimate the required distributions.

3.4. Estimation of MEG coefficient based hedge ratios

The MEG hedge ratio involves the minimization of the following MEG coefficient:

Γv(Rh) = −vCov[Rh, (1 −G(Rh))v−1].

In order to estimate the MEG coefficient, we need to estimate the cumulative probability density
functionG(Rh). The cumulative probability density function is usually estimated by ranking
the observed return on the hedged portfolio. A detailed description of the process can be found
in Kolb and Okunev (1992), and we briefly describe the process here.

The cumulative probability distribution is estimated by using the rank as follows:

G(Rh,i) = Rank(Rh,i)

N
,

whereN is the sample size. Once we have the series for the probability distribution function, the
MEG is estimated by replacing the theoretical covariance by the sample covariance as follows:

Γ sample
v (Rh) = − v

N

N∑
i=1

(Rh,i − R̄h)((1 −G(Rh,i))v−1 −Θ), (26)

where

R̄h = 1

N

N∑
i=1

Rh,i and Θ = 1

N

N∑
i=1

(1 −G(Rh,i))v−1.

The optimal hedge ratio is now given by the hedge ratio that minimizes the estimated MEG.
Since there is no analytical solution, the numerical method needs to be applied in order to get the
optimal hedge ratio. This method is sometimes referred to as the empirical distribution method.

Alternatively, the instrumental variable (IV) method suggested byShalit (1995)can be used
to find the MEG hedge ratio. Shalit’s method provides the following analytical solution for the
MEG hedge ratio:

hIV = Cov(St+1, [1 −G(Ft+1)]υ−1)

Cov(Ft+1, [1 −G(Ft+1)]υ−1)
.

It is important to note that for the IV method to be valid, the cumulative distribution function of
the terminal wealth (Wt+1) should be similar to the cumulative distribution of the futures price
(Ft+1); i.e.,G(Wt+1) = G(Ft+1). Lien and Shaffer (1999)find that the IV-based hedge ratio
(hIV ) is significantly different from the minimum MEG hedge ratio.
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Lien and Luo (1993a)suggest an alternative method of estimating the MEG hedge ratio. This
method involves the estimation of the cumulative distribution function using a non-parametric
kernel function instead of using a rank function as suggested above.

Regarding the estimation of the M-MEG hedge ratio, one can follow either the empirical
distribution method or the non-parametric kernel method to estimate the MEG coefficient. A
numerical method can then be used to estimate the hedge ratio that maximizes the objective
function given byEq. (10).

3.5. Estimation of GSV-based hedge ratios

The GSV can be estimated from the sample by using the following sample counterpart:

V
sample
δ,α (Rh) = 1

N

N∑
i=1

(δ− Rh,i)αU(δ− Rh,i), (27)

where

U(δ− Rh,i) =
{

1, for δ ≥ Rh,i,
0, for δ < Rh,i.

Similar to the MEG technique, the optimal GSV hedge ratio can be estimated by choosing
the hedge ratio that minimizes the sample GSV,V

sample
δ,α (Rh). Numerical methods can be used

to search for the optimum hedge ratio. Similarly, the M-GSV hedge ratio can be obtained by
minimizing the mean-risk function given byEq. (12), where the expected return on the hedged
portfolio is replaced by the sample average return and the GSV is replaced by the sample GSV.

One can instead use the kernel density estimation method suggested byLien and Tse (2000)
to estimate the GSV, and numerical techniques can be used to find the optimum GSV hedge
ratio. Instead of using the kernel method, one can also employ the conditional heteroscedastic
model to estimate the density function. This is the method used byLien and Tse (1998).

4. Hedging horizon, maturity of futures contract, data frequency,
and hedging effectiveness

In this section we discuss the relationship among the length of hedging horizon (hedging
period), maturity of futures contracts, data frequency (e.g., daily, weekly, monthly, or quarterly),
and hedging effectiveness. Since there are many futures contracts (with different maturities)
that can be used in hedging, the question is whether the MV hedge ratio depends on the time
to maturity of the futures contract being used for hedging.Lee, Bubnys, and Lin (1987)find
that the MV hedge ratio increases as the maturity is approached. This means that if we use the
nearest to maturity futures contracts to hedge, then the MV hedge ratio will be larger compared
to the one obtained using futures contracts with a longer maturity.

Aside from using futures contracts with different maturities, we can estimate the MV hedge
ratio using data with different frequencies. For example, the data used in the estimation of the
optimum hedge ratio can be daily, weekly, monthly, or quarterly. At the same time, the hedging
horizon could be from a few hours to more than a month. The question is whether a relationship
exists between the data frequency used and the length of the hedging horizon.
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Malliaris and Urrutia (1991)andBenet (1992)utilize Eq. (18)and weekly data to estimate
the optimal hedge ratio. According toMalliaris and Urrutia (1991), theex ante hedging is more
effective when the hedging horizon is 1 week compared to a hedging horizon of 4 weeks.Benet
(1992)finds that a shorter hedging horizon (4 weeks) is more effective (inex ante test) compared
to a longer hedging horizon (8 and 12 weeks). These empirical results seem to be consistent
with the argument that when estimating the MV hedge ratio, the hedging horizon’s length must
match the data frequency being used.

There is a potential problem associated with matching the length of the hedging horizon
and the data frequency. For example, consider the case where the hedging horizon is 3 months
(one-quarter). In this case we need to use quarterly data to match the length of the hedging
horizon. In other words, when estimatingEq. (18)we must employ quarterly changes in spot and
futures prices. Therefore, if we have 5 years’ worth of data, then we will have 19 non-overlapping
price changes, resulting in a sample size of 19. However, if the hedging horizon is 1 week, instead
of 3 months, then we will end up with approximately 260 non-overlapping price changes (sample
size of 260) for the same 5 years’ worth of data. Therefore, the matching method is associated
with a reduction in sample size for a longer hedging horizon.

One way to get around this problem is to use overlapping price changes. For example,
Geppert (1995)utilizesk-period differencing for ak-period hedging horizon in estimating the
regression-based MV hedge ratio. SinceGeppert (1995)uses approximately 13 months of
data for estimating the hedge ratio, he employs overlapping differencing in order to eliminate
the reduction in sample size caused by differencing. However, this will lead to correlated
observations instead of independent observations and will require the use of a regression with
autocorrelated errors in the estimation of the hedge ratio.

In order to eliminate the autocorrelated errors problem,Geppert (1995)suggests a method
based on cointegration and unit-root processes. We will briefly describe his method. Suppose
that the spot and futures prices, which are both unit-root processes, are cointegrated. In this
case the futures and spot prices can be described by the following processes (seeHylleberg &
Mizon, 1989; Stock & Watson, 1988):

St = A1Pt + A2τt, (28a)

Ft = B1Pt + B2τt, (28b)

Pt = Pt−1 + wt, (28c)

τt = α1τt−1 + vt, 0 ≤ |α1| < 1, (28d)

wherePt andτt are permanent and transitory factors that drive the spot and futures prices and
wt andvt are white noise processes. Note thatPt follows a pure random walk process andτt
follows a stationary process. The MV hedge ratio for ak-period hedging horizon is then given
by (seeGeppert, 1995):

H∗
J = A1B1kσ

2
w + 2A2B2((1 − αk)/(1 − α2))σ2

v

B2
1kσ

2
w + 2B2

2((1 − αk)/(1 − α2))σ2
v

. (29)

One advantage of usingEq. (29)instead of a regression with non-overlapping price changes
is that it avoids the problem of a reduction in sample size associated with non-overlapping
differencing.
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5. Summary and conclusions

In this paper we have reviewed various approaches to deriving the optimal hedge ratio, as
summarized inAppendix A. These approaches can be divided into the mean-variance-based
approach, the expected utility maximizing approach, the mean extended-Gini coefficient-based
approach, and the generalized semivariance-based approach. All these approaches will lead
to the same hedge ratio as the conventional MV hedge ratio if the futures price follows a
pure martingale process and if the futures and spot prices are jointly normal. However, if
these conditions do not hold, then the hedge ratios based on the various approaches will be
different.

The MV hedge ratio is the most understood and most widely-used hedge ratio. Since the
statistical properties of the MV hedge ratio are well known, statistical hypothesis testing can be
performed with the MV hedge ratio. For example, we can test whether the optimal MV hedge
ratio is the same as the naı̈ve hedge ratio. Since the MV hedge ratio ignores the expected return,
it will not be consistent with the mean-variance analysis unless the futures price follows a pure
martingale process. Furthermore, if the martingale and normality condition do not hold, then
the MV hedge ratio will not be consistent with the expected utility maximization principle.
Following the MV hedge ratio is the mean-variance hedge ratio. Even if this hedge ratio incor-
porates the expected return in the derivation of the optimal hedge ratio, it will not be consistent
with the expected maximization principle unless either the normality condition holds or the
utility function is quadratic.

In order to make the hedge ratio consistent with the expected utility maximization principle,
we can derive the optimal hedge ratio by maximizing the expected utility. However, to implement
such approach, we need to assume a specific utility function and we need to make an assumption
regarding the return distribution. Therefore, different utility functions will lead to different
optimal hedge ratios. Furthermore, analytic solutions for such hedge ratios are not known and
numerical methods need to be applied.

New approaches have recently been suggested in deriving optimal hedge ratios. These in-
clude the mean-Gini coefficient-based hedge ratio as well as semivariance-based hedge ratios.
These hedge ratios are consistent with the second-order stochastic dominance principle. There-
fore, such hedge ratios are very general in the sense that they are consistent with the expected
utility maximization principle and make very few assumptions on the utility function. The only
requirement is that the marginal utility be positive and the second derivative of the utility func-
tion be negative. However, both of these hedge ratios do not lead to a unique hedge ratio. For
example, the mean-Gini coefficient-based hedge ratio depends on the risk aversion parameter
(v) and the semivariance-based hedge ratio depends on the risk aversion parameter (α) and
target return (δ). It is important to note, however, that the semivariance-based hedge ratio has
some appeal in the sense that the semivariance as a measure of risk is consistent with the risk
perceived by individuals.

So far as the derivation of the optimal hedge ratio is concerned, almost all of the derivations
do not incorporate transaction costs. Furthermore, these derivations do not allow investments in
securities other than the spot and corresponding futures contracts. As shown byLence (1995),
once we relax these conventional assumptions, the resulting optimal hedge ratio can be quite
different from the ones obtained under the conventional assumptions.Lence’s (1995)results are
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based on a specific utility function and some other assumption regarding the return distributions.
It remains to be seen if such results hold for the mean extended-Gini coefficient-based as well
as semivariance-based hedge ratios.

In this paper we have also reviewed various ways of estimating the optimum hedge ratio,
as summarized inAppendix B. As far as the estimation of the conventional MV hedge ratio
is concerned, there are a large number of methods that have been proposed in the literature.
These methods range from a simple regression method to complex cointegrated heteroscedastic
methods, and some of the estimation methods include a kernel density function method as well
as an empirical distribution method. Except for many of mean-variance-based hedge ratios, the
estimation involves the use of a numerical technique. This has to do with the fact that most of
the optimal hedge ratio formulae do not have a closed-form analytic expression. Again, it is
important to mention that based on his specific model,Lence (1995)finds that the value of com-
plicated and sophisticated estimation methods is negligible. It remains to be seen if such a result
holds for the mean extended-Gini coefficient-based as well as semivariance-based hedge ratios.

In this paper we have also discussed about the relationship between the optimal MV hedge
ratio and the hedging horizon. We feel that this relationship has not been fully explored and can
be further developed in the future. For example, we would like to know if the optimal hedge
ratio approaches the naı̈ve hedge ratio when the hedging horizon becomes longer.

The main thing we learn from this review is that if the futures price follows a pure martingale
process and if the returns are jointly normally distributed, then all different hedge ratios are the
same as the conventional MV hedge ratio, which is simple to compute and easy to understand.
However, if these two conditions do not hold, then there are many optimal hedge ratios (de-
pending on which objective function one is trying to optimize) and there is no single optimal
hedge ratio that is distinctly superior to the remaining ones. Therefore, further research needs
to be done to unify these different approaches to the hedge ratio.

For those who are interested in research in this area, we would like to finally point out that
one requires a good understanding of financial economic theories and econometric methodolo-
gies. In addition, a good background in data analysis and computer programming would also
be helpful.

Notes

1. Without loss of generality, we assume that the size of the futures contract is one.
2. Lence (1995)also derives the hedge ratio based on the expected utility. We will discuss

it later inSection 2.3.
3. Our discussion of the opportunity costs is very brief. We would like to refer interested

readers toLence (1995)for a detailed discussion. We would also like to point to the fact
that production can be allowed to be random as is done inLence (1996).

Acknowledgments

We would like to thank an anonymous referee for helpful comments. Any remaining errors
are the authors’.



S.-S.C
hen

etal./T
he

Q
uarterly

R
eview

ofE
conom

ics
and

F
inance

43
(2003)

433–465
451

Appendix A. Theoretical models

References Return definition and
objective function

Summary

Johnson (1960) Ret1, O1 The paper derives the minimum variance hedge ratio. The hedging
effectiveness is defined asE1, but no empirical analysis is done

Hsin et al. (1994) Ret2, O2 The paper derives the utility function-based hedge ratio. A new measure
of hedging effectivenessE2 based on a certainty equivalent is proposed.
The new measure of hedging effectiveness is used to compare the
effectiveness of futures and options as hedging instruments

Howard and D’Antonio
(1984)

Ret2, O3 The paper derives the optimal hedge ratio based on maximizing the
Sharpe ratio. The proposed hedging effectivenessE3 is based on the
Sharpe ratio

Cecchetti et al. (1988) Ret2, O4 The paper derives the optimal hedge ratio that maximizes the expected
utility function:

∫
Rs

∫
Rf

log[1 + Rs(t)− h(t)Rf (t)]ft(Rs, Rf )dRs dRf ,
where the density function is assumed to be bivariate normal. A
third-order linear bivariate ARCH model is used to get the conditional
variance and covariance matrix. A numerical procedure is used to
maximize the objective function with respect to hedge ratio. Due to
ARCH, the hedge ratio changes over time. The paper uses certainty
equivalent (E2) to measure the hedging effectiveness

Cheung et al. (1990) Ret2, O5 The paper uses mean-Gini (v = 2, not mean extended-Gini coefficient)
and mean-variance approaches to analyze the effectiveness of options
and futures as hedging instruments

Kolb and Okunev (1992) Ret2, O5 The paper uses mean extended-Gini coefficient in the derivation of the
optimal hedge ratio. Therefore, it can be considered as a generalization
of the mean-Gini coefficient method used byCheung et al. (1990)
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Appendix A. (Continued )

References Return definition and
objective function

Summary

Kolb and Okunev (1993) Ret2, O6 The paper defines the objective function asO6, but in terms of wealth
(W) U(W ) = E[W ] − Γv(W ) and compares with the quadratic utility
functionU(W ) = E[W ] −mσ2. The paper plots the EMG efficient
frontier in W andΓv(W ) space for various values of risk aversion
parameters (v)

Lien and Luo (1993b) Ret1, O9 The paper derives the multi-period hedge ratios where the hedge ratios
are allowed to change over the hedging period. The method suggested in
the paper still falls under the minimum variance hedge ratio

Lence (1995) O4 This paper derives the expected utility maximizing hedge ratio where the
terminal wealth depends on the return on a diversified portfolio that
consists of the production of a spot commodity, investment in a risk-free
asset, investment in a risky asset, as well as borrowing. It also
incorporates the transaction costs

De Jong et al. (1997) Ret2, O7 (also
usesO1 andO3)

The paper derives the optimal hedge ratio that minimizes the GSV. The
paper compares the GSV hedge ratio with the MV hedge ratio as well as
the Sharpe hedge ratio. The paper usesE1 (for the MV hedge ratio),E3

(for the Sharpe hedge ratio) andE4 (for the GSV hedge ratio) as the
measures of hedging effectiveness

Chen et al. (2001) Ret1, O8 The paper derives the optimal hedge ratio that maximizes the risk-return
function given byU(Rh) = E[Rh] − Vδ,α(Rh). The method can be
considered as an extension of the GSV method used byDe Jong et al.
(1997)



S.-S.C
hen

etal./T
he

Q
uarterly

R
eview

ofE
conom

ics
and

F
inance

43
(2003)

433–465
453

Notes:

A. Return model

(Ret1) 
VH = Cs 
Ps + Cf 
Pf ⇒ hedge ratio= H = Cf

Cs
, Cs = units of spot commodity and

Cf = units of futures contract

(Ret2) Rh = Rs + hRf , Rs = St − St−1

St−1
, (a)Rf = Ft − Ft−1

Ft−1
⇒ hedge ratio :h = CfFt−1

CsSt−1
,

(b) Rf = Ft − Ft−1

St−1
⇒ hedge ratio :h = Cf

Cs
.

B. Objective function
(O1) Minimize Var(Rh) = C2

s σ
2
s + C2

f σ
2
f + 2CsCfσsf or Var(Rh) = σ2

s + h2σ2
f + 2hσsf

(O2) Maximize E(Rh)− A1
2 Var(Rh)

(O3) Maximize
E(Rh)− RF

Var(Rh)
(Sharpe ratio),RF = risk-free interest rate

(O4) Maximize E[U(W )], U(·) = utility function,W = terminal wealth
(O5) Minimize Γv(Rh), Γv(Rh) = −vCov(Rh, (1 − F(Rh))v−1)

(O6) Maximize E[Rh] − Γv(Rhv)
(O7) Minimize Vδ,α(Rh) = ∫ δ

−∞(δ− Rh)α dG(Rh), α > 0
(O8) Maximize U(Rh) = E[Rh] − Vδ,α(Rh)
(O9) Minimize Var(Wt) = Var

(∑T
t=1Cs,t 
St + Cf,t 
F

)
.

C. Hedging effectiveness

(E1) e = 1 − Var(Rh)

Var(Rs)

(E2) e = Rce
h − Rce

ss , Rce
h (R

ce
s ) = certainty equivalent return of hedged (unhedged) portfolio

(E3) e = (E[Rh] − RF)/Var(Rh)

(E[Rs] − RF)/Var(Rs)
or e = E[Rh] − RF

Var(Rh)
− E[Rs] − RF

Var(Rs)

(E4) e = 1 − Vδ,α(Rh)
Vδ,α(Rs)

.
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Appendix B. Empirical models

References Commodity Summary

Ederington (1979) GNMA futures
(1/1976–12/1977), wheat
(1/1976–12/1977), corn
(1/1976–12/1977), T-bill
futures (3/1976–12/1977)
[weekly data]

The paper uses the Ret1 definition of return and estimates the
minimum variance hedge ratio (O1). E1 is used as a hedging
effectiveness measure. The paper uses nearby contracts (3–6
months, 6–9 months and 9–12 months) and a hedging period of 2
and 4 weeks. OLS (M1) is used to estimate the parameters. Some
of the hedge ratios are found not to be different from zero and the
hedging effectiveness increases with the length of hedging
period. The hedge ratio also increases (closer to unity) with the
length of hedging period

Grammatikos and
Saunders (1983)

Swiss franc, Canadian dollar,
British pound, DM, Yen
(1/1974–6/1980) [weekly
data]

The paper estimates the hedge ratio for the whole period and
moving window (2-year data). It is found that the hedge ratio
changes over time. Dummy variables for various sub-periods are
used, and shifts are found. The paper uses a random coefficient
(M3) model to estimate the hedge ratio. The hedge ratio for Swiss
franc is found to follow a random coefficient model. However,
there is no improvement in effectiveness when the hedge ratio is
calculated by correcting for the randomness

Junkus and Lee (1985) Three stock index futures for
Kansas City Board of Trade,
New York Futures Exchange,
and Chicago Mercantile
Exchange (5/82–3/83) [daily
data]

The paper tests the applicability of four futures hedging models:
a variance-minimizing model introduced byJohnson (1960), the
traditional one to one hedge, a utility maximization model
developed byRutledge (1972), and a basis arbitrage model
suggested byWorking (1953). An optimal ratio or decision rule is
estimated for each model, and measures for the effectiveness of
each hedge are devised. Each hedge strategy performed best
according to its own criterion. The working decision rule
appeared to be easy to use and satisfactory in most cases.
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Although the maturity of the futures contract used affected the size
of the optimal hedge ratio, there was no consistent maturity effect on
performance. Use of a particular ratio depends on how closely the
assumptions underlying the model approach a hedger’s real situation

Lee et al. (1987) S&P 500, NYSE, Value Line
(1983) [daily data]

The paper tests for the temporal stability of the minimum variance
hedge ratio. It is found that the hedge ratio increases as maturity of
the futures contract nears. The paper also performs a functional
form test and finds support for the regression of rate of change for
discrete as well as continuous rates of change in prices

Cecchetti et al. (1988) Treasury bond, Treasury bond
futures (1/1978–5/1986)
[monthly data]

The paper derives the hedge ratio by maximizing the expected
utility. A third-order linear bivariate ARCH model is used to get the
conditional variance and covariance matrix. A numerical procedure
is used to maximize the objective function with respect to the hedge
ratio. Due to ARCH, the hedge ratio changes over time. It is found
that the hedge ratio changes over time and is significantly less (in
absolute value) than the MV hedge ratio (which also changes over
time).E2 (certainty equivalent) is used to measure the performance
effectiveness. The proposed utility-maximizing hedge ratio
performs better than the MV hedge ratio

Cheung et al. (1990) Swiss franc, Canadian dollar,
British pound, German mark,
Japanese yen
(9/1983–12/1984) [daily data]

The paper uses mean-Gini coefficient (v = 2) and mean-variance
approaches to analyze the effectiveness of options and futures as
hedging instruments. It considers both mean-variance and
expected-return mean-Gini coefficient frontiers. It also considers the
MV and minimum mean-Gini coefficient hedge ratios. The MV and
minimum mean-Gini approaches indicate that futures is a better
hedging instrument. However, the mean-variance frontier indicates
futures to be a better hedging instrument whereas the mean-Gini
frontier indicates options to be a better hedging instrument
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Baillie and Myers
(1991)

Beef, coffee, corn, cotton,
gold, soybean (contracts
maturing in 1982 and 1986)
[daily data]

The paper uses a bivariate GARCH model (M2) in estimating the
MV hedge ratios. Since the models used are conditional models,
the time series of hedge ratios are estimated. The MV hedge
ratios are found to follow a unit root process. The hedge ratio for
beef is found to be centered around zero.E1 is used as a hedging
effectiveness measure. Both in-sample and out-of-sample
effectiveness of the GARCH-based hedge ratios is compared with
a constant hedge ratio. The GARCH-based hedge ratios are found
to be significantly better compared to the constant hedge ratio

Malliaris and Urrutia
(1991)

British pound, German mark,
Japanese yen, Swill franc,
Canadian dollar
(3/1980–12/1988) [weekly
data]

The paper uses regression autocorrelated errors model to estimate
the MV hedge ratio for the five currencies. Using overlapping
moving windows, the time series of the MV hedge ratio and
hedging effectiveness are estimated for bothex post (in-sample)
andex ante (out-of-sample) cases.E1 is used to measure the
hedging effectiveness for theex post case whereas average return
is used to measure the hedging effectiveness. Specifically, the
average return close to zero is used to indicate a better performing
hedging strategy. In theex post case, the 4-week hedging horizon
is more effective compared to the 1-week hedging horizon.
However, for theex ante case the opposite is found to be true

Benet (1992) Australian dollar, Brazilian
cruzeiro, Mexican peso,
South African rand, Chinese
yuan, Finish markka, Irish
pound, Japanese yen
(8/1973–12/1985) [weekly
data]

This paper considers direct and cross-hedging, using multiple
futures contracts. For minor currencies, the cross-hedging
exhibits a significant decrease in performance fromex post to ex
ante. The minimum variance hedge ratios are found to change
from one period to the other except for the direct hedging of
Japanese yen. On theex ante case, the hedging effectiveness does
not appear to be related to the estimation period length. However,
the effectiveness decreases as the hedging period length increases
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Kolb and Okunev
(1992)

Corn, copper, gold, German
mark, S&P 500 (1989) [daily
data]

The paper estimates the MEG hedge ratio (M9) with v ranging
from 2 to 200. The MEG hedge ratios are found to be close to the
minimum variance hedge ratios for a lower level of risk
parameterv (for v from 2 to 5). For higher values ofv, the two
hedge ratios are found to be quite different. The hedge ratios are
found to increase with the risk aversion parameter for S&P 500,
corn, and gold. However, for copper and German mark, the hedge
ratios are found to decrease with the risk aversion parameter. The
hedge ratio tends to be more stable for higher levels of risk

Kolb and Okunev
(1993)

Cocoa (3/1952 to 1976) for
four cocoa-producing
countries (Ghana, Nigeria,
Ivory Coast, and Brazil)
[March and September data]

The paper estimates the M-MEG hedge ratio (M12). The paper
compares the M-MEG hedge ratio, minimum variance hedge
ratio, and optimum mean-variance hedge ratio for various values
of risk aversion parameters. The paper finds that the M-MEG
hedge ratio leads to reverse hedging (buy futures instead of
selling) forv less than 1.24 (Ghana case). For high-risk aversion
parameter values (highv) all hedge ratios are found to converge
to the same value

Lien and Luo (1993a) S&P 500 (1/1984–12/1988)
[weekly data]

The paper points out that the MEG hedge ratio can be calculated
either by numerically optimizing the MEG coefficient or by
numerically solving the first-order condition. Forv = 9 the hedge
ratio of−0.8182 is close to the MV hedge ratio of−0.8171.
Using the first-order condition, the paper shows that for a largev

the MEG hedge ratio converges to a constant. The empirical
result shows that the hedge ratio decreases with the risk aversion
parameterv. The paper finds that the MV and MEG hedge ratio
(for low v) series (obtained by using a moving window) are more
stable compared to the MEG hedge ratio for a largev. The paper
also uses a non-parametric Kernel estimator to estimate the
cumulative density function. However, the kernel estimator does
not change the result significantly
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Lien and Luo (1993b) British pound, Canadian
dollar, German mark,
Japanese yen, Swiss franc
(3/1980–12/1988), MMI,
NYSE, S&P
(1/1984–12/1988) [weekly
data]

This paper proposes a multi-period model to estimate the optimal
hedge ratio. The hedge ratios are estimated using an
error-correction model. The spot and futures prices are found to
be cointegrated. The optimal multi-period hedge ratios are found
to exhibit a cyclical pattern with a tendency for the amplitude of
the cycles to decrease. Finally, the possibility of spreading among
different market contracts is analyzed. It is shown that hedging in
a single market may be much less effective than the optimal
spreading strategy

Ghosh (1993) S&P futures, S&P index,
Dow Jones industrial average,
NYSE composite index
(1/1990–12/1991) [daily data]

All the variables are found to have a unit root. For all three
indices the same S&P 500 futures contracts are used
(cross-hedging). Using the Engle–Granger two-step test, the S&P
500 futures price is found to be cointegrated with each of the
three spot prices: S&P 500, DJIA, and NYSE. The hedge ratio is
estimated using the error-correction model (ECM) (M4).
Out-of-sample performance is better for the hedge ratio from the
ECM compared to the Ederington model

Sephton (1993a) Feed wheat, canola futures
(1981–1982 crop year) [daily
data]

The paper finds unit roots on each of the cash and futures (log)
prices, but no cointegration between futures and spot (log) prices.
The hedge ratios are computed using a four-variable
GARCH(1,1) model. The time series of hedge ratios are found to
be stationary. Reduction in portfolio variance is used as a
measure of hedging effectiveness. It is found that the
GARCH-based hedge ratio performs better compared to the
conventional minimum variance hedge ratio

Sephton (1993b) Feed wheat, feed barley,
canola futures (1988/1989)
[daily data]

The paper finds unit roots on each of the cash and futures (log)
prices, but no cointegration between futures and spot (log) prices.
A univariate GARCH model shows that the mean returns on the
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futures are not significantly different from zero. However, from
the bivariate GARCH canola is found to have a significant mean
return. For canola the mean-variance utility function is used to
find the optimal hedge ratio for various values of the risk aversion
parameter. The time series of the hedge ratio (based on bivariate
GARCH model) is found to be stationary. The benefit in terms of
utility gained from using a multi-variate GARCH decreases as
the degree of risk aversion increases

Kroner and Sultan
(1993)

British pound, Canadian
dollar, German mark,
Japanese yen, Swiss franc
(2/1985–2/1990) [weekly
data]

The paper uses the error-correction model with a GARCH error
(M5) to estimate the MV hedge ratio for the five currencies. Due
to the use of conditional models, the time series of the MV hedge
ratios are estimated. Both within-sample and out-of-sample
evidence shows that the hedging strategy proposed in the paper is
potentially superior to the conventional strategies

Hsin et al. (1994) British pound, German mark,
Yen, Swiss franc
(1/1986–12/1989) [daily data]

The paper derives the optimum mean-variance hedge ratio by
maximizing the objective functionO2. The hedging horizons of
14, 30, 60, 90, and 120 calendar days are considered to compare
the hedging effectiveness of options and futures contracts. It is
found that the futures contracts perform better than the options
contracts

Shalit (1995) Gold, silver, copper,
aluminum (1/1977–12/1990)
[daily data]

The paper shows that if the prices are jointly normally
distributed, the MEG hedge ratio will be same as the MV hedge
ratio. The MEG hedge ratio is estimated using the instrumental
variable method. The paper performs normality tests as well as
the tests to see if the MEG hedge ratios are different from the MV
hedge ratios. The paper finds that for a significant number of
futures contracts the normality does not hold and the MEG hedge
ratios are different from the MV hedge ratios
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Geppert (1995) German mark, Swiss franc,
Japanese yen, S&P 500,
Municipal Bond Index
(1/1990–1/1993) [weekly
data]

The paper estimates the minimum variance hedge ratio using the
OLS as well as the cointegration methods for various lengths of
hedging horizon. The in-sample results indicate that for both
methods the hedging effectiveness increases with the length of
the hedging horizon. The out-of-sample results indicate that in
general the effectiveness (based on the method suggested by
Malliaris & Urrutia, 1991) decreases as the length of the hedging
horizon decreases. This is true for both the regression method and
the decomposition method proposed in the paper. However, the
decomposition method seems to perform better than the
regression method in terms of both mean and variance

De Jong et al. (1997) British pound
(12/1976–10/1993), German
mark (12/1976–10/1993),
Japanese yen
(4/1977–10/1993) [daily data]

The paper compares the minimum variance, generalized
semivariance and Sharpe hedge ratios for the three currencies.
The paper computes the out-of-sample hedging effectiveness
using non-overlapping 90-day periods where the first 60 days are
used to estimate the hedge ratio and the remaining 30 days are
used to compute the out-of-sample hedging effectiveness. The
paper finds that the naı̈ve hedge ratio performs better than the
model based hedge ratios

Lien and Tse (1998) Nikkei Stock Average
(1/1989–8/1996) [daily data]

The paper shows that if the rates of change in spot and futures
prices are bivariate normal and if the futures price follows a
martingale process, then the GSV (referred to as lower partial
moment) hedge ratio will be same as the MV hedge ratio. A
version of the bivariate asymmetric power ARCH model is used
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to estimate the conditional joint distribution, which is then used
to estimate the time varying GSV hedge ratios. The paper finds
that the GSV hedge ratio significantly varies over time and is
different from the MV hedge ratio

Lien and Shaffer
(1999)

Nikkei (9/86–9/89), S&P
(4/82–4/85), TOPIX
(4/90–12/93), KOSPI
(5/96–12/96), Hang Seng
(1/87–12189), IBEX
(4/93–3/95) [daily data]

This paper empirically tests the ranking assumption used by
Shalit (1995). The ranking assumption assumes that the ranking
of futures prices is the same as the ranking of the wealth. The
paper estimates the MEG hedge ratio based on the instrumental
variable (IV) method used byShalit (1995)and the true MEG
hedge ratio. The true MEG hedge ratio is computed using the
cumulative probability distribution estimated employing the
kernel method instead of the rank method. The paper finds that
the MEG hedge ratio obtained from the IV method to be different
from the true MEG hedge ratio. Furthermore, the true MEG
hedge ratio leads to a significantly smaller MEG coefficient
compared to the IV-based MEG hedge ratio

Lien and Tse (2000) Nikkei Stock Average
(1/1988–8/996) [daily data]

The paper estimates the GSV hedge ratios for different values of
parameters using a non-parametric kernel estimation method.
The kernel method is compared with the empirical distribution
method. It is found that the hedge ratio from one method is not
different from the hedge ratio from another. TheJarque–Bera
(1987)test indicates that the changes in spot and futures prices do
not follow normal distribution

Chen et al. (2001) S&P 500 (4/982–12/1991)
[weekly data]

The paper proposes the use of the M-GSV hedge ratio. The paper
estimates the MV, optimum mean-variance, Sharpe, MEG, GSV,
M-MEG, and M-GSV hedge ratios. TheJarque–Bera (1987)test
andD’Agostino (1971)D Statistic indicate that the price changes



462
S.-S.C

hen
etal./T

he
Q

uarterly
R

eview
ofE

conom
ics

and
F

inance
43

(2003)
433–465

Appendix B. (Continued )

References Commodity Summary

are not normally distributed. Furthermore, the expected value of
the futures price change is found to be significantly different from
zero. It is also found that for a high level of risk aversion, the
M-MEG hedge ratio converges to the MV hedge ratio whereas
the M-GSV hedge ratio converges to a lower value

Notes:

A. Minimum variance hedge ratio
A.1. OLS

(M1): 
St = a0 + a1
Ft + et : hedge ratio= a1

Rs = a0 + a1Rf + et : hedge ratio= a1

A.2. ARCH/GARCH

(M2):

[

St


Ft

]
=

[
µ1

µ2

]
+

[
e1,t

e2,t

]
, et|Ωt−1 ∼ N(0, Ht), Ht =

[
H11,t H12,t

H12,t H22,t

]
, hedge ratio= H12,t

H22,t

A.3. Random coefficient
(M3): 
St = β0 + βt 
Ft + et

βt = β̄ + vt, hedge ratio= β̄
A.4. Cointegration and error-correction

(M4): St = a+ bFt + ut

St = ρut−1 + β
Ft +

∑m
i=1δi 
Ft−i +

∑n
j=1θi 
St−j + ej, hedge ratio= β

A.5. Error-correction with GARCH

(M5):

[

 loge(St)


 loge(Ft)

]
=

[
µ1

µ2

]
+

[
αs(loge(St−1)− loge(Ft−1))

αf (loge(St−1)− loge(Ft−1))

]
+

[
e1t

e2t

]
, et|Ωt−1 ∼ N(0, Ht),

Ht =
[
H11,t H12,t

H12,t H22,t

]
, hedge ratio= ht−1 = H12,t

H22,t
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A.6. Common stochastic trend
(M6): St = A1Pt + A2τt, Ft = B1Pt + B2τt, Pt = Pt−1 + wt, τt = α1τt−1 + vt, 0 ≤ |α1| < 1,

Hedge ratio fork-period investment horizon= H∗
J = A1B1kσ

2
w + 2A2B2((1 − αk)/(1 − α2))σ2

v

B2
1kσ

2
w + 2B2

2((1 − αk)/(1 − α2))σ2
v

.

B. Optimum mean-variance hedge ratio

(M7): Hedge ratio= h2 = −C
∗
fF

CsS
= −

[
E(Rf )

Aσ2
f

− ρ σs
σf

]
, where the momentsE
Rf �, σs andσf are estimated by

sample moments.

C. Sharpe hedge ratio

(M8): Hedge ratio= h3 = −(σs/σf )[(σs/σf )(E(Rf )/(E(Rs)− i))− ρ]

[1 − (σs/σf )(E(Rf )ρ/(E(Rs)− i))] , where the moments and correlation are

estimated by their sample counterparts.

D. Mean-Gini coefficient based hedge ratios
(M9): The hedge ratio is estimated by numerically minimizing the following mean extended-Gini coefficient, where

the cumulative probability distribution function is estimated using the rank function:

Γ̂ v(Rh) = − v
N

N∑
i=1

(Rh,i − R̄h)((1 −G(Rh,i))v−1 −Θ).
(M10): The hedge ratio is estimated by numerically solving the first-order condition, where the cumulative probability

distribution function is estimated using the rank function
(M11): The hedge ratio is estimated by numerically solving the first-order condition, where the cumulative probability

distribution function is estimated using the kernel-based estimates
(M12): The hedge ratio is estimated by numerically maximizing the following function:U(Rh) = E(Rh)− Γv(Rh),

where the expected values and the mean extended-Gini coefficient are replaced by their sample counterparts and
the cumulative probability distribution function is estimated using the rank function

E. Generalized semivariance based hedge ratios
(M13): The hedge ratio is estimated by numerically minimizing the following sample generalized hedge ratio:

V
sample
δ,α (Rh) = 1

N

N∑
i=1

(δ− Rh,i)αU(δ− Rh,i), whereU(δ− Rh,i) =
{

1, for δ ≥ Rh,i
0, for δ < Rh,i.

(M14): The hedge ratio is estimated by numerically maximizing the following function:U(Rh) = Rh − V sample
δ,α (Rh).
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