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Abstract

This paper presents a review of different theoretical approaches to the optimal futures hedge rati
These approaches are based on minimum variance, mean-variance, expected utility, mean extended-
coefficient, as well as semivariance. Various ways of estimating these hedge ratios are also discus:
ranging from simple ordinary least squares to complicated heteroscedastic cointegration methods. Un
martingale and joint-normality conditions, different hedge ratios are the same as the minimum varian
hedge ratio. Otherwise, the optimal hedge ratios based on the different approaches are different and tl
is no single optimal hedge ratio that is distinctly superior to the remaining ones.
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1. Introduction

One of the best uses of derivative securities such as futures contracts is in hedging. In 1
past, both academicians and practitioners have shown great interest in the issue of hedging v
futures. This is quite evident from the large number of articles written in this area.
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One of the main theoretical issues in hedging involves the determination of the optimal
hedge ratio. However, the optimal hedge ratio depends on the particular objective function to
be optimized. Many different objective functions are currently being used. For example, one
of the most widely-used hedging strategies is based on the minimization of the variance of the
hedged portfolio (e.g., sdederington, 1979; Johnson, 198dyers & Thompson, 1989 This
so-called minimum variance (MV) hedge ratio is simple to understand and estimate. However,
the MV hedge ratio completely ignores the expected return of the hedged portfolio. Therefore,
this strategy is in general inconsistent with the mean-variance framework unless the individuals
are infinitely risk averse or the futures price follows a pure martingale process (i.e., expected
futures price change is zero).

Other strategies that incorporate both the expected return and risk (variance) of the hedged
portfolio have been recently proposed (e.g.,8eechetti, Cumby, & Figlewski, 1988loward
& D’Antonio, 1984; Hsin, Kuo, & Lee, 1994 These strategies are consistent with the mean-
variance framework. However, it can be shown that if the futures price follows a pure martin-
gale process, then the optimal mean-variance hedge ratio will be the same as the MV hedge
ratio.

Another aspect of the mean-variance-based strategies is that even though they are an improve-
ment over the MV strategy, for them to be consistent with the expected utility maximization
principle, either the utility function needs to be quadratic or the returns should be jointly normal.

If neither of these assumptions is valid, then the hedge ratio may not be optimal with respect
to the expected utility maximization principle. Some researchers have solved this problem by
deriving the optimal hedge ratio based on the maximization of the expected utility (e.g., see
Cecchetti et al., 1988; Lence, 1995, 1998owever, this approach requires the use of specific
utility function and specific return distribution.

Attempts have been made to eliminate these specific assumptions regarding the utility func-
tion and return distributions. Some of them involve the minimization of the mean extended-Gini
(MEG) coefficient, which is consistent with the concept of stochastic dominance (e.g., see
Cheung, Kwan, & Yip, 199(Kolb & Okunev, 1992, 1993 ien & Luo, 1993aLien & Shaffer,

1999 Shalit, 199%. Shalit (1995)shows that if the prices are normally distributed, then the
MEG-based hedge ratio will be the same as the MV hedge ratio.

Recently, hedge ratios based on the generalized semivariance (GSV) or lower partial moments
have been proposed (e.g., €&een, Lee, & Shrestha, 200De Jong, De Roon, & Veld, 1997
Lien & Tse, 1998, 2000 These hedge ratios are also consistent with the concept of stochastic
dominance. Furthermore, these GSV-based hedge ratios have another attractive feature whereby
they measure portfolio risk by the GSV, which is consistent with the risk perceived by managers,
because of its emphasis on the returns below the target retur@igee Laughhunn, & Payne,

1981 Lien & Tse, 2000. Lien and Tse (19983how that if the futures and spot returns are
jointly normally distributed and if the futures price follows a pure martingale process, then the
minimum-GSV hedge ratio will be equal to the MV hedge ratio.

Most of the studies mentioned above (excephce, 1995, 1996ignore transaction costs
as well as investments in other securitiesnce (1995, 1996&)erives the optimal hedge ratio
where transaction costs and investments in other securities are incorporated in the model. Using
a CARA utility function, Lence finds that under certain circumstances, the optimal hedge ratio
is zero; i.e., the optimal hedging strategy is not to hedge at all.
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In addition to the use of different objective functions in the derivation of the optimal hedge
ratio, previous studies also differ in terms of the dynamic nature of the hedge ratio. For examp
some studies assume that the hedge ratio is constant over time. Consequently, these s
hedge ratios are estimated using unconditional probability distributions (e.@eseg 1992;
Ederington, 1979; Ghosh, 1993oward & D’Antonio, 1984 Kolb & Okunev, 1992, 1998 On
the other hand, several studies allow the hedge ratio to change over time. In some cases, t
dynamic hedge ratios are estimated using conditional distributions associated with models st
as ARCHand GARCH (e.g., s&aillie & Myers, 1991 Cecchettiet al., 198&roner & Sultan,
1993 Sephton, 1993aAlternatively, the hedge ratios can be made dynamic by considering ¢
multi-period model where the hedge ratios are allowed to vary for different periods. This is th
method used byien and Luo (1993hb)

When it comes to estimating the hedge ratios, many different techniques are currently bei
employed, ranging from simple to complex ones. For example, some of them use such a si
ple method as the ordinary least squares (OLS) technique (e.@Beset, 1992; Ederington,
1979 Malliaris & Urrutia, 199). However, others use more complex methods such as the
conditional heteroscedastic (ARCH or GARCH) method (e.g.,B&idie & Myers, 1991
Cecchetti et al., 1988; Sephton, 1993he random coefficient method (e.g., $&@ammatikos
& Saunders, 1983 the cointegration method (e.g., s€&ou, Fan, & Lee, 1996Ghosh,
1993 Lien & Luo, 1993h), or the cointegration-heteroscedastic method (e.g.Kseeer &
Sultan, 1993

It is quite clear that there are several different ways of deriving and estimating hedge ratic
In the paper we review these different techniques and approaches and examine their relatic

The paper is divided into five sections. 8ection 2alternative theories for deriving the
optimal hedge ratios are reviewed. Various estimation methods are discusSedtion 3
Section 4presents a discussion on the relationship among lengths of hedging horizon, maturi
of futures contract, data frequency, and hedging effectiveness. Finaglgcitnon Swe provide
a summary and conclusion.

2. Alternativetheoriesfor deriving the optimal hedgeratio

The basic concept of hedging is to combine investments in the spot market and futur
market to form a portfolio that will eliminate (or reduce) fluctuations in its value. Specifi-
cally, consider a portfolio consisting @, units of a long spot position an@; units of a
short futures positioh.Let S andF, denote the spot and futures prices at tim@spectively.
Since the futures contracts are used to reduce the fluctuations in spot positions, the res
ing portfolio is known as the hedged portfolio. The return on the hedged portfjiois
given by:

R, — CiSiRy — CyFiRy _ R~ IR}, (1a)
CsSy
whereh = C;F,/C,S, is the so-called hedge ratio, al} = (Si11 — S,)/S; andR; =
(F.41 — F,)/ F, are so-called one-period returns on the spot and futures positions, respectivel
Sometimes, the hedge ratio is discussed in terms of price changes (profits) instead of retur
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In this case the profit on the hedged portfolivyy, and the hedge ratid{, are respectively
given by:
Cr
AVy = C;AS,— C;AF, and H= o (1b)
whereAS; = S;.1 — S, andAF, = F, 1 — F;.

The main objective of hedging is to choose the optimal hedge ratio (ditloerH). As
mentioned above, the optimal hedge ratio will depend on a particular objective function to be
optimized. Furthermore, the hedge ratio can be static or dynam&edtions 2.1 and 2,2ve
will discuss the static hedge ratio and then the dynamic hedge ratio.

Itis important to note that in the above setup, the cash position is assumed to be fixed and we
only look for the optimum futures position. Most of the hedging literature assumes that the cash
position is fixed, a setup that is suitable for financial futures. However, when we are dealing
with commaodity futures, the initial cash position becomes an important decision variable that
is tied to the production decision. One such setup considerdgtbge (1995, 1996\ill be
discussed irsection 2.3

2.1. Satic case

We consider here that the hedge ratio is static if it remains the same over time. The static
hedge ratios reviewed in this paper can be divided into eight categories, as shoaidrl
We will discuss each of them in the paper.

2.1.1. Minimum variance hedge ratio
The most widely-used static hedge ratio is the MV hedge ratibnson (1960Jerives this
hedge ratio by minimizing the portfolio risk, where the risk is given by the variance of changes

Table 1
A list of different static hedge ratios

Hedge ratio

Obijective function

MV hedge ratio
Optimum mean-variance hedge ratio

Sharpe hedge ratio

Maximum expected utility hedge ratio
Minimum MEG coefficient hedge ratio
Optimum mean-MEG hedge ratio
Minimum GSV hedge ratio

Maximum mean-GSV hedge ratio

Minimize variance d®,
Maximizer;,) — 3 A Var(R;)
E(Ry) — Rp
Jvar(R,)
Maximizgf U(W1)]
MinimizE, (R, v)
MaX|m|ﬁRh] - [‘U(Rhl))
Minimiz&; ,(R;)
MaXimiBth] — V(S,oc(Rh)

Maximi

Notes: (1)R,: return on the hedged portfolig(R;): expected return on the hedged portfolio; V) variance of
return on the hedged portfolid; risk aversion parameteR-: return on the risk-free securitig(U(W;)): expected
utility of end-of-period wealthf, (R, v): mean extended-Gini coefficient Bf; V; .(R,): generalized semivariance
of R,. (2) With W, given byEq. (15) the maximum expected utility hedge ratio includes the hedge ratio considered

by Lence (1995, 1996)
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in the value of the hedged portfolio as follows:
Var(AVy) = C2Var(AS) + C5 Var(AF) — 2C,Cy COW(AS, AF).

The MV hedge ratio, in this case, is given by:
_ Cy; _ CoV(AS, AF)
C,  Var(AF)

Alternatively, if we use definition (1a) and use M&y] to represent the portfolio risk, then
the MV hedge ratio is obtained by minimizing V& which is given by:

H; (2a)

Var(R;) = Var(R,) + h?Var(R ;) — 2h CO(R;, R ).

In this case, the MV hedge ratio is given by:
. CoV(R, Ry) oy

_ _ 2b
I NarRy) oy (2b)

wherep is the correlation coefficient betwe&yandRy, ando, ando ; are standard deviations
of Ry andRy, respectively.

The attractive features of the MV hedge ratio are that it is easy to understand and sim
to compute. However, in general the MV hedge ratio is not consistent with the mean-varian
framework since it ignores the expected return on the hedged portfolio. For the MV hedge rat
to be consistent with the mean-variance framework, either the investors need to be infinite
risk averse or the expected return on the futures contract needs to be zero.

2.1.2. Optimum mean-variance hedgeratio

Various studies have incorporated both risk and return in the derivation of the hedge rati
For exampleHsin et al. (1994derive the optimal hedge ratio that maximizes the following
utility function:

rréaxV(E(Rh), o; A) = E(R;,) — 0.5A407, (3)
f

whereA represents the risk aversion parameter. It is clear that this utility function incorporate
both risk and return. Therefore, the hedge ratio based on this utility function would be consiste
with the mean-variance framework. The optimal number of futures contract and the optim:
hedge ratio are respectively given by:

\ __C?F__ E(Rf)_ oy 4
2= = > pP—1- (4)
C,S Aaf oy

One problem associated with this type of hedge ratio is that in order to derive the optimul
hedge ratio, we need to know the individual’s risk aversion parameter. Furthermore, differe
individuals will choose different optimal hedge ratios, depending on the values of their ris|
aversion parameter.

Since the MV hedge ratio is easy to understand and simple to compute, it will be interestir
and useful to know under what condition the above hedge ratio would be the same as t
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MV hedge ratio. It can be seen frofgs. (2b) and (4that if A — oo or E(Ry) = O,
thenh, would be equal to the MV hedge ratig. The first condition is simply a restatement

of the infinitely risk-averse individuals. However, the second condition does not impose any
condition on the risk averseness, and this is important. It implies that even if the individuals are
not infinitely risk averse, the MV hedge ratio would be the same as the optimal mean-variance
hedge ratio if the expected return on the futures contract is zero (i.e., futures prices follow a
simple martingale process). Therefore, if futures prices follow a simple martingale process,
then we do not need to know the risk aversion parameter of the investor to find the optimal
hedge ratio.

2.1.3. Sharpe hedge ratio
Another way of incorporating the portfolio return in the hedging strategy is to use the
risk-return tradeoff (Sharpe measure) critetitoward and D’Antonio (1984fonsider the
optimal level of futures contracts by maximizing the ratio of the portfolio’s excess return to its
volatility:
E(R,) — R
maxé = M (5)
Cr Op
whereaf = Var(R;) and Rr represents the risk-free interest rate. In this case the optimal
number of futures positions};, is given by:

(S/F)(os/op)(o5/os)(E(Ry)/(E(Ry) — RF)) — ]

= T T = (o (B(Ry) p/(ERy) — R ©
From the optimal futures position, we can obtain the following optimal hedge ratio:
hs = — (o5/0p)(05/0)(E(Rf)/(E(Rs) — RF)) — p]' 7)
[1— (os/o)(E(Rf)p/(E(Rs) — RF))]
Again, if E(R;) = 0, thenhz reduces to:
hs = ;’—fp (®)

which is the same as the MV hedge raiip

As pointed out byChen et al. (2001)the Sharpe ratio is a highly non-linear function of
the hedge ratio. Therefore, it is possible tkat. (7) which is derived by equating the first
derivative to zero, may lead to the hedge ratio that would minimize, instead of maximizing, the
Sharpe ratio. This would be true if the second derivative of the Sharpe ratio with respect to the
hedge ratio is positive instead of negative. Furthermore, it is possible that the optimal hedge
ratio may be undefined as in the case encounteré&thiay et al. (2001 )where the Sharpe ratio
monotonically increases with the hedge ratio.

2.1.4. Maximum expected utility hedge ratio

So far we have discussed the hedge ratios that incorporate only risk as well as the ones
that incorporate both risk and return. The methods, which incorporate both the expected return
and risk in the derivation of the optimal hedge ratio, are consistent with the mean-variance
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framework. However, these methods may not be consistent with the expected utility maximiz
tion principle unless either the utility function is quadratic or the returns are jointly normally
distributed. Therefore, in order to make the hedge ratio consistent with the expected utili
maximization principle, we need to derive the hedge ratio that maximizes the expected utilit
However, in order to maximize the expected utility we need to assume a specific utility functior
For exampleCecchetti et al. (1988)erive the hedge ratio that maximizes the expected utility
where the utility function is assumed to be the logarithm of terminal wealth. Specifically, the)
derive the optimal hedge ratio that maximizes the following expected utility function:

/ log[1 + R, — hR/1 (R, R;) dR,dR,,
RyJ Ry

where the density functioif(R,, R¢) is assumed to be bivariate normal. A third-order linear
bivariate ARCH model is used to get the conditional variance and covariance matrix, and
numerical procedure is used to maximize the objective function with respect to the hedde ratic

2.1.5. Minimum mean extended-Gini coefficient hedge ratio

This approach of deriving the optimal hedge ratio is consistent with the concept of stochast
dominance and involves the use of the MEG coeffici€hieung et al. (1990Kolb and Okunev
(1992) Lien and Luo (1993g)Shalit (1995) andLien and Shaffer (1999ll consider this
approach. It minimizes the MEG coefficieRf(R),) defined as follows:

Iy(Ry) = —vCOV(Ry, (1L — G(R))'™), )

whereG is the cumulative probability distribution andis the risk aversion parameter. Note
that 0 < v < 1 implies risk seekers; = 1 implies risk-neutral investors, and> 1 implies
risk-averse investorsshalit (1995)has shown that if the futures and spot returns are jointly
normally distributed, then the minimum-MEG hedge ratio would be the same as the MV hedc
ratio.

2.1.6. Optimum mean-MEG hedgeratio
Instead of minimizing the MEG coefficierolb and Okunev (1993lternatively consider
maximizing the utility function defined as follows:

U(Ryp) = E(Ry) — I,(Rp). (10)

The hedge ratio based on the utility function definedBay (10)is denoted as the M-MEG
hedge ratio. The difference between the MEG and M-MEG hedge ratios is that the MEG hed
ratio ignores the expected return on the hedged portfolio. Again, if the futures price follow
a martingale process (i.e£(R ;) = 0), then the MEG hedge ratio would be the same as the
M-MEG hedge ratio.

2.1.7. Minimum generalized semivariance hedge ratio

Inrecent years a new approach for determining the hedge ratio has been sugges€ibdrisee
et al., 2001; De Jong et al., 1997en & Tse, 1998, 2000 This new approach is based on
the relationship between the GSV and expected utility as discuss€tsbyurn (1977yand
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Bawa (1978) In this case the optimal hedge ratio is obtained by minimizing the GSV given
below:

5
Vs.a(Rp) = / (6 — Rp“AG(R;), « >0, (11)

whereG (R),) is the probability distribution function of the return on the hedged portfglio
The parametersd anda (which are both real numbers) represent the target return and risk
aversion, respectively. The risk is defined in such a way that the investors consider only the
returns below the target retur) ¢o be risky. It can be shown (s&é&shburn, 197Ythata < 1
represents a risk-seeking investor ang 1 represents a risk-averse investor.

The GSV, due to its emphasis on the returns below the target return, is consistent with the
risk perceived by managers (s€aum et al., 1981Lien & Tse, 2000. Furthermore, as shown
by Fishburn (1977andBawa (1978)the GSV is consistent with the concept of stochastic dom-
inance Lien and Tse (1998how that the GSV hedge ratio, which is obtained by minimizing
the GSV, would be the same as the MV hedge ratio if the futures and spot returns are jointly
normally distributed and if the futures price follows a pure martingale process.

2.1.8. Optimum mean-generalized semivariance hedge ratio

Chen et al. (2001gxtend the GSV hedge ratio to a mean-GSV (M-GSV) hedge ratio by
incorporating the mean return in the derivation of the optimal hedge ratio. The M-GSV hedge
ratio is obtained by maximizing the following mean-risk utility function, which is similar to
the conventional mean-variance-based utility function &sgg3):

U(Rp) = E[Ry] — Vs.o(Rp). (12)

This approach to the hedge ratio does not use the risk aversion parameter to multiply the GSV
as done in conventional mean-risk models (dsm et al., 1994ndEq. (3). This is because the

risk aversion parameter is already included in the definition of the &SMR;). As before,

the M-GSV hedge ratio would be the same as the GSV hedge ratio if the futures price follows
a pure martingale process.

2.2. Dynamic case

We have up to now examined the situations in which the hedge ratio is fixed at the optimum
level and is not revised during the hedging period. However, it could be beneficial to change
the hedge ratio over time. One way to allow the hedge ratio to change is by recalculating
the hedge ratio based on the current (or conditional) information on the covariafcand
variance (rj%). This involves calculating the hedge ratio based on conditional information (i.e.,
os|82;_1 andaj%m,,l) instead of unconditional information. In this case, the MV hedge ratio is
given by:

o821

hy|$2,1 = .
' U]2f|~Qt—l

The adjustment to the hedge ratio based on new information can be implemented using such
conditional models as ARCH and GARCH (to be discussed later) or using the moving window
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estimation method. Alternatively, we can allow the hedge ratio to change during the hedgir
period by considering multi-period models, which is the approach uskeighynd Luo (1993h)

Lien and Luo (1993bgonsider hedging withi periods’ planning horizon and minimize the
variance of the wealth at the end of the planning horixtin, Consider the situation whe ,
is the spot position at the beginning of pericathd the corresponding futures position is given
by C; = —b,C,,. The wealth at the end of the planning horiz@;, is then given by:

T-1

Wr=Wo+ Y CulSis1— S — bi(Fya — F)],
t=0
T-1
=Wo+ ch,t[ASHl — b, AF11]. (13)

=0

The optimalb,’s are given by the following recursive formula:

b, = (14)

Cov(AS; 41, AFi11) § <Cs,i> Cov(AFi1, ASii1+bi AFiy 1)
Var(AFi41) S \Cau Var(AFi41) '
Itis clear fromEq. (14)that the optimal hedge ratip will change over time. The multi-period
hedge ratio will differ from the single-period hedge ratio due to the second term on the right-har
side ofEqQ. (14) However, it is interesting to note that the multi-period hedge ratio would be
different from the single-period one if the changes in current futures prices are correlated wi
the changes in future futures prices or with the changes in future spot prices.

2.3. Casewith production and alternative investment opportunities

All the models considered iBections 2.1 and 2.2ssume that the spot position is fixed or
predetermined, and thus production is ignored. As mentioned earlier, such an assumption n
be appropriate for financial futures. However, when we consider commaodity futures, productic
should be considered in which case the spot position becomes one of the decision variabl
In an important papet.ence (1995kxtends the model with a fixed or predetermined spot
position to a model where production is included. In his modethce (1995also incorporates
the possibility of investing in a risk-free asset and other risky assets, borrowing, as well
transaction costs. We will briefly discuss the model considerddeinge (1995pelow.

Lence (1995Fonsiders a decision maker whose utility is a function of terminal wekHM%, ),
such thaty’ > 0 andU” < 0. At the decision dater (= 0), the decision maker will engage
in the production ofQ commaodity units for sale at terminal date=¢ 1) at the random cash
price P,. At the decision date, the decision maker can lerdbllars at the risk-free lending
rate (R, — 1) and borrowB dollars at the borrowing raterz — 1), investl dollars in a different
activity that yields a random rate of returR;(— 1) and sellX futures at futures priceq. The
transaction cost for the futures tradd @ollars per unit of the commodity traded to be paid at
the terminal date. The terminal wealt) is therefore given by:

Wi =WoR= PO+ (Fo— F1)X — f|IX| — RgB+ R.L + R/], (15)
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whereRis the return on the diversified portfolio. The decision maker will maximize the expected
utility subject to the following restrictions:

Wo+B=v(Q)Q+L+1 0=<B=<kpu(Q)Q, kp=0,
L >k FolX|, k. >=0,1=0,

wherev(Q) is the average cost functioky is the maximum amount (expressed as a proportion
of his initial wealth) that the agent can borrow, adis the safety margin for the futures
contract.

Using this frameworkl.ence (1995)ntroduces two opportunity costs: opportunity cost of
alternative (sub-optimal) investment,f) and opportunity cost of estimation risé?f¥9.3 Let
Ropt be the return of the expected-utility maximizing strategy andRigtbe the return on
a particular alternative (sub-optimal) investment strategy. The opportunity cost of alternative
investment strateggsy is then given by:

ELU(WORopt)J = E[U(WORaIt + Calt)]- (16)

In other wordsg, is the minimum certain net return required by the agent to invest in the al-
ternative (sub-optimal hedging) strategy rather than in the optimum strategy. Using the CARA
utility function and some simulation resultssnce (1995finds that the expected-utility maxi-
mizing hedge ratios are substantially different from the minimum variance hedge ratios. He also
shows that under certain conditions, the optimal hedge ratio is zero; i.e., the optimal strategy is
not to hedge at all.

Similarly, the opportunity cost of the estimation risk?®9 is defined as follows:

E,LE(U{Wo[ Ropi(p) — ¢3¥°3))| = E, | E(U(WoRopt ™)), (17)

whereRg(p) is the expected-utility maximizing return where the agent knows with certainty

the value of the correlation between the futures and spot p@eﬂﬁgty ®Sis the expected-utility
maximizing return where the agent only knows the distribution of the correlatiandE [ -]

is the expectation with respect 1 Using simulation resultd,ence (1995)finds that the
opportunity cost of the estimation risk is negligible and thus the value of the use of sophisticated
estimation methods is negligible.

3. Alternative methods for estimating the optimal hedge ratio

In Section 2we discussed different approaches to deriving the optimum hedge ratios. How-
ever, in order to apply these optimum hedge ratios in practice, we need to estimate these hedge
ratios. There are various ways of estimating them. In this section we briefly discuss these
estimation methods.

3.1. Estimation of the MV hedge ratio

3.1.1. OLSmethod
The conventional approach to estimating the MV hedge ratio involves the regression of the
changes in spot prices on the changes in futures price using the OLS technique (dunksse
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& Lee, 1985. Specifically, the regression equation can be written as:
ASt :a0+al AF;‘{’et, (18)

where the estimate of the MV hedge ratit;, is given bya;. The OLS technique is quite
robust and simple to use. However, for the OLS technique to be valid and efficient, assumptio
associated with the OLS regression must be satisfied. One case where the assumptions are
completely satisfied is that the error term in the regression is heteroscedastic. This situati
will be discussed later.

Another problem with the OLS method, as pointed outMbyers and Thompson (1989)
is the fact that it uses unconditional sample moments instead of conditional sample momer
which use currently available information. They suggest the use of the conditional covariant
and conditional variance iBq. (2a) In this case, the conditional version of the optimal hedge
ratio (Eq. (2a) will take the following form:

_ Cy  COV(AS,AF)|21
C,  NVar(AF)|2,.1

H; (2a%)
Suppose that the current informatiaf,( ;) includes a vector of variableX{_;) and the spot
and futures price changes are generated by the following equilibrium model:

AS; = X0 + uy, AF, =X,_1B8+ v;.

In this case the maximum likelihood estimator of the MV hedge ratio is given byMsees
& Thompson, 198%

X, g =22 (19)
O.'U

whered,, is the sample covariance between the residyaladv,, andé? is the sample variance

of the residual,. In general, the OLS estimator obtained fr&i. (18)would be different from

the one given byeq. (19) For the two estimators to be the same, the spot and futures price
must be generated by the following model:

AS; = ag + uy, AF; = Bo+ v

In other words, if the spot and futures prices follow a random walk with or without drift, then the
two estimators will be the same. Otherwise, the hedge ratio estimated from the OLS regressi
(18) will not be optimal.

3.1.2. ARCH and GARCH methods

Ever since the development of ARCH and GARCH models, the OLS method of estimatin
the hedge ratio has been generalized to take into account the heteroscedastic nature of
error term inEq. (18) In this case, rather than using the unconditional sample variance an
covariance, the conditional variance and covariance from the GARCH model are used in tl
estimation of the hedge ratio. As mentioned above, such a technique allows an update of
hedge ratio over the hedging period.
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Consider the following bivariate GARCH model (faillie & Myers, 1991 Cecchettietal.,
1988:

[ii] - [52] n [2;] o AY, = puten
Hyy, Hth]

Hip; Hapy |’

ved H,) = C + Avede,_1e, ;) + Bved H,_1).

The conditional MV hedge ratio at tintés given byh,_1 = Hi,,/H2,. This model allows the
hedge ratio to change over time, resulting in a series of hedge ratios instead of a single hedge
ratio for the entire hedging horizon.

The model can be extended to include more than one type of cash and futures contracts (see
Sephton, 1993aFor example, consider a portfolio that consists of spot wiggt 6pot canola
(S), wheat futuresKy,) and canola futures=;). We then have the following multi-variate
GARCH model:

el‘|9t—l ~ N(Ov Ht)7 Ht = [

ASy “1 €1
ASa | _ | M2 | | €z &S AY, =p+e, elR-1~ NQO,H)
AFy 3 e3 ' oo o P
AFy Ha €4y

The MV hedge ratio can be estimated using a similar technique as described above. For example,
the conditional MV hedge ratio is given by the conditional covariance between the spot and
futures price changes divided by the conditional variance of the futures price change.

3.1.3. Random coefficient method

There is another way to deal with heteroscedasticity. This involves use of the random co-
efficient model as suggested Brammatikos and Saunders (198Bhis model employs the
following variation ofEq. (18)

AS; = ,30+,BZAFI+617 (20)

where the hedge ratjéy = 8+ v, is assumed to be random. This random coefficient model can,

in some cases, improve the effectiveness of hedging strategy. However, this technigue does not
allow for the update of the hedge ratio over time even though the correction for the randomness
can be made in the estimation of the hedge ratio.

3.1.4. Cointegration and error correction method

The techniques described so far do not take into consideration the possibility that spot price
and futures price series could be non-stationary. If these series have unit roots, then this will
raise a differentissue. If the two series are cointegrated as defirteby and Granger (1987)
then the regressidag. (18)will be mis-specified and an error-correction term must be included
in the equation. Since the arbitrage condition ties the spot and futures prices, they cannot drift
far apart in the long run. Therefore, if both series follow a random walk, then we expect the
two series to be cointegrated in which case we need to estimate the error correction model. This
calls for the use of the cointegration analysis.
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The cointegration analysis involves two steps. First, each series must be tested for a unit r
(e.g., sedickey & Fuller, 1981; Phillips & Perron, 1988Second, if both series are found to
have a single unit root, then the cointegration test must be performed (e gnge& Granger,
1987 Johansen & Juselius, 1990; Osterwald-Lenum, 1992

If the spot price and futures price series are found to be cointegrated, then the hedge ra
can be estimated in two steps (€&fou et al., 1996; Ghosh, 1993 he first step involves the
estimation of the following cointegrating regression:

St =da + bF[ + Uy. (21)
The second step involves the estimation of the following error correction model:
AS; = pur—y+ BAF, + ) 8 AF—i+) 0iAS_;+e;, (22)
i=1 j=1

wherelu, is the residual series from the cointegrating regression. The estimate of the hed:
ratio is given by the estimate gf Some researchers (e.g., $&en & Luo, 1993 assume that

the long-run cointegrating relationship i$ ¢ F;), and estimate the following error correction
model:

AS; =p(Sica—Fi)) + BAF, + Y 8 AFi+ ) 0;AS_j+e;. (23)
i=1 j=1

Alternatively,Chou et al. (19968uggest the estimation of the error correction model as follows:

AS; =il 1+ BAF,+ Y 8 AF i+ Y 0:AS,_j+e, (24)
i=1 j=1

whereii;_; = S,_1— (a+bF;_1);i.e., the series; is the estimated residual series fr&m. (21)
The hedge ratio is given b§in Eq. (24)

Kroner and Sultan (1993)ombine the error-correction model with the GARCH model
considered byCecchetti et al. (1988indBaillie and Myers (1991)n order to estimate the
optimum hedge ratio. Specifically, they use the following model:

[Aloge(St)] _ [m] N [as(loge(St_l) —log,(Fi-1)) ] N [elt] ’ (25)
Alog,(F;) M2 ar(log,(S;—1) — log,(F-1)) ey

where the error processes follow a GARCH process. As before, the hedge ratio at-tirhp (
is given byh,_1 = Hiz,/H>z;.

3.2. Estimation of the optimum mean-variance and Shar pe hedge ratios

The optimum mean-variance and Sharpe hedge ratios are givegsy4) and (7)respec-
tively. These hedge ratios can be estimated simply by replacing the theoretical moments by th
sample moments. For example, the expected returns can be replaced by sample average ret
the standard deviations can be replaced by the sample standard deviations, and the correle
can be replaced by sample correlation.
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3.3. Estimation of the maximum expected utility hedge ratio

The maximum expected utility hedge ratio involves the maximization of the expected utility.
This requires the estimation of distributions of the changes in spot and futures prices. Once the
distributions are estimated, one needs to use a numerical technique to get the optimum hedge
ratio. One such method is describeddacchetti et al. (1988)here an ARCH model is used
to estimate the required distributions.

3.4. Estimation of MEG coefficient based hedge ratios

The MEG hedge ratio involves the minimization of the following MEG coefficient:
I(Ry) = —vCoV[Ry,, (1 — G(R))" .

In order to estimate the MEG coefficient, we need to estimate the cumulative probability density
function G(R;). The cumulative probability density function is usually estimated by ranking
the observed return on the hedged portfolio. A detailed description of the process can be found
in Kolb and Okunev (1992)and we briefly describe the process here.

The cumulative probability distribution is estimated by using the rank as follows:

Rank(R;.;)
N

whereN is the sample size. Once we have the series for the probability distribution function, the
MEG is estimated by replacing the theoretical covariance by the sample covariance as follows:

’

G(Rp,i) =

N
MR, = _%Z(Rh,i — R)((1 =GRy - 0), (26)
=1

where

1Y 1Y
R,==Y R,; and ©= =) 1-G(R,))" .
i N; i, N;} (Ri.))

The optimal hedge ratio is now given by the hedge ratio that minimizes the estimated MEG.

Since there is no analytical solution, the numerical method needs to be applied in order to get the

optimal hedge ratio. This method is sometimes referred to as the empirical distribution method.
Alternatively, the instrumental variable (IV) method suggeste&balit (1995)an be used

to find the MEG hedge ratio. Shalit's method provides the following analytical solution for the

MEG hedge ratio:

WV Cov(S;41, [1 — G(Ft+1)]vil)
CoV(Fiy1, [1 — G(FryD)]v )’
Itis important to note that for the IV method to be valid, the cumulative distribution function of
the terminal wealthW, 1) should be similar to the cumulative distribution of the futures price

(Fiy1); ie., G(W, 1) = G(F;y1). Lien and Shaffer (1999nd that the 1V-based hedge ratio
(h'V) is significantly different from the minimum MEG hedge ratio.
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Lien and Luo (1993ag3uggest an alternative method of estimating the MEG hedge ratio. Thi:
method involves the estimation of the cumulative distribution function using a non-parametri
kernel function instead of using a rank function as suggested above.

Regarding the estimation of the M-MEG hedge ratio, one can follow either the empirica
distribution method or the non-parametric kernel method to estimate the MEG coefficient. .
numerical method can then be used to estimate the hedge ratio that maximizes the objec
function given byEq. (10)

3.5. Estimation of GSV-based hedge ratios

The GSV can be estimated from the sample by using the following sample counterpart:

N
sample(Rh) = 2(5 — Ry DU — Ry), @7
i:l
where
UG — Ry — 1, fors=> Ry,
7710, fors < Rp.i.

Similar to the MEG technique, the optimal GSV hedge ratio can be estimated by choosir
the hedge ratio that minimizes the sample GBVmp'e(Rh) Numerical methods can be used
to search for the optimum hedge ratio. Slmllarly, the M-GSV hedge ratio can be obtained k
minimizing the mean-risk function given tyq. (12) where the expected return on the hedged
portfolio is replaced by the sample average return and the GSV is replaced by the sample G!
One can instead use the kernel density estimation method suggedstied laynd Tse (2000)
to estimate the GSV, and numerical techniques can be used to find the optimum GSV hec
ratio. Instead of using the kernel method, one can also employ the conditional heterosceda:
model to estimate the density function. This is the method usdddryand Tse (1998)

4. Hedging horizon, maturity of futures contract, data frequency,
and hedging effectiveness

In this section we discuss the relationship among the length of hedging horizon (hedgir
period), maturity of futures contracts, data frequency (e.qg., daily, weekly, monthly, or quarterly
and hedging effectiveness. Since there are many futures contracts (with different maturitie
that can be used in hedging, the question is whether the MV hedge ratio depends on the ti
to maturity of the futures contract being used for hedglrege, Bubnys, and Lin (1987)nd
that the MV hedge ratio increases as the maturity is approached. This means that if we use
nearest to maturity futures contracts to hedge, then the MV hedge ratio will be larger compar
to the one obtained using futures contracts with a longer maturity.

Aside from using futures contracts with different maturities, we can estimate the MV hedg
ratio using data with different frequencies. For example, the data used in the estimation of t
optimum hedge ratio can be daily, weekly, monthly, or quarterly. At the same time, the hedgir
horizon could be from a few hours to more than a month. The question is whether a relationst
exists between the data frequency used and the length of the hedging horizon.
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Malliaris and Urrutia (1991andBenet (1992)utilize Eq. (18)and weekly data to estimate
the optimal hedge ratio. According kalliaris and Urrutia (1991 theex ante hedging is more
effective when the hedging horizon is 1 week compared to a hedging horizon of 4 \Beeles.
(1992)finds that a shorter hedging horizon (4 weeks) is more effectivex@ntetest) compared
to a longer hedging horizon (8 and 12 weeks). These empirical results seem to be consistent
with the argument that when estimating the MV hedge ratio, the hedging horizon’s length must
match the data frequency being used.

There is a potential problem associated with matching the length of the hedging horizon
and the data frequency. For example, consider the case where the hedging horizon is 3 months
(one-quatrter). In this case we need to use quarterly data to match the length of the hedging
horizon. In other words, when estimatiig. (18)we must employ quarterly changes in spot and
futures prices. Therefore, if we have 5 years’ worth of data, then we will have 19 non-overlapping
price changes, resulting in asample size of 19. However, if the hedging horizon is 1 week, instead
of 3 months, then we will end up with approximately 260 non-overlapping price changes (sample
size of 260) for the same 5 years’ worth of data. Therefore, the matching method is associated
with a reduction in sample size for a longer hedging horizon.

One way to get around this problem is to use overlapping price changes. For example,
Geppert (1995tilizesk-period differencing for &-period hedging horizon in estimating the
regression-based MV hedge ratio. SirGeppert (1995uses approximately 13 months of
data for estimating the hedge ratio, he employs overlapping differencing in order to eliminate
the reduction in sample size caused by differencing. However, this will lead to correlated
observations instead of independent observations and will require the use of a regression with
autocorrelated errors in the estimation of the hedge ratio.

In order to eliminate the autocorrelated errors probl@mppert (1995%uggests a method
based on cointegration and unit-root processes. We will briefly describe his method. Suppose
that the spot and futures prices, which are both unit-root processes, are cointegrated. In this
case the futures and spot prices can be described by the following procesdeylideerg &

Mizon, 1989; Stock & Watson, 1988

S; = A1 P, + Aoty (28a)
F; = B1P, + Bot;, (28b)
P = P_1+ wy, (28c)
=011+ v, 0<]|a] <1, (28d)

whereP, andzt, are permanent and transitory factors that drive the spot and futures prices and
w; andv, are white noise processes. Note tRafollows a pure random walk process and
follows a stationary process. The MV hedge ratio fér@eriod hedging horizon is then given

by (seeGeppert, 1995

o A1B1ko? + 2A2Bo((1 — of) /(1 — a?))o?
7T Blko2 +2B3(1— o) /(1 —a?)o2
One advantage of usirigqg. (29)instead of a regression with non-overlapping price changes

is that it avoids the problem of a reduction in sample size associated with non-overlapping
differencing.

(29)
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5. Summary and conclusions

In this paper we have reviewed various approaches to deriving the optimal hedge ratio,
summarized imMppendix A These approaches can be divided into the mean-variance-base
approach, the expected utility maximizing approach, the mean extended-Gini coefficient-bas
approach, and the generalized semivariance-based approach. All these approaches will |
to the same hedge ratio as the conventional MV hedge ratio if the futures price follows
pure martingale process and if the futures and spot prices are jointly normal. However,
these conditions do not hold, then the hedge ratios based on the various approaches will
different.

The MV hedge ratio is the most understood and most widely-used hedge ratio. Since tl
statistical properties of the MV hedge ratio are well known, statistical hypothesis testing can
performed with the MV hedge ratio. For example, we can test whether the optimal MV hedg
ratio is the same as theiwa hedge ratio. Since the MV hedge ratio ignores the expected return
it will not be consistent with the mean-variance analysis unless the futures price follows a pu
martingale process. Furthermore, if the martingale and normality condition do not hold, the
the MV hedge ratio will not be consistent with the expected utility maximization principle.
Following the MV hedge ratio is the mean-variance hedge ratio. Even if this hedge ratio inco
porates the expected return in the derivation of the optimal hedge ratio, it will not be consiste
with the expected maximization principle unless either the normality condition holds or th
utility function is quadratic.

In order to make the hedge ratio consistent with the expected utility maximization principle
we can derive the optimal hedge ratio by maximizing the expected utility. However, toimplemer
such approach, we need to assume a specific utility function and we need to make an assump
regarding the return distribution. Therefore, different utility functions will lead to different
optimal hedge ratios. Furthermore, analytic solutions for such hedge ratios are not known a
numerical methods need to be applied.

New approaches have recently been suggested in deriving optimal hedge ratios. These
clude the mean-Gini coefficient-based hedge ratio as well as semivariance-based hedge rat
These hedge ratios are consistent with the second-order stochastic dominance principle. Th
fore, such hedge ratios are very general in the sense that they are consistent with the expe
utility maximization principle and make very few assumptions on the utility function. The only
requirement is that the marginal utility be positive and the second derivative of the utility func
tion be negative. However, both of these hedge ratios do not lead to a unique hedge ratio. |
example, the mean-Gini coefficient-based hedge ratio depends on the risk aversion param
(v) and the semivariance-based hedge ratio depends on the risk aversion paraimabel (
target return ). It is important to note, however, that the semivariance-based hedge ratio he
some appeal in the sense that the semivariance as a measure of risk is consistent with the
perceived by individuals.

So far as the derivation of the optimal hedge ratio is concerned, almost all of the derivatiot
do notincorporate transaction costs. Furthermore, these derivations do not allow investment:
securities other than the spot and corresponding futures contracts. As shawndsy(1995)
once we relax these conventional assumptions, the resulting optimal hedge ratio can be qt
different from the ones obtained under the conventional assumpltiense’s (1995jesults are
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based on a specific utility function and some other assumption regarding the return distributions.
It remains to be seen if such results hold for the mean extended-Gini coefficient-based as well
as semivariance-based hedge ratios.

In this paper we have also reviewed various ways of estimating the optimum hedge ratio,
as summarized id\ppendix B As far as the estimation of the conventional MV hedge ratio
is concerned, there are a large number of methods that have been proposed in the literature.
These methods range from a simple regression method to complex cointegrated heteroscedastic
methods, and some of the estimation methods include a kernel density function method as well
as an empirical distribution method. Except for many of mean-variance-based hedge ratios, the
estimation involves the use of a numerical technique. This has to do with the fact that most of
the optimal hedge ratio formulae do not have a closed-form analytic expression. Again, it is
important to mention that based on his specific mddehce (1995§inds that the value of com-
plicated and sophisticated estimation methods is negligible. It remains to be seen if such a result
holds for the mean extended-Gini coefficient-based as well as semivariance-based hedge ratios.

In this paper we have also discussed about the relationship between the optimal MV hedge
ratio and the hedging horizon. We feel that this relationship has not been fully explored and can
be further developed in the future. For example, we would like to know if the optimal hedge
ratio approaches the iv@ hedge ratio when the hedging horizon becomes longer.

The main thing we learn from this review is that if the futures price follows a pure martingale
process and if the returns are jointly normally distributed, then all different hedge ratios are the
same as the conventional MV hedge ratio, which is simple to compute and easy to understand.
However, if these two conditions do not hold, then there are many optimal hedge ratios (de-
pending on which objective function one is trying to optimize) and there is no single optimal
hedge ratio that is distinctly superior to the remaining ones. Therefore, further research needs
to be done to unify these different approaches to the hedge ratio.

For those who are interested in research in this area, we would like to finally point out that
one requires a good understanding of financial economic theories and econometric methodolo-
gies. In addition, a good background in data analysis and computer programming would also
be helpful.

Notes

1. Without loss of generality, we assume that the size of the futures contract is one.

2. Lence (1995plso derives the hedge ratio based on the expected utility. We will discuss
it later in Section 2.3

3. Our discussion of the opportunity costs is very brief. We would like to refer interested
readers td.ence (1995jor a detailed discussion. We would also like to point to the fact
that production can be allowed to be random as is doheircte (1996)
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Appendix A. Theoretical models

References

Return definition and Summary

objective function

Johnson (1960)

Hsin et al. (1994)

Howard and D’Antonio
(1984)

Cecchetti et al. (1988)

Cheung et al. (1990)

Kolb and Okunev (1992)

Ret, Oy

Reb, O

Reb, O3

Reb, Oy

Reb, Os

Reb, Os

The paper derives the minimum variance hedge ratio. The hedging
effectiveness is defined &g, but no empirical analysis is done

The paper derives the utility function-based hedge ratio. A new measur
of hedging effectiveneds, based on a certainty equivalent is proposed.
The new measure of hedging effectiveness is used to compare the
effectiveness of futures and options as hedging instruments

@/ e B UdYD S-S

The paper derives the optimal hedge ratio based on maximizing the
Sharpe ratio. The proposed hedging effectiverigds based on the
Sharpe ratio

The paper derives the optimal hedge ratio that maximizes the expecte
utility function: fRSfRrog[l + Ry(t) — h()) R (D] fi(Rs, Ry) AR, dRy,
where the density function is assumed to be bivariate normal. A
third-order linear bivariate ARCH model is used to get the conditional
variance and covariance matrix. A numerical procedure is used to
maximize the objective function with respect to hedge ratio. Due to
ARCH, the hedge ratio changes over time. The paper uses certainty
equivalent Ey) to measure the hedging effectiveness

(£002) £ 30UeUl4 pue sIIWGTDIT Jo Moy Aje1end ay

The paper uses mean-Gini£ 2, not mean extended-Gini coefficient)
and mean-variance approaches to analyze the effectiveness of options
and futures as hedging instruments

Sor—¢eY

The paper uses mean extended-Gini coefficient in the derivation of the
optimal hedge ratio. Therefore, it can be considered as a generalizatior)
of the mean-Gini coefficient method used®ieung et al. (1990) a
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sy

References Return definition and Summary
objective function
Kolb and Okunev (1993) Ret, Og The paper defines the objective functions but in terms of wealth

Lien and Luo (1993b)

Lence (1995)

De Jong et al. (1997)

Chen et al. (2001)

Ret, Og

Reb, Oy (also
usesO; andOs)

Ret;, Og

(W) U(W) = E[W] — I,(W) and compares with the quadratic utility
functionU(W) = E[W] — mo?. The paper plots the EMG efficient
frontier inWandI,(W) space for various values of risk aversion
parametersu

fendaylL/ e P ueyd s-s

The paper derives the multi-period hedge ratios where the hedge ratiosg
are allowed to change over the hedging period. The method suggestedj,n
the paper still falls under the minimum variance hedge ratio

This paper derives the expected utility maximizing hedge ratio where th@
terminal wealth depends on the return on a diversified portfolio that
consists of the production of a spot commodity, investment in a risk-fre
asset, investment in a risky asset, as well as borrowing. It also
incorporates the transaction costs

14 pue soufBuoog

The paper derives the optimal hedge ratio that minimizes the GSV. Th
paper compares the GSV hedge ratio with the MV hedge ratio as well
the Sharpe hedge ratio. The paper usgffor the MV hedge ratio)kEs

(for the Sharpe hedge ratio) akg (for the GSV hedge ratio) as the
measures of hedging effectiveness

B

sov=Eey (€002) £ Gue

The paper derives the optimal hedge ratio that maximizes the risk-retu
function given byU(R;,) = E[R;] — V5.4 (R;). The method can be
considered as an extension of the GSV method usddkbjong et al.
(1997)




Notes:
A. Return model

(Ret)

(Rep)

B. Objective function
(O1) Minimize
(O2) Maximize
(O3) Maximize

(O4) Maximize
(Os) Minimize
(Os) Maximize
(O7) Minimize
(Og) Maximize
(Og) Minimize

C. Hedging effectiveness
(Ea)

(E2)

(Es)

(Ea)

. Cy . .
AVy = Cy; AP+ Cy APy = hedgeratio= H = R C, = units of spot commodity and

C ¢ = units of futures contract

S, —S_ F,— F,_ . C/F,_
Ry=R,+hR;, Ry=2"""1 (@R, =-"—""1 = hedgeratio h = -2,
F F Si—1 c F_1 sS-1
(b) Ry = ———=2 = hedgeratio # = —L.
St—l CS

Var(R;) = C?0? + C30% + 2C,Cog Or Var(R,) = o2 + h?03 + 2hog
E(Ry) — A3 Var(Ry)

E(Ry,) — R . . .
M (Sharpe ratio)Rr = risk-free interest rate
Var(Ry)

E[U(W)], U(-) = utility function, W = terminal wealth
Ly(Ry), Ty(Ry) = —vCOV(Ry, (1 — F(Ry))'™1)

E[R;] — I,(Ryv)

Vsa(Rp) = [° (3 — RD*AG(Ry), a>0

U(Rp) = E[Ry] — Vso(Ry)

Var(W,) = Var (L1,Cy, AS, + Cp AF)

_ Var(Ry)
Var(R;)
e = Rj® — RS, Ri%(R:®) = certainty equivalent return of hedged (unhedged) portfolio
_ (E[Ry] — RF)/Var(Ry) ofe — E[R)] — Rr  E[R] — RF

“T (EIR] - Rp)/Var(R) ~ Var(Ry)  Var(R,)
Vé,a(Rh)

e=1-— .
Vd,a(Rs)

Sor—<< (£002) £ 8oUeUl pue SJILOU0JT JO MBIy Aljerend 8yl / e 1B uayd S-S

14517



Appendix B. Empirical models

12°1%4

References

Commodity

Summary

Ederington (1979)

Grammatikos and
Saunders (1983)

Junkus and Lee (1985)

GNMA futures
(1/1976-12/1977), wheat
(1/1976-12/1977), corn
(1/1976-12/1977), T-bill
futures (3/1976-12/1977)
[weekly data]

Swiss franc, Canadian dollar,
British pound, DM, Yen
(1/1974-6/1980) [weekly
data]

Three stock index futures for
Kansas City Board of Trade,
New York Futures Exchange,
and Chicago Mercantile
Exchange (5/82—-3/83) [daily
data]

The paper uses the Ratefinition of return and estimates the
minimum variance hedge rati®(). E; is used as a hedging
effectiveness measure. The paper uses nearby contracts (3—6 o
months, 6-9 months and 9-12 months) and a hedging period of2
and 4 weeks. OLS9V,) is used to estimate the parameters. Someg
of the hedge ratios are found not to be different from zero and t
hedging effectiveness increases with the length of hedging
period. The hedge ratio also increases (closer to unity) with the
length of hedging period

B WUYD S-S

The paper estimates the hedge ratio for the whole period and
moving window (2-year data). It is found that the hedge ratio

changes over time. Dummy variables for various sub-periods ar
used, and shifts are found. The paper uses a random coefficienty’
(M3) model to estimate the hedge ratio. The hedge ratio for Swisg
franc is found to follow a random coefficient model. However,
there is no improvement in effectiveness when the hedge ratio i

S5LE0DT JO MB NSy Auaueab

=]y

calculated by correcting for the randomness i

w
The paper tests the applicability of four futures hedging models.’g
a variance-minimizing model introduced Bghnson (1960Q}he @
traditional one to one hedge, a utility maximization model &
developed byRutledge (1972)and a basis arbitrage model g

(8]

suggested bWorking (1953) An optimal ratio or decision rule is
estimated for each model, and measures for the effectiveness of
each hedge are devised. Each hedge strategy performed best
according to its own criterion. The working decision rule
appeared to be easy to use and satisfactory in most cases.



Lee et al. (1987)

Cecchetti et al. (1988)

Cheung et al. (1990)

S&P 500, NYSE, Value Line
(1983) [daily data]

Treasury bond, Treasury bondThe paper derives the hedge ratio by maximizing the expected

futures (1/1978-5/1986)
[monthly data]

Swiss franc, Canadian dollar, The paper uses mean-Gini coefficientf 2) and mean-variance
British pound, German mark, approaches to analyze the effectiveness of options and futures as

Japanese yen

Although the maturity of the futures contract used affected the size
of the optimal hedge ratio, there was no consistent maturity effect on
performance. Use of a particular ratio depends on how closely the
assumptions underlying the model approach a hedger’s real situatigjn

The paper tests for the temporal stability of the minimum variance 9

hedge ratio. It is found that the hedge ratio increases as maturity og
the futures contract nears. The paper also performs a functional £
form test and finds support for the regression of rate of change for 3
discrete as well as continuous rates of change in prices

Buenday

utility. A third-order linear bivariate ARCH model is used to get the<
conditional variance and covariance matrix. A numerical procedureg,
is used to maximize the objective function with respect to the hedg®
ratio. Due to ARCH, the hedge ratio changes over time. It is found fn"

Q

that the hedge ratio changes over time and is significantly less (in g
absolute value) than the MV hedge ratio (which also changes overg
time). E, (certainty equivalent) is used to measure the performance
effectiveness. The proposed utility-maximizing hedge ratio

performs better than the MV hedge ratio

002) St @oueu ] pue

hedging instruments. It considers both mean-variance and

(9/1983-12/1984) [daily data] expected-return mean-Gini coefficient frontiers. It also considers theé

MV and minimum mean-Gini coefficient hedge ratios. The MV and%
minimum mean-Gini approaches indicate that futures is a better 3
hedging instrument. However, the mean-variance frontier indicates
futures to be a better hedging instrument whereas the mean-Gini

frontier indicates options to be a better hedging instrument
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Appendix B. (Continued) &
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References Commaodity Summary
Baillie and Myers Beef, coffee, corn, cotton, The paper uses a bivariate GARCH modd}b) in estimating the
(1991) gold, soybean (contracts MV hedge ratios. Since the models used are conditional modelsz
maturing in 1982 and 1986)  the time series of hedge ratios are estimated. The MV hedge
[daily data] ratios are found to follow a unit root process. The hedge ratio forg

beef is found to be centered around zdfpis used as a hedging #
effectiveness measure. Both in-sample and out-of-sample =
effectiveness of the GARCH-based hedge ratios is compared wi@"\
a constant hedge ratio. The GARCH-based hedge ratios are fougd
to be significantly better compared to the constant hedge ratio =

Malliaris and Urrutia British pound, German mark, The paper uses regression autocorrelated errors model to estim%te
(1991) Japanese yen, Swill franc, the MV hedge ratio for the five currencies. Using overlapping 2
Canadian dollar moving windows, the time series of the MV hedge ratio and %
(3/1980-12/1988) [weekly hedging effectiveness are estimated for bmtpost (in-sample) E,ﬁ
data] andex ante (out-of-sample) caseg; is used to measure the S
. . o
hedging effectiveness for thex post case whereas average return 3.

is used to measure the hedging effectiveness. Specifically, the @
average return close to zero is used to indicate a better performir?g
hedging strategy. In thex post case, the 4-week hedging horizon %’
is more effective compared to the 1-week hedging horizon. 3
However, for theex ante case the opposite is found to be true 3
Benet (1992) Australian dollar, Brazilian This paper considers direct and cross-hedging, using multiple §
cruzeiro, Mexican peso, futures contracts. For minor currencies, the cross-hedging &L
South African rand, Chinese  exhibits a significant decrease in performance fexpost to ex %
yuan, Finish markka, Irish ante. The minimum variance hedge ratios are found to change 8
pound, Japanese yen from one period to the other except for the direct hedging of
(8/1973-12/1985) [weekly Japanese yen. On tlee ante case, the hedging effectiveness does
data] not appear to be related to the estimation period length. However,

the effectiveness decreases as the hedging period length increases



Kolb and Okunev
(1992)

Kolb and Okunev
(1993)

Lien and Luo (1993a)

Corn, copper, gold, German
mark, S&P 500 (1989) [daily
data]

Cocoa (3/1952 to 1976) for
four cocoa-producing
countries (Ghana, Nigeria,
Ivory Coast, and Brazil)
[March and September data]

S&P 500 (1/1984-12/1988)
[weekly data]

The paper estimates the MEG hedge raltiig)(with v ranging
from 2 to 200. The MEG hedge ratios are found to be close to the
minimum variance hedge ratios for a lower level of risk

parametep (for v from 2 to 5). For higher values af the two

hedge ratios are found to be quite different. The hedge ratios are,
found to increase with the risk aversion parameter for S&P 500, Q
corn, and gold. However, for copper and German mark, the hed
ratios are found to decrease with the risk aversion parameter. The
hedge ratio tends to be more stable for higher levels of risk )

The paper estimates the M-MEG hedge rakia4). The paper
compares the M-MEG hedge ratio, minimum variance hedge
ratio, and optimum mean-variance hedge ratio for various value
of risk aversion parameters. The paper finds that the M-MEG
hedge ratio leads to reverse hedging (buy futures instead of
selling) forv less than 1.24 (Ghana case). For high-risk aversion
parameter values (high) all hedge ratios are found to converge
to the same value

Mwerrendayl /

jo nerey

The paper points out that the MEG hedge ratio can be calculate
either by numerically optimizing the MEG coefficient or by
numerically solving the first-order condition. Foe= 9 the hedge
ratio of —0.8182 is close to the MV hedge ratio©0D.8171.

Using the first-order condition, the paper shows that for a large
the MEG hedge ratio converges to a constant. The empirical
result shows that the hedge ratio decreases with the risk aversiad
parametep. The paper finds that the MV and MEG hedge ratio &
(for low v) series (obtained by using a moving window) are moreg
stable compared to the MEG hedge ratio for a largéhe paper
also uses a non-parametric Kernel estimator to estimate the
cumulative density function. However, the kernel estimator does
not change the result significantly
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References

Commodity

Summary

Lien and Luo (1993b)

Ghosh (1993)

Sephton (1993a)

Sephton (1993b)

British pound, Canadian
dollar, German mark,
Japanese yen, Swiss franc
(3/1980-12/1988), MMI,
NYSE, S&P
(1/1984-12/1988) [weekly
data]

S&P futures, S&P index,

Dow Jones industrial average,

NYSE composite index
(1/1990-12/1991) [daily data]

Feed wheat, canola futures
(1981-1982 crop year) [daily
data]

Feed wheat, feed barley,
canola futures (1988/1989)
[daily data]

This paper proposes a multi-period model to estimate the optimal
hedge ratio. The hedge ratios are estimated using an %)
error-correction model. The spot and futures prices are found to¥
be cointegrated. The optimal multi-period hedge ratios are foun

to exhibit a cyclical pattern with a tendency for the amplitude of o
the cycles to decrease. Finally, the possibility of spreading amorPg
different market contracts is analyzed. It is shown that hedging i

a single market may be much less effective than the optimal 3
spreading strategy ]
. . o)

All the variables are found to have a unit root. For all three <
indices the same S&P 500 futures contracts are used g
(cross-hedging). Using the Engle—Granger two-step test, the S&P
=}

500 futures price is found to be cointegrated with each of the
three spot prices: S&P 500, DJIA, and NYSE. The hedge ratio ig
estimated using the error-correction model (ECM}).
Out-of-sample performance is better for the hedge ratio from they
ECM compared to the Ederington model 3

E|

lLuou

The paper finds unit roots on each of the cash and futures (log) %'
prices, but no cointegration between futures and spot (log) prices.
The hedge ratios are computed using a four-variable
GARCH(1,1) model. The time series of hedge ratios are found t®
be stationary. Reduction in portfolio variance is used as a
measure of hedging effectiveness. It is found that the
GARCH-based hedge ratio performs better compared to the
conventional minimum variance hedge ratio

sov—eev (002) e

The paper finds unit roots on each of the cash and futures (log)
prices, but no cointegration between futures and spot (log) prices.
A univariate GARCH model shows that the mean returns on the



Kroner and Sultan
(1993)

Hsin et al. (1994)

Shalit (1995)

British pound, Canadian
dollar, German mark,
Japanese yen, Swiss franc
(2/1985-2/1990) [weekly
data]

British pound, German mark,
Yen, Swiss franc
(1/1986-12/1989) [daily data]

Gold, silver, copper,
aluminum (1/1977-12/1990)
[daily data]

futures are not significantly different from zero. However, from

the bivariate GARCH canola is found to have a significant mean
return. For canola the mean-variance utility function is used to

find the optimal hedge ratio for various values of the risk aversiof{’
parameter. The time series of the hedge ratio (based on bivariate
GARCH model) is found to be stationary. The benefit in terms ofg
utility gained from using a multi-variate GARCH decreases as #
the degree of risk aversion increases

UL/ re

The paper uses the error-correction model with a GARCH error &

(Ms) to estimate the MV hedge ratio for the five currencies. Due §
to the use of conditional models, the time series of the MV hedg&
ratios are estimated. Both within-sample and out-of-sample Py
evidence shows that the hedging strategy proposed in the pape%}s
potentially superior to the conventional strategies 3

3 J

The paper derives the optimum mean-variance hedge ratio by
maximizing the objective functio®,. The hedging horizons of _
14, 30, 60, 90, and 120 calendar days are considered to compai@
the hedging effectiveness of options and futures contracts. It is %
found that the futures contracts perform better than the options I!
contracts

lLUouUO!

2) 7 9oue

The paper shows that if the prices are jointly normally
distributed, the MEG hedge ratio will be same as the MV hedge g
ratio. The MEG hedge ratio is estimated using the instrumental <
variable method. The paper performs normality tests as well as &
the tests to see if the MEG hedge ratios are different from the M\g
hedge ratios. The paper finds that for a significant number of
futures contracts the normality does not hold and the MEG hedge
ratios are different from the MV hedge ratios

65
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References

Commodity

Summary 0

Geppert (1995)

De Jong et al. (1997)

Lien and Tse (1998)

German mark, Swiss franc,
Japanese yen, S&P 500,
Municipal Bond Index
(1/1990-1/1993) [weekly
data]

British pound
(12/1976-10/1993), German
mark (12/1976-10/1993),
Japanese yen
(4/21977-10/1993) [daily data]

Nikkei Stock Average
(1/1989-8/1996) [daily data]

. .. . . . (%)
The paper estimates the minimum variance hedge ratio using thg
OLS as well as the cointegration methods for various lengths of 8
hedging horizon. The in-sample results indicate that for both &
methods the hedging effectiveness increases with the length of —
the hedging horizon. The out-of-sample results indicate that in §
general the effectiveness (based on the method suggested by ©
Malliaris & Urrutia, 1997 decreases as the length of the hedging2
horizon decreases. This is true for both the regression method
the decomposition method proposed in the paper. However, the §
decomposition method seems to perform better than the
regression method in terms of both mean and variance

The paper compares the minimum variance, generalized
semivariance and Sharpe hedge ratios for the three currencies.
The paper computes the out-of-sample hedging effectiveness
using non-overlapping 90-day periods where the first 60 days a
used to estimate the hedge ratio and the remaining 30 days are g
used to compute the out-of-sample hedging effectiveness. The
paper finds that the in& hedge ratio performs better than the
model based hedge ratios

HPUe SOILOU0DT JO MO INS

The paper shows that if the rates of change in spot and futures
prices are bivariate normal and if the futures price follows a
martingale process, then the GSV (referred to as lower partial
moment) hedge ratio will be same as the MV hedge ratio. A
version of the bivariate asymmetric power ARCH model is used

Sop—¢ev (£002) £ sou



Lien and Shaffer
(1999)

Lien and Tse (2000)

Chen et al. (2001)

Nikkei (9/86-9/89), S&P
(4/82-4/85), TOPIX
(4/90-12/93), KOSPI
(5/96-12/96), Hang Seng
(1/87-12189), IBEX
(4/93-3/95) [daily data]

Nikkei Stock Average
(1/1988-8/996) [daily data]

S&P 500 (4/982-12/1991)
[weekly data]

to estimate the conditional joint distribution, which is then used
to estimate the time varying GSV hedge ratios. The paper finds
that the GSV hedge ratio significantly varies over time and is
different from the MV hedge ratio

This paper empirically tests the ranking assumption used by
Shalit (1995) The ranking assumption assumes that the ranking
of futures prices is the same as the ranking of the wealth. The
paper estimates the MEG hedge ratio based on the instrumenta
variable (IV) method used bghalit (1995)and the true MEG
hedge ratio. The true MEG hedge ratio is computed using the
cumulative probability distribution estimated employing the
kernel method instead of the rank method. The paper finds that ;gp_
the MEG hedge ratio obtained from the IV method to be differen
from the true MEG hedge ratio. Furthermore, the true MEG
hedge ratio leads to a significantly smaller MEG coefficient
compared to the IV-based MEG hedge ratio

Stl/’leweuwyd S-S

Alle1rend

LSO ILIOUO0DT JO

The paper estimates the GSV hedge ratios for different values o
parameters using a non-parametric kernel estimation method.
The kernel method is compared with the empirical distribution
method. It is found that the hedge ratio from one method is not
different from the hedge ratio from another. Therque—Bera
(1987)test indicates that the changes in spot and futures prices
not follow normal distribution

e (€08F) ev aoueud p

The paper proposes the use of the M-GSV hedge ratio. The papfér
estimates the MV, optimum mean-variance, Sharpe, MEG, GSV&
M-MEG, and M-GSV hedge ratios. TRiarque—Bera (1981ést
andD’Agostino (1971)D Statistic indicate that the price changes

S
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References Commodity

Summary

are not normally distributed. Furthermore, the expected value of¢,
the futures price change is found to be significantly different fromn
zero. It is also found that for a high level of risk aversion, the
M-MEG hedge ratio converges to the MV hedge ratio whereas
the M-GSV hedge ratio converges to a lower value

Notes:

A. Minimum variance hedge ratio
A.1l.OLS
(My): AS, =apo+ a1 AF, +e, :

A.2. ARCH/GARCH

AS, H H H
(My): [ ’] = [“1} + [el”] 2,1~ N, H), H, = [ 11 12”} ., hedge ratio= let

AF;

H2 €2t

A.3. Random coefficient
(M3): AS; = /30+,3zAFt+et

B = B+ v, hedgeratio= 8

A.4. Cointegration and error-correction
(M4) St =da + bF[ + u[

AS, =pui_1+BAF, + Y L8 AF_; + Z’;:lei AS,_j+e;, hedgeratio= 8

A.5. Error-correction with GARCH

H- H-
H, = [ 11 Hizy
Hipy Hop,

hedge ratio= a;
Ry =ao+a1Rs + e : hedgeratio= a;

_ Al0g,(S) ] [ a;(log,(Si-1) —
(Mo): [A IOQE(F»] a [Mz] " [afﬂoge(S,_l) -

} , hedgeratio=h,_, =

Hyp, Hop, 22

So—££ (£002) £ 8oURUIH pUe SOILOU0DT JO MmN A|lerrend syl / e 18 uayd

Ioge(Fl‘fl)) €1
2,1~ N, H
IOge(Ft—l))] + |:62’i| ’ €,| —1 ( R t),
HlZ,z
H>,



A.6. Common stochastic trend
(Me): S = A1 P 4 Aoy, F; = B1P; + By, P=P_ 1+ wt, =011+ v, 0<|ai| <1,
A1Biko? + 2A2B2((1 — ) /(1 — a?))o?

B2ko2 + 2B3((1 — ak) /(1 — a?))o2

Hedge ratio fok-period investment horizoa H; =

n
B. Optimum mean-variance hedge ratio ‘g
. C4F E(Ry) o - g
(M7): Hedge ratio= hy = — =— — p— |, where the momentB| R |, o, ando  are estimated by
C,S Aorjz(- oy g
sample moments. ~
C. Sharpe hedge ratio g
3 3 E(Rf)/(E(R) —i)) — . 5
(Mg): Hedge ratio= h3 = — (0s/0pllos/o)ER/(ER) l)_) ol , where the moments and correlation are 2
_ _ [1— (o5/0p)(E(Ry)p/(E(Ry) —i))] it
estimated by their sample counterparts. 3
D. Mean-Gini coefficient based hedge ratios §
(My): The hedge ratio is estimated by numerically minimizing the following mean extended-Gini coefficient, where,
the cumulative probability distribution function is estimated using the rank function: 58”
=}
o
Fy(Ry) =—— (Rhi—R)(A-GR ) -0 2
o(Ry) NZu (L= G(Ry)) ). 2
(M10): The hedge ratlo |s estimated by numencally solving the first-order condition, where the cumulative probablﬁy
distribution function is estimated using the rank function
(Mqy): The hedge ratio is estimated by numerically solving the first-order condition, where the cumulative probablﬁy
distribution function is estimated using the kernel-based estimates g
(M12): The hedge ratio is estimated by numerically maximizing the following functig®,) = E(R;,) — I,(Ry,), %
where the expected values and the mean extended-Gini coefficient are replaced by their sample counterpags and
the cumulative probability distribution function is estimated using the rank function ﬁ
E. Generalized semivariance based hedge ratios ‘L’
(M13): The hedge ratio is estimated by numerically minimizing the following sample generalized hedge ratio: ]
sample _ o i 1, for s > Rh,i
(Ry) = Z(a Ry)*U(8 — Ry.»), whereU(s — Ry,;) = { 0 fors = Ry

i=1
(M14): The hedge ratio is estimated by numerically maximizing the following functi@®;) = R;, — Vsamp'e(Rh).
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