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Abstract 

This thesis examines the valuation of mortality-linked bonds in two infectious mortality 

models in two main parts: 

(1) Valuation and Analysis of the Swiss Re Bond without Coupons in an Infectious 

Mortality Model 

(2) Valuation and Analysis of Fixed-Coupon and Floating-Coupon Mortality Bonds in 

an Infectious Mortality Model 

The two main parts of this dissertation focus on infectious mortality risk, and two 

infectious models are developed to analyze the impacts of infectious mortality risk on 

mortality-linked bonds. This approach is different from that in the literature. To capture 

the infectious mortality dynamics across countries, two mortality jumps are considered 

in the mortality modeling: infectious jumps and specific country jumps. An infectious 

jump occurs only when there is a catastrophic event that causes considerable mortality. 

Furthermore, the mortality experience in France, the United Kingdom, the United States, 

Italy, and Switzerland is employed to fit the proposed infectious mortality model. 

Using the two infectious mortality models, this dissertation explores the impacts of 

infectious mortality risk on the two types of mortality-linked bonds: zero-coupon 

mortality bonds and coupon mortality bonds. The first part demonstrates the structure 

of a zero-coupon mortality bond, namely Vital Capital I, which is a type of Swiss Re 

bond without coupons and was first issued as a 3-year catastrophic mortality bond in 

2003. Under the infectious mortality framework, the closed-form solution of Vital 

Capital I is derived using Wang’s transform (2000). An empirical analysis reveals that 

the fair price of Vital Capital I in the model is lower than face value (market price). 

Sensitivity analyses illustrate that the sensitivity of the volatilities of the magnitudes of 

infectious mortality is the largest among the model parameters, whereas that of 
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threshold values is the smallest. 

In the second part, coupon mortality bonds, namely fixed-coupon and floating-

coupon bonds, are examined. These bonds are similar to the Swiss Re bond. The closed-

form solution of a fixed-coupon mortality bond is derived, and it is assumed that the 

coupons of floating-coupon mortality bonds are linked to a stochastic interest rate, 

which follows the Cox–Ingersoll–Ross interest rate model. Monte Carlo simulation is 

employed to evaluate the sensitivities of fair prices of floating-coupon bonds. The 

empirical results show the fair spreads of these two types of bonds are also higher than 

the spreads of 0.45% indicated by Cox et al. (2006) and closer to the market prices of 

1.35% of the Swiss Re bond. 

A common phenomenon is revealed in the first and second parts, which specifies 

that the fair prices of mortality-linked securities in high-infectious mortality model are 

fewer than those of mortality-linked securities in low-infectious mortality model. 

Therefore, ignoring the effects of infectious mortality rates significantly overestimates 

the par spread of mortality bonds; by contrast, considering this phenomenon provides a 

par spread of the mortality security that is closer to real-world values. This is helpful 

for pricing mortality securities and for managing catastrophic mortality risk for 

reinsurers. 

Keywords: Infectious mortality risk, Mortality-linked bond, Wang transform, Jump 

model, Floating-coupon bond. 
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 Chapter 1 Foreword 

 

Mortality uncertainty is the primary source of risk for life insurance and annuity 

providers. Mortality uncertainty can appear as contrasting longevity and mortality risks. 

Insurers endure longevity risk for their annuity products if future mortality improves 

relative to current expectations because they have to pay annuity benefits longer than 

expected. Conversely, if mortality deteriorates or a catastrophic event occurs, insurers 

endure mortality risk for their life insurance products because the insurance benefits 

paid out are higher than expected. Therefore, modeling mortality risk is essential. 

 In the past two decades, numerous researchers propose and discuss various 

mortality models for modeling the dynamics of mortality over time. For example, Lee 

and Carter (1992) pioneer the modeling of central mortality rates as log-linearly 

correlated with a time-dependent mortality factor, and they adjust for age-specific 

effects by using two sets of age-dependent coefficients. However, earlier mortality 

models do not consider catastrophic mortality risk and cannot explicitly capture 

structural changes and catastrophic shocks that may cause mortality jumps such as the 

2004 Indian Ocean earthquake and tsunami that killed 182,340 people or comovement 

trends such as the 1918 flu pandemic (the Spanish flu). Although recent studies examine 

mortality jumps, they do not consider the impacts of catastrophic shocks across 
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countries, except for studies by Cox et al. (2006) and Lin et al. (2013). 

 

 

Figure 1.1 Worldwide Deaths from 1816 to 2008 

 

The comovement trend of the mortality rates in different countries may not be 

properly modeled as a common factor. A mortality jump occurs only when there is a 

catastrophic event that causes considerable mortality. Figure 1.1 shows the mortality 

rates in different countries from 1816 to 2008. In 2002, severe acute respiratory 

syndrome killed 775 people in Europe, Asia, and North America, but deaths in France, 

the United Kingdom, Italy, Switzerland, and the United States did not show a significant 

comovement trend. Conversely, a comovement phenomenon was present in France, the 

United Kingdom, Italy, Switzerland, and the United States during the Spanish flu, which 

killed at least 20 million people. 
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Figure 1.1 shows that mortality rates across countries have a significant 

comovement phenomenon when the common factor leads to substantially higher deaths, 

such as deaths during the Spanish flu, which is referred to as infectious mortality risk in 

this study. 

Following Forbes and Rigobon’s (2002) definition of contagion1, this dissertation 

defines infectious mortality risk as a considerable increase in cross-country (or cross-

regional) linkages after catastrophic shock in one county (or region) or a group of 

countries. By definition, infection only occurs when cross-country comovement 

increases considerably after mortality shocks; infection does not occur if the 

comovement does not increase considerably after mortality shocks. 

Globalization and transportation may facilitate the spread of infectious diseases 

across countries, causing catastrophic losses. A recent example is the Ebola virus 

outbreak in early 2014, whose severe effects are often fatal to humans. The 

abovementioned examples demonstrate that we cannot afford to ignore infectious 

mortality risks or their impacts when pricing catastrophic mortality securities. Although 

infectious mortality risk clearly exists, the literature has not addressed the challenge of 

modeling this risk. 

Therefore, this study conducts infectious mortality modeling and considers 

                                                       
1  See page 2224 in Forbes and Rigobon (2002). 
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infectious mortality risk when pricing a catastrophic mortality security. The main 

contributions of this dissertation are twofold. First, this study presents two multicountry 

infectious mortality models that capture the comovement phenomenon during a 

catastrophic event. The proposed models take a general form that can be reduced to the 

morality model introduced by Lin and Cox (2008). Second, using two types of 

catastrophic mortality securities, namely the Swiss Re bond without coupons (Vital 

Capital I) and coupon bonds (i.e., fixed-coupon bonds and floating-coupon bonds), as 

examples, we obtain a closed-form solution by using Wang’s transform (2000) (hereafter 

the Wang transform) and thereby investigate the effects of infectious mortality risk on 

catastrophic mortality bonds. 

The remainder of this dissertation is organized as follows. Chapter 2 presents a 

literature review of mortality-linked bonds. Chapter 3 presents a valuation and analysis 

of the Swiss Re bond without coupons in an infectious mortality model. The closed-

form solution of the fair prices of the bond is derived, and the sensitivities of bond prices 

are also derived in this chapter. Chapter 4 presents a valuation and analysis of fixed-

coupon and floating-coupon mortality bonds in the infectious mortality model. 

Moreover, the closed-form solution of a fixed-coupon bond is derived, and the coupons 

of floating-coupon mortality bonds are assumed to be linked to a stochastic interest rate. 

The dynamic process of the stochastic interest rate follows the Cox–Ingersoll–Ross 
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(CIR) model. Monte Carlo simulation is employed to explore the sensitivities of the fair 

prices of floating-coupon bonds. Chapter 5 presents comparison of the two infectious 

mortality models. Chapter 6 is the conclusion. 
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Chapter 2 Literature Review 

 

2.1 Introduction of Securitization of Mortality Risk 

Securitization of mortality risk is an innovative capital solution to infectious 

mortality risk. Jaffee and Russell (1997) and Froot (2001) describe that insurance 

securitization potentially offers a more efficient mechanism for financing catastrophic 

losses than traditional reinsurance does. Cummins and Lewis (2002) demonstrate that 

securitization is the repackaging and trading of cash flows that traditionally would have 

been held on-balance-sheet by financial institutions. Securitization brings more capital 

and enhances the capacity of the life insurance industry to manage catastrophic losses 

from epidemics, hurricanes, earthquakes, and other natural or manmade disasters. The 

advantages of securitization may be lower costs in the long run, more favorable contracts, 

and elimination of default risk. 

Using capital market solutions to manage mortality risk such as mortality-linked 

securities is rapidly increasing in recent years. The Swiss Reinsurance Company, the 

world’s second-largest reinsurance company, first issued a 3-year catastrophic mortality 

bond in 2003 (Vital Capital I), with a face value of $400 million in coverage from 

institutional investors. The second bond (Vital Capital II) was issued in 2008. Both 

mortality securities aim to transfer mortality risk from the insurer by using a combined 
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mortality index that measures annual population mortality in five countries and applies 

predetermined weights to each nation’s publicly reported mortality data. Vital Capital I 

uses the annual population death rates for France, the United Kingdom, the United States, 

Italy, and Switzerland, whereas Vital Capital II uses the annual population death rates 

for the United States, the United Kingdom, Canada, and Germany. Moreover, through 

its Mythen Re program in 2012, Swiss Re obtained USD 200 million in coverage against 

North Atlantic hurricanes and against extreme mortality risk in the United Kingdom. 

The issuance comprises two tranches of notes. The first tranche is class A notes (USD 

120 million), rated as B+ by Standard & Poor (S&P), which combines PCS North 

Atlantic hurricane risk with extreme mortality risk in the United Kingdom. The second 

tranche, rated as B- by S&P, provides USD 80 million in protection for North Atlantic 

hurricane risk. This is the first time hurricane and mortality risks have been combined 

into one bond offering. Thus, mortality securitization, in which catastrophic losses are 

transferred to financial markets, is gaining much popularity among life insurers. 

2.2 Literature related to Stochastic Mortality Models without 

Jumps 

Pricing a catastrophic mortality bond requires an understanding of the catastrophic 

event for mortality uncertainty. Modeling catastrophic mortality risk is essential. 

Numerous mortality models are proposed and discussed to model the dynamics of 
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mortality over time (Lee and Carter, 1992; Renshaw and Haberman, 2006; Cairns et al., 

2006). Lee and Carter (1992) pioneer the modeling of central mortality rates as log-

linearly correlated with a time-dependent mortality factor, and they adjust for age-

specific effects by using two sets of age-dependent coefficients. Cairns et al. (2006) 

examine the pricing of longevity bonds in a two-factor stochastic mortality model (the 

Cairns–Blake–Dowd [CBD] model) for high ages. The Lee–Carter and CBD models 

both project mortality rates based on age and period effects. Renshaw and Haberman 

(2006) extend the Lee–Carter model by considering cohort effects in mortality modeling.  

2.3 Literature related to Stochastic Mortality Models with 

Jumps 

Early mortality models do not consider catastrophic mortality risk and cannot 

explicitly capture structural changes or catastrophic shocks that can cause mortality 

jumps, such as the 2004 Indian Ocean earthquake and tsunami that killed 182,340 people 

or comovement trends such as the Spanish flu. Recent research examines mortality 

jumps, such as research by Cox et al. (2006), Lin and Cox (2008), Chen and Cox (2009), 

Wang et al. (2013), Deng et al. (2012), Zhou et al. (2013), Lin et al. (2013), and Chen 

(2014). Yang et al. (2009) use a principal component analysis and Milidonis et al. (2011) 

employ a Markov regime-switching model to describe structural changes in mortality 

rates. However, most of these studies ignore the potential impacts of mortality shocks 
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across countries, except for studies by Cox et al. (2006), Lin et al. (2013), and Zhou et 

al. (2013). To model transitory mortality jumps, Zhou et al. (2013) propose a two-

population generalization of the model developed by Chen and Cox (2009). Cox et al. 

(2006) decompose mortality shocks into a specific factor and a common factor. The 

common factor appears more substantial, in that it causes the comovement of mortality 

indices in all countries. Lin et al. (2013) extend the model of Cox et al. (2006) to a 

general setting and disentangle transient jumps from persistent volatilities. In contrast 

to Cox et al. (2006), who model unanticipated mortality jumps as permanent shocks, Lin 

et al. (2013) model them as transient jumps using a double-jump process. Cox et al. 

(2006) and Lin et al. (2013) anticipate that the comovement of the jump effect is a 

common factor in all countries. Their models imply that mortality jumps occur 

simultaneously in all countries. 

In addition, some multi-country mortality models have been developed such as 

studies by Zhou et al. (2014), Chen et al. (2015), Wang et al. (2015), and Zhu et al. 

(2017). Allowing to visualize the cross-correlations and the long-term equilibrium 

relation between two countries, Zhou et al. (2014) use a vector error correction model 

to discuss how the modeling of the stochastic factors may be improved. Chen et al. (2015) 

apply factor copula to model multipopulation mortality. They employ a two-stage 

procedure and a factor copula approach. Wang et al. (2015) use a dynamic copula 
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framework to model multicountry mortality. Zhu et al. (2017) propose the L´evy 

subordinated hierarchical Archimedean copulas approach to model multicountry 

mortality dependence. They show that there is an association between geographical 

locations and dependence of the overall mortality improvement. These literature 

concentrates on multicounty mortality dependence.  

However, in some cases, comovement trends or dependence of the mortality rates 

in different countries might not be properly modeled as a common factor. In this scenario, 

the jump occurs only when there is a catastrophic event that causes considerable 

mortality. Although the phenomenon of infectious mortality undoubtedly exists, it is not 

modeled in the literature.  

Therefore, this dissertation considers two types of mortality jumps in mortality 

modeling: infectious jumps and specific country jumps, and first proposes two models 

to capture the infectious mortality dynamics across countries. 
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Chapter 3 Valuation and Analysis of the Swiss Re 

Bond Without Coupons in an Infectious Mortality 

Model 

This chapter examines the structure of a zero-coupon mortality bond, namely Vital 

Capital I, which is a type of Swiss Re bond without coupons. Under the infectious 

mortality framework, the closed-form solution of Vital Capital I is derived by using the 

Wang transform. Furthermore, sensitivity analyses are conducted. 

3.1 Modeling Infectious Mortality Risk 

To capture the effect of infectious mortality rates across countries, we assume that 

there are m countries, and each country has in  people, with i 1, 2, 3,...., m . Let i , j  

denote the time of death for the thj  person in the thi  country, with ij = 1, 2, 3,......, n , 

and the corresponding number of deaths in each country at time t is denoted as i, jD (t) . 

Thus, the total number of deaths in all countries at time t, tN , is calculated as 

inm

t i, j
i 1 j 1

N D (t)
 
  

and 
i, j

i, j i

1, if t 1< t
D (t) , i 1, 2, 3,...., m;  j=1, 2, 3,......, n

0,   o.w

  
 


.  

Infectious mortality risk is modeled using the mortality comovement that occurs 

only when there is a catastrophic event that causes considerable mortality in all countries; 

that is, whether an infectious mortality jump in the thi  country is affected by mortality 
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shocks in the world. To express the infectious effect, let tN  be the total number of 

deaths in all countries, and let 
~
i
tN  denote the total number of deaths in other countries 

except for those in the thi  country, equivalently, 
~ inm
i
t k, j

k i 1 j 1

N D (t)
  
  . Furthermore, we 

define 
~
i

tV   as the ratio of the total deaths in all countries except for those in the thi  

country relative to the total deaths in all countries. That is, 

~

~ i
i t

t
t

N
V

N
   for 

i 1, 2, 3,...., m  . Assume that 
~
i

tV   follows a geometric Brownian motion, which is 

expressed as 

                    

~

~ ~~
i i

i
t

v, t
i v  v

t

dV
 = μ dt σ dW

V
 ,                         (3.1) 

where ~
iv  

μ and ~
iv

σ denote the drift term and volatility, respectively, and v, tW  is a one-

dimensional standard Brownian motion under the original probability measure P. 

 
~
i

tV  follows a geometric Brownian motion because is it will be confirmed as 

positive. Additionally, using the raw mortality data of five countries (i.e., the United 

States, the United Kingdom, France, Italy, and Switzerland) obtained from the Human 

Mortality Database (HMD) from 1933 to 2007, we calibrate the model with the HMD 

through the initial values of ~
iv  

μ and ~
iv

σ set as the mean and volatility of the ratio of 

the deaths except for those in the United States, the United Kingdom, France, Italy, and 

Switzerland relative to total deaths in the five countries, respectively. The initial values 

of ~
iv  

μ  and ~
iv

σ  are shown in Table 3.1. Therefore, the estimated parameters of 
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Equation (3.1) are illustrated in Table 3.2. 

 

Table 3.1 Initial Values of the Calibrated Parameters for Five Countries 

 US UK France Italy Switzerland 

~
iv  

μ  
 

-0.0019634 
 

 
0.000294152 
 

 
0.000574653

 

 
0.000290888 

 

 
0.00000063 

~
iv

σ  
 

0.007780363 
 

 
0.00280517 

 

 
0.006080277

 

 
0.003269581 

 

 
0.000177765

 
~
i

0V  
 

0.493798630 
 

 

0.829089975
 

 

0.843320034
 

 

0.829089975 
 

 

0.984227223
 

Note that the initial values of ~
iv  

μ  and ~
iv

σ  are set as the mean and volatility of logarithm of the ratios 

of the deaths except for those in the United Sates, the United Kingdom, France, Italy, and Switzerland 

relative to total deaths of the five countries, respectively. 
~
i

0V   is set as the average value of the deaths 

except for those in the United States, the United Kingdom, France, Italy, and Switzerland relative to total 
deaths of the five countries, respectively. 
 
 
 

Table 3.2 Parameter Estimation of Dynamic Processes of 
~
i

tV   

  US UK France Italy Switzerland 

~
iv  

μ  -0.001933133 

(0.000012) 

0.000298086

(0.000011) 

0.000593138

(0.000012) 

0.000296233 

(0.000010) 

0.000000651

(0.000011) 

~
iv

σ  0.00778125 

(0.000034) 

0.00280918 

(0.000032) 

0.006080413

(0.000042) 

0.003269487 

(0.000035) 

0.000177777

(0.000039) 
Notes: Parameter estimates in Equation (3.1) for i  = the United States, the United Kingdom, France, 
Italy, and Switzerland. Standard errors are shown in parentheses. 
 
 

The deaths except for those in the thi  country relative to total deaths of the other 

countries for i US, UK, France, Italy and Swiss  are plotted in Figure 2. Figure 2 

illustrates that 
~
i

tV  is more than 0 and less than 1 for 

i US, UK, France, Italy and Swiss . 
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  Furthermore, the simulated ratios of 
~
i

tV  are provided in Figures 3.3 to 3.7. 

The ratios (the deaths in other countries except for those in the thi  country relative to 

total deaths for i US, UK, France, Italy and Swiss ) are obviously larger than 0 but 

smaller than 1. Generally, 
~
i

tV  is neither 0 nor 1 for 

i US, UK, France, Italy and Swiss  in the model setting. Therefore, it is reasonable 

that 
~
i

tV  follows a lognormal distribution. 

 

 

Figure 3.2 Deaths Except for Those in the thi  Country Relative to Total Deaths in All 
Five Countries 
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Figure 3.3 Ratio of the Deaths in Other Countries Except for Those in the United States 

Relative to Total Deaths in All Five Countries. 

 

Figure 3.4 Ratio of the Deaths in Other Countries Except for Those in the United 

Kingdom Relative to Total Deaths in all Five Countries. 
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Figure 3.5 Ratio of the Deaths in Other Countries Except for Those in France Relative 

to Total Deaths in all Five Countries. 

 

Figure 3.6 Ratio of the Deaths in Other Countries Except for Those in Italy Relative to 

Total Deaths in all Five Countries. 
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Figure 3.7 Ratio of the Deaths in Other Countries Except for Those in Switzerland 

Relative to Total Deaths in all Five Countries. 

 

     In addition, the mean squared errors of 
~
i

tV   in the United States, the United 

Kingdom, France, Italy and Switzerland are 0.00085, 0.00071, 0.00075, 0.00091 and 

0.00058, respectively. In average, the mean squared errors are 0.00076 for all five 

countries. 

To capture the comovement phenomenon when a catastrophic event occurs, we 

set a threshold for
~
i

tV . If 
~
i

tV  is higher than the threshold, say α , the mortality rate of 

the thi  country can be affected by the mortality rate of other countries. Thus, the 

mortality rate of the thi  country at time t is modeled based on two types of jumps: 

infectious jumps and specific country jumps. Let 
~
i
t  I denote the jump number of the thi

country at time t infected by other countries when a catastrophic event occurs, such as 

infectious diseases, and let i, t   represent the jump frequency resulting from the 

0 200 400 600 800 1000 1200
0.9841

0.9841

0.9842

0.9842

0.9843

0.9843

0.9844

Time Steps

E
xc

ep
t f

o
r 

S
w

is
s 

D
ea

th
s



DOI:10.6814/DIS.NCCU.RMI.001.2018.F08 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

18 
 

mortality shock in the thi  country at time t . Assume that both 
~
i
t  I  and i, t  follow 

a Poisson distribution with the intensities of ~
i
tI

  and 
i, t   , respectively. 

~
i
t  I  can be 

expressed as 

                    
~ ~

~
i
t

t
i i 
t  u

I0

I D du ~ Poisson( ),                       (3.2) 

where 

~
~ i
i t
t

1, if V αD
0,   o.w

  


 .  

Furthermore, ~
i
tI

 is the expectation of infectious jump frequency, which can be 

calculated as 

                 

~

~
i
t

~

~ ~
i i

~
i

i
t  

I

i
20

v  vt

0

v

E I

V 1
ln +( μ σ )δ

α 2
Φ dδ.

σ δ

     

  
   
  

  
 
 
 
 


              (3.3) 

Next, let i , tq  represent the mortality rate of the thi  country at time t. The 

multicountry mortality dynamics can be modeled as 

                
~

1 , t 1
1 1 1, t 1 1, t 1 t  

1 , t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     ,         (3.4) 

      
~

2 , t 2
2 2 2, t 2 2, t 2 t  

2 , t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     , 

                 
~

m , t m
m m m, t m m, t m t  

m , t

........

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     , 

where iμ  and iσ are constants, and i, tW  is a one-dimensional standard Brownian 
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motion under the original probability measure P. Moreover, the correlation coefficient 

between i, tW   and v, tW   is v, t i, t v, icorr(dW , dW )    . Both i, t   and 
~
i
t  I   are 

independent Poisson-jump processes driven by different risks at time t . Furthermore, 

~
i
t  dI

  
is independent of i, td  , and iπ 1   is the random variable percentage in the 

mortality index of the thi  country that results from common jumps of deaths in other 

countries. We assume that the natural logarithm of iπ , the jump amplitude driven by 

deaths in other countries, follows a normal distribution with a mean of 
i

u    and a 

variance of 
i

2
  , which is also denoted as 

i i

2
iln ~ N(u , )    , i 0   , 

i 1, 2, 3,...., m . By contrast, i 1   denotes the percentage in the mortality index of 

the thi   country resulting from specific jumps in deaths of the thi   country, and the 

specific jump size distributes a normality, namely 
i i

2
iln ~ N(u , )    , i 0   , 

i 1, 2, 3,...., m . Finally, i  is independent of i . 

From Equation (3.4), iln    can represent the impact magnitude of infectious 

mortality of the thi  country driven by deaths in other countries. When the threshold 

( α  ) is infinite, mortality rates do not exert any infectious effects, and the proposed 

model can be reduced to the morality model introduced by Lin and Cox (2008). 

3.2 Structure of Vital Capital I 

The infectious mortality index of each country is modeled in Section 3.1. Using 

the obtained infectious mortality indices, the effect of infectious mortality risk on the 
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Swiss Re mortality bond is further analyzed by using Vital Capital I as an example. The 

Swiss Reinsurance Company issued 3-year Vital Capital I in 2003, with a face value of 

$400 million in coverage from institutional investors; this bond matured on January 1, 

2007. The principal was exposed to mortality risk, and this mortality risk was defined 

in terms of an index based on the average annual population death rates in the United 

States, the United Kingdom, France, Italy, and Switzerland. If the index exceeded 130% 

of the actual 2002 level, investors had a percentage loss. The percentage loss of 

principal in year t is as follows: 

-
0

-
0

- -
0 0

-
0

-
0

t t

t t
t tt t

t

t t

         0,                if Y 1.3Y

Y 1.3Y
L  =   ,      if 1.3Y Y 1.5Y

0.2Y

          1,               if Y 1.5Y

 


  

 

 

tY   denotes the geometric average population death rates in the United States, the 

United Kingdom, France, Italy, and Switzerland in year t. Again, the properties of the 

bonds can be written as Equation (3.5). Let TB   denote the principal payment at 

maturity time T, which is expressed as 

                     TB =Max(1 Loss, 0) ,                          (3.5) 

with 
- -
0 0

-
0

Max Maxt t

t

Max(Y 1.3Y , 0) Max(Y 1.5Y , 0)
Loss = 

0.2Y

  
 ,

1 2 3Max t t tY =Max(Y , Y , Y )  , 

and 5 1 2 51 2

i 1, t 2, t 5, ti i i

1

a a +a +...+aa a
tY = (q q ......q ) , for all i 0,  1, 2, 3  with 0t 0  and 3t T  for 

the bond; where -
0t

Y , 
0t

Y ,
1t

Y ,
2tY , and 

3t
Y  denote the geometric average population 
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death rates in the United States, the United Kingdom, France, Italy, and Switzerland in 

2002, 2003, 2004, 2005, and 2006, respectively. 1, tq , 2,tq , …. and 5, tq  represent the 

mortality indices of the United States, the United Kingdom, France, Italy, and 

Switzerland, respectively. 1 2 4 5a , a ,....a and a  denote the weights of population 

mortality indices for the United States, the United Kingdom, France, Italy, and 

Switzerland, respectively. 

The fair price of the Swiss Re mortality bond without coupons is shown in 

Equation (3.6). 

 

 rT Q
0 T

rT Q Max 1 Max 2

2 1

B 400000000 e E B

Max(Y K ,0) Max(Y K ,0)
     =400000000 e E Max 1 ,0

K K





 

    
     

, 

                                                                  (3.6) 

where Q
tE ( . )  denotes the expectation value under the risk-neutral probability measure 

Q  at time t, r  is the riskless rate, and -
0

1 t
K =1.3Y  and

 
-
0

2 t
K =1.5Y . 

3.3 Valuation Formula for Vital Capital I 

Pricing derivative securities in a complete market involves replicating portfolios. 

If a traded bond and stock index exist, options on the stock index can be replicated by 

holding the bond and index, which are priced. Vital Capital I is a mortality derivative, 

but no efficiently traded mortality index exists that can be used to create a replicating 

hedge. For pricing in such an incomplete market, the Wang transform is a popular 
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method that relies on the following transformation: for a risk with a cumulative density 

function (CDF) F(x)  under the original probability measure P, the risk-adjusted CDF 

*F (x)  under the risk-neutral probability measure Q for pricing risk is given by 

                            * -1F (x)=Φ(Φ (F(x))+θ) ,                  (3.7) 

where θ  is a constant risk premium, and (.)   is a cumulative standard normal 

probability. 

For pricing Vital Capital I, we apply the Wang transform to solve Equation (3.6). 

We denote the total risks at time t  in the ith country as 
~
i

i, t i, t tX I  , which follows 

a Poisson-jump process with the intensity of ~
i, t i , ti

t

X
I

λ     . The proof is given in 

Appendix A. 

Assume that ix 1  is the percentage of the mortality index of the thi  country 

resulting from total risks, and ix  follows normal distributions with a mean of 
i

u x  and 

a variance of 
i

2σ x . Moreover, 

                
~d
i

i i,t i i, t i t( 1)dX (Λ 1)d (π 1)dIx       .                 (3.8) 

Thus, we can obtain Equations (3.9) and (3.10). 

         
~
i

i i,t i i, t i tE ( 1)dX E ( 1)d (π 1)dIx             
,                 (3.9) 

        
~
i

i i,t i i, t i tVar ( 1)dX Var ( 1)d (π 1)dIx             
 .             (3.10) 

Subsequently, using Equations (3.9) and (3.10), we can obtain the following: 
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 

2 2
π π Λ Λi i i i

~
ii

t

~
i i

t

1 1
u + σ u + σ

2 2
Γ

I
i

Γ
I

(e 1) +(e 1)λ
E 1

λ +
x

  
 


,                    

            

2 2
π π Λ Λi i i i

~
ii

t

i
~

i i
t

1 1
u + σ u + σ

2 2
Γ

I

Γ
I

(e 1)λ +(e 1)λ
u 1

λ +λx

 
   ,               (3.11) 

2 2 2 2
π π Λ Λi i i i π π Λ Λi i i i

~ ~ii ii
t t

i
~ ~ ~

i i ii i i
t t t

2 21 1 1 1u + σ u + σ u + σ u + σ2 2 2 2
Γ Γ

I I2

Γ Γ Γ
I I I

A+ (e 1) +(e 1)λ (e 1) +(e 1)λ
,   (3.12)

(λ + +1)(λ + ) λ +x

           
     

   
 
 

 

with 

2 22 Λ Λ Λ Λi i i iΛ Λ Λi i i

i i i

2 22 π π π πi i i iπ π πi i i
~ ~ ~
i i i
t t t

21 1
u  σ u + σ2u +σ σ 2 22 2

Γ Γ Γ

2 21 1
u + σ u + σu +σ σ 22 2

I I I

A= e (e 2e + 2) +1 (λ +λ ) λ e 1

       + e (e +1)+ e 1 +λ (e 1) .

    
    

   
                     

 

Under the original probability measure P, using Ito’s lemma, Equation (3.4) can be 

rewritten as 
i,T2

i i 0 i i,T t0

0

X1
(μ σ ) (T t )+σ W

2
i,T= i, t i,l

l=1

q q e x
 

  , i=1,2,.....,5.   The numbers for i 

indicate the United States, the United Kingdom, France, Italy, and Switzerland, 

respectively. In addition, 

     
i,T

0 0

X
2

i,T i, t i i 0 i i,T t i,l
l=1

1
lnq =lnq +(μ σ )(T t )+σ W + ln

2
x               (3.13) 

Next, let tX  represent the sum of the total risks for the United States, the United 

Kingdom, France, Italy, and Switzerland, namely t 1, t 2, t 5, tX X X .... X    , which 

follows a Poisson distribution with the intensity of tλ   and ~
i , ti

t

5

t Γ
Ii=1

λ = ( +  λ )  . To 

derive the closed-form solution of the fair price of the mortality bond, we adopt 
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Proposition 1. 

Proposition 1. Let tZ  be a random variable, and assume that lnZ follows a normal 

distribution with a mean of zu  and a variance of 2
zσ . Given the respective logarithm 

of the mortality indices for the United States, the United Kingdom, France, Italy, and 

Switzerland, as shown in Equation (3.14), the logarithm of the geometric average 

population mortality rates of the five countries takes the following form: 

                 
T

0 T t0

X

T t y 0 y l
l 1

lnY lnY μ (T t ) σ W a ln




      ,         (3.14) 

 

where 
5

2
y i i i

i=11 2 5

1 1
μ = a (μ σ )

a +a +...+a 2
 ;

1 2 5

1
a

a +a +...+a
 ; 

1,T 2,T 5,TT
X X XX

l 1 1,l 2 2,l 5 5,l
l=1 l=1 l=1 l=1

ln a ln a ln ... a lnx x x        ; and 

   
15

'

y 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5
1 2 5

51

1 ρ
1

σ = a σ a σ a σ a σ a σ a σ a σ a σ a σ a σ .
a +a +...+a

ρ 1

 
 
 
 
 


  



 

Proof. See Appendix B. 

From Proposition 1, if tX  is any constant ( tX s ), t tln Z X s  has a normal 

distribution with a mean of zu   and a variance of 2
zσ  . When 

t 1, t 2, t 5, tX X X .... X    , and i, t iX s , such that is  is any constant i = 1, 2, …, 5, 

we can obtain 
i

5

i i
i=1

z

s a u
u

s

x




  and 
i

5
2 2

i i
2 i=1

s a σ
σ

s

x

z 


 . Additionally, we suppose that 

Max 1 Max 2
T

2 1

Max(Y K ,0) Max(Y K ,0)
S

K K

  


 . 

 Conditional on 
iMax tY Y , we can obtain 
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   i it 1 t 2i i

t 1 t 2Y >K Y >K

T
2 1

(Y K )1 (Y K )1
S =

K K

  


, for i=1,2,3.          (3.15) 

Therefore, Equation (3.6) can be rewritten as 

 

   

 

1 1 2 2T T

3 3T

rT
0

Q Q Q Q
T Max t r Max t T Max t r Max tS <1 S <1

Q Q
T Max t r Max tS <1

B =400000000 e

E (1 S )1 Y =Y P (Y =Y )+E (1 S )1 Y =Y P (Y =Y )
.

+E (1 S )1 Y =Y P (Y =Y )

 

          
 

    

 

(3.16) 

The Wang transform is used to obtain the closed-form solution. Using Equation 

(3.16), we solve the probability of 
iMax tY = Y under the risk-neutral probability measure. 

Therefore, Proposition 2 is necessary. 

Proposition 2. Given 
1 2 3Max t t tY = Max(Y , Y , Y ) , the probability of 

iMax tY = Y under the 

risk-neutral measure Q  is as follows:  

i i

Q 1 p 1
r max t r max t i 2i 1 2i 2i 1,2i iP (Y =Y )=Φ(Φ (P (Y =Y ))+θ )=Φ(Φ (Φ(d , d , ρ ))+θ ) 

  ,      (3.17) 

i=1,  2, 3.  iθ  is the risk premiums of 
it

Y ; and 

3 12 1

3 22 1

t tt ty 2 1 y 3 1
1 2 1, 22 2 2 2

2 1 3 1y 2 1 y 3 1

t tt ty 2 1 y 3 2
3 4 3, 42 2 2 2

2 1 3y 1 2 y 3 2

WWμ (t t ) a u s μ (t t ) a u s
d = ; d = ; ρ =corr( , );

t t t tσ t t a σ s σ t t a σ s

WWμ (t t ) a u s μ (t t ) a u s
d = ; d = ; ρ =corr( ,

t t tσ t t a σ s σ t t a σ s

z z

z z

z z

z z





   

    

    

   

3 1 3 2

2

t t t ty 3 1 y 3 2
5 6 5, 62 2 2 2

3 1 3 2y 3 1 y 3 2

) ;
t

W Wμ (t t ) a u s μ (t t ) a u s
d = ; d = ; ρ =corr( , ).

t t t tσ t t a σ s σ t t a σ s

z z

z z

 



   

    

 

Proof. See Appendix C. 

Furthermore, Proposition 3 must be adopted to derive the solution of the fair price 
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of the Swiss Re bond without coupons. 

Proposition 3. When 
iMax tY =Y  , the following equation can be derived from 

Proposition 2: 

                   i tT i

Q 1
Max t Y 1 iS <1E 1 Y =Y =Φ(Φ (1 F (K ))+θ ),              (3.18) 

in which 
t

0

t ii

1
y i 0 zλ s

tP t
Y 1 r t 1 2 2 2

s=0 y i 0 z

K
ln μ (t t ) su a

Ye (λ )
F (K )=P (Y K )= Φ( )

s! σ (t t )+sσ a


  




 , i=1,  2,  3;  

iθ   is the risk premium of 
it

Y  ; 
5

2
y i i i

i=11 2 5

1 1
μ = a (μ σ )

a +a +...+a 2
  ; 

i

5

i i
i=1

z

s a u
u

s

x




 ;

i

5
2 2

i i
2 i=1

s a σ
σ

s

x

z 


; ~
i , ti

t

5

t Γ
Ii=1

λ = ( +  λ ) . 

Proof. See Appendix D. 

Following the previous procedure, we can derive Equation (3.19) through 

Proposition 3. 
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 

 

 

 

 

iT

1 1T

2 2T

3 3T

1 1

1 1T

Q
T Max tS <1

Q Q
T Max t Max tS <1

Q Q
T Max t Max tS <1

Q Q
T Max t Max tS <1

t 1 t 2Q Q
Max t Max tS <1

2 1

Q

E S 1 Y =Y

E S 1 Y =Y P (Y =Y )

   +E S 1 Y =Y P (Y =Y )

  E S 1 Y =Y P (Y =Y )

Max(Y K ,0) Max(Y K ,0)
E 1 Y =Y P (Y =Y )

K K

   +E

 
 
   
 
 
   

   
   

 

 

2 2

2 2T

3 3

3 3T

ti

ti

ti

t 1 t 2 Q
Max t Max tS <1

2 1

t 1 t 2Q Q
Max t Max tS <1

2 1

1
Y 1 i

1
Y 2 i

1
Y 2

Max(Y K ,0) Max(Y K ,0)
1 Y =Y P (Y =Y )

K K

Max(Y K ,0) Max(Y K ,0)
   +E 1 Y =Y P (Y =Y )

K K

  =

   

1 Φ(Φ (F (K ))+θ )

Φ(Φ (F (K ))+θ )

Φ(Φ (F (K ))+







   
  

   
  

   



ti

2 2 2t
y y i 0 z z

0 i

1
i Y 1 i

1 1λ s μ σ (t t )+s (au + a σ )
P2 2t 1

t i t
s=02 1 2 1

θ ) Φ(Φ (F (K ))+θ ) ,    (3.19)

e (λ ) K1
Y e θ Var (Y )

K K s! K K



    
 

 
 
 
       
               



 

with 
t

0

t ii

1
y i 0 zλ s

tP t
Y 1 r t 1 2 2 2

s=0 y i 0 z

K
ln μ (t t ) asu

Ye (λ )
F (K )=P (Y K )= Φ( )

s ! σ (t t )+s a σ


  




 , 

t
0

t ii

2
y i 0 zλ s

tP t
Y 2 r t 2 2 2 2

s=0 y i 0 z

K
ln μ (t t ) asu

Ye (λ )
F (K )=P (Y K )= Φ( )

s ! σ (t t )+s a σ


  




 , and 

t 2 2
y i 0 z y i 0

i 0

2 2 2 2t
y i 0 z z y i 0

0

λ s
2μ (t t )+2sa u +2σ a (t t )P 2t

t t
s=0

21λ s
2μ (t t )+2s(au +a σ )+ a σ (t t )

t 2
t

s=0

e (λ )
Var (Y ) Y e

s!

e (λ )
                  Y e ,

s !


 

  

 

 
 
 




 

for i=1,  2,  3.  

Consequently, by substituting Equations (3.17), (3.18), and (3.19) into Equation 

(3.16), the fair price of the Swiss Re bond without coupons can be obtained. 
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3.4 Empirical Results 

In this section, we first use the mortality data from the HMD to estimate the 

parameters 
i i i ii i π π(μ , σ , u , σ , u , σ )    for the United States, the United Kingdom, 

France, Italy, and Switzerland in the proposed infectious mortality model. The time 

window is 1933–2007. 

3.4.1 Parameter Estimation and Goodness of Fit of the Infectious     

Mortality Model 

A calibration approach is adopted to estimate the variables 

i i i ii i π π(μ , σ , u , σ , u , σ )    for the five focal countries. Calibration refers to 

estimating the best fitting parameters in a parametric model in comparison with a 

chosen observable quantity. Comparative information typically consists of the historical 

data of liquid instruments. Prices are fitted based on the assumption that a trader agrees 

that the historical data are consistent with a true process. Different jump-diffusion 

processes are calibrated using actual log returns of the population mortality index for 

each country. The detailed procedure is as follows: 

(1) Collect the actual log returns of the population mortality indices of the United States, 

the United Kingdom, France, Italy, and Switzerland. Consider 
^

i,td(lnq ) , the model 

log returns of the population mortality indices of the five countries from Equation 

(3.4), and i,td(lnq ) , the observed log returns of the population mortality index of 
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each country. The difference i,td(lnq ) 
^

i,td(lnq )  is a function of the values of 

=
i i i ii i π π(μ , σ , u , σ , u , σ )  . 

(2) Given the initial values of 
i i i ii i π π(μ , σ , u , σ , u , σ )   illustrated in Table 3.3, the 

initial values of iμ   and iσ  are chosen as the mean and volatility of mortality 

indices of the United States, the United Kingdom, France, Italy, and Switzerland, 

respectively. Find the parameter vector   to solve the nonlinear sum of squared 

errors as follows: 

2n

j
Θ

j=1

SSE= Min ε [Θ]  

Using the above procedure, the estimated parameters characterizing the proposed 

infectious mortality model for the five countries are shown in Table 3.4. 

 

Table 3.3 Initial Values of the Calibrated Parameters for Five Countries 
 US UK France Italy Switzerland 

iμ  0.006907 0.011709 0.011921 0.011997 0.013883 

iσ  0.000438 0.001319 0.001469 0.001348 0.001363 

iπu  0.001 0.001 0.001 0.001 0.001 

iπσ  0.002 0.002 0.002 0.002 0.002 

iΛu  0.001 0.001 0.001 0.001 0.001 

iΛσ  0.002 0.002 0.002 0.002 0.002 

Note: Initial values of iμ  and iσ are chosen as the mean and volatility of the mortality indices of the 

United States, the United Kingdom, France, Italy, and Switzerland, respectively. 
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Table 3.4  
Parameter Estimates in the Infectious Mortality Dynamics for Five Countries 

 US UK France Italy Switzerland 

iμ  -0.007635698 
(0.00028) 

-0.0019212853
(0.00033) 

-0.0023350499
(0.00021) 

-0.0022268845 
(0.00035) 

-0.0017903048 
(0.00025) 

iσ  0.0353039713 
(0.00031) 

0.0303390187
(0.00033) 

0.0208596021
(0.00028) 

0.0346345882 
(0.00021) 

0.0041059500 
(0.00030) 

iπu  -0.4080070179 
(0.00025) 

-0.0685499403
(0.00028) 

-0.0480721838
(0.00027) 

-0.0797427948 
(0.00021) 

-0.0545940218 
(0.00024) 

iπσ  0.1727495194 
(0.00032) 

0.0287313469
(0.00039) 

0.0201543124
(0.00037) 

0.00328499675 
(0.00031) 

0.0227485367 
(0.00041) 

iΛu  -0.1932588391 
(0.00051) 

-0.0413981341
(0.00059) 

-0.0315769919
(0.00051) 

-0.06456981451 
(0.00058) 

-0.0445981165 
(0.00055) 

iΛσ  0.3129031480 
(0.00068) 

0.3398761175
(0.00061) 

0.2659823115
(0.00069) 

0.20038971226 
(0.00058) 

0.29913998715
(0.00071) 

Notes: Parameter estimates in Equation (3.4) for i = the United States, the United Kingdom, France, 
Italy, and Switzerland. Standard errors are shown in parentheses. 

 

3.4.2 Numerical Analysis 

The fair price of the Swiss Re bond can be obtained according to the parameters 

shown in Tables 3.2 and 3.4. Using the principal of $1 as an example and for comparison 

purposes, the risk premium of 0.83 is assumed for the bonds following the trend reported 

by Cox et al. (2006). We perform a scenario analysis based on three cases. Case 1 

(normal situation): according to the base parameters of θ 0.83  , tλ 0.05  , 

α  0.71112 2, zu 0.001  , and zσ 0.1 , the fair par price of the Swiss Re bond is 

0.7393. Case 2 (low infection): given θ 0.83  , tλ 0.05  ,  α 0.99=  , zu 0.001   

and zσ 0.1 , the fair par price of the Swiss Re bond is 0.8457. Case 3 (high infection): 

                                                       

2  This is calculated as the average of 
~
i

tV for i = the United States, the United Kingdom, France, Italy,  

and Switzerland. 
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given θ 0.83 , tλ 0.05 , α 0.001 , zu 0.001  , and zσ 0.1 , the fair par price 

of the Swiss Re bond is 0.6992. 

From the scenario analysis, the fair prices are lower than the par value of $1, and 

those reported by Tsai and Tzseng (2013) (0.9966). Thus, ignoring the effects of 

infectious mortality rates significantly overestimates the price of mortality bonds. In 

other words, considering the phenomenon of infectious mortality rates enables the fair 

price of a mortality security to be more fitted to real-world values. 

Furthermore, we numerically investigate the price of the mortality bond by using 

the proposed infectious mortality model. Table 3.5 demonstrates the impacts of the 

major parameters, mean and volatility, on the magnitudes of infectious mortality, 

threshold values ( ), and jump intensities of the par spread of the bonds. According to 

the literature on mortality bonds,3 we assume that the risk premiums range from 1 to 2. 

Table 3.5 shows a common phenomenon: the fair price decreases as mortality increases. 

In Panel A, the impacts of the mean of the magnitudes of infectious mortality on bond 

prices are uncertain. However, bond prices decrease as the volatilities of the magnitudes 

of infectious mortality increase due to higher mortality rates (Panel B). 

Panel C demonstrates that the relationship of threshold values with the fair prices 

                                                       
3 The risk premiums presented by Cox et al. (2006), Lin and Cox (2008), Chen and Cox (2009), and Lin, 

Liu, and Yu (2013) were 0.83, 0.8657, 1.5, and 1.21, respectively. 
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is positive, because the higher the threshold values, the lower the infectious mortality is. 

Thus, the loss of principal of Vital Capital I declines, and the prices then increase. 

Conversely, Panel D reveals that when jump intensities increase, mortality rates 

generally increase, and bond prices decline. The sensitivity of the volatilities of the 

magnitudes of infectious mortality is the largest among the model parameters, whereas 

that of threshold values is the smallest. 

Table 3.5 reveals a common phenomenon, in which the volatilities of the 

magnitudes of infectious mortality exert significant effects on the fair prices. 
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Table 3.5 Impacts of Various Parameters on Fair Prices of the Swiss Re Bond 
Parameter θ 0.83  θ 0.8657  θ 1.21  θ 1.5  

zu  Panel A: zu changes 

-0.001 0.5163 0.5196 0.5897 0.6125 
-0.003 0.4987 0.5011 0.5734 0.5813 
-0.005 0.4593 0.4972 0.5539 0.5712 
-0.007 0.4886 0.5313 0.5618 0.5896 
-0.009 0.5098 0.5478 0.5715 0.5947 

zσ  Panel B: zσ  changes 

0.1 0.9125 0.9237 0.9358 0.9399 
0.2 0.8143 0.8168 0.8915 0.9141 
0.3 0.7759 0.7825 0.8598 0.8611 
0.4 0.5647 0.5998 0.6315 0.7014 
0.5 0.3325 0.3985 0.4918 0.5481 
α  Panel C: α  changes 

0.70 0.8169 0.8198 0.8245 0.8266 
0.75 0.8256 0.8267 0.8309 0.8351 
0.80 0.8321 0.8357 0.8401 0.8416 
0.85 0.8395 0.8400 0.8415 0.8423 
0.90 0.8411 0.8425 0.8438 0.8509 

tλ  Panel D: tλ  changes 

0.01 0.6458 0.6511 0.6715 0.6798 
0.02 0.6135 0.6212 0.6598 0.6613 
0.03 0.6123 0.6437 0.6997 0.6011 
0.04 0.5978 0.6198 0.5498 0.5599 
0.05 0.4569 0.4986 0.5058 0.5149 

 

3.5 Conclusion 

Transferring catastrophic losses using mortality-linked securities has become 

pertinent for the insurance industry. Many life insurers operate their businesses 

internationally. According to patterns of mortality experience, we find that catastrophic 

events may cause the comovement of mortality rates across countries. Although studies 

consider mortality rates with jumps, they explain the comovement of mortality rates by 

using common jumps across countries. However, the mortality trend empirically reveals 
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that mortality comovement may occur only when there is a catastrophic event that causes 

considerable mortality in all countries. Studies rarely model the phenomenon of 

infectious mortality rates. To fill this research gap, this study offers a new perspective 

of the effects of mortality rates on the valuation of mortality securities. We accordingly 

propose an infectious mortality model: using the Wang transform, a valuation formula 

for the mortality bond is derived through the proposed infectious mortality model. 

An empirical analysis reveals that the fair price of Vital Capital I in the model is 

far higher than that reported by Cox et al. (2006) and is closer to the actual bond price. 

Therefore, considering the infectious effects of mortality rates enables mortality bond 

prices to fit real-world values, which is helpful for pricing mortality securities and for 

managing catastrophic mortality risk for reinsurers. 
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Chapter 4 Valuation and Analysis of Fixed-Coupon and 

Floating-Coupon Mortality Bonds in the Infectious Mortality 

Model 

 

This chapter examines coupon mortality bonds (fixed-coupon and floating-coupon 

bonds). These bonds are similar to the Swiss Re bond. The closed-form solution of a 

fixed-coupon mortality bond is derived, and we assume that the coupons of floating-

coupon mortality bonds are linked to a stochastic interest rate, which follows the CIR 

interest rate model. Monte Carlo simulation is employed to evaluate the sensitivities of 

the fair prices of floating-coupon bonds. 

4.1 Model Formulation 

Let 
i
t

i , t i
t

V
H

1 V






 , which is the odds ratio of the thi country for i 1, 2, 3,...., m

at time t . This odds ratio reflects the ratio of the previously calculated death ratio of all 

countries except that of the thi  country relative to death ratio of the thi  country. We 

assume that the natural logarithm returns of i , tH   for i 1, 2, 3,...., m  at time t  

follow a geometric Brownian motion, such that 

                   
i ii , t H H H, td (ln H ) = μ dt σ dW ,                (4.1) 

where 
iHμ   and 

iHσ  denote the drift term and volatility, respectively, and H, tW   is a 

one-dimensional standard Brownian motion under the original probability measure P. 

From Equation (4.1), we can confirm that 
~
i

t0 V 1  .  

By means of the raw mortality data of five countries (i.e., the United States, the 
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United Kingdom, France, Italy, and Switzerland) obtained from the Human Mortality 

Database (HMD) from 1933 to 2007, Figures 4.1-4.5 show actual odds ratios except for 

US., UK., France, Italy and Switzerland. Furthermore, we calibrate the parameters of 

Equation (4.1) with the HMD through the initial values of 
iHμ and 

iHσ set as the mean 

and volatility of the odds ratio for the United States, the United Kingdom, France, Italy, 

and Switzerland, respectively. As a result, the estimated parameters of Equation (4.1) 

are illustrated in Table 4.1. Based on Table 4.1, the estimated the odds ratio are 

demonstrated in Figures 4.6-4.10 for the United States, the United Kingdom, France, 

Italy, and Switzerland, respectively. In addition, the mean squared errors of i , tH  in the 

United States, the United Kingdom, France, Italy and Switzerland are 0.00125, 0.00254, 

0.00291, 0.00312 and 0.00113, respectively. In average, the mean squared errors are 

0.00219 for all five countries. 

 
   Figure 4.1 Actual Odds Ratio Except for US. 
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           Figure 4.2 Actual Odds Ratio Except for UK. 

 

 

 

 
          Figure 4.3 Actual Odds Ratio Except for France 
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          Figure 4.4 Actual Odds Ratio Except for Italy 

 

 

 

 

 
           Figure 4.5 Actual Odds Ratio Except for Switzerland 
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Table 4.1 Parameter Estimation of Dynamic Processes of i , tln H  through Calibration 

 US UK France Italy Switzerland 

iHμ  
-0.0043215 

(0.000012) 

0.0020975 

(0.000011) 

0.0041256 

(0.000012) 

0.0020159 

(0.000010) 

0.0001984 

(0.000011) 

iHσ  
0.0215689 

(0.000034) 

0.0201452 

(0.000032) 

0.0331209 

(0.000042) 

0.0269122 

(0.000035) 

0.0154381 

(0.000039) 
Notes: The parameter estimates are derived using Equation (4.1) for i = the United States, the United 
Kingdom, France, Italy, or Switzerland. θ 0.83  , 1a =0.7  , 2a =0.15  , 3a =0.075  , 4a =0.05  , 5a =0.025  ,     

1 2 3 4 5α 0.998,  α 4.893,  α 5.547,  α 5.744,  and α 62.487.       Standard errors are shown in 

parentheses. The initial values of 
iHμ  and 

iHσ  are the mean and volatility of the odds ratios the United 

States, the United Kingdom, France, Italy, and Switzerland.  

 

 

Figure 4.6 The Estimated Odds Ratio Except for US. 

 

 

Figure 4.7 The Estimated Odds Ratio Except for UK. 
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Figure 4.8 The Estimated Odds Ratio Except for France 

 

 

Figure 4.9 The Estimated Odds Ratio Except for Italy 

 

 

Figure 4.10 The Estimated Odds Ratio Except for Switzerland 
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Next, to capture the comovement phenomenon when a catastrophic event occurs, 

we set a threshold for i , tH . If i , tH  is higher than this threshold, say iα , then the 

mortality rate of the thi country can be affected by the mortality rate in another country. 

Thus, the mortality rate of the thi country at time t is modeled using two types of jumps: 

an infectious jump and a specific country jump. Let i
t  I


denote the jump frequency of 

the thi country at time t that is infected by other countries when a catastrophic event 

(e.g., infectious disease) occurs; i, t   is the jump frequency resulting from the 

mortality shock in the thi   country at time t  . We assume that both i
t  I


  and i, t  

follow Poisson distributions with the intensities of i
tI

λ   and 
i , tΓ  λ  , respectively. 

Accordingly, i
t  I


can be expressed as 

                    i
t

t
i i
t  u I

0

I D du~Poisson(λ ),  

 
                     (4.2) 

where i , t ii
u

1, if H α
D =

0,   o.w






. 

Furthermore, we present i
tI

λ   as the expectation of infectious jump frequency, 

which can be calculated as 

            

~

~
i
t

i i

i

i
t  

I

i , 0 2
H  H

t i

0
H

λ E I

H 1
ln ( μ  σ )δ

α 2
Φ dδ.

σ δ

    

  
   

    
  
 


                  (4.3) 

Let i , tq  represent the mortality rate of the thi  country at time t. The multicountry 

mortality dynamics for m countries can be modeled as 
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             1 , t 1
1 1 1, t 1 1, t 1 t  

1 , t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     

,            (4.4) 

 2 , t 2
2 2 2, t 2 2, t 2 t  

2 , t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     

, 

 m , t m
m m m, t m m, t m t  

m , t

........

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
      , 

where iμ  and iσ are constants, and i, tW  is a one-dimensional standard Brownian 

motion under the original probability measure P. The correlation coefficient between 

i, tW   and v, tW   is v, t i, t v, icorr(dW , dW )    . Both i, t   and I୲న
ሶሚ  are independent 

Poisson-jump processes with the intensities of 
i , t and λ

୍౪
ഠሶሚ , respectively, and are driven 

by different risks at time t . Furthermore, dI୲న
ሶሚ is independent of i, td , and iπ 1  is 

the random variable percentage in the mortality index of the thi  country that results 

from common jumps of deaths in other countries. We assume that the natural logarithm 

of iπ  , the jump amplitude driven by deaths in other countries, follows a normal 

distribution with a mean of 
i

u   and a variance of 
i

2
 , which also can be denoted as 

i i

2
iln ~ N(u , )    , i 0   , and i 1, 2, 3,...., m  . By contrast, i 1    refers to the 

percentage in the mortality index of the thi  country resulting from specific jumps in 

deaths of the thi  country, and the specific jump size distributes a normality, namely 

i i

2
iln ~ N(u , )   , i 0  , and i 1, 2, 3,...., m . Finally, i  is independent of i . 

From Equation (4), iln   can denote the impact magnitude of infectious mortality 

of the thi country driven by deaths in other countries. When the threshold ( iα ) is infinite, 

mortality rates do not exert any infectious effects. Thus, 
~
i
t  I equals 0 if iα  is infinite 

in Equation (4.2). This model can be reduced to the morality model introduced by Lin 
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and Cox (2008). 

4.2 Structure of a Mortality-Linked Bond with Coupons 

This section examines the effect of infectious mortality risk on two types of 

mortality bonds: a floating-coupon mortality bond, which is similar to the Swiss Re 

mortality bond,4 and a fixed-coupon mortality bond. For this comparison, we assume 

that both fixed-coupon and floating-coupon mortality bonds were issued in 2003 and 

matured on January 1, 2007, with the same principle; that is, both are 3-year bonds. 

Fixed-coupon bonds pay a fixed annual coupon, denoted as C , and floating-coupon 

mortality bonds pay an annual coupon linked to a stochastic spot interest rate ( tr ) plus 

a constant proposition (β ). The principal ( F) underlying these two types of mortality-

linked bonds is exposed to mortality risk, which is linked to the mortality index. 

Similarly, the Swiss Re bond is based on the average annual population mortality rates 

in the United States, the United Kingdom, France, Italy, and Switzerland. If this index 

exceeds 130% of the actual 2002 level, investors have a reduced principal payment at 

maturity. Let TB  denote the principal payment at maturity time T, expressed as 

                       TB Max(1 Loss, 0)  ,                   (4.5) 

with 
- -
0 0

-
0

Max Maxt t

t

Max(Y 1.3Y , 0) Max(Y 1.5Y , 0)
Loss = 

0.2Y

  
,

1 2 3Max t t tY =Max(Y , Y , Y )  

and 5 1 2 51 2

i 1, t 2, t 5, ti i i

1

a a +a +...+aa a
tY = (q q ......q ) ; 

where -
0t

Y  , 
0t

Y  ,
1t

Y  ,
2tY  , and 

3t
Y   represent the geometric average population 

mortality rates of the focal countries in 2002, 2003, 2004, 2005, and 2006, respectively. 

Furthermore, 1, tq  , 2,tq  , …., and 5, tq   represent the mortality indices of the United 

States, the United Kingdom, France, Italy, and Switzerland, respectively, and 

                                                       
4 the coupon rate is LIBOR+135 bps. 
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a
1
, a

2
,...,a

4 
and a

5
  indicate the weights of their population mortality indices, 

respectively.  

At time 0, the expected cash flow of fixed-coupon mortality bonds for investors is 

       

 3 0 1 0 2 0 3 0

3 0

1 0 2 0 3 0

r(t t ) r (t t ) r (t t ) r (t t )Q
0 T

r(t t ) Q Max 1 Max 2

2 1

r (t t ) r (t t ) r (t t )

B F e E B C e e e

Max(Y K ,0) Max(Y K ,0)
     =F e E Max 1 ,0

K K

       C e e e , 

       

 

     

      
    

     
    

  (4.6) 

where QE ( . )  denotes the expectation value under the risk-neutral probability measure 

Q at time 0t , r  is the constant risk-free rate, and -
0

1 t
K =1.3Y  and

 
-
0

2 t
K =1.5Y , with 

2 1K K . We provide a general valuation formula for a mortality bond with 1K  and 

2K , which can be structured to reflect different payoffs for the mortality bond. However, 

investors must pay the face value if the mortality bonds are issued at par. Hence, 

0B F , and we can obtain the fair spread ( C ), which also can be denoted as 

.(4.7)  

Alternatively, at time 0, the expected income of floating-coupon mortality bonds 

linked to a stochastic interest rate under a forward, risk-neutral probability measure, 

PT, is as follows: 

3 0

1 0 2 0 3 0

r (t t ) Q M ax 1 M ax 2

2 1

r (t t ) r (t t ) r (t t )

Max(Y K ,0) Max(Y K ,0)
F F e E Max 1 ,0

K K
C

e e e

 

     

    
      

 
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 
 

 
 

0 1 0 1

0 2

0 3

0 n n

PT
t ,t 0 0 1 t

PT
0 1 1 2 t

PT
0 1 1 2 2 3 t

PT
0 1 1 2 2 3 n 1 n t t

SW (t ) P(t , t )E r β 

                 +P(t , t )E P(t , t ) r β

                 +P(t , t )E P(t , t )P(t , t ) r β

                 +P(t , t )E P(t , t )P(t , t ) P(t , t ) B r β

          



 





 

   

 

 

0 1 0 2

0 3

0 3 3

PT PT 0 2
0 1 t 0 1 t

0 1

PT 0 3
0 1 t

0 1

PT 0 3
0 1 t t

0 1

P(t , t )
      =P(t , t )E r β +P(t , t )E r β 

P(t , t )

P(t , t )
                +P(t , t )E r β 

P(t , t )

P(t , t )
                +P(t , t )E B r +β .

P(t , t )

 



 
 

 

             (4.8) 

When the bonds are issued at par (i.e., 
0 1t ,t 0SW (t ) F ), we obtain the fair spread (β ). 

Thus, the fair spread of floating-coupon bonds is 

0 1 0 2 0 3 3

PT PT PT
0 1 t 0 2 t 0 3 t t

0 1 0 2 0 3

1 P(t , t )E r P(t , t )E r P(t , t )E (B r )
β 

P(t , t ) P(t , t ) P(t , t )

   


 
.          (4.9) 

 

4.3 Valuation Formula for a Mortality-Linked Bond with 

Coupons 

For pricing a fixed-coupon mortality bond, we apply the Wang transform to solve 

Equation (4.7). We denote the total risks at time t  in the ith country as i
i, t i, t tX I 

 , 

which follows a Poisson-jump process with the intensity of 
i, tXλ . Assume that ix 1  

is the percentage of the mortality index of the thi  country resulting from total risks, 

and ix   follows normal distributions with a mean of 
i

u x   and a variance of 
i

2σ x  . 

Additionally, 

                      
d

i
i i,t i i, t i t(x 1)dX (Λ 1)d (π 1)dI     


.           (4.10) 

Thus, we obtain  
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~
i

i i,t i i, t i tE ( 1)dX E ( 1)d (π 1)dIx             
,      (4.11) 

and  

                 
~
i

i i,t i i, t i tVar ( 1)dX Var ( 1)d (π 1)dIx             
.   (4.12) 

Using Equations (4.11) and (4.12), we can then obtain 

 

2 2
π π Λ Λi i i i

~
ii

t

~
i i

t

1 1
u + σ u + σ

2 2
Γ

I
i

Γ
I

(e 1) +(e 1)λ
E 1

λ +
x

  
 


,  

                  

2 2
π π Λ Λi i i i

~
ii

t

i
~

i i
t

1 1
u + σ u + σ

2 2
Γ

I

Γ
I

(e 1)λ +(e 1)λ
u 1

λ +λx

 
   ,         (4.13) 

2 2 2 2
π π Λ Λi i i i π π Λ Λi i i i

~ ~ii ii
t t

i
~ ~ ~

i i ii i i
t t t

2 21 1 1 1u + σ u + σ u + σ u + σ2 2 2 2
Γ Γ

I I2

Γ Γ Γ
I I I

A+ (e 1) +(e 1)λ (e 1) +(e 1)λ
,   (4.14)

(λ + +1)(λ + ) λ +x

           
     

   
 
 

 

with 

2 22 Λ Λ Λ Λi i i iΛ Λ Λi i i

i i i

2 22 π π π πi i i iπ π πi i i
i i i
t t t

21 1
u  σ u + σ2u +σ σ 2 22 2

Γ Γ Γ

2 21 1
u + σ u + σu +σ σ 22 2

I I I

A= e (e 2e + 2) +1 (λ +λ ) λ e 1

       + e (e +1)+ e 1 λ λ (e 1)λ .

    
    

   
                  

  

 

Under the original probability measure P, using Ito’s lemma, Equation (4.2) can be 

rewritten as 
i,T2

i i 0 i i,T t0

0

X1
(μ σ ) (T t )+σ W

2
i,T= i,t i,l

l=1

q q e x
 

  , i=1,2,.....,5.   The numbers for i 

indicate the United States, the United Kingdom, France, Italy, and Switzerland, 

respectively. Moreover, 

            
i,T

0 0

X
2

i,T i, t i i 0 i i,T t i,l
l=1

1
lnq =lnq +(μ σ )(T t )+σ W + ln

2
x   .   (4.15) 

Next, let tX   represent the sum of the total risks for the United States, the United 
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Kingdom, France, Italy, and Switzerland, namely t 1, t 2, t 5, tX X X .... X    , which 

follows a Poisson distribution with the intensity of tλ   and i i , tt

5

t ΓI
i=1

λ = (λ +  λ )   . To 

derive the closed-form solution of the fair price of the mortality bond, we rewrite 

Equation (4.7) as 

   

 

1 1 2 2T T
3 0

3 3T

1 0 2 0 3 0

Q Q Q Q
T Max t r Max t T Max t r Max tS <1 S <1r (t t )

Q Q
T Max t r Max tS <1

r (t t ) r (t t ) r (t t )

E (1 S )1 Y =Y P (Y =Y )+E (1 S )1 Y =Y P (Y =Y )
F F e

+E (1 S )1 Y =Y P (Y =Y )
C= .

e e e
      

 

     

             
    

 

(4.16) 

The Wang transform is used to obtain the closed-form solution. Using Equation 

(4.16), we must solve the probability that 
iMax tY =Y  under the risk-neutral probability 

measure. Therefore, Propositions 1, 2, and 3 are necessary. 

Applying Propositions 1, 2, and 3, we determine that the fair spread of fixed-coupon 

bonds is  

 

 

 

1 1T

3 0

2 2T

3 3T

1 0 2 0 3 0

Q Q
T Max t r Max tS <1

r (t t ) Q Q
T Max t r Max tS <1

Q Q
T Max t r Max tS <1

r (t t ) r (t t ) r (t t )

E (1 S )1 Y =Y P (Y =Y )

F F e +E (1 S )1 Y =Y P (Y =Y )

+E (1 S )1 Y =Y P (Y =Y )
C= ,

e e e
       

 

     

    
      
 

    
 

           (4.17) 

in which   i tT i

Q 1
Max t Y 1 iS <1E 1 Y =Y =Φ(Φ (1 F (K ))+θ );     

  

  iT

ti

ti

t ti i

2 2 2t
y y i 0 z z

0 i

Q
T Max tS <1

1
Y 1 i

1
Y 2 i

1 1
Y 2 i Y 1 i

1 1λ s μ σ (t t )+s (au + a σ )
P2 2t 1

t i t
s=02 1

E S 1 Y =Y

= 1 Φ(Φ (F (K ))+θ )

Φ(Φ (F (K ))+θ )

  Φ(Φ (F (K ))+θ ) Φ(Φ (F (K ))+θ )

e (λ ) K1
Y e θ Var (Y )

K K s! K





 

    
 

 
 

   



   

 
  

   


2 1

,    

K

 
 
 
  
 
 
   
      
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, 

t
0

t ii

2
y i 0 zλ s

tP t
Y 2 r t 2 2 2 2

s=0 y i 0 z

K
ln μ (t t ) asu

Ye (λ )
F (K )=P (Y K )= Φ( )

s ! σ (t t )+s a σ


  




 , and 

t 2 2
y i 0 z y i 0

i 0

2 2 2 2t
y i 0 z z y i 0

0

λ s
2μ (t t )+2s a u +2 σ  a (t t )P 2t

t t
s=0

21λ s
2μ (t t )+2s(au +a σ )+ a σ (t t )

t 2
t

s=0

e (λ )
Var (Y ) Y e

s!

e (λ )
                   Y e , i=1, 2, 3.

s !


 

  



 
  
 




 

Furthermore, iθ  refers to the risk premiums of 
it

Y ; 

5
2

y i i i
i=11 2 5

1 1
μ = a (μ σ )

a +a +...+a 2
 ; 

i

5

i i
i=1

z

s a u
u

s

x




; 
i

5
2 2

i i
2 i=1

s a σ
σ

s

x

z 


; 

i i , tt

5

t ΓI
i=1

λ = (λ +  λ )  ;
1 2 5

1
a

a a ... a


  
; and 

   
15

'

y 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5
1 2 5

51

1
1

σ = a σ a σ a σ a σ a σ a σ a σ a σ a σ a σ .
a +a +...+a

1

 
 
 
  


  



 

 

4.4 Valuation for Floating-Coupon Mortality-Linked Bonds 

Assume that the coupons of floating-coupon mortality bonds are linked to a 

stochastic interest rate, and the dynamic process of the stochastic interest rate follows 

the CIR model under an original probability measure, as follows: 

                        t t r tdr k(g r ) dt+σ dW  ,               (4.18) 

where k , g , and rσ  are constants, and tW  is a wiener process with a mean of 0 and 

a variance of t   under an original probability measure. Thus, at time t   of a zero-

coupon bond with maturity, T is  

tB(t , T)  rP(t,  T)=A(t, T) e ,               (4.19) 

t
0

t ii

1
y i 0 zλ s

tP t
Y 1 r t 1 2 2 2

s=0 y i 0 z

K
ln μ (t t ) asu

Ye (λ )
F (K )=P (Y K )= Φ( )

s ! σ (t t )+s a σ


  





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where 
 

22kθ/σ

(k h) (T t ) /2

T t

h

2h e
A(t, T) ,

2h (k h) e 1

 



 
 
    

    
   

  
  (k h) (T t ) /2

T t

h

2 e 1
B(t, T)

2h (k h) e 1

 






 
   

 

 , and 

2 2h k 2σ  . 

From Equations (4.18) and (4.19), using Girsanov’s theorem, we can obtain the 

dynamic process of the stochastic interest rate under a forward risk-neutral probability 

measure, PT, as follows: 

                     2 PT
t r t r t tdr kg k B(t, T)σ r  dt+σ r  dW     .    (4.20) 

For simplicity, we employ a Monte Carlo simulation approach to calculate the fair 

spread of floating-coupon mortality bonds by using Equations (4.9) and (4.20). Before 

performing the simulation, Equation (4.20) must be transformed into Equation (4.21) in 

a discrete time model. Thus,  

 2
t r t r t tr kg k B(t, T)σ r  t+σ r  t           ,         (4.21) 

where t   follows a normal distribution with a mean of 0 and a volatility of 1. 

Accordingly, we can simulate the fair spread of floating-coupon mortality bonds by 

using Equations (4.9) and (4.21) over 10,000 simulation runs. 

4.5 Empirical Results 

In this section, we first use the mortality data from the HMD to estimate the 

parameters 
i i i ii i π π(μ , σ , u , σ , u , σ )    for the United States, the United Kingdom, 

France, Italy, and Switzerland in the proposed infectious mortality model. The time 

window is 1933–2007. With the parameter estimates, the fair price spreads of the two 

types of mortality linked bonds can be obtained using Equations (4.2) and (4.3). We also 

provide comparative statistics. 
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4.5.1 Parameter Estimation and Goodness of Fit of the Infectious 

Mortality Model 

A calibration approach is adopted to estimate the variables 

i i i ii i π π(μ , σ , u , σ , u , σ )  for the five focal countries. Given the initial values in Table 

4.2, we can obtain estimated parameters that characterize the proposed infectious 

mortality model for the United States, the United Kingdom, France, Italy, and 

Switzerland, as disclosed in Tables 4.3. 

To illustrate the calibration of the parameters r(k , g, σ )  in the CIR interest rate 

model, we can use the interest rate of the 3-month London Interbank Offered Rate 

(LIBOR). This time window spans from January 1, 2013, to October, 31, 2014. The 

initial values are 0k 0.01987  , 0g 0.01523  , and
0r

σ 0.005  . Thus, the estimated 

parameters r(k , g, σ )  for the three-month LIBOR interest rate are 2.5806, 0.0023, and 

0.0048, respectively. 

 

Table 4.2 Initial Values of the Calibrated Parameters for Five Countries 
 US UK France Italy Switzerland 

iμ  0.006907 0.011709 0.011921 0.011997 0.013883 

iσ  0.000438 0.001319 0.001469 0.001348 0.001363 

iπu  0.001 0.001 0.001 0.001 0.001 

iπσ  0.002 0.002 0.002 0.002 0.002 

iΛu  0.001 0.001 0.001 0.001 0.001 

iΛσ  0.002 0.002 0.002 0.002 0.002 

Notes: The initial values of iμ  and iσ  are the mean and volatility of the mortality index for the United 

States, the United Kingdom, France, Italy, and Switzerland.  
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Table 4.3 Parameter Estimates in Infectious Mortality Dynamics for Five Countries 
through Calibration 

 US UK France Italy Switzerland 

iμ  -0.00654126 
(0.00028) 

-0.00172561 
(0.00033) 

-0.00217485 
(0.00021) 

-0.00198764 
(0.00035) 

-0.00134219 
(0.00025) 

iσ  0.03412596 
(0.00031) 

0.03245149 
(0.00033) 

0.02469197 
(0.00028) 

0.03614527 
(0.00021) 

0.02179819 
(0.00030) 

iπu  -0.08798271 
(0.00025) 

-0.07461521 
(0.00028) 

-0.05165785 
(0.00027) 

-0.07949118 
(0.00021) 

-0.06143999 
(0.00024) 

iπσ  0.09413695 
(0.00032) 

0.03541679 
(0.00039) 

0.02914249 
(0.00037) 

0.01572431 
(0.00031) 

0.03145611 
(0.00041) 

iΛu  -0.09198133 
(0.00051) 

-0.07984129 
(0.00059) 

-0.06971451 
(0.00051) 

-0.08191139 
(0.00058) 

-0.08379651 
(0.00055) 

iΛσ  0.32319048 
(0.00068) 

0.35128811 
(0.00061) 

0.30149231 
(0.00069) 

0.25679133 
(0.00058) 

0.32811947 
(0.00071) 

Notes: The parameter estimates are derived using Equation (4.4) for i = the United States, the United 
Kingdom, France, Italy, or Switzerland. θ 0.83  , 1a =0.7  , 2a =0.15  , 3a =0.075  , 4a =0.05  , 5a =0.025  ,     

1 2 3 4 5α 0.998,  α 4.893,  α 5.547,  α 5.744,  and α 62.487.       Standard errors are shown in 

parentheses.  
 

4.5.2 Numerical Analysis 

We first analyze the fair par spread for fixed-coupon mortality bonds according to 

the parameters in Table 4.3 and the valuation formula derived in Equation (4.17). Using 

a principal of $1 as an example, we assume a risk premium of 0.83 for fixed-coupon 

bonds (Cox et al., 2006), and the base parameters are θ 0.83  and tλ 0.05 . We then 

design three scenarios to discuss the impacts of the threshold value ( α  ) on the par 

spreads of fixed-coupon and floating-coupon bonds. Case 1 (normal situation): given 

α 16= 4, the fair par spread of fixed-coupon mortality bonds is approximately 0.7833%, 

whereas the fair spread of floating-coupon mortality bonds is 0.6012%, according to 

previous assumptions and estimated parameters r(k , g , σ )  . Case 2 (low-infection 

situation): assuming that α 70= , the fair par spread of fixed-coupon mortality bonds 

is approximately 0.9872%, whereas the fair spread of floating-coupon mortality bonds 

is 0.7151%. Case 3 (high-infection situation): assuming that α 1= , the fair par spread 

                                                       
4 The average threshold value is calculated as 1 2 5...

5

     
, and the value is approximately 16. 
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of fixed-coupon mortality bonds is approximately 0.5127%, whereas the fair spread of 

floating-coupon mortality bonds is 0.5819%. 

The three scenarios reveal a common phenomenon that the fair spreads of these 

two types of bonds are higher than the 0.45%indicated by Cox et al. (2006), but lower 

than the 11.4% demonstrated by Tsai and Tzeng (2013). The fair spreads in our model 

are closer to the actual par spread of 1.35% for the Swiss Re bond. Ignoring the effects 

of infectious mortality rates thus significantly underestimates the par spread for 

mortality bonds; by contrast, considering this phenomenon provides a par spread of the 

mortality security that is closer to real-world values. 

Assuming α 16  , zu 0.001   , and zσ 0.1  , we numerically investigate the 

price of fixed-coupon mortality bonds by using the proposed infectious mortality model. 

The impacts of the major parameters, mean and volatility, on the magnitudes of 

infectious mortality, average threshold values ( α ), and jump intensities of the par spread 

of the bonds are detailed in Table 4.5. According to the literature on mortality bonds, the 

risk premiums are assumed to range from 1 to 2. Table 4.4 shows a common 

phenomenon: the fair spread of fixed-coupon mortality bonds decreases as mortality 

increases. In Panel A, the impacts of the mean of the magnitudes of infectious mortality 

on the par spread of the bonds are uncertain. However, the par spreads of the bonds 

decrease as the volatilities of the magnitudes of infectious mortality increase due to high 

mortality rates (Panel B). 

Panel C illustrates the positive relationship between threshold values and the par 

spreads of fixed-coupon mortality bonds; the higher the threshold values, the lower the 

infectious mortality is. Conversely, Panel D indicates that when jump intensities 

increase, mortality rates increase, and that the par spread of the bonds declines. The 

sensitivities of the means and volatilities of the magnitudes of infectious mortality are 
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greater than α  and tλ , whereas that of threshold values is the smallest. 

Table 4.5 presents the sensitivity of the model parameters to floating-coupon 

mortality bonds. We find that the fair spreads increase as k , rσ , or zσ  decreases; 

they also grow as α  increases. The relationships of the fair spreads with g , zu , or 

tλ   remain uncertain. Tables 4.4 and 4.5 also reveal a common phenomenon: the 

volatilities of the magnitudes of infectious mortality exert significant effects on the fair 

spreads of fixed-coupon bonds and floating-coupon bonds. 

 
Table 4.4 Impacts of Model Parameters on Fair Spreads of Fixed-Coupon Bonds (%) 

Parameter θ 0.83  θ 0.8657  θ 1.21  θ 1.5  

zu  Panel A: zu changes 

-0.001 0.7928 0.7919 0.7759 0.7599 
-0.003 0.7816 0.7714 0.7511 0.7496 
-0.005 0.7433 0.7533 0.7499 0.7411 
-0.007 0.7955 0.7799 0.7633 0.7533 
-0.009 0.8081 0.7854 0.7711 0.7600 

zσ  Panel B: zσ  changes 

0.1 0.7928 0.7919 0.7759 0.7599 
0.2 0.7863 0.7860 0.7698 0.7580 
0.3 0.7631 0.7619 0.7588 0.7499 
0.4 0.7598 0.7498 0.7455 0.7396 
0.5 0.7499 0.7377 0.7300 0.7277 
α  Panel C: α  changes 

16.0 0.7928 0.7919 0.7759 0.7599 
16. 5 0.8054 0.8033 0.7865 0.7613 
17.0 0.8133 0.8100 0.7900 0.7689 
17.5 0.8196 0.8122 0.7936 0.7700 
18.0 0.8201 0.8199 0.7999 0.7714 

tλ  Panel D: tλ  changes 

0.01 0.8254 0.8295 0.8056 0.7767 
0.02 0.8190 0.8204 0.7915 0.7700 
0.03 0.8144 0.8166 0.7866 0.7696 
0.04 0.8016 0.8036 0.7804 0.7614 
0.05 0.7928 0.7919 0.7759 0.7596 
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Table 4.5 Impacts of Parameters on Fair Spreads of Floating-Coupon Bonds (%) 
Parameter Fair Spread (β ) 

k  Panel A: k  changes 
1.0 0.7964 
1.5 0.7850 
2.0 0.7811 
2.5 0.7800 
3.0 0.7746 
g  Panel B: g  changes 

0.01 0.8011 
0.02 0.8098 
0.03 0.8100 
0.04 0.8055 
0.05 0.8016 

rσ  Panel C: rσ  changes 

0.01 0.8416 
0.02 0.8400 
0.03 0.8376 
0.04 0.8356 
0.05 0.8311 

zu  Panel D: zu  changes 

-0.001 0.8697 
-0.03 0.8701 
-0.05 0.8699 
-0.07 0.8653 
-0.09 0.8700 

zσ  Panel E: zσ  changes 

0.1 0.8637 
0.2 0.8619 
0.3 0.8599 
0.4 0.8536 
0.5 0.8519 

tλ  Panel F: tλ  changes 

0.01 0.8659 
0.02 0.8675 
0.03 0.8710 
0.04 0.8696 
0.05 0.8715 
α  Panel G: α  changes 

16.0 0.8700 
16. 5 0.8719 
17.0 0.8730 
17.5 0.8746 
18.0 0.8766 
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4.6 Conclusion 

Transferring catastrophic losses using mortality-linked securities is critical to the 

insurance industry. Many life insurers operate their businesses internationally. 

According to patterns of mortality experience, we find that catastrophic events may 

cause the comovement of mortality rates across countries. Although researchers 

consider mortality rates with jumps, they explain the comovement of mortality rates by 

using common jumps across countries. However, mortality trends offer empirical 

evidence that mortality comovement may occur only if a catastrophic event causes 

considerable mortality in all countries. Studies rarely model the phenomenon of 

infectious mortality rates. To fill this gap, this study offers a new perspective of the 

infectious effects of mortality rates on the valuation of mortality securities. Accordingly, 

we propose an infectious mortality model: using the Wang transform, we derive a 

valuation formula for the fixed-coupon mortality bond based on our proposed infectious 

mortality model. 

The empirical analysis reveals that the fair par spreads of fixed-coupon and 

floating-coupon mortality bonds in the model are far higher than those reported by Cox 

et al. (2006), but they are closer to the actual par spread of the Swiss Re bond. Therefore, 

considering the infectious effects of mortality rates enables the par spread of mortality 

bonds to fit real-world values, which is helpful for pricing mortality securities and for 

managing catastrophic mortality risk for reinsurers. 
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Chapter 5 Comparison of Two Infectious Mortality 

Models  

The infectious mortality model of the first part is named as infectious mortality 

model 1, and the infectious mortality model of the second part is infectious mortality 

model 2. The two infectious mortality models can describe the properties when multi-

country mortality comovement increases significantly after mortality shocks. Table 5.1 

illustrates that the mean squared errors of infectious mortality 1 in the United States, 

the United Kingdom, France, Italy and Switzerland are 0.00085, 0.00071, 0.00075, 

0.00091 and 0.00058, respectively. In average, the mean squared errors are 0.00076 for 

all five countries. The mean squared errors of infectious mortality 2 in the United States, 

the United Kingdom, France, Italy and Switzerland are 0.00125, 0.00254, 0.00291, 

0.00312 and 0.00113, respectively. In average, the mean squared errors are 0.00219 for 

all five countries. Obviously, the mean squared errors of the first infectious mortality 

model are fewer than the second infectious mortality model, whereas the second 

infectious mortality model can confirm the ratio of the total deaths in all countries 

except for those in the thi  country relative to the total deaths in all countries to be 

between 0 and 1 when all countries are only two countries. 

Therefore, the two infectious mortality models have their advantages and 

weakness. When the payoffs of mortality-linked bonds are related to only two countries’ 
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mortalities, the infectious mortality model 2 is more suitable than the infectious 

mortality model 1. However, the means square errors of the infectious mortality model 

1 is fewer than the infectious mortality model 2 as the payoffs are linked to the 

mortalities more than two countries.  

 

Table 5.1 Mean Squared Errors of Two Infectious Mortality Models  

Panel A: Infectious Mortality Model 1 

 US UK France Italy Switzerland 

MSE 0.00085 0.00071 0.00075 0.00091 0.00058 

MSE  0.00076 

Panel B: Infectious Mortality Model 2 

 US UK France Italy Switzerland 

MSE 0.00125 0.00254 0.00291 0.00312 0.00113 

MSE  0.00219 

Notes: MSE stands for mean squared errors. MSE  expresses the average values of mean squared errors 
of US., UK., France, Italy and Switzerland. 

 

 

 

 

 

 

 

 

 



DOI:10.6814/DIS.NCCU.RMI.001.2018.F08 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

58 
 

Chapter 6 Conclusion 

In this dissertation, two infectious mortality models are developed to show that 

jumps occur only when there is a catastrophic event that causes considerable mortality, 

such as the 1918 flu pandemic. Furthermore, the models are applied to price mortality-

linked securities such as the Swiss Re bond without coupons, fixed-coupon and 

floating-coupon mortality bonds. These models can be reduced to that introduced by 

Lin and Cox (2008) as model parameters are specially set. We find that the mean 

squared errors of the first infectious mortality model are fewer than the second 

infectious mortality model, whereas the second infectious mortality model can confirm 

the ratio of the total deaths in all countries except for those in the thi  country relative 

to the total deaths in all countries to be between 0 and 1 when all countries are only two 

countries. Additionally, closed-form solutions are derived for the fair prices of the Swiss 

Re bond without coupons and fixed-coupon mortality bonds. 

The empirical results show that the fair spreads of these two types of bonds are 

higher than the 0.45% indicated by Cox et al. (2006) and closer to the actual par spread 

of 1.35% for the Swiss Re bond in infection situations. We find that ignoring the effects 

of infectious mortality rates significantly underestimates the par spread for mortality 

bonds, whereas considering this phenomenon provides a par spread of the mortality 

security that is closer to real-world values. This may enable insurance institutions to 



DOI:10.6814/DIS.NCCU.RMI.001.2018.F08 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

59 
 

hedge infectious mortality risk. 

 

Appendix A 

Because i, t  and 
~
i
tI  are independent, we have for k 0 : 
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Hence, 
~

~
i , ti

t

i
i, t t

I

I Poisson( )     , that is i, tX ~
i , ti

tI

Poisson( )   . 

Appendix B 

From Equation (3.13) and 5 1 2 51 2

i 1, t 2, t 5, ti i i

1

a a +a +...+aa a
tY = (q q ......q ) , we know 

0 0
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5 5
2

T t i i i i i i,T t
i=1 i=11 2 5 1 2 5

X X X

1 1,l 2 2,l 5 5,l
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1 1 1
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i=1, 2,…5. Then let 
5

2
y i i i
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1 1
μ a (μ σ )
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 ; 
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and 
1,T 2,T 5,TT

X X XX

l 1 1,l 2 2,l 5 5,l
l=1 l=1 l=1 l=1

ln a ln a ln ... a lnx x x       , 2
z zlnΖ ~N(u , σ ) . 

Thus, Proposition 1 is completed. 

Appendix C 

From the Wang (2000) transform, we know the relationship between the risk-neutral 

probability and original probability in Equation (B1). 

* 1F (x)=Φ(Φ (F(x))+θ) .                   (C1) 

where *F (x)  and F(x)  are cumulative density functions under the risk-adjusted and 

original probability measures, respectively; θ is a constant risk premium; and (.)

denotes the cumulative standard normal probability. Suppose 
1Max tY = Y  . From 

Equation (B1), the probability of 
1Max tY = Y  under the risk-neutral measure Q  can be 

derived as 

       
1 1 2 1 3

Q 1 p
r Max t r t t t t 1P (Y =Y )=Φ(Φ (P (Y >Y ,Y >Y ))+θ ) ,         (C2) 

in which 1θ  is the risk premium of 
1t

Y , and p
rP (.)  denotes the original probability 

measure. Through Proposition 1, Equation (B3) also can be obtained: 

                

XT

y 0 y lT-t0 1 2 5 l=1

0

1
μ (T t )+σ W + ln

a +a +...+a

T tY =Y e
 

.                   (C3) 

Substituting Equation (B3) into (B2), we find: 

                 1 1 2 1 3

Q -1 p
r Max t r t t t t 1

-1
1 2 1,2 1

P (Y =Y )=Φ(Φ (P (Y >Y ,Y >Y ))+θ )

                     =Φ(Φ (Φ(d , d , ρ ))+θ ),
        (C4) 

with 
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1 2 1, 22 2 2 2
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   

    
. 

In the same vein, we can obtain: 

i i

Q 1 p 1
r max t r max t i 2i 1 2i 2i 1, 2i iP (Y =Y )=Φ(Φ (P (Y =Y ))+θ )=Φ(Φ (Φ(d , d , ρ ))+θ ) 

  ,    (C5) 

i=1,2,3.  Here, iθ  is the risk premium of 
it

Y , and 
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Appendix D 

Suppose 
1Max tY = Y . We can obtain Equation (D1): 

 

       1 1
t 1 t 21 1

1T

t 1 t 2Y K Y K
Q Q

Max t rS <1
2 1

Y K 1 Y K 1
E 1 Y =Y =P ( 1)

K K

 
  

    
  (D1) 

Then let        1 1
t 1 t 21 1

t 1 t 2Y K Y K
H= Y K 1 Y K 1

 
   , such that we rewrite Equation (D1) 

as 

  
  1 1 1T

1

Q Q Q
Max t r 2 1 t 1 r 2 1 1 t 2S <1

Q
r 2 1 t 2
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 

(D2) 

From Propositions 1 and 2, we next derive: 

                    1 tT 1

Q 1
Max t Y 1 1S <1E 1 Y =Y =1 Φ(Φ (F (K ))+θ )    ,          (D3) 
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For the same reason, if 
iMax tY =Y , then 

   i tT i

Q 1
Max t Y 1 iS <1E 1 Y =Y =Φ(Φ (1 F (K ))+θ ),              (D4) 
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 , i=1,  2,  3;  iθ  

as the risk premium of 
it

Y  and the other variables as we detailed them previously. 
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