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Abstract

This thesis examines the valuation of mortality-linked bonds in two infectious mortality
models in two main parts:
(1) Valuation and Analysis of the Swiss Re Bond without Coupons in an Infectious

Mortality Model
(2) Valuation and Analysis of Fixed-Coupon and Floating-Coupon Mortality Bonds in

an Infectious Mortality Model

The two main parts of this dissertation focus on infectious mortality risk, and two
infectious models are developed to analyze the impacts of infectious mortality risk on
mortality-linked bonds. This approach is different from that in the literature. To capture
the infectious mortality dynamics across countries, two mortality jumps are considered
in the mortality modeling: infectious jumps and specific country jumps. An infectious
jump occurs only when there is a catastrophic event that causes considerable mortality.
Furthermore, the mortality experience in France, the United Kingdom, the United States,
Italy, and Switzerland is employed to fit the proposed infectious mortality model.

Using the two infectious mortality models, this dissertation explores the impacts of
infectious mortality risk on the two types of mortality-linked bonds: zero-coupon
mortality bonds and coupon mortality bonds. The first part demonstrates the structure
of a zero-coupon mortality bond, namely Vital Capital I, which is a type of Swiss Re
bond without coupons and was first issued as a 3-year catastrophic mortality bond in
2003. Under the infectious mortality framework, the closed-form solution of Vital
Capital I is derived using Wang’s transform (2000). An empirical analysis reveals that
the fair price of Vital Capital I in the model is lower than face value (market price).
Sensitivity analyses illustrate that the sensitivity of the volatilities of the magnitudes of

infectious mortality is the largest among the model parameters, whereas that of

v
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threshold values is the smallest.

In the second part, coupon mortality bonds, namely fixed-coupon and floating-
coupon bonds, are examined. These bonds are similar to the Swiss Re bond. The closed-
form solution of a fixed-coupon mortality bond is derived, and it is assumed that the
coupons of floating-coupon mortality bonds are linked to a stochastic interest rate,
which follows the Cox—Ingersoll-Ross interest rate model. Monte Carlo simulation is
employed to evaluate the sensitivities of fair prices of floating-coupon bonds. The
empirical results show the fair spreads of these two types of bonds are also higher than
the spreads of 0.45% indicated by Cox et al. (2006) and closer to the market prices of
1.35% of the Swiss Re bond.

A common phenomenon is revealed in the first and second parts, which specifies
that the fair prices of mortality-linked securities in high-infectious mortality model are
fewer than those of mortality-linked securities in low-infectious mortality model.
Therefore, ignoring the effects of infectious mortality rates significantly overestimates
the par spread of mortality bonds; by contrast, considering this phenomenon provides a
par spread of the mortality security that is closer to real-world values. This is helpful
for pricing mortality securities and for managing catastrophic mortality risk for
reinsurers.

Keywords: Infectious mortality risk, Mortality-linked bond, Wang transform, Jump

model, Floating-coupon bond.
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Chapter 1 Foreword

Mortality uncertainty is the primary source of risk for life insurance and annuity
providers. Mortality uncertainty can appear as contrasting longevity and mortality risks.
Insurers endure longevity risk for their annuity products if future mortality improves
relative to current expectations because they have to pay annuity benefits longer than
expected. Conversely, if mortality deteriorates or a catastrophic event occurs, insurers
endure mortality risk for their life insurance products because the insurance benefits
paid out are higher than expected. Therefore, modeling mortality risk is essential.

In the past two decades, numerous researchers propose and discuss various
mortality models for modeling the dynamics of mortality over time. For example, Lee
and Carter (1992) pioneer the modeling of central mortality rates as log-linearly
correlated with a time-dependent mortality factor, and they adjust for age-specific
effects by using two sets of age-dependent coefficients. However, earlier mortality
models do not consider catastrophic mortality risk and cannot explicitly capture
structural changes and catastrophic shocks that may cause mortality jumps such as the
2004 Indian Ocean earthquake and tsunami that killed 182,340 people or comovement
trends such as the 1918 flu pandemic (the Spanish flu). Although recent studies examine

mortality jumps, they do not consider the impacts of catastrophic shocks across
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countries, except for studies by Cox et al. (2006) and Lin et al. (2013).
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Figure 1.1 Worldwide Deaths from 1816 to 2008

The comovement trend of the mortality rates in different countries may not be

properly modeled as a common factor. A mortality jump occurs only when there is a

catastrophic event that causes considerable mortality. Figure 1.1 shows the mortality

rates in different countries from 1816 to 2008. In 2002, severe acute respiratory

syndrome killed 775 people in Europe, Asia, and North America, but deaths in France,

the United Kingdom, Italy, Switzerland, and the United States did not show a significant

comovement trend. Conversely, a comovement phenomenon was present in France, the

United Kingdom, Italy, Switzerland, and the United States during the Spanish flu, which

killed at least 20 million people.
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Figure 1.1 shows that mortality rates across countries have a significant
comovement phenomenon when the common factor leads to substantially higher deaths,
such as deaths during the Spanish flu, which is referred to as infectious mortality risk in
this study:.

Following Forbes and Rigobon’s (2002) definition of contagion', this dissertation
defines infectious mortality risk as a considerable increase in cross-country (or cross-
regional) linkages after catastrophic shock in one county (or region) or a group of
countries. By definition, infection only occurs when cross-country comovement
increases considerably after mortality shocks; infection does not occur if the
comovement does not increase considerably after mortality shocks.

Globalization and transportation may facilitate the spread of infectious diseases
across countries, causing catastrophic losses. A recent example is the Ebola virus
outbreak in early 2014, whose severe effects are often fatal to humans. The
abovementioned examples demonstrate that we cannot afford to ignore infectious
mortality risks or their impacts when pricing catastrophic mortality securities. Although
infectious mortality risk clearly exists, the literature has not addressed the challenge of
modeling this risk.

Therefore, this study conducts infectious mortality modeling and considers

! See page 2224 in Forbes and Rigobon (2002).
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infectious mortality risk when pricing a catastrophic mortality security. The main

contributions of this dissertation are twofold. First, this study presents two multicountry

infectious mortality models that capture the comovement phenomenon during a

catastrophic event. The proposed models take a general form that can be reduced to the

morality model introduced by Lin and Cox (2008). Second, using two types of

catastrophic mortality securities, namely the Swiss Re bond without coupons (Vital

Capital I) and coupon bonds (i.e., fixed-coupon bonds and floating-coupon bonds), as

examples, we obtain a closed-form solution by using Wang’s transform (2000) (hereafter

the Wang transform) and thereby investigate the effects of infectious mortality risk on

catastrophic mortality bonds.

The remainder of this dissertation is organized as follows. Chapter 2 presents a

literature review of mortality-linked bonds. Chapter 3 presents a valuation and analysis

of the Swiss Re bond without coupons in an infectious mortality model. The closed-

form solution of the fair prices of the bond is derived, and the sensitivities of bond prices

are also derived in this chapter. Chapter 4 presents a valuation and analysis of fixed-

coupon and floating-coupon mortality bonds in the infectious mortality model.

Moreover, the closed-form solution of a fixed-coupon bond is derived, and the coupons

of floating-coupon mortality bonds are assumed to be linked to a stochastic interest rate.

The dynamic process of the stochastic interest rate follows the Cox—Ingersoll-Ross
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(CIR) model. Monte Carlo simulation is employed to explore the sensitivities of the fair

prices of floating-coupon bonds. Chapter 5 presents comparison of the two infectious

mortality models. Chapter 6 is the conclusion.
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Chapter 2 Literature Review

2.1 Introduction of Securitization of Mortality Risk

Securitization of mortality risk is an innovative capital solution to infectious
mortality risk. Jaffee and Russell (1997) and Froot (2001) describe that insurance
securitization potentially offers a more efficient mechanism for financing catastrophic
losses than traditional reinsurance does. Cummins and Lewis (2002) demonstrate that
securitization is the repackaging and trading of cash flows that traditionally would have
been held on-balance-sheet by financial institutions. Securitization brings more capital
and enhances the capacity of the life insurance industry to manage catastrophic losses
from epidemics, hurricanes, earthquakes, and other natural or manmade disasters. The
advantages of securitization may be lower costs in the long run, more favorable contracts,
and elimination of default risk.

Using capital market solutions to manage mortality risk such as mortality-linked
securities is rapidly increasing in recent years. The Swiss Reinsurance Company, the
world’s second-largest reinsurance company, first issued a 3-year catastrophic mortality
bond in 2003 (Vital Capital I), with a face value of $400 million in coverage from
institutional investors. The second bond (Vital Capital II) was issued in 2008. Both

mortality securities aim to transfer mortality risk from the insurer by using a combined
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mortality index that measures annual population mortality in five countries and applies
predetermined weights to each nation’s publicly reported mortality data. Vital Capital I
uses the annual population death rates for France, the United Kingdom, the United States,
Italy, and Switzerland, whereas Vital Capital II uses the annual population death rates
for the United States, the United Kingdom, Canada, and Germany. Moreover, through
its Mythen Re program in 2012, Swiss Re obtained USD 200 million in coverage against
North Atlantic hurricanes and against extreme mortality risk in the United Kingdom.
The issuance comprises two tranches of notes. The first tranche is class A notes (USD
120 million), rated as B+ by Standard & Poor (S&P), which combines PCS North
Atlantic hurricane risk with extreme mortality risk in the United Kingdom. The second
tranche, rated as B- by S&P, provides USD 80 million in protection for North Atlantic
hurricane risk. This is the first time hurricane and mortality risks have been combined
into one bond offering. Thus, mortality securitization, in which catastrophic losses are
transferred to financial markets, is gaining much popularity among life insurers.
2.2 Literature related to Stochastic Mortality Models without
Jumps

Pricing a catastrophic mortality bond requires an understanding of the catastrophic
event for mortality uncertainty. Modeling catastrophic mortality risk is essential.

Numerous mortality models are proposed and discussed to model the dynamics of
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mortality over time (Lee and Carter, 1992; Renshaw and Haberman, 2006; Cairns et al.,
2006). Lee and Carter (1992) pioneer the modeling of central mortality rates as log-
linearly correlated with a time-dependent mortality factor, and they adjust for age-
specific effects by using two sets of age-dependent coefficients. Cairns et al. (2006)
examine the pricing of longevity bonds in a two-factor stochastic mortality model (the
Cairns—Blake—-Dowd [CBD] model) for high ages. The Lee—Carter and CBD models
both project mortality rates based on age and period effects. Renshaw and Haberman
(2006) extend the Lee—Carter model by considering cohort effects in mortality modeling.
2.3 Literature related to Stochastic Mortality Models with
Jumps

Early mortality models do not consider catastrophic mortality risk and cannot
explicitly capture structural changes or catastrophic shocks that can cause mortality
jumps, such as the 2004 Indian Ocean earthquake and tsunami that killed 182,340 people
or comovement trends such as the Spanish flu. Recent research examines mortality
jumps, such as research by Cox et al. (2006), Lin and Cox (2008), Chen and Cox (2009),
Wang et al. (2013), Deng et al. (2012), Zhou et al. (2013), Lin et al. (2013), and Chen
(2014). Yang et al. (2009) use a principal component analysis and Milidonis et al. (2011)
employ a Markov regime-switching model to describe structural changes in mortality

rates. However, most of these studies ignore the potential impacts of mortality shocks
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across countries, except for studies by Cox et al. (2006), Lin et al. (2013), and Zhou et

al. (2013). To model transitory mortality jumps, Zhou et al. (2013) propose a two-

population generalization of the model developed by Chen and Cox (2009). Cox et al.

(2006) decompose mortality shocks into a specific factor and a common factor. The

common factor appears more substantial, in that it causes the comovement of mortality

indices in all countries. Lin et al. (2013) extend the model of Cox et al. (2006) to a

general setting and disentangle transient jumps from persistent volatilities. In contrast

to Cox et al. (2006), who model unanticipated mortality jumps as permanent shocks, Lin

et al. (2013) model them as transient jumps using a double-jump process. Cox et al.

(2006) and Lin et al. (2013) anticipate that the comovement of the jump effect is a

common factor in all countries. Their models imply that mortality jumps occur

simultaneously in all countries.

In addition, some multi-country mortality models have been developed such as

studies by Zhou et al. (2014), Chen et al. (2015), Wang et al. (2015), and Zhu et al.

(2017). Allowing to visualize the cross-correlations and the long-term equilibrium

relation between two countries, Zhou et al. (2014) use a vector error correction model

to discuss how the modeling of the stochastic factors may be improved. Chen et al. (2015)

apply factor copula to model multipopulation mortality. They employ a two-stage

procedure and a factor copula approach. Wang et al. (2015) use a dynamic copula
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framework to model multicountry mortality. Zhu et al. (2017) propose the L’evy

subordinated hierarchical Archimedean copulas approach to model multicountry

mortality dependence. They show that there is an association between geographical

locations and dependence of the overall mortality improvement. These literature

concentrates on multicounty mortality dependence.

However, in some cases, comovement trends or dependence of the mortality rates

in different countries might not be properly modeled as a common factor. In this scenario,

the jump occurs only when there is a catastrophic event that causes considerable

mortality. Although the phenomenon of infectious mortality undoubtedly exists, it is not

modeled in the literature.

Therefore, this dissertation considers two types of mortality jumps in mortality

modeling: infectious jumps and specific country jumps, and first proposes two models

to capture the infectious mortality dynamics across countries.

10
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Chapter 3 Valuation and Analysis of the Swiss Re
Bond Without Coupons in an Infectious Mortality
Model
This chapter examines the structure of a zero-coupon mortality bond, namely Vital
Capital I, which is a type of Swiss Re bond without coupons. Under the infectious
mortality framework, the closed-form solution of Vital Capital I is derived by using the

Wang transform. Furthermore, sensitivity analyses are conducted.

3.1 Modeling Infectious Mortality Risk

To capture the effect of infectious mortality rates across countries, we assume that

there are m countries, and each country has n, people, with 1=1,2, 3,...., m. Let T

denote the time of death for the jth person in the i" country, with j=1,2,3,.....n,,

1

and the corresponding number of deaths in each country at time t is denoted as D, ;(t).

Thus, the total number of deaths in all countries at time t, N, is calculated as

m

N, 2> > D,;(1)

i=l j=1

1, if t—I<t;<t

and Di,j(t)z , 1=1,2,3,...,m; j=1,2,3,......n..

0, ow
Infectious mortality risk is modeled using the mortality comovement that occurs
only when there is a catastrophic event that causes considerable mortality in all countries;

that is, whether an infectious mortality jump in the i™ country is affected by mortality

11
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shocks in the world. To express the infectious effect, let N, be the total number of

deaths in all countries, and let N! denote the total number of deaths in other countries

except for those inthe i country, equivalently, N; £ > > D, (t).Furthermore, we

k=l j=1

define V' as the ratio of the total deaths in all countries except for those in the i"

country relative to the total deaths in all countries. That is, V/ éﬁt for
t

i=1,2,3,.., m. Assume that V' follows a geometric Brownian motion, which is
expressed as

de =u;dt+0:dWV’t, (3.1)

Vl v v

t

where p _ and o _denote the drift term and volatility, respectively,and W, , isaone-

v v

dimensional standard Brownian motion under the original probability measure P.

V! follows a geometric Brownian motion because is it will be confirmed as
positive. Additionally, using the raw mortality data of five countries (i.e., the United
States, the United Kingdom, France, Italy, and Switzerland) obtained from the Human

Mortality Database (HMD) from 1933 to 2007, we calibrate the model with the HMD

through the initial values of p _ and o _set as the mean and volatility of the ratio of

v v

the deaths except for those in the United States, the United Kingdom, France, Italy, and

Switzerland relative to total deaths in the five countries, respectively. The initial values

of pw_and o _are shown in Table 3.1. Therefore, the estimated parameters of

v

12
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Equation (3.1) are illustrated in Table 3.2.

Table 3.1 Initial Values of the Calibrated Parameters for Five Countries

US UK France Italy Switzerland
MV? -0.0019634 | 0.000294152 | 0.000574653 | 0.000290888 | 0.00000063
GVI 0.007780363 | 0.00280517 | 0.006080277 | 0.003269581 | 0.000177765
v

0.493798630 | 0.829089975 | 0.843320034 | 0.829089975 | 0.984227223

Note that the initial values of p . and o _ are set as the mean and volatility of logarithm of the ratios

of the deaths except for those in the United Sates, the United Kingdom, France, Italy, and Switzerland

relative to total deaths of the five countries, respectively. V, is set as the average value of the deaths

except for those in the United States, the United Kingdom, France, Italy, and Switzerland relative to total
deaths of the five countries, respectively.

Table 3.2 Parameter Estimation of Dynamic Processes of VE

Us UK France Italy Switzerland
-0.001933133 | 0.000298086 | 0.000593138 | 0.000296233 | 0.000000651
v (0.000012) (0.000011) (0.000012) (0.000010) (0.000011)
0.00778125 0.00280918 | 0.006080413 | 0.003269487 | 0.000177777
v (0.000034) (0.000032) (0.000042) (0.000035) (0.000039)

Notes: Parameter estimates in Equation (3.1) for i = the United States, the United Kingdom, France,
Italy, and Switzerland. Standard errors are shown in parentheses.

The deaths except for those in the i country relative to total deaths of the other

countries for i=US, UK, France, Italy and Swiss are plotted in Figure 2. Figure 2

illustrates that V' is more than 0 and less than 1 for

i=US, UK, France, Italy and Swiss .

13
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Furthermore, the simulated ratios of V, are provided in Figures 3.3 to 3.7.
The ratios (the deaths in other countries except for those in the i" country relative to

total deaths for i=US, UK, France, Italy and Swiss ) are obviously larger than 0 but

smaller than 1.  Generally, V! is  neither 0 nor 1 for

i=US, UK, France, Italy and Swiss in the model setting. Therefore, it is reasonable

that VE follows a lognormal distribution.

1.2
0.8 ‘»ec_sff e e = = — ex Usa
= = ex uk
06 [
....... === -exitaly
o4 - Ttreetens ex france
= . - @X SWiSS
0.2
0
NN A I OO NN OoOONNES NN OO NSNS A Wn
MmN - T INDWND O O OINDNODWODWOODWO O OO
a0 OO oo oo o oo o oo ooy o O O
™ ™ ™ e e e e e e e e AN AN

Figure 3.2 Deaths Except for Those in the i" Country Relative to Total Deaths in All
Five Countries
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Figure 3.7 Ratio of the Deaths in Other Countries Except for Those in Switzerland

Relative to Total Deaths in all Five Countries.

In addition, the mean squared errors of Vti in the United States, the United

Kingdom, France, Italy and Switzerland are 0.00085, 0.00071, 0.00075, 0.00091 and
0.00058, respectively. In average, the mean squared errors are 0.00076 for all five
countries.

To capture the comovement phenomenon when a catastrophic event occurs, we
set a threshold for VE It VE is higher than the threshold, say a, the mortality rate of
the i™ country can be affected by the mortality rate of other countries. Thus, the
mortality rate of the i™ country at time t is modeled based on two types of jumps:
infectious jumps and specific country jumps. Let IE denote the jump number of the i"

country at time t infected by other countries when a catastrophic event occurs, such as

infectious diseases, and let ', represent the jump frequency resulting from the
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mortality shock in the i™ country at time t.Assume that both IE and ", follow

a Poisson distribution with the intensities of A _and A, , respectively. I} can be
I[‘ it

expressed as

- t -
I = IDL du ~ Poisson(?»IT ), (3.2)
0

where Di;: Lif Viza
0, ow

Furthermore, A _is the expectation of infectious jump frequency, which can be
Il

t

calculated as

Vg 1
+ —H
In . (uV; 2Gv7 )0 (3.3)
:j (1)) do.

Next, let q;  represent the mortality rate of the i" country at time t. The

multicountry mortality dynamics can be modeled as

q B
d;. =, dt+01 dwl,t+(A1 _1)(11—‘1’t +(m, —l)dI: > (3.4)
1,t
dg,, _ :
=u, dt+02 sz,t+(A2 —l)dr 2.t +(n2 _l)dlt P
ds.,¢
dqm,t _ T;l
=p, dtto dW_ +(A, -Ddl,  +(x¢, —1)dI" >
qm,t , ’

where pn, and o, are constants, and W,  1is a one-dimensional standard Brownian
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motion under the original probability measure P. Moreover, the correlation coefficient

between W, and W, is corr(dW,,,dW, )=p ;. Both ' and I, are

independent Poisson-jump processes driven by different risks at time t. Furthermore,

dr

t

is independent of dI',,, and m,—1 is the random variable percentage in the

St
mortality index of the i" country that results from common jumps of deaths in other
countries. We assume that the natural logarithm of =, the jump amplitude driven by

deaths in other countries, follows a normal distribution with a mean of u_ and a

variance of cfz, , which is also denoted as lnni~N(un,,cf{,) , >0,

1

1=1,2,3,...,m. By contrast, A, —1 denotes the percentage in the mortality index of
the i" country resulting from specific jumps in deaths of the i"™ country, and the
specific jump size distributes a normality, namely InA, ~N(u, ,Gi) , A>0,

1=1,2,3,..., m. Finally, =,

1

is independent of A. .

From Equation (3.4), Inm can represent the impact magnitude of infectious
mortality of the i" country driven by deaths in other countries. When the threshold
(a) is infinite, mortality rates do not exert any infectious effects, and the proposed
model can be reduced to the morality model introduced by Lin and Cox (2008).

3.2 Structure of Vital Capital 1
The infectious mortality index of each country is modeled in Section 3.1. Using

the obtained infectious mortality indices, the effect of infectious mortality risk on the
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Swiss Re mortality bond is further analyzed by using Vital Capital I as an example. The
Swiss Reinsurance Company issued 3-year Vital Capital I in 2003, with a face value of
$400 million in coverage from institutional investors; this bond matured on January 1,
2007. The principal was exposed to mortality risk, and this mortality risk was defined
in terms of an index based on the average annual population death rates in the United
States, the United Kingdom, France, Italy, and Switzerland. If the index exceeded 130%
of the actual 2002 level, investors had a percentage loss. The percentage loss of

principal in year t is as follows:

0, ifY, <1.3Y,
Y, -13Y
Lo={ —— % if]3Y <Y, <15Y
0.2Y. fo Yo
to
L ifY, >1.5Y,

Y, denotes the geometric average population death rates in the United States, the

United Kingdom, France, Italy, and Switzerland in year t. Again, the properties of the

bonds can be written as Equation (3.5). Let B, denote the principal payment at

maturity time T, which is expressed as
B.=Max(1-Loss, 0), (3.5

Max(Yy,, ~13Y, , 0)~Max(Yy,, ~1.5Y, , 0)
0.2Y,

with Loss = » Yy =Max(Y, , Y, ,Y, ),

1

and Y, =(q" q® ...q" )" forall i=0, 1,2,3 with t,=0 and t,=T for

5

the bond; where Yw Yl Y, LY,

t

_»and Y denote the geometric average population
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death rates in the United States, the United Kingdom, France, Italy, and Switzerland in

2002, 2003, 2004, 2005, and 2006, respectively. q,,,q,,, --.. and q,, represent the
mortality indices of the United States, the United Kingdom, France, Italy, and
Switzerland, respectively. a,a,,...a,anda, denote the weights of population
mortality indices for the United States, the United Kingdom, France, Italy, and
Switzerland, respectively.

The fair price of the Swiss Re mortality bond without coupons is shown in

Equation (3.6).

B, =400000000x¢ ™" E?[B, ]

—400000000x ¢ E2 [Max [1 _Max(¥yo =Ky, 0) = Max (¥, =K;,0) ,OH ’

Kz - K1
(3.6)
where EQ(.) denotes the expectation value under the risk-neutral probability measure

Q attimet, r istheriskless rate, and K,=1.3Y_  and K,=1.5Y_.

3.3 Valuation Formula for Vital Capital 1

Pricing derivative securities in a complete market involves replicating portfolios.
If a traded bond and stock index exist, options on the stock index can be replicated by
holding the bond and index, which are priced. Vital Capital I is a mortality derivative,
but no efficiently traded mortality index exists that can be used to create a replicating
hedge. For pricing in such an incomplete market, the Wang transform is a popular
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method that relies on the following transformation: for a risk with a cumulative density
function (CDF) F(x) under the original probability measure P, the risk-adjusted CDF
F'(x) under the risk-neutral probability measure Q for pricing risk is given by
F'(x)=0(d" (F(x))+0), (3.7)
where 0 is a constant risk premium, and ®(.) is a cumulative standard normal
probability.
For pricing Vital Capital I, we apply the Wang transform to solve Equation (3.6).

We denote the total risks at time t in the i" country as X;, 2T, +1I,, which follows

a Poisson-jump process with the intensity of A, =A _+A. . The proof is given in
it Ii it

t

Appendix A.

Assume that X, —1 is the percentage of the mortality index of the i" country
resulting from total risks, and x; follows normal distributions with a mean of u, and
a variance of o} . Moreover,

( ~)dX,, =(A, ~1)dT, , +(z, ~1)dL . (3.8)
Thus, we can obtain Equations (3.9) and (3.10).
E[(x —l)dXi,t]:E[(Ai ~1)dr, , +(x, —1)d11 : (3.9)
Var[ (x, —l)dXi’t]=Var[(Ai ~1)dr, , +(x, —1)dlf} . (3.10)

Subsequently, using Equations (3.9) and (3.10), we can obtain the following:
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1,

[
G YW R
E[x-1]= k ,
Ap +A
I
1, 1,
RIS 'R R ) /W
Su, = i +1, (3.11)

A
;

t

2
2

u +lcz uy +lcf\ ? +L 12
A+[(e T e ‘—1)xrl @ "2 — D e
1! Il '

t

c, = - ' ’
% (Xri+7x,w+l)(7ur,+7\u) ?»1. +A
I Yoo Yoo

t t t

(3.12)

with

1,

7 —U,. — —Oj, u .+lcz. :
A{ezum*% (e™ —2¢ " 2 A'+2)+1}(xri+x§i)—x§1 [e g —1j

2 u 162 2 u +lcz ’
+[eu"‘+6"‘ (ec"‘+1)+[e N/ —1} ]{KNH&}—[(C ne —I)KJ :
[ 1

Under the original probability measure P, using Ito’s lemma, Equation (3.4) can be

1 X
. (= ) o7) (T-t, o Wity u . .
rewritten as q;;_q;, € I IXi,l , 1=1,2,....,5. The numbers for 1
=1

indicate the United States, the United Kingdom, France, Italy, and Switzerland,

respectively. In addition,

X,

1 i, T
Ing,; =Ing; , +(u, —505)(T —t,)to, W, +D InX, (3.13)
=1

Next, let X, represent the sum of the total risks for the United States, the United
Kingdom, France, Italy, and Switzerland, namely X, éXl’t +X,  +....+ X, , which

5
follows a Poisson distribution with the intensity of A, and thz A+ A ). To

=1 I

derive the closed-form solution of the fair price of the mortality bond, we adopt
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Proposition 1.

Proposition 1. Let Z, be a random variable, and assume that InZ follows a normal
distribution with a mean of u, and a variance of . Given the respective logarithm
of the mortality indices for the United States, the United Kingdom, France, Italy, and
Switzerland, as shown in Equation (3.14), the logarithm of the geometric average

population mortality rates of the five countries takes the following form:

XT
InY; =InY, +p (T—t,)+o W _+a Zln zZ,, (3.14)
1=1
where :;ia ( _102) 'a—;-
Hy ata,+.+a, 5 s a,+a,+.+a,

XI,T XZ,T XS,T

XT
Zln Z =a, Zln X, +a, Z Inx,, +...+a Z Inx,, ; and
=1 =1 =1 =1

) . 1

o, =———(—— [alcs1 a,o, a,6, a,0, a505] 3 ey / [alcs1 a,o, a,6;, a,o0, 3505]-
a,ta,+..ta,
P 1

Proof. See Appendix B.
From Proposition 1, if X, is any constant (X, =s), InZ, |Xt =s has a normal

distribution with a mean of wu, and a variance of o . When

z

X, =X, +X, +..+X;,,and X, =s,,suchthat s, isanyconstanti=1,2,...,5,

5 5
S;a;Uy Si"11'26>2<i
we can obtain u, =-= and o, =- . Additionally, we suppose that
s S
2 Max(Y,,, —K,,0) —Max(Y,,, —K,,0)
! Kz - K1 .

Conditional on Y,,, =Y, , we can obtain
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(Y, —KI)I{YH>K]} -(Y, -K 1
Kz _Kl

{Y‘i >K2}

S;=

, for i=1,2,3. (3.15)
Therefore, Equation (3.6) can be rewritten as

B,=400000000x ¢ x
EQ [(1 S,

Sp<1}

Yy =Y, [P0 (Yo =Y, FE[ (1=,

Yy =Y, [P0 =Y,

Sr<1}

Max }PQ( Max_Ytz)
HEC[ (181, '

Sr<1}

(3.16)
The Wang transform is used to obtain the closed-form solution. Using Equation
(3.16), we solve the probability of Y, =Y, under the risk-neutral probability measure.
Therefore, Proposition 2 is necessary.
Proposition 2. Given Y,,, =Max(Y,,Y, ,Y, ), the probability of Y, =Y, underthe
risk-neutral measure Q is as follows:

PQ( max ~ Yt ) O(D- (Pp( a7 Yo, ))+ei):q)(cp*1 (D(dyiy, diys P ) 10;), (3.17)

i=1, 2, 3. 0, is the risk premiums of Y. and

_ Hy(tz_tl)_auzs g — l"ty(t —t ) au,s 0 tz t ty—t; );
\/0y|t2—t1|+a26§s’ ’ \/Gy|t |+aos’ b \/|t —t| \/|t -t ’
_ uy(t2 —t,)—au,;s L —py(t —t,)—au,s - Wtz_tl Wt3_t2 ):
\/Gy|t1 —t2|+achs Y \/0y|t3 |+a2<s§ P \/|t2 —t1| ’ \/|t —t2| ,
— uy(tB_tl)_aqu . d _ uy(tS_tz)_aqu —t

d od = - D =co W bty
i o, \|t; —t,|+a’c]s ’ \/0y|t3—t2|+achs Pus \/|t —t1| \/|t

Proof. See Appendix C.

Furthermore, Proposition 3 must be adopted to derive the solution of the fair price
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of the Swiss Re bond without coupons.

Proposition 3. When Y, =Y, , the following equation can be derived from

Max
Proposition 2:

E° [1

Yy =Y, }:cp(cp*1 (1-F, (K,)*0,). (3.18)

{Sr<1}

lng—uy(ti —t,)—su,a

-2,

. . < A

in which F, (K,)=P’(Y, <K= ze ( ) 0 ), i=1, 2, 3;
! ‘ 0 \/csi (t, —t,)+so.a’

5
5 Zsiaiux
0. is the risk premium of Y. : u =L .
! p t My a +a + + Zl z S 1)

Zs]a 5
ol =‘1—; XtZZ(kTﬂL Ar ).
=1L '

S

I¢

Proof. See Appendix D.

Following the previous procedure, we can derive Equation (3.19) through

Proposition 3.
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E°[Si1g, o [Yuu=Y, |

=E°[Silg oy [V =Y, POV =Y,)
FEO[ Sy Ly [Yaun =Y, [PO (Y =Y,)
+EO[ 81y [V =Y, [P (Yo =Y,)

EO {Max(Ytl -K,,0)—Max(Y, -K,,0)

1 < Y, ax_Y PQ( ax_Y )

K,-K, el } e
Max(Y, —K,,0)—Max(Y. —K,,0)

Q t r t 22 Q —

+E |: K2 _KI l{ST<1} YMax P ( Max Ytz)

Max(Y, —K,,0)—Max(Y, —K,,0)
EQ |: ; 1I( K - : I{S—r <1} YMax PQ( :Yts )
27 ™

=[1- (@7 (F, (K ))H0,) |

OO (F, (K,))+0,)+

[ @@ (F, (K,))+0,) - (@7 (F, (K))H6,) ]x . (3.19)

1 )Y g Js o nieh Py ) |-
{Kz—KILZo: st e Ve )

Kz _Kl

In—L—p (t —t,)—
B _k(}») nY py(l ) —asu,
with F, (K) P (Y <K)——E

to

s=0

)s
2
\/Gy(ti —t,)tsa’c’

K
. ot (7») lnY—z—uy(ti—to)—asuZ
Fy, (K,)=P/(Y, <K,)= Z

to

- — ), and
\/Gy(ti —t,)y+s a’c’

0 —7»
Var® (Y. )= (7\, Y2ezuy(ti—t0)+2sauz+2c§a2(ti—to)
1 to

s=0

s=0

s=0 S! ! O

2
{i _)L (}\, ) 2“ (t;*to)*25(3112*azﬁiﬁéazﬁfx(ti*to) }
b

for i=1, 2, 3.

Consequently, by substituting Equations (3.17), (3.18), and (3.19) into Equation

(3.16), the fair price of the Swiss Re bond without coupons can be obtained
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3.4 Empirical Results
In this section, we first use the mortality data from the HMD to estimate the

parameters (u,, o,,u, ,6,,u_,c_) for the United States, the United Kingdom,

France, Italy, and Switzerland in the proposed infectious mortality model. The time
window is 1933-2007.
3.4.1 Parameter Estimation and Goodness of Fit of the Infectious
Mortality Model
A calibration approach is adopted to  estimate the variables
(K> 0,5 u, ,0,,u,,0, ) for the five focal countries. Calibration refers to
estimating the best fitting parameters in a parametric model in comparison with a
chosen observable quantity. Comparative information typically consists of the historical
data of liquid instruments. Prices are fitted based on the assumption that a trader agrees
that the historical data are consistent with a true process. Different jump-diffusion
processes are calibrated using actual log returns of the population mortality index for
each country. The detailed procedure is as follows:
(1) Collect the actual log returns of the population mortality indices of the United States,
the United Kingdom, France, Italy, and Switzerland. Consider d(lnAqi’t ) , the model
log returns of the population mortality indices of the five countries from Equation

(3.4), and d(Ing;, ), the observed log returns of the population mortality index of
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each country. The difference d(Ing;,) — d(lnAqi,t) is a function of the values of ®
=(1;. 0, . U, .0, U, .0, ).

(2) Given the initial values of (u;, o, ,u, ,06,,u, ,c, ) illustrated in Table 3.3, the
initial values of p, and o, are chosen as the mean and volatility of mortality
indices of the United States, the United Kingdom, France, Italy, and Switzerland,
respectively. Find the parameter vector ® to solve the nonlinear sum of squared

errors as follows:
- 2
SSE=Min ) |¢,[©]
i1

Using the above procedure, the estimated parameters characterizing the proposed

infectious mortality model for the five countries are shown in Table 3.4.

Table 3.3 Initial Values of the Calibrated Parameters for Five Countries

US UK France Italy Switzerland
W, 0.006907 0.011709 0.011921 0.011997 0.013883
o, 0.000438 0.001319 0.001469 0.001348 0.001363
u, 0.001 0.001 0.001 0.001 0.001
c. 0.002 0.002 0.002 0.002 0.002
uAl‘ 0.001 0.001 0.001 0.001 0.001
N 0.002 0.002 0.002 0.002 0.002

Note: Initial values of LI, and O, are chosen as the mean and volatility of the mortality indices of the
United States, the United Kingdom, France, Italy, and Switzerland, respectively.
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Table 3.4

Parameter Estimates in the Infectious Mortality Dynamics for Five Countries

US UK France Italy Switzerland
W -0.007635698 | -0.0019212853 | -0.0023350499 | -0.0022268845 | -0.0017903048
(0.00028) (0.00033) (0.00021) (0.00035) (0.00025)
o. | 0.0353039713 | 0.0303390187 | 0.0208596021 | 0.0346345882 0.0041059500
1 (0.00031) (0.00033) (0.00028) (0.00021) (0.00030)
u -0.4080070179 | -0.0685499403 | -0.0480721838 | -0.0797427948 | -0.0545940218
§ (0.00025) (0.00028) (0.00027) (0.00021) (0.00024)

G 0.1727495194 | 0.0287313469 | 0.0201543124 | 0.00328499675 | 0.0227485367
i (0.00032) (0.00039) (0.00037) (0.00031) (0.00041)
u, -0.1932588391 | -0.0413981341 | -0.0315769919 | -0.06456981451 | -0.0445981165
‘ (0.00051) (0.00059) (0.00051) (0.00058) (0.00055)
N 0.3129031480 | 0.3398761175 | 0.2659823115 | 0.20038971226 | 0.29913998715
‘ (0.00068) (0.00061) (0.00069) (0.00058) (0.00071)

Notes: Parameter estimates in Equation (3.4) for 1= the United States, the United Kingdom, France,
Italy, and Switzerland. Standard errors are shown in parentheses.

3.4.2 Numerical Analysis

The fair price of the Swiss Re bond can be obtained according to the parameters

shown in Tables 3.2 and 3.4. Using the principal of $1 as an example and for comparison

purposes, the risk premium of 0.83 is assumed for the bonds following the trend reported

by Cox et al. (2006). We perform a scenario analysis based on three cases. Case 1

(normal situation): according to the base parameters of 0=0.83 ,

A, =0.05 ,

a= 07111272, u, =-0.001, and o, =0.1, the fair par price of the Swiss Re bond is

0.7393. Case 2 (low infection): given 6=0.83, A, =0.05, a= 0.99, u, =-0.001

and o, = 0.1, the fair par price of the Swiss Re bond is 0.8457. Case 3 (high infection):

2 This is calculated as the average of Vt; for 1= the United States, the United Kingdom, France, Italy,
and Switzerland.
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given 06=0.83, A, =0.05, a= 0.001, u, =-0.001, and o, =0.1, the fair par price
of the Swiss Re bond is 0.6992.

From the scenario analysis, the fair prices are lower than the par value of $1, and
those reported by Tsai and Tzseng (2013) (0.9966). Thus, ignoring the effects of
infectious mortality rates significantly overestimates the price of mortality bonds. In
other words, considering the phenomenon of infectious mortality rates enables the fair
price of a mortality security to be more fitted to real-world values.

Furthermore, we numerically investigate the price of the mortality bond by using
the proposed infectious mortality model. Table 3.5 demonstrates the impacts of the
major parameters, mean and volatility, on the magnitudes of infectious mortality,
threshold values (o), and jump intensities of the par spread of the bonds. According to
the literature on mortality bonds,® we assume that the risk premiums range from 1 to 2.
Table 3.5 shows a common phenomenon: the fair price decreases as mortality increases.
In Panel A, the impacts of the mean of the magnitudes of infectious mortality on bond
prices are uncertain. However, bond prices decrease as the volatilities of the magnitudes

of infectious mortality increase due to higher mortality rates (Panel B).

Panel C demonstrates that the relationship of threshold values with the fair prices

3 The risk premiums presented by Cox et al. (2006), Lin and Cox (2008), Chen and Cox (2009), and Lin,

Liu, and Yu (2013) were 0.83, 0.8657, 1.5, and 1.21, respectively.
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is positive, because the higher the threshold values, the lower the infectious mortality is.

Thus, the loss of principal of Vital Capital I declines, and the prices then increase.

Conversely, Panel D reveals that when jump intensities increase, mortality rates

generally increase, and bond prices decline. The sensitivity of the volatilities of the

magnitudes of infectious mortality is the largest among the model parameters, whereas

that of threshold values is the smallest.

Table 3.5 reveals a common phenomenon, in which the volatilities of the

magnitudes of infectious mortality exert significant effects on the fair prices.
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Table 3.5 Impacts of Various Parameters on Fair Prices of the Swiss Re Bond

Parameter 0=0.83 | 0=08657 | 06=121 [ 0=1.5
u, Panel A: u, changes
-0.001 0.5163 0.5196 0.5897 0.6125
-0.003 0.4987 0.5011 0.5734 0.5813
-0.005 0.4593 0.4972 0.5539 0.5712
-0.007 0.4886 0.5313 0.5618 0.5896
-0.009 0.5098 0.5478 0.5715 0.5947
o, Panel B: o, changes
0.1 0.9125 0.9237 0.9358 0.9399
0.2 0.8143 0.8168 0.8915 0.9141
0.3 0.7759 0.7825 0.8598 0.8611
0.4 0.5647 0.5998 0.6315 0.7014
0.5 0.3325 0.3985 0.4918 0.5481
o Panel C: o changes
0.70 0.8169 0.8198 0.8245 0.8266
0.75 0.8256 0.8267 0.8309 0.8351
0.80 0.8321 0.8357 0.8401 0.8416
0.85 0.8395 0.8400 0.8415 0.8423
0.90 0.8411 0.8425 0.8438 0.8509
A, Panel D: A, changes
0.01 0.6458 0.6511 0.6715 0.6798
0.02 0.6135 0.6212 0.6598 0.6613
0.03 0.6123 0.6437 0.6997 0.6011
0.04 0.5978 0.6198 0.5498 0.5599
0.05 0.4569 0.4986 0.5058 0.5149

3.5 Conclusion

Transferring catastrophic losses using mortality-linked securities has become

pertinent for the insurance industry. Many life insurers operate their businesses

internationally. According to patterns of mortality experience, we find that catastrophic

events may cause the comovement of mortality rates across countries. Although studies

consider mortality rates with jumps, they explain the comovement of mortality rates by

using common jumps across countries. However, the mortality trend empirically reveals
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that mortality comovement may occur only when there is a catastrophic event that causes

considerable mortality in all countries. Studies rarely model the phenomenon of

infectious mortality rates. To fill this research gap, this study offers a new perspective

of the effects of mortality rates on the valuation of mortality securities. We accordingly

propose an infectious mortality model: using the Wang transform, a valuation formula

for the mortality bond is derived through the proposed infectious mortality model.

An empirical analysis reveals that the fair price of Vital Capital I in the model is

far higher than that reported by Cox et al. (2006) and is closer to the actual bond price.

Therefore, considering the infectious effects of mortality rates enables mortality bond

prices to fit real-world values, which is helpful for pricing mortality securities and for

managing catastrophic mortality risk for reinsurers.
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Chapter 4 Valuation and Analysis of Fixed-Coupon and
Floating-Coupon Mortality Bonds in the Infectious Mortality

Model

This chapter examines coupon mortality bonds (fixed-coupon and floating-coupon
bonds). These bonds are similar to the Swiss Re bond. The closed-form solution of a
fixed-coupon mortality bond is derived, and we assume that the coupons of floating-
coupon mortality bonds are linked to a stochastic interest rate, which follows the CIR
interest rate model. Monte Carlo simulation is employed to evaluate the sensitivities of

the fair prices of floating-coupon bonds.

4.1 Model Formulation

Vi \. . .
Let H, ,=———, which is the odds ratio of the i" country for i=1,2,3,..., m
> Vl

t
attime t. This odds ratio reflects the ratio of the previously calculated death ratio of all

countries except that of the i" country relative to death ratio of the i country. We

assume that the natural logarithm returns of H, , for i=1,2,3,.., m at time t
follow a geometric Brownian motion, such that

d(nH, )=p,dt+o,dW,, 4.1)
where p, and o, denote the drift term and volatility, respectively, and W, is a
one-dimensional standard Brownian motion under the original probability measure P.
From Equation (4.1), we can confirm that 0< VE <1.

By means of the raw mortality data of five countries (i.e., the United States, the
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United Kingdom, France, Italy, and Switzerland) obtained from the Human Mortality
Database (HMD) from 1933 to 2007, Figures 4.1-4.5 show actual odds ratios except for
US., UK., France, Italy and Switzerland. Furthermore, we calibrate the parameters of
Equation (4.1) with the HMD through the initial values of p, and o, set as the mean
and volatility of the odds ratio for the United States, the United Kingdom, France, Italy,
and Switzerland, respectively. As a result, the estimated parameters of Equation (4.1)
are illustrated in Table 4.1. Based on Table 4.1, the estimated the odds ratio are
demonstrated in Figures 4.6-4.10 for the United States, the United Kingdom, France,
Italy, and Switzerland, respectively. In addition, the mean squared errors of H; , in the
United States, the United Kingdom, France, Italy and Switzerland are 0.00125, 0.00254,
0.00291, 0.00312 and 0.00113, respectively. In average, the mean squared errors are

0.00219 for all five countries.
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Figure 4.1 Actual Odds Ratio Except for US.
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Figure 4.2 Actual Odds Ratio Except for UK.
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Figure 4.3 Actual Odds Ratio Except for France
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Figure 4.4 Actual Odds Ratio Except for Italy
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Figure 4.5 Actual Odds Ratio Except for Switzerland
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Table 4.1 Parameter Estimation of Dynamic Processes of In H; , through Calibration

UsS UK France Italy Switzerland

-0.0043215 0.0020975 0.0041256 0.0020159 0.0001984

M (0.000012) (0.000011) (0.000012) (0.000010) (0.000011)
5, 0.0215689 0.0201452 0.0331209 0.0269122 0.0154381
‘ (0.000034) (0.000032) (0.000042) (0.000035) (0.000039)

Notes: The parameter estimates are derived using Equation (4.1) for i= the United States, the United
Kingdom, France, Italy, or Switzerland. 6=0.83,a,=0.7,a,=0.15,a,=0.075,a,=0.05, a,=0.025 ,
a, =0.998, a, =4.893, 0, =5.547, a, =5.744, and 0, = 62.487.  Standard errors are shown in
parentheses. The initial values of p, and o, are the mean and volatility of the odds ratios the United

States, the United Kingdom, France, Italy, and Switzerland.
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Figure 4.7 The Estimated Odds Ratio Except for UK.
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Next, to capture the comovement phenomenon when a catastrophic event occurs,

we set a threshold for H; ,. If H,  is higher than this threshold, say a;, then the

mortality rate of the i country can be affected by the mortality rate in another country.

Thus, the mortality rate of the i™ country at time t is modeled using two types of jumps:
an infectious jump and a specific country jump. Let If denote the jump frequency of

the i™ country at time t that is infected by other countries when a catastrophic event

(e.g., infectious disease) occurs; I'., is the jump frequency resulting from the

it

th

mortality shock in the i country at time t. We assume that both Ii and T,

follow Poisson distributions with the intensities of XI; and A, , respectively.

t

Accordingly, I

. can be expressed as

I =[D; du~Poisson(?. ), (4.2)
0

1,t —

- |1, if H, , >aq,
where D| = :
, OW

Furthermore, we present A; as the expectation of infectious jump frequency,

which can be calculated as

L=E{IE}
;
HiO
— [+ (py —

ln(
SERN

o5 )8 (4.3)

Let g, represent the mortality rate of the i" country at time t. The multicountry

mortality dynamics for m countries can be modeled as
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dq, ,

= p, dt+o, dW, +(A, —1)dl,  +(x, ~1)dI} , (4.4)

1t

dqz,t _ 2
=W, dt+o, dW, +(A, -1)dl', | +(m, -DdI} ,
ds.¢
dqm,t _ m
—u_dt+o, dW_ +HA, —1)dl +(x, —1)dI™ >
Qin ¢ ’ ’

where pn, and o, are constants, and W, is a one-dimensional standard Brownian

motion under the original probability measure P. The correlation coefficient between

W,, and W __ is corr(dW, ,,dW; )=p ;. Both T, and Ii are independent

it

Poisson-jump processes with the intensities of A and Aj, respectively, and are driven
it t

by different risks at time t. Furthermore, dli is independent of dI'.

i,t?

and m —1 i1s

the random variable percentage in the mortality index of the i" country that results
from common jumps of deaths in other countries. We assume that the natural logarithm

of =, , the jump amplitude driven by deaths in other countries, follows a normal

distribution with a mean of u_ and a variance of o’ , which also can be denoted as
Inm, ~N(u_,62), >0, and i=1,2,3,..,m. By contrast, A, —1 refers to the

percentage in the mortality index of the i" country resulting from specific jumps in

deaths of the i™ country, and the specific jump size distributes a normality, namely

InA, NN(UA,,Gi,)a A, >0,and 1=1,2,3,.., m. Finally, =,

1

is independent of A,.
From Equation (4), Inm, can denote the impact magnitude of infectious mortality

ofthe i" country driven by deaths in other countries. When the threshold ( o, ) is infinite,

mortality rates do not exert any infectious effects. Thus, I! equals 0 if o, is infinite

in Equation (4.2). This model can be reduced to the morality model introduced by Lin
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and Cox (2008).

4.2 Structure of a Mortality-Linked Bond with Coupons

This section examines the effect of infectious mortality risk on two types of
mortality bonds: a floating-coupon mortality bond, which is similar to the Swiss Re
mortality bond,* and a fixed-coupon mortality bond. For this comparison, we assume
that both fixed-coupon and floating-coupon mortality bonds were issued in 2003 and
matured on January 1, 2007, with the same principle; that is, both are 3-year bonds.
Fixed-coupon bonds pay a fixed annual coupon, denoted as C, and floating-coupon
mortality bonds pay an annual coupon linked to a stochastic spot interest rate (r, ) plus
a constant proposition (B ). The principal ( F) underlying these two types of mortality-
linked bonds is exposed to mortality risk, which is linked to the mortality index.
Similarly, the Swiss Re bond is based on the average annual population mortality rates
in the United States, the United Kingdom, France, Italy, and Switzerland. If this index
exceeds 130% of the actual 2002 level, investors have a reduced principal payment at
maturity. Let B, denote the principal payment at maturity time T, expressed as

B, =Max(1-Loss, 0), 4.5)

with Loss =

Max(Yy, —1.3Y, , 0) ~Max(Y,,, ~1.5Y_, 0)
° Y, =Max(Y,,Y,,Y,)
0.2Y, M

1

— a; _a, as \a;tayt..tas |
and Y, (qquyti ...... q=) ;

5t

where Y Y .Y ,Y , and Y, represent the geometric average population

ty 2 to 2 Tty
mortality rates of the focal countries in 2002, 2003, 2004, 2005, and 2006, respectively.

Furthermore, q,,, q,,, ...., and q;, represent the mortality indices of the United

States, the United Kingdom, France, Italy, and Switzerland, respectively, and

4 the coupon rate is LIBOR+135 bps.
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a,a,,..,a,anda, indicate the weights of their population mortality indices,
respectively.

At time 0, the expected cash flow of fixed-coupon mortality bonds for investors is

B, = Fxe "% E© [BT ] n C[e—rm—to) Le b)) e—r(t;—m]

=F x e*r(frto) EQ |:M3_X(1 _ MaX(YMax B Kl ’Ig) - hlgaX(YMax B KZ’O) ’0]:| (46)
27 ™

+ C[e’r“"t") e ) p o) ] ,
where E°(.) denotes the expectation value under the risk-neutral probability measure
Q attime t,, r isthe constantrisk-freerate,and K,=1.3 Ytb and K,=1.5 Ytb , with
K, > K,. We provide a general valuation formula for a mortality bond with K, and
K, , which can be structured to reflect different payofts for the mortality bond. However,

investors must pay the face value if the mortality bonds are issued at par. Hence,

B, =F, and we can obtain the fair spread (C ), which also can be denoted as

F_Fxe 6B Max|1— Max(Y,,,, — K,,0) —Max(Y,,,. — K,.0) 0
Kz _ K]
e—r(tl—to) +e—r(t2—t0) +e—r(t3—t0)

C=

(4.7)
Alternatively, at time 0, the expected income of floating-coupon mortality bonds

linked to a stochastic interest rate under a forward, risk-neutral probability measure,

PT, is as follows:
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SW, , (t,) = P(t,,t )E" (r, +B )
+P(t,, t,) B P(t;, 1,)(r, +B)
+P(t,, t,) B P(t,,,)P(t,, t,) (1, +B)
+P(t, t, )" P(t,,1,)P(t,, 1) Pt 1, t,) (B, +1, +B) (4.8)

PT PT P(tO’tz)
=P(t,,t,)E"" (1, +B )+P(t,,t,)E’ m(rtz +B)

P
+P(t0,t1)E‘O’TM(rtz +B)
P(t,,t,) "

P(t,,t,)
+P(t,,t )E' | —222(B, +r +B ) |.
o 0BT 5y B+ B)}

When the bonds are issued at par (i.e., SW,_ (t,)=F ), we obtain the fair spread (B ).

Thus, the fair spread of floating-coupon bonds is

_ I_P(tOBtI)El:Trtl _P(t()atz)El:Trtz _P(thtg)El:T (Bt3 +rt3)
P(toatl)"‘P(to’tz)+P(toat3)

(4.9)

4.3 Valuation Formula for a Mortality-Linked Bond with

Coupons
For pricing a fixed-coupon mortality bond, we apply the Wang transform to solve

Equation (4.7). We denote the total risks at time t in the i" country as X, 2T, +1L,
which follows a Poisson-jump process with the intensity of Ay . Assume that X; -1

is the percentage of the mortality index of the i"™ country resulting from total risks,

and X follows normal distributions with a mean of u, and a variance of G -
Additionally,

(x, ~DdX,, i(Ai ~1)dr; , +(r, ~1)dL . (4.10)
Thus, we obtain
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E[(x —l)de]:E[(Ai ~1)dr, , +(, —l)dIE} , (4.11)

and

Var[ (x, —l)dXi,t]=Var[(Ai —1)dr, , +(r, - l)dlf} . (@.12)

Using Equations (4.11) and (4.12), we can then obtain

1 »

[
" 2" =Dr _+e " 2" =D
E[x -1]= i :

Uz +%(512[i Up; +%cf\i
(e -1 )?»I; +(e —Dhp

=>u, = 7&‘ +1, (4.13)

u +1<52 uy +lc/2\ : +l 2 L
Av{(e D e V2 ‘—I)MJ " 2™ —Dn +e 2 S,
2 I I l
c, = -
% (A A FD +) A A
I oo oo

t t

, (4.14)

with

1

2 N u »+l<72» y
A{ez‘“i*“m (e™—2e " 2 “'+2)+1}(xri+x§i)-x§i [e s —1}

2

2 u +102, ? u .+162.
+[eu,ﬁ+ﬁ,{| (ecni+1)+[e Moo _IJ :l|:)\‘l; +)\‘l;2:|_|:(e oM —l)xl;j| )

Under the original probability measure P, using Ito’s lemma, Equation (4.2) can be

indicate the United States, the United Kingdom, France, Italy, and Switzerland,

respectively. Moreover,

1 Xt
Ing, 7 =Inq; , +(; —ch NT—t )40, W, +Z Inx,. (4.15)
=1

Next, let X, represent the sum of the total risks for the United States, the United
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which

Kingdom, France, Italy, and Switzerland, namely X £X, +X, +...+X,,,

follows a Poisson distribution with the intensity of A, and A, Z(k + A ). To

i=1

derive the closed-form solution of the fair price of the mortality bond, we rewrite
Equation (4.7) as

EC[(1-Sp)g -y
+EQ[(1 o,

Y, = ]PQ(Y -y, )+EQ[(1 S,

Q
Max :|P ( Max t;,)
e -1t —ty) te —r(ty—t) +e—r(‘3‘1u)

ty i| PrQ (YMax :Ytz )

Sp<l1}

F-Fx e-r(ls‘tu)

S<]

C=

(4.16)

The Wang transform is used to obtain the closed-form solution. Using Equation

(4.16), we must solve the probability that Y,, =Y, under the risk-neutral probability

5
measure. Therefore, Propositions 1, 2, and 3 are necessary.

Applying Propositions 1, 2, and 3, we determine that the fair spread of fixed-coupon

bonds is

E° [(1 SOl

Yo=Y, [P (Y 7Y,)

Yo = } P, (Y, (Y, Max _Ytz )

S<1

S<1

F—Fxe "t +EQ[(1 SHl,

(4.17)

B +EQ |:(1 S )1 St <1 Max t3 :|PrQ (YMax :Yt3)
C= r(t ~t,) et ty) te —r(t3-ty) ’
in which E®[ 1 _, ¥, =Y, |=@(@"(1-F, (K))*6,);
B[Sl oy [ Yuu=Y, |
= 1-0(@" (, (K,))+0,) |x
(O (F, (K,))+,)+
| D@ (Fy, (K)H0,) = (@' (Fy, (K,))+0)) | :
L [ty et ook
Y e +0./Var' (Y,) |- -
{Kz_Kl l:g s! o 1 ( ti) Kz_Kl
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, . anl—uy(ti—tO)—asuZ
(}\‘t) (D( to )

5! \/Gi(ti —t,)tsa’c.

o0 e_
E, (K)=P'(Y, <K)=),
s=0

K
ln—z—uy(ti —t,)—asu,

e —?»
P ()P (v, <K=y SO ). and
' S \/oi(ti —t,)ts a’c

Var (Y ) = z S( ) Yti e2Hy(ti to)+2s au, +2 oy a’(t;—ty)
s=0

2
o A s 20,122
e (L 2uy (6 —ty 1+2s (au, +a%62 )+—a’o2 (t;~ty) .
—{Z—( Dy oM 2 i=1,2,3.

s=0 s! o

Furthermore, 0, refers to the risk premiums of Y, ;

5 5
2 2
5 zsiaiuxi zsiaicxi
—] 2, ol .
b B ey - g T

a+a2+ gfag g S S
1
thZ(xIﬁ A )ia= ; and
i,t
e a,+a,+..+a,
| I . ps
Gy:m [alcsl 2,0, ;05 4,0, a5(55] e [alcl 4,0, 2,05 3,0, a565]'
psi 1

4.4 Valuation for Floating-Coupon Mortality-Linked Bonds

Assume that the coupons of floating-coupon mortality bonds are linked to a
stochastic interest rate, and the dynamic process of the stochastic interest rate follows
the CIR model under an original probability measure, as follows:

dr, =k(g-r,) dt+c, dW,, (4.18)
where k, g,and o, areconstants,and W, isa wiener process with a mean of 0 and

a variance of t under an original probability measure. Thus, at time t of a zero-

coupon bond with maturity, T is

P(t, T)=A(t, T) e ®“ "%, (4.19)
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2k0/c>

h e[(k+h) (T-0))/2 2 (e[(k+h) (T-0))/2 _1)

where A(t, T) = , Bt,T)=

, and

2h+(k+h) [eTh_t—lJ 2h+(k+h) (eTh_t—lj

h=vk*+2c%.

From Equations (4.18) and (4.19), using Girsanov’s theorem, we can obtain the
dynamic process of the stochastic interest rate under a forward risk-neutral probability

measure, PT, as follows:
dr, =| kg~ (k+B(t, T)o? )1, | dito,|Jr dW/T.  (4.20)

For simplicity, we employ a Monte Carlo simulation approach to calculate the fair
spread of floating-coupon mortality bonds by using Equations (4.9) and (4.20). Before
performing the simulation, Equation (4.20) must be transformed into Equation (4.21) in

a discrete time model. Thus,
Ar, =| kg —(k+B(t, T)o! )1, | Atto,\fr, VAt e, 4.21)
where ¢, follows a normal distribution with a mean of 0 and a volatility of 1.

Accordingly, we can simulate the fair spread of floating-coupon mortality bonds by

using Equations (4.9) and (4.21) over 10,000 simulation runs.
4.5 Empirical Results
In this section, we first use the mortality data from the HMD to estimate the

parameters (4, 6;,u, ,6,,u_,o, ) for the United States, the United Kingdom,

France, Italy, and Switzerland in the proposed infectious mortality model. The time
window is 1933-2007. With the parameter estimates, the fair price spreads of the two
types of mortality linked bonds can be obtained using Equations (4.2) and (4.3). We also

provide comparative statistics.
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4.5.1 Parameter Estimation and Goodness of Fit of the Infectious

Mortality Model

A calibration approach is adopted to estimate the wvariables

(»,, 0,,u, ,0,,u,_,c_)forthefive focal countries. Given the initial values in Table
4.2, we can obtain estimated parameters that characterize the proposed infectious

mortality model for the United States, the United Kingdom, France, Italy, and

Switzerland, as disclosed in Tables 4.3.

To illustrate the calibration of the parameters(k, g, 6,) in the CIR interest rate

model, we can use the interest rate of the 3-month London Interbank Offered Rate

(LIBOR). This time window spans from January 1, 2013, to October, 31, 2014. The

initial values are k;=0.01987, g,=0.01523, andc, =0.005. Thus, the estimated

parameters (k, g, 6,) for the three-month LIBOR interest rate are 2.5806, 0.0023, and

0.0048, respectively.

Table 4.2 Initial Values of the Calibrated Parameters for Five Countries

US UK France Italy Switzerland
L, 0.006907 0.011709 0.011921 0.011997 0.013883
o, 0.000438 0.001319 0.001469 0.001348 0.001363
u, 0.001 0.001 0.001 0.001 0.001
o, 0.002 0.002 0.002 0.002 0.002
u, 0.001 0.001 0.001 0.001 0.001
N 0.002 0.002 0.002 0.002 0.002

Notes: The initial values of p, and o; are the mean and volatility of the mortality index for the United

States, the United Kingdom, France, Italy, and Switzerland.
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Table 4.3 Parameter Estimates in Infectious Mortality Dynamics for Five Countries
through Calibration

US UK France Italy Switzerland

L, -0.00654126 -0.00172561 -0.00217485 -0.00198764 -0.00134219
(0.00028) (0.00033) (0.00021) (0.00035) (0.00025)

o, 0.03412596 0.03245149 0.02469197 0.03614527 0.02179819
(0.00031) (0.00033) (0.00028) (0.00021) (0.00030)

u, -0.08798271 -0.07461521 -0.05165785 -0.07949118 -0.06143999
‘ (0.00025) (0.00028) (0.00027) (0.00021) (0.00024)
o, 0.09413695 0.03541679 0.02914249 0.01572431 0.03145611
' (0.00032) (0.00039) (0.00037) (0.00031) (0.00041)

u, -0.09198133 -0.07984129 -0.06971451 -0.08191139 -0.08379651
' (0.00051) (0.00059) (0.00051) (0.00058) (0.00055)

G, 0.32319048 0.35128811 0.30149231 0.25679133 0.32811947
' (0.00068) (0.00061) (0.00069) (0.00058) (0.00071)

Notes: The parameter estimates are derived using Equation (4.4) for i= the United States, the United
Kingdom, France, Italy, or Switzerland. 6=0.83,a,=0.7,a,=0.15,4a,=0.075, a,=0.05, a,=0.025,
a, =0.998, a, =4.893, 0, =5.547, a, =5.744, and o, = 62.487.
parentheses.

Standard errors are shown in

4.5.2 Numerical Analysis

We first analyze the fair par spread for fixed-coupon mortality bonds according to
the parameters in Table 4.3 and the valuation formula derived in Equation (4.17). Using
a principal of $1 as an example, we assume a risk premium of 0.83 for fixed-coupon
bonds (Cox et al., 2006), and the base parameters are 6=0.83 and A, =0.05. We then
design three scenarios to discuss the impacts of the threshold value (o) on the par
spreads of fixed-coupon and floating-coupon bonds. Case 1 (normal situation): given
o =164, the fair par spread of fixed-coupon mortality bonds is approximately 0.7833%,
whereas the fair spread of floating-coupon mortality bonds is 0.6012%, according to
previous assumptions and estimated parameters (k, g, 6.). Case 2 (low-infection
situation): assuming that o = 70, the fair par spread of fixed-coupon mortality bonds
is approximately 0.9872%, whereas the fair spread of floating-coupon mortality bonds

15 0.7151%. Case 3 (high-infection situation): assuming that o =1, the fair par spread

o, +o, ..t

4 The average threshold value is calculated as 2 and the value is approximately 16.
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of fixed-coupon mortality bonds is approximately 0.5127%, whereas the fair spread of
floating-coupon mortality bonds is 0.5819%.

The three scenarios reveal a common phenomenon that the fair spreads of these
two types of bonds are higher than the 0.45%indicated by Cox et al. (2006), but lower
than the 11.4% demonstrated by Tsai and Tzeng (2013). The fair spreads in our model
are closer to the actual par spread of 1.35% for the Swiss Re bond. Ignoring the effects
of infectious mortality rates thus significantly underestimates the par spread for
mortality bonds; by contrast, considering this phenomenon provides a par spread of the
mortality security that is closer to real-world values.

Assuming o=16, u,=-0.001, and o, =0.1, we numerically investigate the
price of fixed-coupon mortality bonds by using the proposed infectious mortality model.
The impacts of the major parameters, mean and volatility, on the magnitudes of
infectious mortality, average threshold values (a ), and jump intensities of the par spread
of the bonds are detailed in Table 4.5. According to the literature on mortality bonds, the
risk premiums are assumed to range from 1 to 2. Table 4.4 shows a common
phenomenon: the fair spread of fixed-coupon mortality bonds decreases as mortality
increases. In Panel A, the impacts of the mean of the magnitudes of infectious mortality
on the par spread of the bonds are uncertain. However, the par spreads of the bonds
decrease as the volatilities of the magnitudes of infectious mortality increase due to high
mortality rates (Panel B).

Panel C illustrates the positive relationship between threshold values and the par
spreads of fixed-coupon mortality bonds; the higher the threshold values, the lower the
infectious mortality is. Conversely, Panel D indicates that when jump intensities
increase, mortality rates increase, and that the par spread of the bonds declines. The

sensitivities of the means and volatilities of the magnitudes of infectious mortality are

52

DOI:10.6814/DIS.NCCU.RMI1.001.2018.F08



greater than o and A, whereas that of threshold values is the smallest.

Table 4.5 presents the sensitivity of the model parameters to floating-coupon
mortality bonds. We find that the fair spreads increase as k, o, or o, decreases;

they also grow as o increases. The relationships of the fair spreads with g, u_, or

A, remain uncertain. Tables 4.4 and 4.5 also reveal a common phenomenon: the

t

volatilities of the magnitudes of infectious mortality exert significant effects on the fair

spreads of fixed-coupon bonds and floating-coupon bonds.

Table 4.4 Impacts of Model Parameters on Fair Spreads of Fixed-Coupon Bonds (%)

Parameter 0=0.83 | 0=0.8657 |60=121 | 0=15
u, Panel A: u, changes
-0.001 0.7928 0.7919 0.7759 0.7599
-0.003 0.7816 0.7714 0.7511 0.7496
-0.005 0.7433 0.7533 0.7499 0.7411
-0.007 0.7955 0.7799 0.7633 0.7533
-0.009 0.8081 0.7854 0.7711 0.7600
o, Panel B: o, changes
0.1 0.7928 0.7919 0.7759 0.7599
0.2 0.7863 0.7860 0.7698 0.7580
0.3 0.7631 0.7619 0.7588 0.7499
0.4 0.7598 0.7498 0.7455 0.7396
0.5 0.7499 0.7377 0.7300 0.7277
o Panel C: a changes
16.0 0.7928 0.7919 0.7759 0.7599
16.5 0.8054 0.8033 0.7865 0.7613
17.0 0.8133 0.8100 0.7900 0.7689
17.5 0.8196 0.8122 0.7936 0.7700
18.0 0.8201 0.8199 0.7999 0.7714
A, Panel D: A, changes
0.01 0.8254 0.8295 0.8056 0.7767
0.02 0.8190 0.8204 0.7915 0.7700
0.03 0.8144 0.8166 0.7866 0.7696
0.04 0.8016 0.8036 0.7804 0.7614
0.05 0.7928 0.7919 0.7759 0.7596
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Table 4.5 Impacts of Parameters on Fair Spreads of Floating-Coupon Bonds (%)

Parameter Fair Spread ()

k Panel A: k changes
1.0 0.7964

1.5 0.7850

2.0 0.7811

2.5 0.7800

3.0 0.7746

g Panel B: g changes
0.01 0.8011

0.02 0.8098

0.03 0.8100

0.04 0.8055

0.05 0.8016

o, Panel C: o, changes
0.01 0.8416

0.02 0.8400

0.03 0.8376

0.04 0.8356

0.05 0.8311

u Panel D: u, changes
-0.001 0.8697

-0.03 0.8701

-0.05 0.8699

-0.07 0.8653

-0.09 0.8700

G, Panel E: o, changes
0.1 0.8637

0.2 0.8619

0.3 0.8599

0.4 0.8536

0.5 0.8519

A, Panel F: A, changes
0.01 0.8659

0.02 0.8675

0.03 0.8710

0.04 0.8696

0.05 0.8715

o Panel G: o changes
16.0 0.8700

16.5 0.8719

17.0 0.8730

17.5 0.8746

18.0 0.8766
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4.6 Conclusion

Transferring catastrophic losses using mortality-linked securities is critical to the
insurance industry. Many life insurers operate their businesses internationally.
According to patterns of mortality experience, we find that catastrophic events may
cause the comovement of mortality rates across countries. Although researchers
consider mortality rates with jumps, they explain the comovement of mortality rates by
using common jumps across countries. However, mortality trends offer empirical
evidence that mortality comovement may occur only if a catastrophic event causes
considerable mortality in all countries. Studies rarely model the phenomenon of
infectious mortality rates. To fill this gap, this study offers a new perspective of the
infectious effects of mortality rates on the valuation of mortality securities. Accordingly,
we propose an infectious mortality model: using the Wang transform, we derive a
valuation formula for the fixed-coupon mortality bond based on our proposed infectious
mortality model.

The empirical analysis reveals that the fair par spreads of fixed-coupon and
floating-coupon mortality bonds in the model are far higher than those reported by Cox
et al. (2006), but they are closer to the actual par spread of the Swiss Re bond. Therefore,
considering the infectious effects of mortality rates enables the par spread of mortality
bonds to fit real-world values, which is helpful for pricing mortality securities and for

managing catastrophic mortality risk for reinsurers.
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Chapter 5 Comparison of Two Infectious Mortality

Models

The infectious mortality model of the first part is named as infectious mortality
model 1, and the infectious mortality model of the second part is infectious mortality
model 2. The two infectious mortality models can describe the properties when multi-
country mortality comovement increases significantly after mortality shocks. Table 5.1
illustrates that the mean squared errors of infectious mortality 1 in the United States,
the United Kingdom, France, Italy and Switzerland are 0.00085, 0.00071, 0.00075,
0.00091 and 0.00058, respectively. In average, the mean squared errors are 0.00076 for
all five countries. The mean squared errors of infectious mortality 2 in the United States,
the United Kingdom, France, Italy and Switzerland are 0.00125, 0.00254, 0.00291,
0.00312 and 0.00113, respectively. In average, the mean squared errors are 0.00219 for
all five countries. Obviously, the mean squared errors of the first infectious mortality
model are fewer than the second infectious mortality model, whereas the second
infectious mortality model can confirm the ratio of the total deaths in all countries
except for those in the i™ country relative to the total deaths in all countries to be
between 0 and 1 when all countries are only two countries.

Therefore, the two infectious mortality models have their advantages and
weakness. When the payoffs of mortality-linked bonds are related to only two countries’
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mortalities, the infectious mortality model 2 is more suitable than the infectious

mortality model 1. However, the means square errors of the infectious mortality model

1 is fewer than the infectious mortality model 2 as the payoffs are linked to the

mortalities more than two countries.

Table 5.1 Mean Squared Errors of Two Infectious Mortality Models

Panel A: Infectious Mortality Model 1
US UK France Italy Switzerland
MSE 0.00085 | 0.00071 | 0.00075 | 0.00091 0.00058
MSE 0.00076
Panel B: Infectious Mortality Model 2
US UK France Italy Switzerland
MSE 0.00125 | 0.00254 | 0.00291 | 0.00312 0.00113
MSE 0.00219

Notes: MSE stands for mean squared errors. MSE expresses the average values of mean squared errors
of US., UK., France, Italy and Switzerland.
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Chapter 6 Conclusion

In this dissertation, two infectious mortality models are developed to show that
jumps occur only when there is a catastrophic event that causes considerable mortality,
such as the 1918 flu pandemic. Furthermore, the models are applied to price mortality-
linked securities such as the Swiss Re bond without coupons, fixed-coupon and
floating-coupon mortality bonds. These models can be reduced to that introduced by
Lin and Cox (2008) as model parameters are specially set. We find that the mean
squared errors of the first infectious mortality model are fewer than the second
infectious mortality model, whereas the second infectious mortality model can confirm
the ratio of the total deaths in all countries except for those in the i™ country relative
to the total deaths in all countries to be between 0 and 1 when all countries are only two
countries. Additionally, closed-form solutions are derived for the fair prices of the Swiss
Re bond without coupons and fixed-coupon mortality bonds.

The empirical results show that the fair spreads of these two types of bonds are
higher than the 0.45% indicated by Cox et al. (2006) and closer to the actual par spread
of 1.35% for the Swiss Re bond in infection situations. We find that ignoring the effects
of infectious mortality rates significantly underestimates the par spread for mortality
bonds, whereas considering this phenomenon provides a par spread of the mortality
security that is closer to real-world values. This may enable insurance institutions to
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hedge infectious mortality risk.

Appendix A
Because I';, and It{ are independent, we have fork > 0:

~ k ~
P, +]] =k)=ZP T, +L =k, T, =)
j=0

k -
:ZP (It1 =k—j, Fi,t =J)
=0

k

=3P (1 =k=])P (T, = ))

sl

j=0 .])' J'

0 D) 1k (K k= j
1 Um ()
k!5 I; .

7 k
_(7‘~+7“1'H) (7\‘~ ri«)
, I ,

It %

=e
k!

Hence, T, +1; ~ Poisson(h . +A; ), thatis X ~Poisson(A_+21 ).

I; I{

Appendix B

1
a;ta,t..tag

From Equation (3.13) and Y, =(q"* q7* .....q7" ) , we know

5,4

InY, =InY, +——M8M __
ny,=ny a+a2+ a {Z a; (W G)} e, _’_as{za 1th|

XIT XZT XST ? (Bl)
+——a, ) Inx  +a Inx,, +...4+a, ) InX
a +a2+ +a 1; 1,1 22 2,1 z 5,1
5
i=1,2,...5. Then let p A——cs s
7 v a+a2+ +a Z
I pys
A 1 : .. . '
c, = [alcs1 a,6, a,0, a,0, a505] : .o [alcs1 a,6, a,0, a,0, 3505] )
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Py e 1
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XI,T XZ,T XS,T

X1
and Zln Z =a, Zln X, +a, Z Inx,, +...+a Z InX;,, InZ ~N(u,,c).
=1 =1 =1 1=1

Thus, Proposition 1 is completed.
Appendix C

From the Wang (2000) transform, we know the relationship between the risk-neutral
probability and original probability in Equation (B1).

F'(x)=(0 ™ (F(x))+0). (CI)
where F'(x) and F(X) are cumulative density functions under the risk-adjusted and
original probability measures, respectively; 0 is a constant risk premium; and D(.)
denotes the cumulative standard normal probability. Suppose Y, =Y, . From

Equation (B1), the probability of Y, =Y, under the risk-neutral measure Q canbe

derived as
P2 (Yy =Y, )=O(Q7 (PP (Y, >Y, Y, >Y, )+6,), (C2)
in which 0, is the risk premium of Y, , and PP() denotes the original probability

measure. Through Proposition 1, Equation (B3) also can be obtained:

ny (T—ty )+GYWT—\” +%XZTM Z,
Y, =Y, e R (C3)
Substituting Equation (B3) into (B2), we find:
PO (Yyu =Y, )=@(@" (PP (Y, >Y, .Y, >Y, ))+6,) ©9)

:(D((D_I((D(dn d,, P2 NT0,),
with
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p(t,—t)— aus. _op(t—t)—aus Wt3tl

\/c -t +a’els ot -t 1|+acss’p12 \/|t 2—t| Jt —t|

In the same vein, we can obtain:

PO(Y

max

=Y, )=0(® (PP (Y,

max

=Y, )+0,)=0(@ ™ (d(dy ., d,;, Paict, 2)0)), (C5)

i=1,2,3. Here, 0. is the risk premium of Y., and

4= p(t,—t)—aus _ uo(t,—t)-au,s o =cont( W, W o
Y T T Y o T T N TR R TR
_ p(t,—t)—au,s :—py(t —t,)—au,s —— W, -, Wi, o
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- I o/ > 2 .0 ps,é_corr( ’ )
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Appendix D
Suppose Yy, =Y, . We can obtain Equation (D1):

(Ytl -K, ) I{Ytl >K1} B (Ytl -K, )I{Yll >K2}

43 <1) (D)

E° [1

Yy =Y, 2B

{Sr<t}

Then let H=(Ytl -K, )1 - (Ytl -K, )I{Y «) such that we rewrite Equation (D1)

{Y‘l >K‘}

as

E° [1

Yy =Y, ]=P§ (H<K,-K,, Y, <K)*PY(H<K,-K, K, <Y, <K,)
1 1 1 (DZ)
+PY(H<K, -K,, Y, >K,).

t

{Sr<1}

From Propositions 1 and 2, we next derive:

EC g oy [Ya=Y, J=1- 0007 (B (K40, (D3)
o oh Oy 11’1£—|,ty(t1 —t,)—sau,
where F, (K)=P’(Y, <K))=)] Cp(— );0, is the risk
i o sl \/Gi (t, —t,)+sa’c;
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5 5
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K
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),i=1, 2, 3; 0,

as the risk premium of Y, and the other variables as we detailed them previously.
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