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a b s t r a c t 

Human multi-robot interaction exploits both the human operator’s high-level decision-making skills and the 

robotic agents’ vigorous computing and motion abilities. While controlling multi-robot teams, an operator’s at- 

tention must constantly shift between individual robots to maintain sufficient situation awareness. To conserve 

an operator’s attentional resources, a robot with self-reflect capability on its abnormal status can help an opera- 

tor focus her attention on emergent tasks rather than unneeded routine checks. With the proposing self-reflect 

aids, the human-robot interaction becomes a queuing framework, where the robots act as the clients to request 

for interaction and an operator acts as the server to respond these job requests. This paper examined two types 

of queuing schemes, the self-paced Open-queue identifying all robots’ normal/abnormal conditions, whereas the 

forced-paced shortest-job-first (SJF) queue showing a single robot’s request at one time by following the SJF ap- 

proach. As a robot may miscarry its experienced failures in various situations, the effects of imperfect automation 

were also investigated in this paper. The results suggest that the SJF attentional scheduling approach can pro- 

vide stable performance in both primary (locate potential targets) and secondary (resolve robots’ failures) tasks, 

regardless of the system’s reliability levels. However, the conventional results (e.g., number of targets marked) 

only present little information about users’ underlying cognitive strategies and may fail to reflect the user’s true 

intent. As understanding users’ intentions is critical to providing appropriate cognitive aids to enhance task per- 

formance, a Hidden Markov Model (HMM) is used to examine operators’ underlying cognitive intent and identify 

the unobservable cognitive states. The HMM results demonstrate fundamental differences among the queuing 

mechanisms and reliability conditions. The findings suggest that HMM can be helpful in investigating the use of 

human cognitive resources under multitasking environments. 
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. Introduction 

Robotic agents have been widely used to support humans in complet-

ng a variety of dangerous tasks, such as searching for trapped victims

n risky environments or replacing human soldiers on a battlefield. In

ost of the human multi-robot interaction, robots operate with rela-

ive independence and are capable of operating in parallel, whereas an

perator is usually incapable to control multiple robots at a time and

egularly shifts her attention from one robot to another to monitor the

obots’ status and acquire situation awareness (SA). The robots’ effec-

iveness therefore greatly depends on periodic human intervention. For

xample, a mobile robot could successfully explore the environment and

erform the assigned tasks for a period of time only requiring an oper-
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tor’s attention when it detects targets (e.g., trapped victims). In other

ords, the overall system performance is significantly affected by the ef-

ectiveness of operators’ attention allocation ( Chen, 2009; Lewis, 2013;

rewett et al., 2010; Verma and Rai, 2013 ). 

Human-robot interaction (HRI) examines the uses of robotic sys-

ems and evaluates the interaction in human-robot teams. Goodrich and

chultz (2007) suggested the quality of communication between human

perators and robotic agents is essential to achieve an appropriate in-

eraction as well as an efficient HRI structure. Therefore, to better de-

ign the communication schemes in human-robot teams, it is critical

o understand how the operators allocate their attentional resources to

ommunicate multi-robot teams. As an operator’s attentional resources

re typically shared among a variety of tasks, however, even periodic
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uman interventions may not be able to sufficiently serve the robots’

mergent requests. Previous research ( Cummings and Mitchell, 2008 )

emonstrated that humans are incapable of shifting attention between

obots to obtain the required SA in an effective and efficient manner.

s a result, operators need assistance to maintain sufficient SA in com-

lex and time-critical situations. Follow-up studies ( Chen et al., 2010;

randall et al., 2011; Cummings et al., 2012 ) used a timeline display

o assist operators in identifying bottlenecks and potential scheduling

onflicts. The results suggested that HRI performance can be improved

y appropriately scheduling an operator’s attention to only those robots

hat are in need of interaction. 

To enhance task performance, automated robot self-reflection is fre-

uently used to improve the HRI processes under a variety of complex

onditions ( Chien et al., 2012b; Wang et al., 2011 ). Automatically re-

orting a robot’s abnormal status not only eliminates an operator’s need

o monitor, but also allows an operator to focus on critical interactions,

hereby increasing the number of robots serviced during this interval. Al-

hough automated supports could conserve human cognitive resources,

pplying automated applications to direct an operator’s attention from

n ongoing task to a specific task may decrease the operator’s SA and

otentially increases the cognitive loads to acquire the necessary infor-

ation while responding to a robot request ( Eriksen and Yenh, 1985;

iesel et al., 2010 ). 

Inappropriately directing an operator to service a particular robot

as been found to have a negative effect on overall performance in

uman-robot systems ( Crandall et al., 2011 ). Most of time, operators

ay be less inclined to use relevant automated aids if the gain is offset

y the mental cost of switching attention ( Bainbridget, 1983; Crandall

t al., 2011; Endsley and Kaber, 1999 ). Koch et al. (2010) concluded

hat switching costs arise from “both transient and long-term carry-over

f task-set activation and inhibition ” and may lead to the perception of

 higher workload and lower overall system effectiveness. These costs

re associated with impaired performance in task-switch paradigms, as

ompared with repetition trials ( Kiesel et al., 2010 ). Therefore, opera-

ors may take more time to complete mixed-task blocks (i.e., alternat-

ng between two or more tasks) than in repetitive single-task situations

 Koch et al., 2005 ). Although enhancing robot autonomy can provide

ssistance with the control process and allow operators to interact with

ach robot as needed, the aforementioned studies suggested that the

equired interactions may greatly increase an operator’s perceived cog-

itive loads. Therefore, identifying an effective interaction scheme to

atisfy operators’ cognitive demands as well as to respond to robots’ re-

uests in time is indeed the most critical aspect of enhancing the HRI

erformance. 

Understanding the association between the operators’ cognitive

tates and their resulting behaviors is needed for improving human su-

ervisory control in highly automated systems ( Crandall et al., 2005;

lsen and Wood, 2004 ). In HRI fields, researchers employ two primary

ethods to investigate the supervisory processes. The first approach ex-

mines the overall system performance, such as the number of targets

etected ( Chen, 2009; Chien et al., 2012b ), area explored ( Scerri et al.,

011 ), or vehicles’ damage levels ( Chien et al., 2016; Imbert et al.,

014; Miller and Parasuraman, 2007 ). The other approach character-

zes operators’ attention allocation, such as the response rate in answer-

ng the robots’ requests ( Crandall and Cummings, 2007; Mekdeci and

ummings, 2009; Mercado et al., 2016 ). However, when an operator

akes choices among alternatives, similar actions may be a result of

ifferent intentions. For example, a robot can be terminated because

he assigned task has been successfully completed or the robot is in-

ompetent to perform the task. Therefore, these conventional measures

overall performance and response rate) might be unable to reflect the

nderlying cognitive factors that significantly influence operators’ in-

ent and behaviors. 

Conventional approaches evaluate the HRI performance by the over-

ll task results that merely reflect the observable behaviors and fail to

xamine operators’ cognitive intentions or decision-making processes.
31 
n order to capture more insights from human supervisory control pro-

esses, we adopt the Hidden Markov Model (HMM) to explore the hu-

an’s cognitive states ( Baum et al., 2011 ). HMM is a well-established

ethod for parameter estimation and has been shown useful in modeling

uman behaviors and discovering unobservable human intentions in a

ide range of application domains, such as astronaut supervisory mon-

toring behaviors ( Hayashi et al., 2005 ) and collaborative web search

rocesses ( Yue et al., 2014 ). HMM analysis provides advantages over

onventional approaches by making the explicit contexts for human su-

ervisory control and assisting with interpretation of unobservable hu-

an intentions. 

As decision makers’ attention allocation may greatly influence by

heir scheduling strategies, the potential gains in various system devel-

pments of effective means to convey task recommendations warrant

urther investigation. Two different types of cognitive queues are eval-

ated in this paper, namely the Open-queue and SJF-queue methods . The

pen-queue method presents all the robots’ conditions and sends out fail-

re alarms at the same time. The SJF-queue method, a more sophisticated

ueuing mechanism, presents only one robot request generated by the

hortest-job-first principle. The Open-queue scheduling mechanism was

reviously seen in Cummings et al. (2007) study, in which a timeline

isplay was used to show each intelligent agent’s current status and to

roject the upcoming tasks. As the SJF approach is known to maximize

hroughput ( Garey et al., 1976 ), we therefore develop a single event

ueuing display along with the SJF discipline. Prior research suggested

hat the operators with poor attentional control strategies tended to rely

ore heavily on automated aids, regardless of the system reliability lev-

ls ( Chen et al., 2011; Chen and Terrence, 2009 ). To address these issues,

wo different system reliability levels are also investigated in this study, in

hich the robot failures are misdiagnosed (i.e., not detected) to simulate

he effect of unreliable system. Both the conventional analysis and the

MM approach are used to measure the differences between the queu-

ng types and reliability levels. We hypothesize that H1 : High reliability

evel will result in better overall performance, covering both primary and sec-

ndary tasks . Since the SJF method is known to maximize throughput

 Garey et al., 1976 ), we hypothesize that H2 : The SJF-queue method will

utperform the Open-queue approach across all the experimental scenarios .

oreover, a reliable queuing system can optimize attentional resources

n both queuing conditions, whereas an unreliable queuing system may

rovide insufficient information and fail to effectively direct operators’

ttention. Hence, we hypothesize, H3 : In both the Open-queue and SJF-

ueue schemes, the high reliability will lead to better outcomes than the low

eliability condition . As decision makers must prioritize tasks/alarms in

he Open-queue, we hypothesize that H4 : Operators will experience heav-

er workloads in the self-paced Open-queue condition, which could be a result

f a higher level of perceived frustration, since no clear guidance will be

rovided in the Open-queue scheme. In other words, fewer workloads

ould be reported in the SJF-queue condition, regardless of the reliabil-

ty levels. Additionally, since operators are allowed to perform the tasks

ased on their own strategies in the Open-queue scheme, we therefore

ypothesize H5 : HMM’s transition patterns will be more complex under the

pen-queue group . 

. Related work 

.1. Human-robot interaction (HRI) 

Human-agent teaming for multi-robot control is a complex process

hat requires both skilled operators and delicate system designs to effec-

ively enhance overall HRI performance. To maintain appropriate situa-

ion awareness (SA), an operator must efficiently manage her cognitive

esources and allocate attention among a variety of tasks. The situa-

ion in which one operator controls a team of robots is considered to

e a more exhaustive and complex task than managing a single robot,

hich requires the operator to simultaneously manage attentional re-

ources among robots to maintain necessary SA. Various factors affect-
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ng human-robot supervisory control processes (such as perceived cog-

itive load, allocation of attention, and cognitive capacity) have been

tudied in previous research ( Donmez et al., 2010; Lewis et al., 2010; Na-

avalli et al., 2015; Visser and Parasuraman, 2011 ). Attentional control

as been identified as one of the most critical factors influencing human

upervision of robot teams, since most of the HRI tasks inevitably in-

olve multitasking conditions ( Chen and Barnes, 2014 ; Chappelle et al.,

011 ). However, due to limited cognitive resources, human operators

ay encounter enormous difficulties in responding to robots’ requests

or interaction in a timely fashion. 

The degree of attention allocation in multi-robot control tasks varies

rom completely manual control to supervisory control with a high level

f automation (LOA). Sheridan and Verpank (1978) developed the first

OA taxonomy, which classifies autonomy into ten levels based on the

ange of control that an operator could manage. Operators must (par-

ially) manually control the machines and make decisions in low LOA

onditions, while fully autonomous systems are used under high LOA

onditions. In other words, the intelligence of robots determines the hu-

an supervisory control behaviors, which may allow an operator to use

ognitive resources to focus on higher level mission-related goals (e.g.,

ecision selection) without spending resources on low level tasks (e.g.,

onitoring processes). However, while applying automation, operators

nd automated agents may perform similar operations with different

urposes. These contradictory intentions may result in unexpected out-

omes leading to serious system failures. Thus, while directing opera-

ors’ attention to necessary (automated) events, it is important to main-

ain appropriate system awareness and resolve the potential conflicts

etween a human’s intentions and system suggestions in a variety of

iverse situations. 

Several solutions have been proposed to assist operators in man-

ging sufficient cognitive resources in order to maintain adequate

wareness and appropriate performance for multi-robot control tasks.

ummings et al. (2007) designed the schedule management aids that

ncluded timeline displays to show upcoming events, decision support

ools to provide potential solutions, and task summary panels to recap

ission statuses, along with color schemes to visualize a variety of tasks.

lthough the provided aids are beneficial in presenting the potential

chedule bottlenecks and warning the operator of possible conflicts, the

uthors concluded that showing the potential problems without pro-

iding appropriate solutions is not more helpful than the baseline de-

ign (i.e., no visualizations). In addition, the vivid visualization aids of

merging problems may distract operator attention and interrupt the

rimary tasks. 

The interruption management approach is therefore proposed to

essen operators’ switching costs and allow the operators to have higher

evels of SA during the tasks. Ratwani et al. (2007) used a tracking his-

ory list to remind the operators of the original tasks before the interrup-

ion. Chen et al. (2010) provided a changing history list to record what

ccurred during the interruption to recover the overall SA. However,

roviding support through a visual summary or a history of prior events

ay consume large amounts of cognitive resources to process the rep-

esented information, in which the (endless) list could lead operators to

x their attention on the changes to that list and neglect the important

wareness of the ongoing tasks. Therefore, with respect to effectively

anaging cognitive resources, providing cognitive support to assist op-

rators in achieving efficient attentional control is critical to enhancing

RI performance. 

.2. Cognitive issues in HRI 

Human interaction with multi-robot teams has been widely explored

nd raised many research questions. Prior research investigated the ef-

ects of robot team size on performance (i.e., metrics of tasks) and the

nfluences of the robot’s LOA (i.e., metrics of robots). The metrics of tasks

xamine the number of robots that an operator can effectively control

n various contexts ( Lewis et al., 2010 ); whereas the metrics of robots
32 
dentify the amount of effort that an operator has to invest in operating

 single robot. These metrics provide thorough mechanisms to evaluate

he quality of human multi-robot interaction and to measure the diffi-

ulties in a number of task contexts. 

However, the appropriate performance thresholds for a robot may

ary widely depending on the task requirements. For example, a robot

hat paints street lines requires a higher degree of precision than a street-

weeping robot that collects rubbish from streets. As a consequence,

obots typically need to be serviced on demand rather than sequen-

ially, which introduces an additional complexity to human supervisory

ontrol of multi-robot teams. In addition, previous studies indicated

hat decision makers often over-estimated their cognitive capabilities

nd failed to identify optimal scheduling strategies in controlling robot

eams ( Crandall et al., 2011; Sheridan and Tulga, 1978 ). The perfor-

ance degradation therefore may not be simply caused by the size of

obotic teams or the difficulty of assigned tasks but can be greatly af-

ected by switching attention between tasks. To determine human strate-

ies in multitasking environments, Cummings and Mitchell (2008) de-

eloped a neglect tolerance model that examined operators’ interactions

ith robots in a sequence of control episodes. The identified timeline in-

ervals in their work were applied to a fan-out equation to predict the

hreshold for a human operator to control multi-robot teams. 

The attention allocation of multiple concurrent tasks such as in con-

rolling multi-robot can be referred to as the cost of switching atten-

ion ( Goodrich et al., 2005; Kiesel et al., 2010 ). To appropriately man-

ge limited cognitive resources, task realization largely depends on a

uman’s capabilities of attention allocation ( Crandall and Cummings,

007; Wickens and Hollands, 1999 ). In the research of Steinhauser and

übner (2008) , the cost of task switching is compared with repeti-

ion tasks and controlled processing tasks. Kiesel et al., (2010) fur-

her investigated the global switching costs of both repetition tasks and

witching tasks as well as the local switching costs of simple repetition

asks. Switching tasks produce greater costs (i.e. more failed tasks and

onger reaction time) and even lead to higher frequency of error rates

 Steinhauser and Hübner, 2008 ). Therefore, providing aids to direct hu-

an’s attention to various conditions is important to help operators al-

ocate attention to emergent tasks as well as to maintain efficient aware-

ess of the original task ( Altmann and Trafton, 2007; Goodrich et al.,

005 ). 

.3. Cognitive assistance in HRI 

In time critical missions, it is particularly important that an oper-

tor can allocate attention effectively since the failure of managing a

igh-priority task in a timely manner not only lessens the effectiveness

f the system, but also potentially results in disastrous consequences

 Crandall et al., 2011 ). To mitigate the effect of operators’ cognitive lim-

tations, applying cognitive assistance to manage attention resources is

equired, in which several directions were developed to improve oper-

tor attention allocation in HRI-related tasks. 

First, a thread of approaches focuses on visualizations that present

he status, plans, and progress of robots in the system. This kind of vi-

ualization approach implicitly directs the operators to specific tasks

nd when to perform them. Cummings and Mitchell (2008) investigated

imeline visualizations for unmanned aerial-vehicle (UAV) systems by

resenting a schedule of anticipated events. Through the display, the

perator can identify and select the task to perform and decide when to

erform it. A subsequent study by Cummings et al. (2007) found that a

ingle operator can control multiple UAVs with decision support tools,

ut the influences of the provided decision making tool on operator per-

ormance and SA cannot always be predicted. 

The second research thread proposes a warning system that detects

otential critical events and sends an alert or signal explicitly to the op-

rator. Lee et al. (2004) explored how the alert strategy and modality af-

ected automobile collision-warning systems that mitigated distractions

nd directed a driver’s attention to the car ahead when it unexpectedly
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Fig. 1. An illustration of Hidden Markov Model. 
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raked. They found that graded alerts led to a greater safety margin,

esulting in fewer inappropriate responses to nuisance warnings and

igher trust ratings to the system aids. Meanwhile, they suggested that

he vibrating seat designed in their study as a haptic alert was perceived

s less annoying and more appropriate, which suggested the graded hap-

ic alerts offered a great opportunity to apply context awareness in a

afety-critical domain. Donmez et al. (2009) investigated whether soni-

cation (continuous auditory alerts) can inform the operator about the

tate of a monitored task and thereby support UAV control. Their results

howed sonification can support operators in predicting states of mon-

tored tasks but might also interfere with other ongoing tasks (i.e., too

uch distraction). 

Another direction works to explicitly provide suggestions or dictums

or the operator to pay attention at a specific event at a given time.

randall et al. (2011) modeled the operator’s attention in order to lead

he human’s attention to the most effective event as well as the most

eeded event to perform the tasks. Their results showed that operators’

ttention allocation was effectively devoted to the primary goal (target

etection) but was not as effective in the secondary mission, maintain-

ng the robotic agents’ safety ( Crandall et al., 2011 ). In other words,

he operators were unable to effectively allocate their attention to the

econdary missions in complex and time-critical situations. The rate of

ystem presentation of elements in a (timeline) display varied from a few

econds to several minutes; however, human detection rates remained

onstant. Since concentrating attentional resources on different events

s problematic, Eriksen and Yenh (1985) suggested that providing a cu-

ng signal directed the concentration of attentional capacity into needed

vents. According to the previous studies from different directions of at-

ention allocation, allowing robots to self-report abnormal states seems

o be a fundamental approach of reducing the switching costs and en-

bling the operator to better prepare for the robots’ abnormalities. How-

ver, before applying the self-report aids, it is important to understand

he effects of different types of cognitive mechanisms (such as the Open-

SJF-queue methods in this study) and investigate the potential influ-

nces resulting from various types of cognitive assistance. 

.4. Assessing cognitive assistance 

Examining the effectiveness of different attention allocation methods

equires the development of proper performance assessments. Existing

iterature generally measures the task performance ( Chien et al., 2012b ),

xperienced workload ( Lewis et al., 2010 ), or scheduling intervals (e.g.,

eglect tolerance model in Cummings and Mitchell (2008) . For exam-

le, NASA Task Load Index (NASA-TLX; Hart and Staveland, 1988 ) is

 subjective multidimensional assessment instrument, in which partic-

pants report experienced workload with a task, an intelligent agent,

 robotic system, etc. Additionally, the neglect tolerance model shows

uch operator interactions with an individual robot and the sequence

f control episodes based on different time intervals. However, these

pproaches only identify the differences by analyzing the overall re-

ults (e.g., number of targets found, workload score, or interaction time),

hich is incapable of (1) identifying the fine-grained difference of inter-

ctions during the whole task completion course; and (2) revealing the

uman’s decision-making strategy and latent cognitive intentions. As

nderstanding operators’ cognitive intentions and attentional strategies

n multitasking environments is important, to further investigate these

ssues, a dedicated approach is needed to better understand complex

uman interactions. 

To permit a fine-grained understanding of the human interaction

rocess, it is intuitive to think of modeling the implicit behavior

equence as a whole, which requires taking into account behavior-

ehavior relations. A Markov model can be applied in this situation as

t accounts for both the current behavior and its predecessor. To the

est of our knowledge, the Markov model has not yet been widely ap-

lied to analyze HRI systems, but it is frequently used in other domains.

or example, using Markovian analysis, Chapman (1981) identified nine
33 
idden search states in a behavioral pattern for web search behaviors.

hen and Cooper (2002) used the Markov model to analyze the patterns

f Web-based library catalog browsing. 

However, the Markov approach only attempts to model and inter-

ret two consecutive behaviors at a time, which cannot directly reflect

atent human cognition patterns. To overcome this issue, previous stud-

es ( Boussemart and Cummings, 2008; Yue et al., 2014 ) tried to model

uman interactions at the hidden cognitive state level, at which HMM is

ften adopted. Yue et al. (2014) assumed that user behaviors are driven

y hidden cognitive states instead of being directly influenced by the

rior interactions. Therefore, by using HMM, researchers can bridge hid-

en cognitive states with observed actions in one unified framework. 

.5. Hidden Markov model (HMM) 

When an operator makes choices among alternatives, the observed

ehaviors simply represent the adopted actions; however, similar ac-

ions may result from a variety of intentions. Highly probable ac-

ions may not best represent the user’s intentions, whereas improbable

vents may convey more insights into operators’ true internal (cogni-

ive) states. Conventional approaches evaluate interactions and perfor-

ance through the accumulated results (e.g., number of targets found)

hat merely reflect the operators’ adopted behaviors, and may fail to ex-

mine intentions or cognitive strategies, which prompted us to perform

 holistic evaluation on the intermediated behaviors. 

To better model human supervisory control processes, HMM

 Baum et al., 2011 ) was applied to examine operators’ supervisory pro-

esses under different queuing approaches and system reliabilities to

iscover the variables influencing operators’ cognitive states as well as

heir behavioral patterns. HMM is a well-established machine learning

ethod that has been shown to be useful in modeling human behaviors

nd examining unobservable human intentions in a wide range of appli-

ation domains. For example, it has been used for modeling astronaut

upervisory monitoring behaviors ( Hayashi et al., 2005 ) and web search

rocesses ( Xie and Joo, 2010; Yue et al., 2014 ). However, little attention

as been paid to using the HMM approach in the HRI field. 

HMM analysis provides advantages over conventional approaches by

aking the context surrounding human supervisory control explicit and

iding in the interpretation of unobservable human intentions. HMM as-

umes that there are several hidden states (namely, hidden user inten-

ions) that govern the presence or absence of certain user interactions.

hile modeling user behaviors, HMM employs a two-layer model, in

hich the hidden state layer reflects the user’s cognitive states, while the

bserved action layer represents the sequence of user actions. The hidden

ayer can be inferred from observed interactions, using the Baum-Welch

lgorithm ( Baum et al., 2011 ). 

An illustration of HMM is provided in Fig. 1 . HMM assumes a se-

uence of user behaviors from A 1 to A M 

, and a sequence of hidden states

rom H 1 to H M 

. Here, M stands for the total number of human behaviors

n one supervisory control process. Each behavior is supposed to be gen-

rated by one corresponding hidden state; however, different behaviors

an be generated by the same hidden state with different probabilities.

he hidden state sequence results in a Markov Chain. A HMM model has

everal parameters, including the number of hidden states, the transition

robabilities among any two hidden states, and the emission probability

rom one state to any of the behaviors. In this paper, we will follow this
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Fig. 2. MrCS display in Open-queue: showing current conditions of all robots in the status panel (left-most window). 
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ine of work by adopting the HMM for behavior sequence modeling and

ssessment in HRI domain. 

. Methods 

To examine human attention allocation in multi-robot teams, urban

earch and rescue (USAR) missions were used in our study along with

ifferent types of scheduling displays ( Figs. 2 and 4 ). The USAR mission

s composed of human operator(s) and robotic agents, where an operator

as to perform supervisory control of multiple robots and interact with

hem to explore the environments and execute the search and rescue

issions. The USAR robots are capable to perform some basic tasks, such

s path plan or re-plan; however, due to the environmental complexity,

he robots may be unable to sense and avoid all the potential risks (e.g.,

ump into a furniture and get tangled). An operator must monitor the

obots’ statuses and interact with each as needed. 

An earlier study ( Chien et al., 2011 ) found that HRI performance

an be improved by appropriately directing the operator’s attention to

obots in need of interaction. When robot self-reflection ( Scheutz and

ramer, 2007 ) is used to identify a need for interaction with an opera-

or, the resulting HRI forms a queuing system, in which the operator acts

s a server to process the robot requests. To understand the effective-

ess of different attention direction approaches, two types of queuing

echanisms were used to schedule operator attention in this paper: 

1) Open-queue: showing the entire queue with the current status for

each robot ( Fig. 2 ). This queuing mechanism gives operators an

overview of all robots’ states and provides color cues to differen-

tiate the normal and abnormal status of robots along with the type

of experienced failure. 

2) SJF-queue: showing a single robot’s request at a time based on the

shortest-job-first discipline ( Fig. 4 ). This mechanism prioritizes the

robot failure requests and displays the failure requiring the least

effort to repair (i.e., the suggested robot can be repaired quickly).

Although an operator could resolve more robots’ failures in a lim-

ited time through this approach, due to the nature of a forced-

queue scheme, the operator must follow the system suggestion to

resolve the current prioritized request in order to proceed the next
34 
task, which provides little flexibility for the operator in handling the

robots’ requests. 

Participants’ cognitive strategies and reliance behaviors may signif-

cantly depend on the system reliability. Since guaranteeing perfect au-

omation is unrealistic, to examine the effects of system reliability, two

evels of automation aids, high (90%) vs. low (50%), were simulated in

ddition to the two queuing approaches. For example, in the low relia-

ility condition, half of the robots’ failures were misdiagnosed and were

ot reported to the operator. Additionally, HMM was adopted to fur-

her analyze the participants’ cognitive intentions and decision-making

trategies among the experimental setups. 

.1. Testbed systems 

Urban search and rescue simulation (USARSim; Lewis et al., 2007 ), a

igh-fidelity robotic simulation, was used in our study to simulate USAR

issions, featuring USAR robots and environments. USARSim supports

uman multi-robot coordination by accurately rendering user interface

lements and representing robot automation and its remote environ-

ent, which link the operator’s awareness with the robot’s behaviors. 

Multi-robot control system (MrCS; Carpin et al., 2007 ), a multi-robot

ontrol infrastructure, was also included in our study to provide a user

nterface to control and display multiple robots simulated in USARSim.

rCS provides tools to control robots in the simulation, displaying mul-

iple camera and laser output, and supporting inter-robot communica-

ion. 

USARSim and MrCS were used in our study to simulate a USAR for-

ging task, in which an operator controlled multi-robot teams to explore

he environments, detect the presence of victims, and locate the victims

n the map. 

Fig. 2 shows the MrCS user interface in the Open-queue condition.

humbnails of robot camera feeds are shown on the top, which display

ach robot’s current view. Current locations and paths of the robots are

hown on the Map window (middle) which allows operators to mark

he position of victims. The red dots shown on the Map window are the

ictim marks that placed by a participant. A manually controlled panel

n the bottom right allows teleoperation and camera pan and tilt. The
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Fig. 3. Status panel: Green color represents a robot is working appropriately; 

yellow color represents a robot is encountering problems; white color represents 

a robot is under manually controlled. 
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Table 1 

Three types of failures occurred in the study . 

Failure Description 

Teleoperation Lagged Robot executed operator’s command with 2 ∼3 seconds 

delay 

Camera Sensor Failed Robot’s video feed will be frozen right before the 

failure happened 

Map Viewer Failed Robot’s position on the map viewer will be unable to 

update 
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tatus panel (left) for the Open-queue condition shows the current status

or each robot and briefly summarizes any problems using differently

olored indicators ( Fig. 3 ). 

Green tile indicates that the robot is in autonomous condition and

unctioning safely; yellow tile indicates an abnormal condition, such as

eing stuck at a corner. When a robot is manually controlled, its tile

urns white. An operator has several ways to select a robot to control,

rom the status panel, camera thumbnail, or map window. Once a robot

s selected, its camera view is also presented in the video of interest

middle right), which provides a larger display to help operators further

xamine the images. 

Fig. 4 shows the status window (left) for the SJF-queue condition

n which only one robot in an abnormal state is presented at a time.

dditional alarms can only be reviewed after the presenting problem is

esolved. To avoid “clogging ” the status window with an unrecoverable

ailure, operators have an option to use the “Dead button ” (bottom left,

igs 2 and 4 ). Once switched off, the robot will stop reporting and no

onger be scheduled. 

.2. Primary task: victim detection 

The main goal of this study is to help an operator to efficiently detect

ictims in the multitasking situations. Through the system, once an op-

rator notices a victim appearing in a thumbnail, a complex sequence of

ctions for the victim detection task is initiated. The operator first iden-

ifies the robot detecting a victim and selects it in order to see the camera

iew in a larger window (video of interest in Fig. 2 ). After the operator

as successfully selected a robot, the next step is to locate it on the map

y matching each robot’s unique border color or numerical label. Then,

he operator must determine the orientation of the robot and its camera

sing cues such as prior direction of motion and matching surroundings

etween camera and map views. To gain this information, the operator

ay choose to teleoperate (i.e., manually control) the selected robot to

ocate it on the map and determine its orientation by observing the di-

ection of movement. The operator must estimate the victim’s location

n the map corresponding to an image of the victim in the camera view,

nd then place a red dot on the map window to represent a victim’s

ocation (as the red dot shown in Figs. 2 and 4 ). If “another ” victim is

arked nearby, the operator must consider whether the current victim

as already been recorded on the map to prevent missing or duplicate

arks. In additional, a number of victims are evenly distributed in the

nvironment and are simulated as paralyzed patients, in which the vic-

ims are unable to move and the robots can detect the victims all the

ime. 

.3. Secondary task: failure resolved 

The secondary task of this study is to resolve robot failures. An op-

rator has to identify and select the failed robot, then teleoperate it to

ts next predefined waypoint where the automation can be resumed. To

imulate a real robotic system, the simulated Pioneer P3-AT robot equips

ith the similar accessories and sensors as a real P3-AT robot, including

aser sensor, color sensor, gyroscopic sensor, video camera, navigation
35 
ackage, global positioning system (GPS), and wireless Ethernet com-

unications. These sensors are designed for exploring the environments,

ollecting surrounding data and detecting the robot’s current state. As

he USAR tasks often occurred in the hazard situations, the design of

he multiple sensors can not only overcome the tough environments but

lso compensate the potential system failures caused by the risky condi-

ions. For example, while the video camera fails to provide the instant

nvironmental information, the operator can refer to the GPS to regain

he robot’s current location. 

Recoverable failures were categorized into 3 major types ( Table 1 ),

ased on the data for commonly occurring on-field repairable failures

or the Pioneer P3-AT ( Carlson et al., 2004 ). Two of these, camera and

ap failures, involve loss of display due to communication difficulties.

eleoperation lag is a control problem identified by Sheridan (1993) and

etermined to significantly degrade operator performance. 

In this study, to resolve a robot’s failure, the operator needed to man-

ally guide the robot from its current location to the next waypoint. Be-

ause each of the failure types imposed different difficulties for recov-

ry, they took varying amounts of time to resolve. In order to estimate

 typical resolution duration for different failures, a pretest using 10

articipants was conducted. The resulting durations were adopted from

ur prior study ( Chien et al., 2012a ), in which the camera failure was

he easiest to overcome and the loss of map indication proved to be the

engthiest failure to repair, with teleoperation delay falling in the mid-

le. This ordering of estimated interaction times allowed failures to be

resented to the operator in the SJF-queue following a shortest-job-first

iscipline, known to maximize throughput ( Garey et al., 1976 ). In ad-

ition, to fulfill our experimental designs and satisfy the SJF methods,

nly one type of a failure will be injected to a robot at one time (e.g.,

eleoperation lagged and camera sensor failed will not be occurred to a

obot simultaneously). 

.4. Experimental conditions 

The selected USAR environment was an office-like hall with many

ooms full of obstacles such as chairs and desks. Victims were evenly

istributed throughout the environment, and robots entered the envi-

onment from different locations. 

A total of six P3-AT robots were used in our study to perform the

SAR task. Robots followed predefined paths of waypoints, similar to

aths generated by an autonomous path planner ( Chien et al., 2010 ) to

xplore the environment. All robots traveled paths of the same distance

ith ten visible victims and four system failures (i.e., robots’ failures not

etected) along each designated path. Upon reaching a pre-programmed

ailure waypoint, the robot experienced a failure and sent a request to

he queue. The operator then needed to assume manual control to tele-

perate the robot out of its predicament and on to its next waypoint

here communication could be reestablished with the lost camera feed

r control, and autonomous exploration resumed. 

.5. Participants and procedure 

Forty-eight student participants were recruited from the University

f Pittsburgh community, a group balanced in terms of gender (average

ge = 26.53). None had prior experience with robot control, although
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Fig. 4. MrCS display in SJF-queue: showing a single alarm, by following the first-in-first-out or shortest-job-first principle respectively, in the status panel (left-most 

window). 
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ost were frequent computer users. A 2 ×2 between-subject design was

pplied to the study, in which each participant only experienced one of

he queuing displays (Open-queue or SJF-queue) along with one of the

eliability levels (high-90% or low-50%). 

Participants first read standard instructions about the experimental

onditions. Participants were instructed that their primary task was to

etect and mark as many victims as possible and their secondary task

as to resolve robot failures. Additionally, they were also informed that

 cognitive queue was used in managing the robot failure tasks, but that

he queuing reliability was not perfectly reliable. In the following 15-

inute training sessions, participants practiced control operations by re-

olving failures, three times for each type. Participants were encouraged

o find and mark at least one victim in the training environment under

he guidance of the study conductor. After the training session, partici-

ants began the 15-minute experimental session controlling 6 robots in

he assigned condition. Participants had been told the main task was to

ocate victims via detecting and that resolving robot failures was a sec-

ndary task. At the conclusion of the session, participants were asked to

omplete the NASA-TLX workload survey ( Hart and Staveland, 1988 ). 

.6. Evaluation: user behavior analysis using hidden Markov model 

HMM) 

To provide a deeper understanding of human interactions on dif-

erent attentional scheduling conditions, this study examined the users’

ecision-making processes in visual search and scrutinized their hidden

ntentions when performing USAR tasks. Latent user intentions were au-

omatically detected through HMM, a two-layer (including hidden layer

nd observed layer) unsupervised machine learning model that assumed

he observed layer was generated from the hidden layer. The hidden

ayer included a set of hidden states, whereas the observed layer con-

isted of observed user behaviors. Prior research suggested, with a small

umber of tweaks, HMM can quickly learn the users’ hidden states by

sing the Baum-Welch algorithm ( Baum et al., 2011 ). 

To learn the hidden states and corresponding parameters, we first

eed to specify the number of hidden states, which is a non-trivial task

ecause of the lack of ground-truth. A complex model with a large num-

er of hidden states may describe user interactions more accurately and

pecifically for one dataset, but it may be unable to predict other datasets

nder different task contexts. In HMM model selection, an information

riterion such as Akaike information criterion (AIC; Akaike, 1974 ) or
36 
ayesian information criterion (BIC; Mcquarrie, 1998 ) is adopted to

void over-fitting. For this study, we chose to use the BIC score to deter-

ine the optimal number of hidden states for the HMM, because the BIC

core accounts for the sample size ( Yue et al., 2014 ). There are two im-

ortant output matrices for a HMM: Emission Probability (also known as

utput probabilities) represents the distributions of the observed inter-

ctions from a specific state; Transition Probability shows the probability

f transferring from one hidden state to another. Both of these measures

ere adopted in this paper. 

. Results 

Data were analyzed using a 2 ×2 between-subject ANOVA with

cheduling mechanisms (Open-queue vs. SJF-queue) and reliability lev-

ls (high-90% vs. low-50%) to determine the differences in operators’

erformance. The following measurements ( Table 2 ) were adopted in

ur analysis: 

Two types of analyses were adopted: 1) the conventional perfor-

ance analysis, and 2) the HMM analysis. The conventional perfor-

ance analysis examined the overall performance in the primary and

econdary tasks, and the subjective perceived workload. However, these

xaminations considered only the accumulated results (e.g., number

f victims found) and failed to reveal an operator’s hidden cognitive

ntentions. The HMM analysis was therefore included in our analy-

is to further access the operator’s cognitive strategies via the emis-

ion and transition probabilities. A small portion of the preliminary re-

ults of the conventional performance analysis (number of victim de-

ections and failures resolved, and workload scores) was presented in

 Chien et al., 2013, 2012c ); however, this paper adopted more pre-

ise measures (e.g., victim finding and missing rates) to determine the

ifferences and applied the HMM approach to scrutinize the cognitive

ariances. 

.1. Conventional performance analysis 

.1.1. Victim detection (Primary task) 

Since the number of marked and unmarked victims are related to

he existing of victim appearances, the number of detected victims

as therefore first examined. The results showed a main effect for

eliability conditions (F 1,44 = 4.888, p = .032) and queue mechanisms

F 1,44 = 5.426, p = .024), where more victims were detected under the
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Table 2 

Measurement scales and its definition and concept. 

Measure Definition & concept 

Conventional performance analysis 

Total Detected Victims The number of victims detected 

by the robots while exploring 

the environment, which results 

in an operator’s opportunity to 

detect the victim appearances 

Victim Finding Rates Number of correctively marked 

victims divided by Total detected 

victims , which indicates an 

operator’s performance in the 

primary task 

Victim Missing Rates Number of missing victims divided 

by Total detected victims , which 

represents an operator’s SA in 

the primary task 

Failures Resolved The amount of robots’ failures 

resolved by an operator, which 

shows an operator’s 

performance in the secondary 

task 

Area Explored The total distance travelled by 

the robots, where larger 

distance leads to better 

opportunities to find more 

victims 

Workload Survey An operator’s experienced 

workload is evaluated by the 

NASA-TLX workload survey, 

where task performance may 

decline when the operator 

perceives too high or too low 

workload 

Hidden Markov model analysis 

Emission Probability Counting the frequency that a 

specific interaction is 

generated by a cognitive state 

Transition Probability Computing the probability of 

transferring from one cognitive 

state to another 
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Fig. 5. Number of total detected victims. 

Fig. 6. Victim finding rates. 

Fig. 7. Victim missing rates. 
igh reliability and in the Open-queue condition (as shown in Fig. 5 ). A

air-wise T-test showed that more victims were detected in the Open-

ueue method than in the SJF-queue condition ( p = .041) under high

eliability; as well as more victim targets were sensed in the high reli-

bility than low reliability condition ( p = .059) under the Open-queue

pproach. 

To better examine the relationship between the correct victim marks

nd total detected victims, an adjusted measure, victim finding rates,

as used and computed by the number of correct victim marks divided

y the total detected victims. Significantly higher victim finding rates

ere observed in the low reliability condition (F 1,44 = 5.976, p = .019),

s shown in Fig. 6 . A pair-wise T-test further revealed that, under the

pen-queue condition, more victims were successfully marked in the

ow reliability than in high reliability condition ( p = .051); however, the

ame effect was not observed in the SJF-queue approach. 

An unmarked victim (i.e., missed target) can result from insufficient

A that should be addressed in the victim detecting process. An un-

arked victim was defined as a victim appearing in a robot’s camera

ithout being located by the operator. Another adjusted measure, vic-

im missing rates , was calculated by the number of unmarked victims

ivided by the total detected victims. The results revealed a main effect

or reliability conditions (F 1,44 = 5.976, p = .019), in which higher vic-

im missing rates were found under high reliability condition (as shown

n Fig. 7 ). The results of pair-wise T-test revealed that, in the Open-

ueue condition, more victims were missed in the high reliability than
37 
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Fig. 8. Number of robot failures resolved. 
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Fig. 9. Area explored. 

Fig. 10. Number of selections in the cognitive queue. 
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ow reliability condition ( p = .051). No statistical effect was found in the

JF-queue condition between the reliability levels. 

.1.2. Failure resolved (Secondary task) 

To examine the effects of unreliable automation, pre-programmed

ystem failures were injected along a robot’s route. When a robotic agent

ncountered the predesigned failures, the robot sent a request for further

nteraction and waited for the operator’s assistance. The results showed

hat significantly more failures were resolved under high reliability con-

ition (F 1,44 = 6.057, p = .018), as shown in Fig. 8 . A pair-wise T-test re-

ealed that, under the Open-queue approach, participants resolved more

obot failures in higher reliability condition ( p = .055); however, similar

esults were found in the SJF-queue regardless of the reliability levels. 

.1.3. Area explored 

Exploring larger areas could result in greater opportunities to de-

ect more victims. The results showed marginal differences in the queue

cheme (F 1,44 = 2.844, p = .099), which suggested that when an opera-

or interacted with the robotic agents via the Open-queue approach, the

obots were able to travel longer distances; however, this effect was not

bserved in the lower reliability level (as shown in Fig. 9 ). 

.1.4. Interactive behaviors between queue and camera 

The participants had multiple ways to interact with the robotic

gents (i.e. selecting from the robot cameras, from the cognitive queu-

ng assistant, or from the map window). The results revealed that the

election behaviors were significantly influenced by the queue schemes

F 1,44 = 20.867, p < .001), in which the operators were inclined to inter-

ct with the robots through the provided cognitive queue in the Open-

ueue condition (as shown in Fig. 10 ). Neither interactions nor reliabil-

ty levels were found to be statistically significant. 

As shown in Fig. 11 , the results showed significant differences

n reliability conditions (F 1,44 = 3.450, p = .070) and queuing displays

F 1,44 = 4.307, p = .044), in which the results indicated that operators

ended to interact with the robots via the camera panels under low re-

iability level and in the SJF-queue condition. A pair-wise T-test fur-

her identified decreased reliability in the Open-queue condition sig-

ificantly increased the use of robot cameras ( p = .043); however, this

ffect was not observed in the SJF-queue. 

.1.5. Perceived workload 

The NASA-TLX instrument was used to evaluate an operator’s per-

eived workload in performing the USAR task. The results showed a

ignificant interaction between the reliability levels and queue types
38 
F 1,44 = 3.879, p = .055), in which the highest workload was reported

nder high system reliability in the Open-queue condition, and the low-

st workload score was reported under high reliability condition in the

JF-queue scheme (as shown in Fig. 12 ). A pair-wise T-test further re-

ealed that under higher system reliability, operators perceived heav-

er workloads in the Open-queue than SJF-queue condition ( p = .010).

o investigate the influence related to the prescriptive aids in the SJF-

ueue scheme, the frustration scale was analyzed separately. The re-

ults showed that, under high reliability, higher frustration scores were

eported in the Open-queue than SJF-queue situation ( p = .062). 

The analysis above measured the participants’ overall performance

hile interacting with the cognitive queuing assistants to prioritize

obots’ requests under various conditions. However, these measures

ailed to reveal the underlying factors affecting operators’ cognitive

tates and decision-making strategies while performing supervisory con-

rol over multiple robots in multitasking environments. The deficiency

f cognitive resources has been a longstanding problem in multitasking
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Fig. 11. Number of selections in robot cameras. 

Fig. 12. Perceived Workload. 
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Table 3 

User interaction categorization. 

Interaction Description 

Queue A user checked the cognitive assistant (coined as status 

panel in Figs. 2 and 4 ) and selected a robot from the 

queue 

Camera A user clicked on a camera to select a robot 

Map A user selected a robot in the map window 

Manual A user manually controlled a robot to solve the robot 

failures or to locate a victim 

Auto A user clicked on the auto button to set a robot to the 

autonomous mode 

Victim A user added/deleted a victim mark on the map 

Table 4 

Emission probabilities in open-queue under the high reliability condition. 

Open HR Queue Camera Map Manual Auto Victim 

HQ 0.62 0.12 0.17 

HC 0.75 0.18 

HA 0.79 0.20 

HM 0.94 
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onditions, in which the operators themselves may not be aware that in-

ufficient resources increase the difficulty of reflecting on the problem.

s a result, identifying the deficiency in provided cognitive queuing aids

equires a fine-grained approach to further evaluate the interaction be-

ween human operators and cognitive assistants. Therefore, a machine

earning approach, HMM, was adopted to examine the operators’ cog-

itive intentions. 

.2. Hidden Markov model (HMM) analysis 

A HMM requires a list of sequentially observed user interactions as

nput. The interactions used in this study were obtained through two

est-bed systems, USARSim and MrCS, by recording users’ click actions .

ased on users’ click actions, we sorted the logged actions into six cate-

ories, including status panel, camera, map, teleop, auto, and victim (de-

ails are included in Table 3 ). An operator can select a robot to control

rom either its thumbnail (indicated as Camera in Table 3 ), its icon on

he map window (Map), or its legend on the cognitive assistant (Queue).
39 
he victim detection task is completed by placing a mark on the map

indow (Victim). In the failure recovery task, an operator first selects

 failed robot and manually controls the robot to the next predefined

aypoint (Manual), then completes the task by returning the robot to

he autonomous mode (Auto). 

Probabilities and transitions among the retrieved hidden states re-

eal a great deal about an operator’s strategies and interactions with the

ystem aids. For example, the probability of the use (or disuse) of the

rovided cognitive assistant (i.e., Queue) provides evidence for its role

n influencing operators’ internal cognitive states, whereas the resulting

ransitions are likely to involve robot failures that have been resolved. 

.2.1. Open-queue model 

Four hidden states were identified in the high reliability condi-

ion and were labeled based on the emission probability, which repre-

ents the probability of the observed interactions from a cognitive state

 Table 4 , emission probabilities lower than 0.10 were omitted for legi-

ility purposes). The first hidden state had a high probability (62%) of

enerating an interaction with Queue (defined in Table 4 ); we therefore

amed it HQ. Based on the same naming schema, we noted the rest of

nteractions as HC (Camera), HA (Auto), and HM (Manual). The results

evealed that, in the Open-queue condition, operators tended to inter-

ct with robots through the camera or queue panels (HC and HQ states,

espectively) rather than from the map window, leaving the Map state

ut of the model. Additionally, the Victim state was observed across HQ,

C, HA, and HM states, but never dominated in any of the conditions.

herefore, due to its low probability, the Victim state was not included

n the model. 

Transitions among these four hidden states were plotted in Fig. 13

transition probabilities lower than 0.10 were also omitted for legibil-

ty purposes). A pattern of high transition probability was observed

n HQ →HM →HA, when an operator resolved a robot request from the

ueue (HQ) and manually drove the robot from the failure point to the

ext predefined waypoint (HM). Upon reaching the waypoint, the robot

esumed the autonomous mode (HA); then the operator selected another

obot from the queue to fulfill the robot’s requests (HA →HQ). 

Another four hidden states model was found in the low reliability

ondition (shown in Table 5 ), which was similar to the retrieved struc-

ures in the high reliability condition. The HM, HA, HC, and HQ states

ignificantly involved the interactions of Manual, Auto, Camera, and

ueue, respectively. 
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Fig. 13. Transition probabilities of hidden states in Open-queue under the high 

reliability condition. 

Table 5 

Emission probabilities in open-queue under the low reliability condition. 

Open LR Queue Camera Map Manual Auto Victim 

HM 0.05 0.79 0.14 

HA 0.72 0.23 

HC 0.84 

HQ 0.80 0.10 

Fig. 14. Transition probabilities of hidden states in Open-queue under the low 

reliability condition. 
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Table 6 

T-test analysis in Emission and Transition Probabili- 

ties between High and Low reliability conditions in 

Open-queue. 

States Post-hoc 

Emission probability 

Queue (HQ) HR > LR, p = .050 

Camera (HC) LR > HR, p = .011 

Manual (HM) LR > HR, p = .035 

Transition probability 

HQ →HM HR > LR, p = .002 

HA →HQ HR > LR, p < .001 

HC →HM LR > HR, p < .001 

HA →HC LR > HR, p < .001 

HM →HC LR > HR, p < .001 

Table 7 

Emission probabilities in SJF-queue under the high reliability condition. 

SJF HR Queue Camera Map Manual Auto Victim 

HC 0.79 

HM 0.88 

HV 0.11 0.87 

HA 0.93 

Fig. 15. Transition probabilities of hidden states in SJF-queue under the high 

reliability condition. 
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The transition probabilities were visualized in Fig. 14 and the tran-

ition pattern (HQ →HM →HA) was again observed. However, while in-

eracting with unreliable system aids, operators exhibited more com-

lex behavioral patterns. When compared to the high reliability condi-

ion, decreasing system reliability generates more links (HM →HC: 21%;

A →HC: 30%) and transition pattern (HM →HA →HC) to the Camera

tate, which did not exist in the high reliability condition. 

To examine the potential differences in emission and transition prob-

bilities between the high and low reliabilities in the Open-queue con-

itions, pair-wise T-tests were conducted. The results are summarized

n Table 6 . The comparisons in emission and transition probabilities in-

icated that operators relied more on the cameras than the provided

ognitive queue under the low reliability condition. 

.2.2. SJF-queue 

The emission probability matrices ( Table 7 ) revealed a four hidden

tates model in the SJF-queue under the high reliability condition. When
40 
ompared to the SJF with Open conditions, the Queue state had low

robability and was therefore excluded from the model. However, a Vic-

im state was identified as a dominant state in the SJF condition, while

t had little effect in the Open condition. The results revealed that op-

rators were less likely to interact with the provided cognitive assistant

i.e., Queue) in the forced-queue SJF condition. 

Two major patterns were observed in the transition proba-

ilities in the SJF-queue condition ( Fig. 15 ), HM →HA →HC and

M →HV →HA →HC. These patterns indicated that operators allocated

ore attention to interacting with the cameras while performing the

asks. For example, an operator may first manually drive the robot to

re)gain necessary awareness (HM) and then switch the robot back to

utonomous mode (HA). From that point, the operator used the cameras

HC) to monitor overall statuses, including marking the location of vic-

ims and solving the robot failures. When a victim appeared on a robot

amera, an operator manually controlled robots (HC →HM) to gain the

ictim’s location in order to increase the accuracy of a victim mark (HV).

nce a mark had been placed, the robots were set to autonomous mode

HA) and the operator allocated her attention to the cameras (HC) to

gain perform supervisory control of the robot teams and maintain SA.
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Table 8 

Emission probabilities in SJF-queue under the low reliability condition. 

SJF LR Queue Camera Map Manual Auto Victim 

HM 0.87 

HV 0.13 0.78 

HC 0.86 

HA 0.91 

Fig. 16. Transition probabilities of hidden states in SJF-queue under the low 

reliability condition. 
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f another victim appeared in a robot’s camera, the above procedures

ere repeated. 

Identical models were retrieved from the emission probabilities ma-

rices in SJF-queue under the low reliability condition. Table 8 includes

mission distributions among the hidden states. As a result, the Map and

ueue states were of little use and therefore are absent from the model.

The identical transition patterns were found in the SJF-queue under

he low reliability condition ( Fig. 16 ). Further analyses (T-test) were

onducted to identify the differences in emission and transition proba-

ilities in SJF conditions with different reliability levels. However, no

tatistical difference was observed. 

. Discussion 

Using limited cognitive resources effectively is critical in human

ulti-robot interaction, in which operators must efficiently allocate

heir attention to urgent events and simultaneously selectively filter

ut any unnecessary information ( Kirlik, 1993 ). Prior studies ( Chien

t al., 2012b; Crandall et al., 2005; Kozima and Yano, 2004; Yan et al.,

013 ) suggested that robot self-reflection can enhance the performance

f human-robot teams, which allows operators to focus on important

asks rather than shifting attention to interact with robots sequentially

n a round-robin fashion. This study further examines the effect of un-

eliable automation (high-90% vs. low-50%) in a human multi-robot

ontrol system along with two types of queuing principles (Open vs.

JF) for scheduling the operator’s attention. The Open-queue displays

he current status for each robot so that an operator can choose which

obots to assist in a self-paced fashion; while the SJF-queue only pro-

ides an alarm by following the shortest-job-first discipline to direct an

perator to service the highest priority task. In terms of the reliability

onditions, under low system reliability, only half of the robot failure

equests are reported to the cognitive queuing aids and the other failures

re excluded from the queue. 
41 
.1. System reliability in queuing aids 

Although the measures of the total number of detected victims favored

he high reliability condition, victim missing rates were also increased

nder high reliability level. In other words, better performance in vic-

im finding rates was found under the low system reliability. The result

ay be caused by an insufficient attention allocation strategy. Under

he high system reliability, as most of the robots’ failures were accu-

ately reported through the queuing aids, the operators were capable of

aintaining adequate SA in robots’ statuses and efficiently allocating at-

ention to fulfill robots’ requests. As a result, operators may spend more

esources on assisting robots’ failures rather than devoting sufficient at-

ention to monitoring victim appearances. This attentional strategy led

o the robots having better chances to remain in the autonomous mode

rather than in the failed status and waiting for the operator’s assistance)

o explore the environments and therefore have greater opportunities to

etect potential victims; however, this attentional approach resulted in

uboptimal performance in the primary task, locating and marking the

ictim appearances. Our results confirmed these assumptions. Partici-

ants resolved more robot failures and experienced higher victim miss-

ng rates in the high system reliability; whereas higher victim finding rates

nd fewer robot failures were accomplished under the low reliability con-

ition. Since half of the robot failures were not detected under the low

ystem reliability, participants could focus their attention on detecting

he potential victims, which resulted in higher response rates for victim

ppearance (i.e., higher victim finding rates). 

In addition, the system’s reliability greatly influenced operators’ in-

eractive behaviors with the robots. More camera selections were ob-

erved under low system reliability, indicating that the unreliable sys-

em led the operators to actively supervise robot statuses and system

erformance through the cameras, rather than passively received noti-

cations from the provided cognitive queuing assistant. As the opera-

ors devoted more attentional resources to the cameras, the behavioral

hanges also increased opportunities for them to detect the victims’ ap-

earances. The aforementioned results partially confirmed our first hy-

othesis, in which higher reliability levels increased the overall number

f detected victims and area explored but did not necessarily contribute

o better victim finding rates. 

.2. Queuing mechanisms 

Significantly higher numbers of total detected victims and larger areas

xplored were found in the Open-queue than the SJF-queue condition.

ur second hypothesis was based on Garey’s (1976) findings that sug-

ested the SJF scheme can effectively enhance task performance. How-

ver, our results showed that the SJF-queue scheme failed to outper-

orm the Open-queue approach across all the experimental setups, which

egated our second hypothesis. The Open-queue approach presented all

obots’ conditions and used different colors to indicate robots’ current

ituations. The frequent updates of color cues seemed to drastically at-

ract operators’ attention and encouraged them to respond robots’ re-

uests in a timely manner. The situation was confirmed by the differ-

nces in the interactive behaviors between queuing aids and robot cam-

ras. As shown in Figs. 10 and 11 , in the SJF-queue approach, little at-

ention was devoted to the provided cognitive assistant (i.e., queue) and

perators tended to interact with robots through the cameras, whereas

ontrary results were found in the Open-queue condition (i.e., operators

elied more on the queuing assistant in the Open-queue). In the Open-

ueue condition, operators were not required to follow the system rec-

mmendation to interact with a specified robot request. However, under

he self-paced interactions, operators may devote additional resources

o sort the high-priority robot requests, which reserved little attentional

esources for monitoring victims’ appearances. Because of the ineffec-

ive scheduling strategy in the Open-queue condition, showing all robots

tatuses along with failure requests may distract an operator’s attention
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nd lead the participant eager to solve the failed robots, instead of fo-

using on the victim detection task. 

.3. System reliability x queuing mechanisms 

As the insufficient attentional scheduling strategy was observed in

he Open-queue scheme, increased system reliability led the operators

o allocate even more attention to responding to the robots’ requests,

hich led to the poor performance in victim finding rates . Therefore, the

ffects of system reliability were not as expected. Since most of the robot

ailures were reported in the Open-queue condition under high reliabil-

ty, the endless robots’ requests largely consumed operators’ attentional

esources leading to lesser attention available for the victim detection

asks. In other words, with low system reliability in Open-queue, opera-

ors had more resources to focus on the primary task. These observations

ere supported as the higher number of failure resolved and increased

ictim missing rates were both under the high reliability condition in the

pen-queue; however, the effects of system reliability were not found in

he SJF-queue. The differences in outcomes of victim finding/missing rates

nd failures resolved remained negligible between the reliability levels in

he SJF conditions, which suggested that the SJF scheme can effectively

elp operators to achieve stable performance in the primary as well as

econdary tasks regardless of the effects of unreliable system aids. Our

hird hypothesis surmised both queuing approaches would achieve bet-

er outcomes under the high system reliability. However, the measures

f victim finding/missing rates favored the low reliability condition in the

pen-queue, and little difference was observed between queuing relia-

ility in the SJF-queue approach, which denied the third hypothesis. 

Although securing system reliability in the Open-queue condition

nhanced the performance in the failures resolved task, it failed to con-

ribute to a better outcome in the victim detection task. The adoption of

he Open-queue scheduling approach allowed operators to freely choose

 robot to serve. This is particularly helpful when an operator had dif-

culties in complying with unreliable system aids. As observed in the

pen-queue, under the low reliability level, increasing numbers of robot

elections were shifted from the queuing aids to robot cameras, which

howed that the interactive behaviors in the Open-queue approach were

daptable when the system aids contributed less assistance. 

.4. User perception of workload and frustration 

The use of cognitive assistance may decrease operators’ perceived

orkload in the supervisory control process. An interesting finding in

he workload survey was that both the highest and lowest workload

cores were reported in the high reliability conditions, where the Open-

ueue had the highest workload and the SJF-queue was judged as hav-

ng the lowest. However, participants experienced similar workloads be-

ween the two queuing methods under low system reliability. 

Since the Open-queue approach showed all robots’ (normal and ab-

ormal) conditions and continuously reported each robot’s status via

he color aids, participants might feel more distracted by the changes in

olor cues. This effect was exacerbated with the endless updates under

he high reliability condition, which resulted in a higher level of per-

eived workload. The SJF mechanism prioritized robot requests based

n the task difficulty and clustered similar types of robot failures, which

educed the decision-making time and decreased the cognitive cost to

witching between recovery procedures by sharing the similar cognitive

trategies among various types of failures. In other words, operators may

ot only take advantage of decreasing the cost of regaining SA between

obots’ requests, but also resolve more failures with no effort (e.g., cam-

ra failure), leading the differences of perceived workload. 

Additionally, a high frustration was reported in the Open-queue con-

ition, while the lowest score was reported in the SJF-queue method un-

er the high reliability condition. The effects may be caused by reasons

imilar to those seen in the workload variances, where endless robot

ailure requests can generate a higher level of frustration. The above
42 
esults partially confirmed the forth hypothesis, in which a lower work-

oad and frustration were judged in the SJF-queue than the Open-queue

onditions; however, this effect was only found under the high reliabil-

ty condition, but it did not exist in the low reliability situation. 

.5. Hidden Markov model 

This paper applied HMM to examine human supervisory control pro-

esses in human multi-robot interactions. Although a similar four-state

MM structure was observed among the experimental conditions, the

esults reveled that HMM-based analysis was able to discover funda-

ental differences between the two experimental queuing mechanisms

nder two levels of system reliability, which were difficult to examine

hrough the conventional performance analysis. For example, although

he results of the primary task (victim finding/missing rates) and the sec-

ndary task (failures resolved) were similar in both the Open and SJF

chemes, a Queue (HQ) state was observed in the Open-queue condition,

hereas a Victim (HV) state was retrieved in the SJF-queue condition.

he variances in cognitive states revealed the fundamental differences

etween the two queuing conditions, which suggested that HMM could

rovide deeper analysis and further differentiate users’ behavioral pat-

erns as well as cognitive intentions. 

The notable differences between the retrieved cognitive states (HQ

s. HV) also reflected the transition probabilities and resulting patterns.

hile a Victim state was generated by the SJF method, this could be

hat operators devoted more cognitive resources to the victim detec-

ion tasks rather than accepting the suggestions from the queue. The

dentical HMM structure was therefore found in the SJF-queue condi-

ion in both high and low reliability levels. That suggests that the SJF

cheme was more robust regardless of the system reliability conditions.

n the Open-queue condition, the cognitive Queue (HQ) state and tran-

ition pattern (HQ →HM →HA) revealed that a considerable amount of

ttentional resources was devoted to the subtask of monitoring robots’

onditions and assisting robot failure requests, which enabled the robots

o explore larger areas and detect more potential victims, leading better

erformance in the measure of total victims detected and area explored in

he Open-queue. 

Allowing operators a self-initiated series of events increased the com-

lexity of the supervisory control processes. As shown in the Open-queue

ethod, most of the cognitive states included at least two interactions

except HM in high reliability). In addition, different transition patterns

ere identified between the reliability conditions in the Open-queue

 Figs. 13 and 14 ). The post-hoc comparisons ( Table 6 ) further proved

he differences, in which decreasing reliability led the operators to divert

rom the cognitive queue and allocate more attention to the robots’ cam-

ras. As a result, the Queue (HQ) and Camera (HC) states were greatly in-

uenced by the reliability conditions, in which fewer Queue transitions

nd more Camera transitions were found in the low reliability condi-

ion. In other words, with the decreased system reliability in the Open-

ueue, more transition patterns were linked to the Camera state. For

xample, in the Open-queue, a new transition pattern (HM →HA →HC)

as only found under low reliability. This pattern was also found in the

JF-queue across the system reliability conditions. The transition differ-

nces revealed operators’ adaptive behaviors while interacting with the

ow reliability aids, and further explained the performance variances

e.g., victim finding/missing rates and number of failure resolved). 

As the identical HMM model was observed in the SJF condition and

ore complicated HMM structures were retrieved in the Open-queue

ethod between the reliability levels, the results supported our last hy-

othesis, in which more sophisticated HMM patterns were found in the

pen-queue group. These findings suggested that HMM can provide a

igh-level abstraction of users’ intentions and identify the underlying

ehavioral patterns that are difficult to achieve through a conventional

nalysis. 
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. Conclusion 

Human multi-robot interaction is a complex process, in which hu-

an operators must continuously shift their attention between operating

obotic agents and monitoring the system’s status among various tasks.

rior research concludes that human operators often fail to schedule

heir attention to the correct events on time, which leads to suboptimal

ask performance. To optimize attentional resources, this study investi-

ated two different scheduling approaches under two levels of system

eliabilities. 

The results confirmed that human attentional resources can be ef-

ectively scheduled and directed to emergent events rather than normal

onitoring. The SJF-queue approach was capable of providing a bal-

nced performance in both the primary and secondary tasks with a lower

evel of perceived workload, whereas the Open-queue scheme seemed

ess effective in the USAR context. However, it is unrealistic to decide

hich queuing mechanism is superior since different contexts require

ifferent cognitive assistance. For example, while monitoring multiple

treet-sweeping robots, the SJF-queue can prioritize and suggest easier

asks (e.g., camera sensor failed) for operators; whereas when supervis-

ng a team of surveillance robots, the Open-queue can be a better choice

o allow an operator to choose the tasks based on the context (e.g., day-

ime vs. nighttime). The results also suggested that simply increasing the

ystem reliability may not necessarily contribute to better task perfor-

ance. Thus, examining how human operators deploy their cognitive

esources between cognitive assistance and task contexts will be critical

o enhance the overall performance. 

The increased use of human-robot systems raises many societal chal-

enges as well as research opportunities. As the modern robotic systems

ot only supplant the inherent task risks of human operators’ safety but

lso optimize the benefits of technological capabilities, the rapid growth

n task complexity requires more flexible system designs to enhance

ompetitiveness. However, under the multitasking conditions, human

perators may have insufficient resources to monitor and interact with

ulti-agent teams simultaneously. The developed SJF queuing mecha-

ism can efficiently schedule an operator’s limited cognitive resources to

he needed events in a timely manner. In addition, investigating how hu-

an operators consume their attentional resources in the multitask set-

ings is also critical to facilitate the processes of human-machine interac-

ion. As the results demonstrated, the HMM analysis enables researchers

o better understand an operator’s cognitive states and intentions as well

s to predict potential behaviors by elaborating on strategies and biases

hat may be difficult to study through conventional approaches. The

ser interaction measured in the present HMM analysis was obtained

rom the logs of the clicked behaviors in our experimental system, with

o customization of the context-specific or system-specific interactive

ehaviors. Therefore, by following the standard process, the behavior

ategorization schemes and the procedures of performing a HMM are

apable of being generalized to other HRI systems. Understanding the

nteractive process can provide researchers with useful suggestions to

mprove the design of cognitive assistance. We expect that the HMM

pproach could benefit researchers in further investigating users’ cogni-

ive needs. 

Due to the experimental setup, this study only investigated the in-

eraction between a single operator and multiple robot teams, in which

nly one type of the predesigned failures was injected to a robot at one

ime. Although the present research has been carefully conducted, it

ight always have some extreme situations in realistic that were ex-

luded in this study (e.g., a complete failure of multiple sensors). In

uture works, we hope to examine a range of team structures (e.g.,

ultiple operators controlling various number of intelligent agents)

nd system reliability (e.g., multiple sensor failures or false alarm

rone vs. miss prone) combinations to develop a more robust cognitive

ssistant. 
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