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A B S T R A C T

Cloud-based streaming services, such as real-time streaming video and gaming services, have emerged as pop-
ular online Internet applications in recent years. Providing systematic quality estimation before (or after)
launching these services has raised a significant challenge due to dynamic runtime status of servers, clients and
the network environment. This paper proposes a queueing model for the cloud-based streaming service in which
packet level dynamics are taken into consideration so that customer-affected performance can be estimated by a
hybrid simulation approach. The simulation approach is particularly useful for cloud service providers to
evaluate the service quality before launching the service. The analytical model has two parts: (1) the virtual-
machine-level service queueing model along with the stationary closed-form expressions on the average number
of customers, the average waiting time, and the average number of employed virtual machines (VMs), and (2)
the microscopic model and the simulation procedure on the customer side that capture the lag time of streaming
packets. The simulation procedure is derived based on the analytical model. The simulation results show how the
service quality is affected by server and customer performances, providing the insight for cloud resource pro-
vision and client parameter settings.

1. Introduction

Cloud computing has grabbed the spotlight in IT industries. No
matter in the form of SaaS (i.e., Software-as-a-Service), IaaS (i.e.,
Infrastructure-as-a-Service), or PaaS (i.e., Platform-as-a-Service), cloud-
based services have become more popular because they streamline
business processes and cut cost for companies. By outsourcing digital
storage, software, hardware, and even whole application systems to
cloud service providers, companies can become thin clients with
minimal communicating and computing facilities on their sides. To
access to services pre-agreed with a service provider, a company only
needs to connect the clients on his side to a server of the service pro-
vider, who has already configured his centralized computing hardware
into virtual machines (VMs), i.e., artificial partitions providing a com-
puting environment on which operating systems and programs can run.
As far as the company on the client side is concerned, a VM behaves as
if a physical computer right with the company. Yet the partitioning,
configuration, and operation rules of VMs can be easily changed, and
the elasticity on the usage of cloud resources allows VMs to be cloned
and reallocated according to dynamic needs.

A cloud-based service provider provides different types of service to
multiple customers at the same time. While the amount of investment

by the service provider is a sunk cost, the effective and efficient de-
ployment of resources is essential to its service level to customers, and
eventually to its profitability.

The amount of resources deployed to a particular service is depen-
dent on the pre-agreed service level between a service provider and its
customers. There are various types of service levels, varying in the
amount of computation power, storage, and speed of data transfer. With
thin clients and fluctuating internet traffic, customer satisfaction is
especially important. Any contract renewal would be shaky if on
average customers experience many interruptions of service (i.e., the VM
often temporarily stalls within a customer connection session), long lag
time (i.e., long time waiting for a VM to resume function), or both, in
sessions connecting to servers of the service provider. Thus, before
launching the service, based on the prior assessment on customer
characteristics, such as the arrival rate of demands, and the distribution
of the length of connection sessions, cloud service providers would like
to predict:

• the number of VMs required for a given set of operation rules to
configure the VMs;

• the estimates of service levels such as the mean number of inter-
ruptions of service and mean lag time for a customer within his
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connection session as the controllable parameters of the cloud ser-
vice vary.

While desirable to have, the amount of resources required and the
resulted service levels are difficult to predict. Consider a simple set of
operation rules to configure the system: All the resources of a cloud
service are configured into working (i.e., active) VMs, and any in-
coming customer is directed to the VM with the least workload, or the
least number of customers if the workloads of customers are unknown,
where ties are broken arbitrarily. An inviting approach to solve the
problem is to model the VMs as servers, subject to random arrivals of
customers requesting random services. Even with classical assumptions
for queueing models, such as Poisson arrivals and exponential service
times (i.e., connection times), where all random quantities are in-
dependent from each other, there is no closed-form solution to the
problem (Gupta et al. [22]).

One may opt for simulation, the powerful generic tool that theore-
tically can be applied to estimate performance measures for any sto-
chastic problems. This approach does not work in practice. For sim-
plicity consider a system with only 100 VMs. At any time, theoretically
any number of these 100 VMs may be working, each with any number
of customers. The feasible states of the system, i.e., the combinations of
the number of working VMs together with the combinations of their
customers, are simply too astronomical to defy any precise statistical
estimates for the system performance measures.

It turns out that lacking closed-form solution and missing precision
are not the main problems of the approach. More important, a con-
ventional queueing model that treats VMs as servers serving customers
does not capture reality: it fails to model the dynamics in the physical
layer of cloud-based service system, and misses the interaction between
the dynamics and the performance of the system in service levels. In the
following paragraphs we first describe the physical layer of a cloud-
based service system and then explain the problems of a conventional
queueing model.

In a typical cloud-based service [52], to obtain cloud-based
streaming service, a customer sends a request for an index page through
his local device to the cloud-based service system. On receiving the re-
quest, the dispatcher of the system, an interface between the customers
and the system, passes the request to the monitor, which is the central
control of the system. The monitor is the control unit programmed to
monitor the workload of active VMs, to assign the VM for a customer
(i.e., an incoming request), to initiate idling VMs for high workload,
and possibly to retire VMs for low workload. The precise logic of the
monitor depends on how it is programmed. The URL of the cloud server,
the VM for a customer, is sent from the monitor to the local device of
the customer through the dispatcher. During the connection session of a
customer, its cloud server may work in the processor-sharing mode, i.e.,
the cloud server provides service to multiple customers at the same
time. The precise sharing mode of a cloud server depends on its pro-
grammed time-division multiplexing scheme. When the service turn of a
customer comes, for the duration of time allocated to the customer, the
cloud server codes data in packets and sends them through the virtual
path set up temporarily between the cloud server and the client local
device. Even for a fixed pair of server and client, such virtual paths can
change rapidly with time so that packets sent at different times may go
through different virtual paths. As a result of the physical structure of a
cloud-based service system, the service level of a customer certainly
depends on the operation rules on initiation and retirement of VMs, the
time-division multiplexing scheme within VMs, the power of the cloud
server to code and transmit data, the random Internet traffic for the
packets, and the power the local device to decode data. Moreover, as
packets are sent through different virtual paths subject to different In-
ternet traffic, they may not arrive at the client local device at the correct
order; the packets for a video cannot be shown in a client local device if
some earlier packets have not arrived. The service levels of a customer,
such as interruptions and lag time, are affected by all these factors.

In modeling VMs as servers and packets as customers, the resulted
queueing model completely misses the dynamics in physical layers of
the cloud-based system. All aforementioned factors that affecting the
service levels of the cloud-based service system as discussed in the
above paragraph are ignored. Moreover, the waiting times from any
such models are the experience of individual packets, not of customers. As
far as we know, there is no analytical model that overcomes these
problems by explicitly considering the aforementioned factors.

In this paper we develop an analytical approach to explicitly con-
sider the dynamics in the physical layer of a cloud-based system, and
relates it to the experience of customers. As the situation is too com-
plicated, there is a compromise between the generality of the model and
the tractability of its results. In particular, we make the following as-
sumptions on the operation rules of VMs and characteristics of custo-
mers. While restricting the generality, the assumptions are common and
frequently appear in the literature.

1. The customer requests occur according to a stationary Poisson
process of rate λ.

2. The connection times that the customers plan to connect to the cloud
servers are i.i.d. C∼ exp(μ), independent of the request process.

3. A VM adopts the round-robin rule to serve customers, each turn
serving a customer for a fixed duration called quantumdenoted as Δ.

4. The VMs are programmed to initiate and retire in the following way:
At any time only one VM, the corresponding worker, receives new
requests. At any epoch when accepting a new request makes B
customers at the corresponding worker, the monitor takes two ac-
tions. First, it informs the dispatcher not to send any futher request
to the current corresponding worker, i.e., the current corresponding
worker starts its retirement. It will join the idle pool of VMs when all
its customers have finished their sessions. Second, the monitor ac-
tivates one idle VM as the new corresponding worker and asks the
dispatcher to send futher arrivals to this VM.

The Poisson arrival process in the first assumption is a widely-used
approximation for a large collection of potential customers of the cloud-
based service each requesting the service with very small probability
but the mean number of requests does not change with time. In many
real-life applications, the customer requests are time varying, possibly
in a cyclic pattern varying with the hour of a day, the day of a week,
and both. An interpretation of our assumption is that we adopt the
simple peak hour approximation discussed in Green and Kolesar [20], i.e.,
we use a stationary Poisson process with the average peak hour rate.
Such an approximation is the worst case analysis as there are off-peak
periods. Fortunately, the procedure that we develop can be applied as
an approximation for a heterogeneous Poisson demand process with the
procedure applied to each interval of piecewise constant arrival rate.
More discussion on approximation errors (or accuracy) and general-
ization using steady-state approximation for time-dependent perfor-
mance can be found in [10,21,24,30,42].

The second assumption, while restrictive, appears in many classical
queueing models. In order to develop a computationally tractable
model that captures the many features in the physical layer of a cloud-
based system, we rely on this classical assumption. Previous studies on
viewing time of users in practice can be found in [15,16,31,50]. Chen
et al. [15] show that users spend a lot of time browsing, and only oc-
casionally (around 20% of the time) watching a video to its completion.
By predicting the user departure behavior, an effective streaming
strategy [16] is proposed to avoid the waste on bandwidth to achieve
better service quality. Xu et al. [50] show that viewing time of
streaming users fits a hyper-exponential distribution, where all the data
could be separated into two categories (i.e., short and long), and could
be inferred via a Bayesian approach with information from content
providers. Li et al. [31] indicate a notable impact of mobile device type
for abandonment rates over 9 million access logs collected from the
PPTV live streaming system.
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The third assumption is fairly close to reality. The CPU of a com-
puter in general works in discrete time unit, which, for ease of re-
ference, is called quantum Δ in this paper. Unless the tasks are of dif-
ferent priorities, the round-robin time multiplexing rule is very
common. There are queueing analyses of the round-robin packet
scheduling policy in computer system that try to capture the effect of
multiple clients on a server, or a VM in our context (Sakata et al. [39],
and Rasch [37], Silberschatz et al. [40]). However, these models do not
model the dynamics in the physical layer as we do.

The fourth assumption is the truly key assumption developed spe-
cially in this paper. As shown in subsequent Section 3, together with
other assumptions, the fourth assumption leads to closed-form expres-
sions for stationary (i.e., steady-state) distribution of the corresponding
worker, the mean time from initiation to complete retirement for a VM,
and the mean number of working VMs in the cloud-based service
system. Such system characteristics are essential for resource provision
before launching a cloud-based system. Moreover, the stationary dis-
tribution of the corresponding worker eventually reveals the service
levels of the system, as measured by the mean number of interruptions
and mean lag time of a customer during his connection session.

Under these four assumptions, we develop a solution approach to
deduce exactly the service levels defined for the experience of custo-
mers, with the dynamics of the physical layer incorporated in the de-
rivation of the service levels. The solution approach is of two levels. The
macroscopic level models the connection sessions of customers; it finds
the mean number of the VMs required and the distribution of the
number of customers at the corresponding worker by steady-state
analysis (Section 3). The microscopic level deduces by simulating the
physical layer of the cloud-based system to get the service levels for the
experience of customers (Section 4). The results include the mean
number of interruptions and mean lag time of a customer as a function
of the length of quantum Δ and upper bound of customer B. The four
assumptions enable us skipping the infeasible task of simulating the
whole system. Instead, we can simply repeatedly simulate the life cycles
of one VM, from initiation as a corresponding worker, to retiring, and
finally to idling. In these simulated life cycles, we trace the sample
paths of k-customers who on arrival finds k-customers being served at
the corresponding worker. The averages from these sample paths give
the mean number of interruptions and the mean lag time in a connec-
tion session of a k-customer. With known stationary distribution of the
number of customers at the corresponding worker, which matches with
those of the k-customers, the mean number of interruptions and mean
lag time of k-customers give the corresponding values of the system
service levels. As our solution approach combines steady-state analysis
and simulation, we call it the hybrid simulation approach.

This work has the following contributions: (1) Novelty: It develops a
solution approach combining queueing models and simulation to cap-
ture the detailed streaming process of packets in the physical layer of a
cloud-based service system to deduce the personal experience of cus-
tomers under a given parameter setting of the system. (2) Precision: The
exact analysis of the proposed model gives closed-form expressions of
performance measures, on server side (i.e., the mean number of VMs
required, the mean life cycle time of a VM (i.e., the mean time for a VM
from being activated to joining the idle pool of VMs), and the number of
customers at a VM) and on customer side (i.e., mean number of inter-
ruptions and mean lag time on a customer session). (3) Simulation: The
novel simulation approach requires simulating the experience of in-
dividual customers on a single VM, not a complicated system with
comings and goings of VMs and customers. (4) Application: As the so-
lution approach can predict the service level for a given parameter
setting of a cloud-based service system, it is an useful tool to project the
amount of resource required in the design phase of the system.

The rest of the paper is organized as follows. Section 2 briefly re-
views the literature on service quality of online streaming services.
Section 3 is on the macro view of the system where the VMs interact
with the customers. The section describes the service framework for

cloud-based streaming services, the associated queueing models, the
theoretical derivation, and the closed-form solutions of operation
characteristics. Section 4 is on the micro view where the physical layer
of the cloud-based service system interacts with customers. It provides
simulation procedures and results on service quality analysis from the
perspective of customers. Section 5 concludes the work.

2. Literature review

Taking advantage of a broadband connection and large server
clusters, the entertainment and media industries have provided an ex-
cellent example cloud-based video services on the World Wide Web
(WWW). For instance, Google retains global online video dominance
with over 40% of videos viewed via YouTube worldwide. Furthermore,
aimed at target audiences, websites or specific internet channels are
beginning to mimic traditional TV programs to offer video programs
(intertwining with advertisement), e.g., the service provided by Blinkx
[2], the UK-based video search and advertisement network company
that has acquired the US-based advertisement network company Burst
Media in 2011. As a result of providing customers video-on-demand
viewing experience, the online video service already makes up the
largest component of global internet traffic (Budde Com [3]). There are
similar surges of cloud-based services in other sectors, e.g., cloud
gaming services, such as OnLive [34], StreamMyGame [43], and G-
Cluster [19].

The rise of cloud-based streaming services demands a thorough
analysis of such communication systems. In general the analysis of
communication systems can be from two perspectives, of information
system and of operations analysis.

For the information system perspective, empirical research is con-
ducted to trace packet flows among servers and clients. Chen et al. [8,9]
propose an empirical study on evaluating the quality and measuring the
latency of cloud gaming services, showing that OnLive [34] has better
performance than StreamMyGame [43]. For the content distribution
networks of Google, Krishnan et al. [28] find out that even geo-
graphically near clients served by the same server can have round trip
times differ for more than 50 ms, and empirically it is suboptimal to
direct every client to the server of the least latency. Adhikari et al. [1]
discover from the packet flow data that YouTube employs a propor-
tional load balancing strategy among its seven data centers, and in-
ternet service providers can formulate strategy to response after un-
derstanding this YouTube’s strategy and estimating the “unseen” traffic.
There are studies on the transmission technology. Yin et al. [51] pro-
pose a hybrid approach that combines content delivery networks with
per-to-peer (P2P) systems, achieving efficient delivery of live video
streaming. Desmet et al. [17] compare P2P with the traditional client/
server technology. They find that P2P is scalable and cost effective.
Servers, clients, and VMs act like grids and the processing on packets,
such as coding, transcoding, and decoding, act like jobs at grids. The
packet flows through a communication network thus then lead to
scheduling jobs and workflows in grids in a distributed environment.
See the multi-criterion grid workflow scheduling in Wieczorek et al.
[48], the advance reservation in Desmet et al. [17] to avoid congestion,
and the dynamic resources allocation to minimize latency and cost in
Ishii and Suzumura [25]. Bouten et al. [7] propose to adopt HTTP
adaptive streaming and to take into account the in-network decisions
during the rate adaptation process. They deploy optimization agents
that monitor the available throughput using sampling-based measure-
ment techniques and autonomous decision, based on the current buffer
filling and network conditions, which quality representation it will
download, keeping the ability to react to sudden bandwidth fluctua-
tions in the local network. Krishnamoorthi et al. [29] leverage machine
learning techniques for predicting buffer conditions on the client side
via classification of HTTP and HTTPS traffic. We present a queuing
model for cloud-based streaming media services that takes packet-level
dynamics into account so that mixed-mode simulation can be used to
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estimate customer-influenced performance. We derive the simulation
program based on the analysis model, showing how the quality of
service is affected by server and client performance.

There are also various heuristics to balance the load of machines
and networks (Cherkasova [11], Pirkowski et al. [35], Wee and Liu
[47], and Latre et al. [32], and an effective architecture for reliable
large-scale stream computation in the cloud (Qian et al. [36]).

The analysis of operation perspective often appear in term of
queueing models. Queueing models have been applied to analyze
communication systems (e.g., Kleinrock [27] for some classical results,
and Balsamo et al. [5] for more recent finite capacity models), com-
puter performances (e.g., Riska et al. [38]), and the optimal number of
servers in a server/clint environment (Son and Kim [41]). There are
also queueing models on cloud services. Tewari et al. [44] compare two
clustered architectures for servers providing video service. With
queueing models for servers and disks, the paper studies the optimal
storage clunk size of videos and the storage-ahead buffer size. Kang
et al. [26] trace traffic in Yahoo! Video. Among other issues, they es-
timate the number of VMs needed for exponential and Pareto inter-
arrival times.

As discussed in Introduction, we would like to study the customer
experience and estimate the amount of resource for a given set of
parameter values for online streaming service. The empirical studies
and the various load balancing heuristics in the information system
perspective give no clue on this. There are analytical models in both
perspectives that estimate certain waiting time; however, in three as-
pects all of them miss our requirements.

First, all these waiting times are the experience of individual packets,
not of customers. The waiting time for a customer, i.e., in our termi-
nology the lag time of a customer, is the time that the customer waits for
the cloud service, not the waiting of any packets. Second, more precisely,
the lag time of a customer at his client (i.e., local device) is determined
by the internet traffic, the arrival sequence of packets, and the cap-
ability of his client. The model must explicitly incorporate such fea-
tures. Third, at the server side the production delay is partially de-
termined by the workload of the virtual machine that serves the
customer. Even under stationary demand pattern, the actual number of
the clients serving by a virtual machine changes with time. This feature
must be part of the model. The queueing analysis of the round-robin
packet scheduling policy in computer systems captures the effect of
multiple clients on a server, or a virtual machine in our context (Sakata
et al. [39], and Rasch [37], Silberschatz et al. [40]). However, these
models have no linkage with the internet traffic and the detailed dy-
namics of the physical layer. In this paper we develop a solution ap-
proach that incorporates all the three missing features in the literature.
The idea of the presented approach has been proposed in an earlier
work on quantitative analysis of cloud-based streaming services [52].

Finally, cloud simulators provide developers a systematic way to
study cloud services, e.g., CloudSim in Calheiros et al. [13] and SimGrid
in Casanova et al. [12]. It is known that simulation models that capture
operations in detail are time consuming and intractable for large-scale
systems. As shown in Velho et al. [46], even flow-level network models
that rely on tractable mathematical manipulation may not fully capture
the performance of cloud systems. While based on different model as-
sumptions from those in Calheiros et al. [13], Casanova et al. [12], and
Velho et al. [46], we share the same objective of providing an effective
simulation approach for large-scale cloud systems. Our approach is
capable to do so because it deduces the performance of the whole
system by observing sample paths of individual customers on a single
VM.

3. The dynamics of the cloud-based streaming service system

In a cloud-based streaming service system, the service is provided
by a cluster of VMs that are dynamically allocated. The operation rules
for VMs dictate the performance of the system. A common set of

operation rules is to designate a fixed amount of VMs for a given cloud-
based service. Then workloads are directed to VMs by balancing their
workloads. Such a set of operation rules assigns customers to VMs with
less workloads, which improves the service levels of the system in some
sense. However, as discussed in Section 1, such a system is analytically
intractable. The ideal amount of VMs required for a given demand
pattern can only be deduced by trial-and-error through simulating
large, complicated systems with statistically imprecise results. The op-
eration rules proposed in the fourth assumption of Section 1 leads to a
clean hybrid simulation approach that combines theoretical analysis
with the simulation of the experience of individual customers on a single
VM. The approach predicts the mean amount of VMs required for a
given demand pattern, without locking up a fixed amount of VMs; the
cloud-based service provider thus has greater flexibility in using its
resources.

By the fourth assumption, a VM can be in three states, working (after
initiation), retiring (after the number of customers reaches the upper
bound B, and idling (after all the B customers at retirement have fin-
ished their sessions). At any time there is only one corresponding
worker receiving incoming customers; however, at any time there can
be multiple working VMs. The retiring VMs are in fact working; each
retiring VM still serves existing customers till the disconnection of the
last session.

The customer arrivals follow a Poisson process of rate λ. Upon ar-
rival, (the request of) a customer takes a short duration δ time units
before it joins the queue of the VM that serves as the corresponding
worker. All VMs, being the corresponding worker or retiring, adopt the
round-robin policy to process the customers waiting in queue (Rasch
1970, Silberschatz et al. 2004): The processing of any VM takes place in
blocks of time, each block being referred to as a quantum Δ, of duration,
e.g., from 0.01 to 100 ms. When his turn of service comes, a customer
gets his quantum of service. Upon completion of the quantum, the
customer leaves the system if his connection time is completed within
the quantum of the serving VM else the customer re-joins the end of the
queue of the VM, and the VM continues with the next customer in
queue. A customer gets continuous service from a VM only if it is the
only customer in the VM’s queue. This round-robin policy is one
common time-division multiplexing scheme.

LetC denote the generic connection time of a customer, which is the
duration that a customer willing to spend on the cloud-based service.
Such connection time of a customer includes his lag time waiting for the
cloud-based service at an interruption. By the second assumption in
Section 1 the connection times of customers, denoted asCi for customer
i, are independent and identically distributed exponential random
variables of rate μ.

The operations characteristics of the system and the service levels of
customers are determined by two controllable parameters, the maximal
number B of customers simultaneously served by a VM and the duration
of time quantum Δ that a VM allocates to each task in queue periodi-
cally, and the system characteristics, namely, the arrival rate λ, the
service rate μ of connection times, and the operation rules adopted for
VMs.

In this paper, we develop a hybrid simulation approach to estimate
the service levels for customers for a given set of parameters B, Δ, λ, F.
The approach is of two levels, the macroscopic level that considers the
interaction of VMs and customers, and the microscopic level that con-
siders the interaction of the physical layers of the cloud-based service
system and customers. This section deals with the macroscopic level
and the next for the microscopic level.

To analyze the system, it suffices to focus on VMs and ignore both
the dispatcher and the monitor, i.e., effective δ is set to zero. The time
taken for a dispatcher to process a customer is on average much shorter
than that for a VM, and in fact be much shorter than the inter-arrival
times of customers. Consequently, the system behaves as if the external
arrivals directly arrive at the VMs. Similarly, there is enough resource
assigned to the monitor such that the monitor does not have any effect
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on experience of customers.
For rest of this section, for completeness, Section 3.1 gives the

continuous-time Markov chain model of the system, which has no close-
form solution. Section 3.2 gives the stationary distribution of the cor-
responding worker, a key result later to derive the operation char-
acteristics and service levels of the system. Sections 3.3 and 3.4 give,
respectively, two operation characteristics of the system, the mean life
cycle time of a VM and the mean number of VMs required in the system.

3.1. The transition for exponential connection times

Let s = (n; …n n, , B1 ) be the state of the system, where n is the
number of customers at the corresponding worker, ≤ −n B 1; nj is the
number of retiring workers with j customers at the machine, j∈ {1.B}.

Further define notation +s = ( +n 1; n1, …, nB) to be the state with
one more customer at the corresponding worker than s; −s = ( −n 1; n1,
…, nB) to be the state with one less customer at the corresponding
worker than s; sR = (0; n1, …, +n 1B ) to be the state with no customer
at the corresponding worker and one more retiring worker with B
customers than s; −sj = (n; n1, …, −n ,j 2 −nj 1+1, nj-1, +n ,j 1 … , nB) to be
the state with one more (j-1)-customer retiring worker and one less j-
customer retiring worker than s, j>1; −s1 = (n; n1-1, n2, …, nB) to be
the state with one less 1-customer retiring workers than s.

Note that the connection times are independent of how the custo-
mers are served. Thus, if two customers are with a VM at any time, the
instantaneous rate of the departure of customers from the VM is of
2× μ, not μ as a standard processor-sharing system does. Then the in-
finitesimal rates of state s:

• Total rate out: qs = ⎜ ⎟
⎡

⎣
⎢ + ⎛

⎝
+ ∑ × ⎞

⎠
× ⎤

⎦
⎥=λ n j n μj

B
j1 ;

• Effect of an arrival:

• +qs s, = λ, for n≤ B-2;

• qs s, R = λ, for n = B-1;

• Effect of a departure:

• −qs s, = n× μ
• −qs s, j = nj× μ× j, for nj≥ 1, ∀ ∈ …j B{1, , }.

Conceptually we have completely specified the infinitesimal rates of
the continuous-time Markov chain (CTMC) that models the number of
customers at the various VMs. It can be shown that the CTMC is positive
and irreducible, and its stationary distribution can be found. The per-
formance measures such as the mean number of VMs required, etc.,
follow accordingly. The only problem is that the state space is too large
to make numerical computation realistic. In the following we develop
an approach in which it suffices to analyze a single VM, the corre-
sponding worker.

3.2. Stationary distribution of the state of the corresponding worker

To find the stationary distribution of the corresponding worker, let
the state be the number of customers served by the corresponding
worker. Fig. 1 shows the transition diagram.

At initiation, a corresponding worker serves no customer and is at
state 0. As customers come and go, at some point the corresponding
worker is at state −B 1 and a customer arrives. Recall that a

corresponding worker starts to retire if there are B customers. Thus the
new arrival triggers the retirement of the corresponding worker. The
current corresponding worker goes retiring and a VM is initiated to be
the new corresponding worker. The transition from state −B 1 to state 0
actually models the simultaneous retirement of the current and the
initiation of the new corresponding worker.

Let pi denote the probability of state i, ∈ … −i B{0, , 1}. We have the
following set of balanced equations:

⎧

⎨

⎪

⎩
⎪

× + × = ×
× + + × × =
+ × × ∀ ∈ … −

× = + × − ×

− +

− −

λ p μ p λ p
λ p i μ p
λ i μ p i B

λ p λ μ B p

,
( 1)

( ) , {1, , 2},
( ( 1)) .

B

i i

i

B B

1 0

1 1

2 1 (1)

Let =ξ λ μ/ be the ratio between the arrival rate λ and the dis-
connection rate μ of customers; the parameter ξ is an indication of how
busy the system which is the traffic intensity in a standard M/M/1
queue. We say a system is lazy when ξ<1, and a system is busy when
ξ≥ 1. Solving Eq. (1), for ∈ …k B{2, , }, we have:
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where by convention ∏ == (·) 1j k
k

1
2 when k1> k2. Applying the nor-

malization equation to Eq. (2), we have, for ∈ …k B{1, , }, the closed
form solution:
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Given λ, μ, and B, one can compute via Eq. (3) the distribution of
customers in the corresponding worker, which in turn gives L, the
average number of customers in a typical corresponding worker.

∑= ×
=

−

L p k.
k

B

k
1

1

(4)

The two parameters ξ and B determine the value of L. To get some
insights on how L is affected by ξ and B, we plot in Fig. 2 the value of L
for a busy system with lots of customers as ξ changes from 1 to 100, and
in Fig. 3 for a lazy system with arrival rate no more than service rate as
ξ changes from 0.01 to 1. In both figures graphs for B equal to 5, 10, 20,
and 50 are shown.

Fig. 1. The transition diagram for the number of customers at the corre-
sponding worker. Fig. 2. Numeration on L for ξ≥ 1 (a busy system).
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The main objective of simulation design is to cover a reasonable
range of arrival/service ratios under sampled parameter settings. It is
essential that we can observe the turning point of customer lengths on
average when customer status changes. The result of the ratio (arrival/
service rate) set from 1 to 100 is reported in the paper. Figs. 2 and 3
show that ratios out of this range (more lazy or more busy) more likely
fall in the two tails that have relatively stable and less L in the queuing
model (or number of interruptions and lag time as later shown in the
simulation result).

There are three important observations.

• Observation 1: L appears to be a mono-peak function of ξ for a busy
system.

• Observation 2: The ξ value of the peak of L increases when B increases.

• Observation 3: L appears to approach ξ for a lazy system.

In general L first increases and then decreases as ξ increases (i.e., as
λ increases for a fixed μ, or as μ decreases for a fixed λ). At first sight
such behavior looks odd: In conventional queueing models in general
the mean number of customers increases with the traffic intensity.
Recall that the transition diagram in Fig. 3.1 is not for a conventional
system. As the traffic intensity increases, it is more likely for an arriving
customer finds the corresponding worker at state −B 1, and changes
the state to 0 for initiating a new corresponding worker. This leads to L
being a mono-peak function of ξ, where we explain by increasing λ and
holding μ fixed; a similar argument goes through by changing μ and
holding λ fixed: When λ is much less than μ, the quick service rate pulls
the state to stay in small states. As λ increases (i.e., ξ becomes larger),
more arriving customers drag the system to larger states. Thus, in this
range L increases as ξ increases. As ξ increases further beyond certain
threshold, the value of λ relative to μ has become so large that the
corresponding worker reaches state B easily and turns the state to 0.
The value of L decreases as ξ increases in this range.

In short, the result of Observation 2 is the tradeoff between two
driving forces to reduce L, by reaching the upper bound to invoke a new
corresponding worker, or to remain at states with small number of
customers by having customers leaving more frequently. For larger B, it
is more difficult to reach the upper bound, and it takes smaller μ for a
fixed λ (i.e., a larger ξ, a busier system) to reach the upper bound. Thus,
it takes a larger ξ (i.e., a busier system) for the peak to occur as B
increases.

In the following, we are going to give analytical explanation of the
shape of L. Consider first a busy system such every hour there are 900
requests, and on average each customers stay for 20 minutes. Then

=λ 15 per minute, =μ 0.05 per minute, and =ξ 300. For ξ of this
magnitude and =B 50, B/ξ<1. From Eq. (2), ignoring terms of 1/ξ2 or
smaller, ≈ + −p k p ξ( 1) /k B 1 for ∈ … −k B{0, , 2}. Normalizing and sol-

ving, = ⎡
⎣
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which we have
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2

With this approximation, for L = 2.0132, 4.5419, 9.6381, and
25.2173 for B = 5, 10, 20, and 50, respectively. Check from Fig. 2 that
the approximation is accurate for small value of B in which ξ≫ 1. The
result is not too off from the true value even for B= 50. Now for a more
relaxing system, we have

Lemma 2. For ξ≪ 1, L≈ ξ.

Fig. 3 shows the numerical result that is consistent with Lemma 2,
whose analytical justification is the following: When ξ = 1, the last
terms inside the pair of square brackets of Eq. (3)for p0, p1, and pk,
k≥ 2, are − −B ξ( 1) !/ ,B 1 − −B ξ( 1) !/ ,B 2 and −

− − ,B
k ξ

( 1) !
! B k 1 respectively. These

last terms dominate other terms. When ξ≪ 1, the effect of these last
terms is even more dominating than when ξ = 1. Thus, we have the
pattern of p0≈ p1/ξ≈ k!pk/ξk, for k≥ 2. The normalization equation
∑ ==

∞ p 1k k0 implies that = −p e ,ξ
0 and thus, we have

≈ ∑ × ==
∞L k p ξk k0 . It does not take a large B to have an accurate

approximation; e.g., for ξ = 0.01 with B=5,
− = ×

∑

− −

=

e 8.18012 10ξ1 13

k
ξk

k0
4

!

. The analytical justification shows that

as B increases for ξ<1, p0 becomes larger, which is also consistent with
the numerical results.

3.3. The mean life cycle time of a virtual machine

A VM goes through the process of being activated, followed by re-
tirement, and then eventually returning to the idle pool. Call such a
process the life cycle of a VM. We are going to deduce the mean cycle
time. As shown in the next two subsections, such information is es-
sential to deduce the performance measures for the system.

Let Nw be the number of customers at a VM when it is working.
Refer to Fig. 4 for the transition diagram for Nw, where Nw =

∈ … −j B{0, , 1} when the VM is the corresponding worker serving j
customers, and Nw = ∈ …j B{0 , 1 , , }r r r r when it has retired and still with
jr customers. A VM is first activated to state 0, retires at state Br, and
then becomes idle at state 0r.

Let T B0, r be the time taken to go from state 0 to state Br and TB ,0r r be
the time taken to go from state Br to state 0r. The cycle time T0,0r =

+T TB B0, ,0r r r . It is straightforward to have:

∑=
×=

( )E T
k μ

1 .B
k

B

,0
1

r r
(5)

To find out E T( ),B0, r let Tk B, r be the first-passage time from state k to
state Br. For ∈ …k B{1, , },
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where −τB k is the sojourn time in state −B k. Let γj = E T( j B, r). Let the
notation (·)T be the transpose of (·). Define

Fig. 3. Numeration on L for ξ≤ 1 (a lazy system).

Fig. 4. The transition diagram for the number of customers with a worker.
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λ j μ, 1 . We have the following theorems:

Theorem 1. Λ is invertible.

Theorem 2. ≡ −Γ Λ Δ,1 and E(T B0, r) =γ0.

Fig. 5 plots the mean cycle time of a VM against ξ and B for a fixed μ.
The results are intuitive: For a given B, the mean cycle time of a VM
decreases as ξ increases, i.e., everything else the same, a less busy VM
has shorter cycle time. As ξ increases further, the arrival rate is so high
that an initiated VM reaches retirement in very short time, and the cycle
time is basically the retirement time of the VM. For a given ξ, the mean
cycle time of a VM increases with B, i.e., everything else the same, a VM
with larger B has longer cycle time. For any B, as ξ increases, the mean
cycle time converge to B-dependent constant. This intuition is that the
mean cycle time = +E T E T E T( ) ( ) ( ),B B0,0 0, ,0r r r r where for a fixed μ,
E T( )B0, r decreases as λ increases while E T( )B ,0r r remains constant.

3.4. The mean number of working virtual machines in system

Within one cycle time, on average a VM works for E T( )0,0r = E T( )B0, r
+ E T( )B ,0r r units of time, and on average accepts λ× E T( B0, r) arrivals.
Because the rate of customers handled by one VM is

×
+

λ E T
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working VMs employed by the system. This average number of working
VMs required serves as one of the performance indicators of the system.
Note that E T( )B ,0r r can be significantly larger than E T( )B0, r ; e.g., when
λ≫ μ, many VMs are required to substantiate the system.

Fig. 6 plots the mean of number of working VMs in a system against
ξ and B. The number of working VMs appears to be linear in ξ for a
given B, where for the same ξ, a larger value of B corresponds to a

smaller mean number of working VMs. This observation is consistent
with (7): When λ≫ μ, ≈E T( )B

B
λ0, so that the mean number of working

VMs in system is linear in ξ.
As shown in Fig. 6, a large number of working VMs is required for a

busy system with small B. In those cases it is necessary to prepare huge
resources for coping with high demands. Fortunately, for any particular
application peak demands only occur sparsely, and often at different
time among applications. One can take advantage of resource sharing
schemes among applications to avoid excessive resource for the cloud-
based platform.

4. Microscopic model: Model for the service experience of
customers

In this section, we model the detailed dynamics of the physical layer
of the cloud-based service system, and its consequences on the service
levels of customers. We trace how a VM processes the packets for its
customers.

As defined, each VM adopts the round-robin rule to serve its assigned
customers, each round for quantum time units Δ on a customer. When
there are n customers with a VM (n≤ B), the VM serves all n customers
via regularly sending each customer a set of packets in one out of n× Δ
time units, in the order of their positions in the queue of the VM.

Consider a particular customer in the subsequent discussion. By
assumption, the ith set of packets of the customer, i.e., the set of packets
generated in the ith time quantum for the customer by the VM, takes

+T i D i( ) ( ) time units to reach the customer, where T(i) is a customer
dependent transmission time function (e.g., dependent on the location
of the customer) and D(i)∼ i.i.d. random variables of a given dis-
tribution to capture the random web traffic. It also has been shown
empirically that +T i D i( ) ( ) are independent and identically dis-
tributed, and follow a heavy tailed distribution [14] for the same cus-
tomer at the same location with the same kind of packets.

The ith set of packets takes the duration S(i) to be processed at the
end device of the customer, where S(i) can be a device-dependent
constant. Naturally, if everything else is held fixed, the chance for a
customer to experience time lag increases with the runtime value of n of
a worker. In this section, we discuss a procedure to estimate the mean
number of interruptions and mean total time lag of a customer given the
set of parameters λ, μ and B, Δ decision variables. To do so we need to
understand the dynamics of packet processing at a customer’s device.

Let A(i) be the arrival epoch of the ith set of packets at the customer;
E(i) be the epoch that the ith set of packets has completely been de-
coded and starts to take effect at the customer. In general, A(i) may not

Fig. 5. The mean cycle time (in s) of a worker (ξ≥ 100, μ=0.001). Fig. 6. Number of workers in system (ξ≥ 100, μ=0.001).
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be equal to E(i), and there is a lag time L(i) for the ith set of packets if
− + − <E i S i E i( 1) ( 1) ( ). See Eqs. (8) and (10) for the derivation of

{E(i)}, {L(i)} from {T(i)}, {D(i)}. Fig. 7 provides intuition for the sub-
sequent derivation. In this example, the end device is idle from A(1)+S
(1) to A(2) during which the customer is also idle there waiting for the
arrival of the second set of packets. Thus, L(2)> 0. As shown in Fig. 7,

= = =L L L(1) (3) (4) 0. If > +A E S(5) (4) (4), the customer’s end de-
vice queue empties at +E S(4) (4) and the customer needs to wait for
the arrival of the 5th set of packets to resume service.

Suppose that a VM starts working for a customer at epoch I. At
+I Δ, the worker has finished processing the first quantum time units

for the customer, and at = + + +A I T D(1) Δ (1) (1) the set of packets
arrives at the customer’s end device. On average packets accumulate at
a customer’s end device as time goes on. To avoid an interruption at the
early stage of service, many streaming service designs [18] starting
displaying the first set of packets of a customer only after the accu-
mulation of Ninit sets of decoded packets at the customer’s end device,
where Ninit is a pre-specified constant. Consequently, E(1) the effect
time of the first set of packets can be taken as the time to accumulate
the first Ninit sets of packets for the customer.

Let nj be the number of customers that the VM serves within the
period between the generation of the −j( 1)st and jth set of packets. nj
changes with the arrivals and departures of customers. In the simula-
tion procedure described in Section 4.1, along the simulated sample
path of a tapped customer, nj are known quantities.

In general,

∑= + × + + + ∀ ≥
=

−

A i I n T i D i i( ) ( Δ) Δ ( ) ( ), 1;
j

i

j
1

1

(8)

= ∀ ≤ ≤E A i i N(1) MAX{ ( ), 1 }.init (9)

= − + − ∀ ≥E i E i S i A i i( ) MAX{ ( 1) ( 1), ( )}, 2. (10)

Take = −L E A(1) (1) (1).

= − − + − ∀ ≥+L i A i E i S i i( ) [ ( ) ( ( 1) ( 1)] , 2. (11)

L(1) is the initial delay spent on accumulating Ninit sets of packets
without showing to the customer. The lag time experienced by the
customer can be accumulated from Eq. (11). Let C be the connection
time that a customer spends on the cloud-based service, C ∼ F ; and Ω
be the number of sets of packets processed by the local device withinC .

C ∑= +
=

L i S i( ( ) ( )).
i 1

Ω

(12)

4.1. The simulation of the physical layer

We develop a simulation procedure to deduce the customer ex-
perience by capturing the dynamics in the physical layer of the cloud-
based service system. In particular, it makes use of results developed in
Section 3.2 to construct a hybrid simulation procedure that simulates
the processing of tapped customers packet by packet at the quantum
level of a single VM, not a full system, along the sample paths of the
tapped customers. The procedure deduces the service quality of the
system for various system parameter settings of B and ξ.

Suppose we keep on simulating the life cycle of one VM, from being
initiated as the corresponding worker, to retiring as the number of
customers reaching B, and finally joining the pool of idle VMs after the
departure of the last customer on hand. Then VM accepts new custo-
mers when it is the corresponding worker. Each arriving customer
comes with its own connection time, which is a known random variate
from exp(μ), the distribution of the connection time of the customer. An
arriving customer is called a k-customer if on arrival the customer finds
k customers being served at the corresponding worker. Let us trace the
sample paths of tapped k-customers from their arrivals to departures,

∈ … −k B{0, , 1}. The state transitions in Fig. 3.1 dictates the state
changes faced by such customers. Between any two state changes, the
number of customers n at the corresponding worker is known. Then the
set of Eqs. (8) to (13) can deduce the arrivals of packets to the tapped
customers’ local devices, and hence deduce the number of interruptions
and the lag times encountered by the tapped customers. By repeating
tapping the sample paths of k-customers multiple times, we can get the
average number of interruptions and average lag time along the sample
path of k-customers. The process can be done for all ∈ … −k B{0, , 1}.

Note that the arrivals follow a Poisson process. By Poisson Arrivals
See Time Averages (Wolff [49]), the probability of an arrival finding k
existing customers at the corresponding worker is exactly the stationary
distribution found in Eq. (3). Weighing the average number interrup-
tions and average lag times of k-customers with respect to this sta-
tionary distribution, we have the mean number of interruptions and
mean lag time in a connection session of customers.

We break the simulation process into three algorithms below.
Algorithm 1 describes the overall simulation shell to collect statistics
from NR replications of k-customers. The algorithm sets parameter
values and initializes variables, simulates the state changes of the end
device induced by arrivals and departures, and eventually collects the
average lag time Lk and average number of interruptions Ik of the k-
customers. Algorithm 2 gives the detailed simulation on a single event,
embedding in which Algorithm 3 is invoked to compute the lag times
and interruptions according to equations Eqs. (8),(10), and(11) be-
tween two state changes of the end device. See Table 1 for the para-
meters used in the three algorithms.

In Algorithm 1, the priority event queue E is the event calendar in a
typical discrete-event simulation system, i.e., it arranges events in as-
cending order of their event times, and the earliest event is taken out to
execute from E at an event time e.time. The detailed tasks to execute at
an event depends on the event type e.type, end for the termination of
simulation, arrival for an arrival of a new customer, and departure
for the end of connection time of an existing customer. Some task in-
cludes the creation of a future event. In that case, the event type e.type
and event time e.time are generated. The event is enqueued (i.e., in-
serted) to E if it occurs beforeC , the departure of the tapped customer.
When the flag f indicates that the corresponding worker has retired, no
more arrival event will be created.

Step 1 of Algorithm 1 sets the values of NI, LT, NR, and m. An
iteration of the while loop in step 2 simulates a replication of the
procedure. Step 2.1 initialize current time cur, priority event queue E,
state variable s (i.e., number of customers at the corresponding worker),
and flag f. Step 2.2 sets the connection timeC of the tapped customer,
and thus create an end event in E. Step 2.3 sets the disconnection time
of each −k customer on arrival, =k 1 to −B 1. There is exactly one
departure event for an arrival. Those departure events that happen
within the connection time are added to the event queue E. Step 2.4 sets
the time of an arrival event and inserts to E if necessary. Step 2.5
simulates events in E seriously according to e.time until E becomes
empty. Step 2.6 completes one replication of simulation, and gets back
to the loop of step 2 for the next replication. Step 3 outputs the number
of interruptions (Ik) and the accumulated lag time (Lk).

Algorithm 2 consists of two main parts, first (Step 2) to call
Algorithm 3 to simulate the detailed lag times and interruptions be-
tween two state changes of the end device, and second (Step 3) to

Fig. 7. The relationship among A(·), E(·), and S(·).
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simulate event change for the server. Step 1 of the algorithm gets the
earliest event from E, whose event time e.time by construction is less
thanC . Step 2 calls Algorithm 3 to simulate the delivery of packets and
accumulates lag time and interruptions accordingly. Step 3 simulates
event changes, redirecting the simulation flow to Step 4 for the end
event (Step 3.1), reducing s by 1 for a departure event (Step 3.2), and
carrying out the tasks for an arrival event (Step 3.3). In the last case,
s is increased by one; f is updated if necessary; the departure time
generated for the arrival is inserted in E only if it occurs earlier thanC ;
if the worker has not yet retired, a future arrival is generated, and is
inserted to E if its time to occur is earlier than C . Step 4 ends the si-
mulation of one event and updates cur to e.time. Step 5 returns the
control to Step 2.5 of Algorithm 1 where the step is executed until E
becomes empty.

Algorithm 3 takes two inputs: the number of customers served by
the worker s and the inter-event duration (cur, e.time). Step 1 notes the
values of the statistics left from the last call of Algorithm 3 for the
tapped k-customer. Step 2 is the main simulation step that generates
sets of packets within (cur, e.time), compute the arrival times and effect
times of the sets of packages, and accumulate output statistics. Step 3
stores the values of the statistics at the end of Algorithm 3 and return
the control to Step 2 of Algorithm 2.

There are subtleties to simulate the round-robin schedule of a VM.
The inter-event duration is not necessarily in multiple of Δ, and the
number of customers to be served by a VM before the first service of the
tapped customer in (cur, e.time) generally changes with time and event.
Such implementation details do not affect the simulation results and are
skipped here for clarity.

With Ik and Lk found at the end of Algorithm 1 for = … −k B0, , 1:
The (unconditional) mean total lag time in a connection session is:

∑ ×
=

−

p L ,
k

B

k k
0

1

(13)

And, the (unconditional) mean number of interruptions in a connection
session is:

∑ ×
=

−

p I ,
k

B

k k
0

1

(14)

where pk is the distribution given in Eq. (3).

4.2. Typical simulation results

It has been shown by Nossenson and Attiya [33] that the trans-
mission times X for a particular file sending through Web for a parti-
cular server-client pair follow a Pareto distribution, therefore of heavy

tailed, confirming the result shown in [14]. As the distribution function
F and the density function f defined by Eq. (15), the Pareto distribution
[23] has two parameters α and k, where the shape parameter α is re-
sponsible for the heavy-tail of the Pareto distribution and the location
parameter k determines the lower bound of the possible value that a
random Pareto variable can take on.

= − ⎛
⎝

⎞
⎠

= ×

≤ < ∞ >
+

F x α k k
x

f x α k α k
x

k x α k

( , ) 1 ;

( , ) ;

; , 0.

α

α

α 1

(15)

It follows that:

= ×
−

>E X α k
α

α( )
1

, 1. (16)

While adopting the Pareto distribution to estimate transmission
duration (Xi = +T i D i( ) ( )), we use the lower bound of T(i) as the value
of parameter k (the minimal transmission time) and estimate α based on
Eq. (16) given an observed E(X). There can be other ways to estimate
the parameter values of a Pareto distributions [4] and [6].

We have implemented the simulation procedure in Algorithms 1 to
3. In our simulation runs, the duration of a quantum Δ is set to QRate×
0.0001 s, where the factor QRate to control the length of a quantum is
set to be 1, 5, and 10 for comparison. The service rate μ is fixed at 0.005
(per second), while = × =λ μ i i/(0.01 ) 1/2 for i = 1 to 20, i.e., λ in-
creases non-linearly from 0.025 to 0.5 as ξ increases from 5 to 1000.
The parameter B takes up values 5, 10, 20, and 50. The total trans-
mission time, including the random delay, +T i D i( ) ( ) = Xi, is a
random variate from the Pareto distribution with α= 3 and = ×k 10 Δ.
This construction dictates the minimum transmission time to be 10
times of Δ.

On the client side, for each set of packet i, S(i)=10× Δ is defined as
a linear function to Δ. It is assumed to be 10 times slower on the client
side than on the server side to process packets so that normally the end
device of a customer takes the amount of 10× Δ time to process the set
of packets produced by the worker in Δ. The number of initial sets of
packets (Ninit) that the end device accumulates before processing the
first set of packets is set to 1, 100, 10,000 for comparison.

The number of replications (NR) is set to 1000. That is, for each
setting (given B and ξ) we run the simulation procedure 1000 times for
each k, find the average results from the 1,000 k-customers, 0≤ k< B,
and report the average values of the simulation results that are
weighted with {pk} in Eq. (3). Consequently, a large number of simu-
lation runs is conducted. For instance, for B = 50, the total replications
in our simulation is equal to 50× 20×1000 for a given Δ(or QRate)
and Ninit.

The average experienced lag time and interruption by the
customer in one sample replication.

For each pair of Δ (or QRate) and Ninit, we run the simulation pro-
cedure and report its lagtime (accumulated from any lag time experi-
enced) and interruption (increased by 1 every time for a lagtime greater
than 0.001 s).

Figs. 8–10 plot LagTime (Eq. (13)) for ξ changes from 5 to 100, with
Qrate set to 1, 5, and 10, respectively. Note that in these figures, the
dotted lines show the initial delay during the accumulation of Ninit sets
of packets and the solid lines are the subsequent lag times accumulated
from the following sets of packets.

The types of graphs are similar in shape to the graph of L (Fig. 2)
and have a peak against ξ in a busy system. The quality of the system
does not deteriorate without bound as ξ increases. With worst case
quality at the peak values, the design of our system can cope with high
demands for large ξ. The intuition is that for a busier system, the cloud
platform by design has more workers employed to serve the coming/
existing customers.

There are several factors that may affect the curves of lag time and

Table 1
The parameters for the simulation procedure.

Name Definition

C The connection time of the customer, i.e., i.i.d. exp(μ).
NR The number of replications of the simulation procedure.
NI The cumulative number of interruptions within connection time C

for NR replications.
LT The cumulative experienced lag time within connection time C

for NR replications.
e An event e has two fields: e.time indicates the epoch that e

happens, and ∈e type. {end, departure, arrival} indicates
that the event is termination, service completion, and
arrival, respectively.

E The set of events that have not happened yet, but are sorted
according to e.time and stored in a priority queue.

Ik The estimate of mean number of interruptions in C

for the k-customer.
Lk The estimate of mean lag time for the k-customer.
f A boolean to indicate whether the worker is in the retiring stage.
cur The time that the customer has been in the system.
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interruption, as well as the peaks that indicates the worst case quality
served by the system despite the requirements of arrivals.

First, B, the upper bound on number of customers that a virtual
machine can handle simultaneously, can affect both the values of lag

time and number of interruptions. As shown in all the plots in
Figs. 8–10, in general, lag time (so as the number of interruptions)
drops when B decreases from 50, 20, 10 to 5. It also shows that system
developers can improve the worst service quality (the peak) by de-
creasing the value of B. On the other hand, there exists some payoff
when system developers decrease the value of B. According to our

Fig. 8. The average lag time (in s) and initial delay (dotted lines) experienced
by customers (with Qrate=1).

Fig. 9. The average lag time (in s) and initial delay (dotted lines) experienced
by customers (with Qrate=5).
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queuing analysis, the increasing rate of number of workers (against the
value of ξ) increases when B decreases (as shown in Fig. 6). It is needed
system developers allocate sufficient resources to meet the requirement.

Second, Ninit, the number of initial packets that the device on the
client side collects before displaying, may also affect lag time and the
number of interruptions. The first, second and the third diagrams in

Figs. 8–10 show that the lag time after the accumulation of Ninit sets of
packets (solid lines) drops when Ninit increases significantly from 1 or
100 to 10000. On the other hand, the initial delay (the dotted lines)
increases since it takes longer for the device to collect more sets of
packets. In many services, this waiting time on collecting sufficient
initial packets can be fulfilled with advertisements from local services,
and are used as means to prevent frequent interruptions and lag ex-
perienced. Third, Δ (or QRate), the quantum duration (or the factor for
quantum duration) on the server side, may affect lag time when Ninit is
relatively large. The lag time has different behavior as Ninit varies. For
relatively small Ninit, the lag time may remain the same when Δ (or
QRate) increases (as shown on the first diagram in Figs. 8–10); as Ninit

increases, the initial delay may increase significantly for large QRate (as
shown in the case Ninit=10000 and QRate=10), and the lag time can
decrease significantly (as shown in the third diagram in Figs. 8–10).

To sum up, we have the following properties of the presented pro-
posed system according to the simulation results.

• The graphs of L, LagTime (so as Interruption) are similar in shape, and
each shows a peak as ξ increases.

• The value of the peak is affected by the value of B, Ninit, and Δ (or
QRate).

Results in Figs. 6, 8, 9, and 10 provide the basis to select the most
appropriate set of parameter values. Fig. 6 relates the number of
workers required as a function of B. For a given amount of resource, i.e.,
value of B, Figs. 8–10 suggest values of QRate and Ninit that provide
acceptably small average lag time (we can also infer the average
number of interruptions). It is possible (with sufficient resource on
VMs) that under the assumptions of the system and environments,
customers can experience high-standard service quality despite how
busy the system is.

5. Conclusion

As online streaming services significantly increase in recent years, it
becomes a critical issue to offer quality service via systems that benefit
from cloud computing developments. We propose a study on simulating
cloud based streaming services, combining queuing models and con-
ditional simulation. This leads to a systematic approach to estimate
resource provision of multi streaming services in the designed cloud
system with respect to service quality of each streaming service under
given arrival/service ratios and network environments. While most
cloud simulation tools address discrete event systems, our hybrid ap-
proach provides a new insight to simulate streaming services in an ef-
ficient but yet precise way by separating server side and customer side
behavior modeling at the packet-level.

The proposed approach provides managers of online streaming
services a formal and systematic way to evaluate service quality
without launching the service. In particular, we pioneer the study on
quantitative analysis to estimate the personal experience of system
customers for a model that incorporates the detailed physical layer of a
cloud-based service platform. Under mild assumptions, our simulation
approach provides exact simulation results for the whole system with
multiple VMs by simulating the experience of individual customers on a
single VM. The simulation results show how the service quality is af-
fected by server and customer performance, providing the insight to
select the system parameter values such as the maximum number of
customers simultaneously served by a (working) VM and the time
quantum assigned for each task in the VM, as well as the customer
parameter values such as the initial delay before playing the video.

Our approach can be applied to suit different qualities of services.
From historical data, the managers of an online streaming service can
deduce the demand patterns of various streaming services for a parti-
cular time slot. Then the proposed approach can be applied to each type
of streaming service to deduce the configuration of VMs; the total

Fig. 10. The average lag time (in s) and initial delay (dotted lines) experienced
by customers (with Qrate=10).
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amount of resource required is then deduced accordingly. In practice
the presented service framework and analysis can be applied to other
services where a cluster is employed to deal with bottleneck tasks. One
of our ongoing work is applying the presented approach to measuring
and adjusting the service quality of the streaming service [45] of Na-
tional Palace Museum (NPM) in Taiwan.
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