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Let n be a positive integer, q = 2n, and let Fq be the finite 
field with q elements. For each positive integer m, let Dm(X)
be the Dickson polynomial of the first kind of degree m with 
parameter 1. Assume that m > 1 is a divisor of q+1. We study 
the existence of α ∈ F

∗
q such that Dm(α) = Dm(α−1) = 0. 

We also explore the connections of this question to an open 
question by Wiedemann and a game called “Button Madness”.
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1. Introduction

For each integer m > 0, we consider a polynomial Dm(X) defined by

Dm(X) =
�m/2�∑
i=0

m

m− i

(
m− i

i

)
(−1)iXm−2i.

Trivially, Dm(X) ∈ Z[X]. It is well known that

Dm(X + X−1) = Xm + X−m. (1)

(For these facts see, for example, [6].) From (1), Dm ◦D� = Dm� for all integers m, � ≥ 0.
Now, let n be a positive integer, q = 2n, and let Fq be the finite field with q elements. 

In this paper, the polynomial Dm(X) is treated as an element of Fq[X]; it is called the 
Dickson polynomial of the first kind of degree m with parameter 1 over Fq (or simply 
the Dickson polynomial of degree m). Dickson polynomials have been studied extensively 
and the reader is referred to [7] for more details.

Roots of Dickson polynomials have been studied by several authors; see [2,3] for 
instance. The work of the present paper was motivated by the following question raised 
by M. Freedman [4]:

Question 1.1. Is it true that for every divisor m > 1 of the jth Fermat number Fj =
22j + 1, there exists α ∈ F

∗
22j such that Dm(α) = Dm(α−1) = 0?

We will see that the answer is negative. The first counterexample has m = 641 and 
j = 5 as we will see in Section 4. In this paper, we consider the above question in a 
more general setting: For positive integers m and n with m | (2n + 1), we study the 
existence of α ∈ F

∗
2n such that Dm(α) = Dm(α−1) = 0. We begin with some preliminary 

observations. Let q = 2n, α ∈ Fq, and write α = ζ+ζ−1, where ζ ∈ F
∗
q2 . It follows from (1)

that Dm(α) = 0 if and only if ζm = 1, i.e., if and only if Xm+1 ≡ 0 (mod X2 +αX+1). 
Therefore, our aim is to determine if there exists α ∈ F

∗
q such that both X2 + αX + 1

and X2 +α−1X+1 divide Xm+1. Note that (Xm+1) | (Xq+1 +1) and that for α ∈ F
∗
q , 

(X2 + αX + 1) | (Xq+1 + 1) if and only if X2 + αX + 1 is irreducible over Fq.
For u ∈ Fqt , let Tqt|q(u) = u +uq+· · ·+uqt−1 be the trace of u and let Tqt(u) = Tqt|2(u)

be the absolute trace of u. The following fact is well-known.

Lemma 1.2. For α ∈ F
∗
q, X2 + αX + 1 is irreducible over Fq if and only if Tq(α−1) = 1.

The reciprocal f∗(X) of a nonzero polynomial f(X) is defined by f∗(X) =
Xdeg(f)f(1/X). A polynomial is called self-reciprocal if it coincides with its recipro-
cal. Both X2 + αX + 1 and Xm + 1 are self-reciprocal polynomials. Since m | (q + 1), 
we have (Xm + 1) | (Xq+1 + 1). Therefore, it is helpful to know the factors of Xq+1 + 1. 
Indeed, Meyn [9] has proved the following result.
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Lemma 1.3 ([9, Theorem 1]). Let r be a prime power (not necessarily even) and t be a 
positive integer.

(i) Every self-reciprocal irreducible monic polynomial of degree 2t over Fr is a factor of 
the polynomial Xrt+1 − 1.

(ii) Every irreducible factor of degree ≥ 2 of Xrt+1 − 1 over Fr is a self-reciprocal 
irreducible monic polynomial of degree 2d, where d divides t such that t/d is odd.

By Lemma 1.3, every irreducible factor of degree ≥ 2 of Xm + 1 over a subfield K
of Fq is a self-reciprocal monic polynomial of even degree. Note that if f(X) ∈ K[X] is 
a polynomial of positive degree k, then Φ(f(X)) = Xkf(X + X−1) is a self-reciprocal 
polynomial over K of degree 2k. Furthermore, Meyn [9] proved the following result.

Lemma 1.4 ([9, Theorem 6]). Let f(X) = Xk + · · · + a1X + a0 ∈ F2t [X] be irreducible. 
Then Φ(f(X)) is irreducible over F2t if and only if a0 �= 0 and T2t(a1/a0) = 1.

The paper is organized as follows. In Section 2, we give some results on the existence 
and nonexistence of an elements α ∈ F

∗
q such that Dm(α) = Dm(α−1) = 0. Section 3 is 

a brief discussion of a connection of Question 1.1 with an open question by Wiedemann. 
In Section 4, we explore a connection of Question 1.1 with a game called “Button Mad-
ness” described by Blokhuis and Brouwer in [1]. The results of [1] provide answers to 
Question 1.1 with j ≤ 15. Section 4 also contains a technical result about the absolute 
irreducibility of a certain bivariate polynomial in characteristic 2. Finally, we point out 
that Dm(X) in Question 1.1 can be replaced by the so-called Dickson polynomial of the 
second kind of degree m with parameter 1 over Fq in Section 5.

2. Some existence and non-existence results

Recall that q = 2n with n > 0 and m > 1 is a divisor of q + 1. (The case m = 1
is ignored since D1(X) = X has only one root 0.) Let Nm = |{α ∈ F

∗
q : Dm(α) =

Dm(α−1) = 0}|. First, we consider the case m = q + 1. Let χq be the canonical additive 
character of Fq defined by χq(x) = (−1)Tq(x), x ∈ Fq.

Theorem 2.1. We have

Nq+1 = q + 1 + K(χq)
4 ,

where K(χq) =
∑

x∈F∗
q
χq(x + x−1) is a Kloosterman sum.

Proof. For α ∈ F
∗
q , let fα(X) = X2 + αX + 1. Then α is a root of Dq+1(X) if and only 

if fα(X) is irreducible over Fq, i.e., if and only if Tq(α−1) = 1 (by Lemma 1.2). Hence, 
both α and α−1 are roots of Dq+1(X) if and only if Tq(α−1) = 1 = Tq(α). Note that 
Tq(α) = 1 if and only if χq(α) = −1. Therefore,
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Nq+1 = 1
4

∑
α∈F∗

q

(1 − χq(α))(1 − χq(α−1))

= 1
4

∑
α∈F∗

q

(
1 − χq(α) − χq(α−1) + χq(α)χq(α−1)

)

= 1
4
(
q − 1 + 1 + 1 +

∑
α∈F∗

q

χq(α + α−1)
)

= q + 1 + K(χq)
4 .

In the above, we used the fact that 
∑

α∈F∗
q
χq(α) = −1. �

By [8, Theorem 5,43], it is easy to determine that

K(χq) = − (−1 +
√
−7)n + (−1 −

√
−7)n

2n . (2)

By (2), or by [8, Theorem 5.45], |K(χq)| ≤ 2q1/2. Hence, it follows from Theorem 2.1
that Nq+1 ≥ (q + 1 − 2q1/2)/4 > 0, i.e., there is always α ∈ F

∗
q so that both α and α−1

are roots of Dq+1(X). On the other hand, when q > 4, K(χq) ≤ 2q1/2 < q − 1, hence 
there exists α ∈ F

∗
q such that Tq(α) = 1 and Tq(α−1) = 0, i.e., α is a root of Dq+1(X), 

but α−1 is not. For q = 2, we have F∗
2 = {1} and 1 = 1−1 is a root of D3(X). For q = 4, 

we have that F∗
4 = {1, ζ, ζ2} with ζ a root of X2 +X + 1 and α ∈ F

∗
q is a root of D5(X)

if and only if either α = ζ or α = ζ2. We summarize these observations as follows.

Corollary 2.2. Let n be a positive integer and q = 2n. There is α ∈ F
∗
q such that both 

α and α−1 are roots of Dq+1(X). When q > 4, there is α ∈ F
∗
q such that α is a root 

of Dq+1(X), but α−1 is not. For q = 2, 4, there is no α ∈ F
∗
q such that α is a root of 

Dq+1(X), but α−1 is not.

In fact, Corollary 2.2 can be made slightly more general.

Theorem 2.3. Let n be a positive integer and q = 2n. If m = (2k + 1)� | (q + 1) for some 
positive integers k and �, then there is α ∈ F

∗
q such that both α and α−1 are roots of 

Dm(X). Moreover, when k > 2, there is α ∈ F
∗
q such that α is a root of Dm(X), but α−1

is not.

Proof. Since (2k + 1) | (2n + 1), we have k | n and n/k is odd. By Corollary 2.2, there 
is α ∈ F

∗
2k such that both α and α−1 are roots of D2k+1(X). It follows that α and α−1

are both roots of Dm(X) = D�(D2k+1(X)).
Assume that k > 2. By Corollary 2.2, there is α ∈ F

∗
2k such that α is a root of 

D2k+1(X), but α−1 is not. It follows that Dm(α) = 0. Since D2k+1(α−1) �= 0, T2k(α) = 0. 
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Hence T2n(α) = 0, i.e., D2n+1(α−1) �= 0. This implies Dm(α−1) �= 0 since Dm(α−1) = 0
implies D2n+1(α−1) = D(2n+1)/m(Dm(α−1)) = D(2n+1)/m(0) = 0. �
Lemma 2.4. Write s = (q + 1)/m. Then the following statements are equivalent.

(i) There is α ∈ F
∗
q such that Dm(α) = Dm(α−1) = 0.

(ii) There are x, y ∈ Fq2 such that xm = 1 = ym and (x + xq)(y + yq) = 1.
(iii) There are x, y ∈ Fq2 such that xm(q−1) = 1 = ym(q−1), x + xq = 1 = y + yq, and 

xq+1yq+1 = 1.
(iv) There are x, y ∈ Fq2 such that x + xq = 1 = y + yq and

(xs + xqs)2

x(q+1)s · (ys + yqs)2

y(q+1)s = 1.

Proof. (i) ⇒ (ii). Write α = x + x−1 and α−1 = y + y−1, where x, y ∈ F
∗
q2 . Since 

Dm(α) = Dm(α−1) = 0, we have xm = 1 = ym (and so xq+1 = 1 = yq+1). Thus, 
(x + xq)(y + yq) = (x + x−1)(y + y−1) = αα−1 = 1.

(ii) ⇒ (iii). Let

x1 = x

x + xq
, y1 = y

y + yq
.

Then the conditions in (iii) are satisfied by x1 and y1.
(iii) ⇒ (iv). Since xm(q−1) = 1 = ym(q−1) and x + xq = 1 = y + yq, there exist 

x1, y1 ∈ Fq2 \ Fq such that x = xs
1 and y = ys1. Let

x2 = x1

x1 + xq
1
, y2 = y1

y1 + yq1
.

Then the conditions in (iv) are satisfied by x2 and y2. Indeed, x2 +xq
2 = 1 = y2 + yq2 and 

moreover,

(xs
2 + xqs

2 )2

x
(q+1)s
2

· (ys2 + yqs2 )2

y
(q+1)s
2

= (xs
1 + xqs

1 )2

(x1 + xq
1)2s

(x1 + xq
1

x1

)(q+1)s (ys1 + yqs1 )2

(y1 + yq1)2s
(y1 + yq1

y1

)(q+1)s

= (x + xq)2(y + yq)2

xq+1yq+1 = 1.

(iv) ⇒ (i). Let x1 = x(q−1)s and y1 = y(q−1)s. Clearly, xm
1 = 1 = ym1 , and

(x1 + xq
1)(y1 + yq1) = (x(q−1)s + x(1−q)s)(y(q−1)s + y(1−q)s)

= x−(q+1)s(x2s + x2qs)y−(q+1)s(y2s + y2qs)

= (xs + xqs)2

x(q+1)s · (ys + yqs)2

y(q+1)s = 1.

Letting α = x1 + xq
1, we have α−1 = y1 + yq1 and Dm(α) = Dm(α−1) = 0. �
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Remark 2.5. Concerning statement (iii) of Lemma 2.4, a direct computation shows that 
there are precisely m − 1 elements x ∈ Fq2 such that xm(q−1) = 1 and x + xq = 1.

For α in the algebraic closure F2 of F2, let mα(X) denote the minimal polynomial of 
α over F2.

Lemma 2.6. Let f(X) ∈ F2[X] be irreducible such that f(0) �= 0 and Φ(f(X)) | (Xq+1 +
1). Then Φ(f(X)) is irreducible over F2.

Proof. Let 0 �= α ∈ F2 be a root of f(X) and write α = ζ+ζ−1, where 0 �= ζ ∈ F2. Then 
ζ is a root of Φ(f(X)), and hence ζq+1 = 1. It follows that α ∈ Fq. Since ζq = ζ−1 �= 1, 
we have ζ /∈ Fq, in particular, ζ /∈ F2(α). Thus [F2(ζ) : F2(α)] = 2. Since [F2(ζ) : F2] =
[F2(ζ) : F2(α)][F2(α) : F2] = 2 deg f = deg Φ(f(X)), we have Φ(f(X)) = mζ(X), which 
is irreducible over F2. �
Lemma 2.7. Let q = 2n and m be a divisor of q+1. Then there is an element α ∈ F

∗
q such 

that Dm(α) = Dm(α−1) = 0 if and only if Xm +1 has a self-reciprocal polynomial factor 
of the form Φ(f(X)) = Xdeg ff(X + X−1), where f(X) ∈ F2[X] is either self-reciprocal 
and irreducible or is a product of two different irreducible polynomials over F2 which are 
reciprocals of each other.

Remark 2.8. Assume that f(X) ∈ F2[X] is such that Φ(f(X)) | (Xm+1). By Lemma 2.6, 
if f(X) ∈ F2[X] is self-reciprocal and irreducible, Φ(f(X)) ∈ F2[X] is irreducible; if f(X)
is a product of a reciprocal pair of irreducible polynomials f1(X) and f2(X) over F2, 
then Φ(f(x)) = Φ(f1(X))Φ(f2(X)), where Φ(f1(X)) and Φ(f2(X)) are irreducible over 
F2 by Lemma 2.6 again.

Proof of Lemma 2.7. (⇒) Write α = ζ + ζ−1 and α−1 = λ +λ−1, where ζ, λ ∈ F
∗
2. Since 

Dm(α) = 0, we know that ζm = 1 and X2 +αX +1 is the minimal polynomial of ζ over 
F2(α). Note that ζ is a root of Φ(mα(X)) = Xdeg mαmα(X +X−1). Since [F2(ζ) : F2] =
[F2(ζ) : F2(α)][F2(α) : F2] = 2 degmα = deg Φ(mα(X)), we have mζ(X) = Φ(mα(X)). 
In the same way, λm = 1 and mλ(X) = Φ(mα−1(X)).

If α and α−1 are conjugate over F2, then mα(X) is self-reciprocal and Φ(mα(X)) |
(Xm + 1).

If α and α−1 are not conjugate over F2, then mα(X) and mα−1(X) are not self-
reciprocal but are reciprocals of each other. Clearly, ζ and λ are not conjugate over 
F2. Hence mζ(X) �= mλ(X) and consequently, Φ(mα(X)mα−1(X)) = mζ(X)mλ(X) |
(Xm + 1).

(⇐) By assumption, Φ(f(X)) | (Xm + 1) for some self-reciprocal f(X) ∈ F2[X] with 
deg f > 0. Let α be any root of f(X) and write α = ζ + ζ−1, where α, ζ ∈ F

∗
2. Then ζ is 

a root of Φ(f(X)) and hence ζm = 1. Then α ∈ Fq (since m | (q + 1)), and Dm(α) = 0. 
Since α−1 is also a root of f(X), we have Dm(α−1) = 0. �
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Corollary 2.9. Suppose that m | q + 1 and let

Xm + 1
X + 1 = f1(X)f∗

1 (X) · · · fr(X)f∗
r (X)b1(X) · · · bs(X)

be the factorization of (Xm + 1)/(X + 1) over F2, where fi(X) and f∗
i (X), 1 ≤ i ≤ r, 

are reciprocal pairs of irreducible polynomials, and bj(X), 1 ≤ j ≤ s, are self-reciprocal 
irreducible polynomials. Then there is no α ∈ F

∗
q such that Dm(α) = Dm(α−1) = 0 if 

one of the following holds:

(i) s = 0;
(ii) s ≥ 1 and for each 1 ≤ j ≤ s, the coefficient of Xdeg(bj(X))−1 in bj(X) is zero.

Proof. Assume to the contrary that there exists α ∈ F
∗
q such that Dm(α) = Dm(α−1) =

0. By Lemma 2.7 and Remark 2.8, s ≥ 1 and we may assume that b1(X) = Φ(f∗(X))
for some irreducible f(X) = Xk + ak−1X

k−1 + · · · + a1X + a0 ∈ F2[X]. Since b1(X) is 
irreducible over F2, by Lemma 1.4, a0 = a1 = 1. Hence

Φ(f∗(X)) = Xk
(
(X + X−1)k + (X + X−1)k−1 + · · · + ak−1(X + X−1) + 1

)
= X2k + X2k−1 + · · · ,

whose coefficient of X2k−1 is 1. This is a contradiction. �
Theorem 2.10. Let q = 2n and let m > 3 be a prime divisor of q + 1 such that m ≡ 3
(mod 4). If 2 is a primitive element of Fm, i.e., the order of 2 in F∗

m is m −1, then there 
is no element α ∈ F

∗
q such that Dm(α) = Dm(α−1) = 0.

Proof. Assume to the contrary that there exists α ∈ F
∗
q such that Dm(α) = Dm(α−1) =

0. Since 2 is a primitive element of Fm, it follows from [8, Theorem 2.47] that (Xm +
1)/(X +1) is irreducible over F2. By Lemma 2.7, (Xm +1)/(X +1) = Φ(f(X)) for some 
self-reciprocal irreducible polynomial f(X) over F2. Since deg f = 1

2 deg Φ(f(X)) =
1
2(m − 1) ≥ 2, the irreducibility and self-reciprocity of f imply that deg f is even. This 
is a contradiction since m ≡ 3 (mod 4). �
Remark 2.11. A special case of Artin’s conjecture on primitive roots states that there 
are infinitely many primes p such that 2 is a primitive element of Fp. The set of such 
primes is Sequence A001122 in OEIS [10].

Proposition 2.12. Suppose that q = 2n with n ≥ 3 and that m > 5 is a divisor of q + 1. 
Then there is α ∈ F

∗
q such that Dm(α) = 0 but Dm(α−1) �= 0.

Proof. Write α = ζ+ζ−1. Then α is a root of Dm(X) if and only if ζ is a root of Xm+1. 
Since m|(q + 1), every root ζ of Xm + 1 satisfies ζq+1 = 1, and so ζ ∈ Fq2 . This implies 
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that αq = (ζ + ζ−1)q = ζ + ζ−1 = α, i.e., α ∈ Fq. Hence, every root of Dm(X) belongs 
to Fq.

Write

f(X) =
m−1

2∑
i=0

m

m− i

(
m− i

i

)
X(m−2i−1)/2.

Then, Dm(X) = Xf(X)2 by the definition of Dickson polynomial. So, α ∈ F
∗
q is a root 

of Dm(X) if and only if α is a root of f(X). This implies that α = ζ + ζ−1 ∈ F
∗
q is 

a root of f(X) if and only if ζ is a root of Xm+1
X+1 . Since Xm+1

X+1 is simple, it is easy to 
see that Xm+1

X+1 = Φ(f(X)) and so, f(X) is simple. Moreover, if every root α ∈ F
∗
q of 

Dm(X) satisfies Dm(α−1) = 0, then every root α of f(X) satisfies f(α−1) = 0. This 
implies that f(X) must be a self-reciprocal polynomial. So, if we can show that f(X) is 
not self-reciprocal, then we are done.

Also write f(X) =
∑m−1

2
i=0 aiX

i. Then am−1
2

= m
m−0

(
m−0

0
)

≡ 1 mod 2, am−3
2

=
m

m−1
(
m−1

1
)
≡ 1 mod 2, a0 = m

m−(m−1)/2
(
m−(m−1)/2

(m−1)/2
)

= m
(m+1)/2

((m+1)/2
1

)
≡ 1 mod 2, 

and a1 = m
(m+3)/2

((m+3)/2
3

)
. Note that a1 ≡ 0 mod 2 when m ≡ ±1 mod 8 and a1 ≡ 1

mod 2 when m ≡ ±3 mod 8. So, if m ≡ ±1 mod 8, then f(X) is not self-reciprocal.
From now on, let m ≡ ±3 mod 8. We already have am−1

2
= am−3

2
= a1 = a0 = 1. 

Since m > 5, we have m ≥ 11 and so we can consider am−5
2

and a2. am−5
2

= m
m−2

(
m−2

2
)
≡

1 mod 2 if m ≡ −3 mod 8, and am−5
2

= m
m−2

(
m−2

2
)
≡ 0 mod 2 if m ≡ 3 mod 8. a2 =

m
m−(m−5)/2

(
m−(m−5)/2

(m−5)/2
)
≡ 0 if m ≡ 13 mod 16, and a2 ≡ 1 if m ≡ 11 mod 16. Hence, 

f(X) is not self-reciprocal if m ≡ 11, 13 mod 16. The remaining cases are m ≡ 3, 5
mod 16.

For m ≡ 3 mod 16, we have that m ≥ 19, and that am−7
2

= m
m−3

(
m−3

3
)
≡ 1 mod 2

and a3 = m
m−(m−7)/2

(
m−(m−7)/2

(m−7)/2
)
≡ 0 mod 2. For m ≡ 5 mod 16, we have that m ≥

21, and that am−9
2

= m
m−4

(
m−4

4
)
≡ 0 mod 2, and a4 = m

m−(m−9)/2
(m−(m−9)/2

(m−9)/2
)
≡ 1

mod 2 if m ≡ 21 mod 32. Finally, for m ≡ 5 mod 32, we have that m ≥ 37, and that 
am−11

2
= m

m−5
(
m−5

5
)
≡ 1 mod 2 and a5 = m

m−(m−11)/2
(
m−(m−11)/2

(m−11)/2
)
≡ 0 mod 2. All of 

these imply that f(X) is not self-reciprocal when m ≡ 3, 5 mod 16. �
3. A connection to Wiedemann’s question

In [11], Wiedemann considered a sequence xj ∈ F2, j ≥ −1, defined recursively by

{
x−1 = 1,
xj+1 + x−1

j+1 = xj , j ≥ −1.
(3)

It was proved in [11] that for j ≥ 0, F2(xj) = F22j+1 and xFj

j = 1, where Fj = 22j + 1 is 
the jth Fermat number. Wiedemann raised the following question which is still unsolved: 
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Is x0x1 · · ·xn a primitive element of F22n+1 for all n ≥ 0? Since the Fermat numbers are 
pairwise relatively prime [5, Theorem 16] and F0F1 · · ·Fn = 22n+1−1, the above question 
is equivalent to the following

Question 3.1 (Wiedemann). Let xj be defined by (3) and let o(xi) denote its multiplica-
tive order. For each j ≥ 0, is it true that o(xj) = Fj?

Our computational results confirm a positive answer to Question 3.1 for 0 ≤ j ≤ 11
and provide partial evidence for a positive answer for j = 12 and 13. For 0 ≤ j ≤ 4, Fj

is a prime, and hence o(xj) = Fj . For 5 ≤ j ≤ 11, the complete factorization of Fj is 
known [12]. We have verified that for each prime factor d of Fj (5 ≤ j ≤ 11), xFj/d

j �= 1, 
and hence o(xj) = Fj . For j = 12 and 13, only partial factorizations of F12 and F13 are 
known [12]:

F12 = p6 · p8 · p′8 · p12 · p16 · p54 · c1133,

F13 = p13 · p19 · p′19 · p27 · c2391,

where pi (p′i) is a known prime with i digits and ci is a known composite number with i
digits. We have verified that

x
F12/d
12 �= 1 for d ∈ {p6, p8, p

′
8, p12, p16, p54, c1133}

and

x
F13/d
13 �= 1 for d ∈ {p13, p19, p

′
19, p27, c2391}.

The question that we consider in the present paper is related to Question 3.1 in the 
following sense. Let o(xj) = mj . Also write x−1

j−1 = yj + y−1
j , where yj ∈ F22j+1 . Since 

xj−1 and x−1
j−1 are conjugate over F22j−1 in Wiedemann’s construction, we have that yj

is conjugate to either xj or x−1
j over F22j−1 , and so o(yj) = mj . Then xmj

j = y
mj

j = 1
and (xj + x−1

j )(yj + y−1
j ) = 1; that is, Dmj

(xj−1) = Dmj
(x−1

j−1) = 0. If for every 
proper divisor m of Fj , there is no α ∈ F

∗
22j such that Dm(α) = Dm(α−1) = 0, then 

o(xj) = Fj . Therefore, it is natural to ask the following question, which is a restatement 
of Question 1.1 for a given j.

Question 3.2. Let j ≥ 0 be an integer. Do there exist a proper divisor m of Fj and 
α ∈ F

∗
22j such that Dm(α) = Dm(α−1) = 0?

The answer to Question 3.2 is negative for 0 ≤ j ≤ 4 and is positive for j = 5 and 
8 ≤ j ≤ 15; see Section 4.
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4. A connection to mad numbers

In [1], Blokhuis and Brouwer described a game as following: Let m be a positive integer 
and let Γm be the graph with vertex set Zm ×Zm such that (x1, x2), (y1, y2) ∈ Zm ×Zm

are adjacent if and only if either x1 = y1, x2−y2 ≡ ±1 mod m or x1−y1 ≡ ±1 mod m, 
x2 = y2. Each vertex of Γm is of valency 4 and equipped with a light bulb and a button. 
Pushing the button at a vertex x switches the state (light on/off) of x and each of its 
neighbors. If there exist nonempty sets of buttons such that pushing all of them does 
leave the starting state pattern unchanged, Blokhuis and Brouwer call the number m
mad.

Let the vertex (u, v) ∈ Zm × Zm correspond to the monomial XuY v ∈ F2[X, Y ]/
(Xm − 1, Y m − 1). Each given state pattern corresponds to a polynomial f(X, Y ) ∈
F2[X, Y ]/(Xm − 1, Y m − 1). Let

i(X,Y ) = 1 + X + X−1 + Y + Y −1 ∈ F2(X,Y ).

Pushing a button at (u, v) means adding i(X, Y )XuY v to f(X, Y ). So, m is mad if and 
only if there is a nonzero polynomial g(X, Y ) ∈ F2[X, Y ]/(Xm − 1, Y m − 1) so that 
g(X, Y )i(X, Y ) = 0 in F2[X, Y ]/(Xm − 1, Y m − 1), or equivalently, (i(X, Y )) is a proper 
ideal in F2[X, Y ]/(Xm − 1, Y m − 1) (see [1]). It was proved in [1] that m is mad if and 
only if there exist x, y ∈ F2 with xm = ym = 1 such that i(x, y) = 0.

Let

Am =
{
(x, y) ∈ F2 : xm = ym = 1, (x + x−1)(y + y−1) = 1

}
,

Bm =
{
(x, y) ∈ F2 : xm = ym = 1, i(x, y) = 0

}
.

The map Am → Bm, (x, y) �→ (xy, xy−1) is a bijection whose inverse is (x, y) �→
((xy)1/2, (xy−1)1/2). Hence |Am| = |Bm|. Assume that m | (q + 1) and let

Dm,q =
{
α ∈ F

∗
q : Dm(α) = Dm(α−1) = 0

}
.

Recall that the map Am → Dm,q, (x, y) �→ x + x−1, is a 4-to-1 onto map, and hence 
|Dm,q| = 1

4 |Am| = 1
4 |Bm|. In particular, there exists α ∈ F

∗
q such that Dm(α) =

Dm(α−1) = 0 if and only if m is a mad number. Therefore, Question 3.2 can be rephrased 
as follows:

Question 4.1. Does the Fermat number Fj have any proper divisor that is a mad number?

For 0 ≤ j ≤ 4, Fj are primes, and hence the answer to Question 4.1 is negative. For 
j = 5, the numerical results of [1] indicate that the prime divisor 6700417 of F5 is mad 
but the other prime divisor 641 is not. Hence the answer to Question 4.1 is positive for 
j = 5. More importantly, the following theorem of [1] shows that large divisors of Fj are 
mad.
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Table 1
Values of log10 a(j) and (2j−2 − 2) log10 2, 5 ≤ j ≤ 15.

j log10 a(j) (2j−2 − 2) log10 2
5 2.80686 1.80618
6 5.43803 4.21442
7 16.7756 9.0309
8 15.093 18.6639
9 6.38468 37.9298
10 7.65889 76.4616
11 5.50446 153.525
12 5.05952 307.653
13 12.4331 615.907
14 53.0679 1232.42
15 9.08431 2465.44

Theorem 4.2 ([1]). If d | (2k + 1) is such that (4d)4 ≤ 2k, then (2k + 1)/d is a mad 
number.

Let a(j) denote the smallest prime divisor of Fj ; this is Sequence A093179 in OEIS 
where a(j) are listed for 0 ≤ j ≤ 15. If

log10 a(j) ≤ (2j−2 − 2) log10 2, (4)

then by Theorem 4.2, Fj/a(j) is a mad number. The (approximate) values of log10 a(j)
and (2j−2 − 2) log10 2, 5 ≤ j ≤ 15, are given in Table 1.

For 8 ≤ j ≤ 15, (4) is satisfied, hence for these values of j, Fj/a(j) is mad and the 
answer to Question 4.1 is positive.

The proof of Theorem 4.2 provided in [1] relies on the Hasse–Weil bound applied to 
a certain polynomial H(U, V ) ∈ F2k [U, V ] (defined below). To this end, the polynomial 
H(U, V ) needs to be absolutely irreducible. However, the proof in [1] does not include a 
verification or explanation for the absolute irreducibility of H(U, V ). It appears to us that 
the absolute irreducibility of H(U, V ) is nontrivial and it took us much effort to prove 
this fact. For the sake of completeness, we include a proof of the absolute irreducibility 
of H(U, V ) and a more detailed proof of Theorem 4.2.

Proposition 4.3. Let d > 0 be odd and 0 �= a ∈ F2. Define

H(U, V ) = (U2 +U +a)d(V 2 +V +a)d
[
1+Dd

( 1
U2 + U + a

)
+Dd

( 1
V 2 + V + a

)]
. (5)

Then H is irreducible in F2[U, V ].

Proof. 1◦ We claim that 1 + Dd(X) + Dd(Y ) ∈ F2[X, Y ] is irreducible.
First, note that degDd = d, and since d is odd, we can write Dd(X) = Xfd(X2)

for some monic polynomial fd ∈ F2[X] with deg fd = (d − 1)/2. The homogenization of 
1 + Dd(X) + Dd(Y ) is
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F (X,Y, Z) = Zd + XZd−1fd

((X
Z

)2)
+ Y Zd−1fd

((Y
Z

)2)
∈ F2[X,Y, Z].

It suffices to show that the projective curve F is smooth, i.e., without singular point 
in the projective plane P2(F2). (If F is smooth, it is irreducible over F2. It follows that 
1 + Dd(X) + Dd(Y ) is irreducible in F2[X, Y ].) We have

∂F

∂X
= Zd−1fd

((X
Z

)2)
,

∂F

∂Y
= Zd−1fd

((Y
Z

)2)
,

∂F

∂Z
= Zd−1.

Assume to the contrary that F has a singular point P = (x : y : z) ∈ P
2(F2), i.e.,

F (P ) = ∂F

∂X
(P ) = ∂F

∂Y
(P ) = ∂F

∂Z
(P ) = 0.

Then z = 0. Since

∂F

∂X
= Zd−1fd

((X
Z

)2)
= Zd−1

((X
Z

)d−1
+ lower terms in X

Z

)
= Xd−1 + Z · (· · · ),

it follows from (∂F/∂X)(P ) = 0 that x = 0. In the same way, y = 0. Thus we have a 
contradiction.

2◦ Let x, y, u, v be transcendentals over F2 such that 1 +Dd(x) +Dd(y) = 0, u2+u +a =
x−1 and v2 + v + a = y−1. We claim that

[F2(y, u) : F2(y)] = 2d.

First, we have [F2(u) : F2(x)] = 2. Otherwise, u ∈ F2(x). Write u = f(x−1)/g(x−1), 
where f, g ∈ F2[X] satisfy gcd(f, g) = 1. Then

(f(x−1)
g(x−1)

)2
+ f(x−1)

g(x−1) + a = x−1.

Since x is transcendental over F2, we have

(f
g

)2
+ f

g
+ a = X,

i.e.,

(X + a)g2 = f(f + g).



A. Blokhuis et al. / Journal of Number Theory 188 (2018) 229–246 241
Fig. 1. Proof of Proposition 4.3.

Since gcd(g, f(f + g)) = 1, we have g = 1. It follows that X + a = f(f + 1), which is 
impossible.

By 1◦, [F2(x, y) : F2(x)] = [F2(x, y) : F2(y)] = d. Since gcd(2, d) = 1, we have the 
solid part of the diagram in Fig. 1. (The dashed part follows by symmetry.)

3◦ We claim that X2 + X + x−1 + y−1 ∈ F2(x, y)[X] is irreducible over F2(x, y).
Consider the function field F2(x, y)/F2. Let (x)0 denote the zero divisor of x. Then

deg(x)0 = [F2(x, y) : F2(x)] = d.

Since d is odd, there is a place P of F2(x, y) such that νP (x) = k is a positive odd integer, 
where νP is the valuation at P . Then νP (Dd(x)) = νP (xfd(x2)) > 0. It follows from

1 + Dd(x) + Dd(y) = 0

that νP (Dd(y)) = 0. Hence νP (y) = 0. Therefore,

νP (x−1 + y−1) = −k.

Assume to the contrary that X2 + X + x−1 + y−1 has a root ε ∈ F2(x, y). Then

ε(ε + 1) = x−1 + y−1.

If νP (ε) ≥ 0, then νP (ε(ε + 1)) ≥ 0, which is a contradiction. If νP (ε) < 0, then νP (ε(ε +
1)) = 2νP (ε), which is also impossible since νP (x−1 + y−1) = −k is odd.

4◦ We claim that [F2(u, v) : F2(u)] = 2d. (By symmetry, [F2(u, v) : F2(v)] = 2d.)
Consider the following diagram.

F2(u, v)

≤2

F2(u, y)

d (by Fig. 1)

F2(u)
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Assume to the contrary that v ∈ F2(u, y) = F2(u, x, y). Then

v = a0(x, y) + ua1(x, y) (6)

for some a0, a1 ∈ F2(X, Y ). Then

v2 = a0(x, y)2 + u2a1(x, y)2. (7)

Adding (6) and (7) gives

a + y−1 = a0(x, y) + a0(x, y)2 + ua1(x, y) + u2a1(x, y)2

= a0(x, y) + a0(x, y)2 + ua1(x, y) + (u + a + x−1)a1(x, y)2

= a0(x, y) + a0(x, y)2 + ua1(x, y)(a1(x, y) + 1) + (a + x−1)a1(x, y)2.

We must have a1(x, y)(a1(x, y) +1) = 0. Otherwise, u ∈ F2(x, y), which is a contradiction 
to the diagram in Fig. 1.

If a1(x, y) = 0, then v = a0(x, y) ∈ F2(x, y), which is a contradiction to Fig. 1. Thus 
a1(x, y) = 1. Hence

a0(x, y)2 + a0(x, y) + x−1 + y−1 = 0.

However, this is impossible by 3◦.

5◦. We have H(u, v) = 0, where H is defined in (5). Note that degU H(U, V ) =
degV H(U, V ) = 2d. By 4◦, H(U, v) is the minimal polynomial of u over F2(v). Hence 
H(U, v) is irreducible over F2(v); that is, H(U, V ) is irreducible over F2(V ). Write

H(U, V ) = b2d(V )U2d + · · · + b0(V ),

where bi(V ) ∈ F2[V ], deg bi ≤ 2d. Let

h(V ) = gcd(b2d(V ), . . . , b0(V )).

We claim that h(V ) = 1. (Then it follows that H(U, V ) is irreducible over F2.) Otherwise,

0 = H(u, v) = h(v)H(u, v)
h(v) ,

where h(v) �= 0 since v is transcendental over F2. Therefore H(u, v)/h(v) = 0. Thus v is 
of degree < 2d over F2(u), which is a contradiction to 4◦. �

The following result shows the equivalence of mad number and the existence of roots 
of the function H(U, V ).



A. Blokhuis et al. / Journal of Number Theory 188 (2018) 229–246 243
Lemma 4.4. Let d be a proper divisor of 2k + 1 and let m = (2k + 1)/d. Choose a ∈ F2k

such that T2k(a) = 1. Let

H(U, V ) = (U2 + U + a)d(V 2 + V + a)d
[
1 + Dd

( 1
U2 + U + a

)
+ Dd

( 1
V 2 + V + a

)]
.

Then m is a mad number if and only if H(U, V ) has a root (u, v) ∈ F
2
2k .

Proof. We first assume that m is mad. Then there are α, β ∈ F22k so that

1 + α + α−1 + β + β−1 = 0 and αm = 1 = βm.

From 2k + 1 = md, αm = 1 = βm if and only if α = ξd and β = ζd for ξ, ζ ∈ F22k

satisfying ξ2k+1 = 1 = ζ2k+1. In this situation, both x = ξ + ξ−1 and y = ζ + ζ−1

are in F2k , and both X2 + xX + 1 and X2 + yX + 1 are irreducible over F2k . Hence 
T2k(x−1) = 1 = T2k(y−1). Not that every element in F2k of trace 1 is of the form b2+b +a

with b ∈ F2k as we have chosen a ∈ F2k with T2k(a) = 1. So, x−1 = u2 + u + a and 
y−1 = v2 + v + a for some u, v ∈ F2k . Thus,

0 = 1 + α + α−1 + β + β−1

= 1 + ξd + (ξ−1)d + ζd + (ζ−1)d

= 1 + Dd(x) + Dd(y)

= 1 + Dd(
1

u2 + u + a
) + Dd(

1
v2 + v + a

).

It follows that H(u, v) = 0.
Conversely, suppose that H(U, V ) has a root (u, v) ∈ F

2
2k . Since T2k(u2 + u + a) = 1, 

the polynomial

X2 + 1
u2 + u + a

X + 1 ∈ F2k [X]

is irreducible. Let x ∈ F22k be a root of the above polynomial. The norm of x in F2k is 
x2k+1 = 1 and

x + x−1 = x + x2k

= 1
u2 + u + a

.

Similarly, there exists y ∈ F22k such that y2k+1 = 1 and

y + y−1 = 1
v2 + v + a

.

Let x1 = xd and y1 = yd. Then xm
1 = ym1 = 1 and
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1 + x1 + x−1
1 + y1 + y−1

1 = 1 + xd + x−d + yd + y−d

= 1 + Dd(x + x−1) + Dd(y + y−1)

= 1 + Dd

( 1
u2 + u + a

)
+ Dd

( 1
v2 + v + a

)
= 0.

Hence m is a mad number. �
We are now ready to give a proof of Theorem 4.2.

Proof of Theorem 4.2. From Lemma 4.4, it suffices to show that H(U, V ) has a root in 
F

2
2k . Write q = 2k. Let H(U, V, W ) ∈ F2[U, V, W ] be the homogenization of H(U, V ) and 

let

VP2(Fq)(H) = {(u : v : w) ∈ P
2(Fq) : H(u, v, w) = 0},

VF2
q
(H) = {(u, v) ∈ F

2
q : H(u, v) = 0}.

Since H is absolutely irreducible of degree 4d,

∣∣|VP2(Fq)(H)| − q
∣∣ ≤ (4d− 1)(4d− 2)q1/2 + 1

2 · 4d(4d− 1)2 + 1

by the Hasse-Weil bound and Bézout’s theorem. (Note. The expression 1
2 · 4d(4d − 1)2 +

1 arises from the consideration of possible singular points on the curve VP2(Fq)(H).) 
Therefore

|VP2(Fq)(H)| ≥ q − (4d− 1)(4d− 2)q1/2 − 2d(4d− 1)2 − 1

= q1/2(q1/2 − (4d− 1)(4d− 2)) − 2d(4d− 1)2 − 1

≥ (4d)2((4d)2 − (4d− 1)(4d− 2)) − 2d(4d− 1)2 − 1

= 10d(4d)2 − (4d)2 − 2d− 1 > 8d(4d)2.

Since H(U, V, 0) = U2dV 2d, VP2(Fq)(H) contains only two points at ∞, namely, (1 : 0 : 0)
and (0 : 1 : 0). Hence

|VF2
q
(H)| ≥ |VP2(Fq)(H)| − 2 > 0. �

Remark 4.5. The relation between mad numbers and Dickson polynomials has been 
observed in [1]. Indeed, the polynomial gn(X) defined in Section 5 of [1] is exactly Dn(X). 
Theorem 5.1 in [1] states that m is mad if and only if gcd(Dm(X), Dm(X + 1)) �= 1. As 
pointed out by the referee, using this fact, one can determine if a given number is mad 
in polynomial time. Blokhuis and Brouwer have used Theorem 5.1 to generate a large 
amount of data.



A. Blokhuis et al. / Journal of Number Theory 188 (2018) 229–246 245
5. Final remark

Let m, n be positive integers and let q = 2n. The Dickson polynomial of the second 
kind of degree m with parameter 1 over Fq is defined to be

Em(X) =
�m/2�∑
i=0

(
m− i

i

)
(−1)iXm−2i.

It is well known that

Em(X + X−1) = Xm+1 −X−m−1

X −X−1 .

(See [7] for more details.)
For α ∈ Fq, we can write α = ζ+ζ−1, where either ζ ∈ F

∗
q or ζ ∈ F

∗
q2 with ζq+1 = 1. If 

α �= 0, then Em(α) = ζm+1−ζ−m−1

ζ−ζ−1 . So, 0 �= α is a root of Em(X) if and only if ζm+1 = 1. 
This implies that there is α ∈ F

∗
q satisfying Em(α) = 0 = Em(α−1) if and only if there 

is α ∈ F
∗
q satisfying Dm+1(α) = 0 = Dm+1(α−1).
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