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h i g h l i g h t s

• We consider a long-range Domany–Kinzel model for directed bond percolation on the rectangular lattice.
• The critical aspect ratio for this percolation model in the thermodynamic limit is corrected.
• The asymptotic behavior of this percolation model near the critical aspect ratio is obtained.
• We investigate the cases with infinite bonds from one vertex to the next row for this model.
• A special case with infinite bonds is studied in details, and its critical power is derived.
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a b s t r a c t

We consider a long-range Domany–Kinzel model proposed by Li and Zhang (1983), such
that for every site (i, j) in a two-dimensional rectangular lattice there is a directed bond
present from site (i, j) to (i+1, j) with probability one. There are alsom+1 directed bounds
present from (i, j) to (i−k+1, j+1), k = 0, 1, . . . ,mwith probability pk ∈ [0, 1),wherem is
a non-negative integer. Let τm(M,N) be the probability that there is at least one connected-
directed path of occupied edges from (0, 0) to (M,N). Defining the aspect ratio α = M/N ,
we derive the correct critical value αm,c ∈ R such that as N → ∞, τm(M,N) converges to
1, 0 and 1/2 for α > αm,c , α < αm,c and α = αm,c , respectively, and we study the rate of
convergence. Furthermore, we investigate the cases in the infinitem limit. Specifically, we
discuss in details the case such that pn ∈ [0, 1) with n ∈ Z+ and pn≈n→∞pn−s for p ∈ (0, 1)
and s > 0. We find that the behavior of limm→∞τm(M,N) for this case highly depends on
the value of s and how fast one approaches to the critical aspect ratio. The present study
corrects and extends the results given in Li and Zhang (1983).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Directed percolation, or oriented percolation, can be thought of simply as a percolation process on a directed lattice in
which connections are allowed only in a preferred direction. It was first studied by Broadbent and Hammersley in 1957 [1],
and it has remained to this day as one of the most outstanding interesting problems in probability and statistical mechanics.
Furthermore, directed percolation is closely related to the Reggeon field theory in high-energy physics and the Markov
processes with branching, recombination and absorption that occur in chemistry and biology [2,3], etc. Various properties,
results and conjectures of directed percolation can be found in [4,5] and the references therein. However, very little is known
in the way of exact solutions for the directed percolation problem.
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Fig. 1. The long-range directed bond percolation model.

Domany and Kinzel [6] defined a solvable version of compact directed percolation on the square lattice in 1981 as follows.
Given a fixed p ∈ (0, 1), each vertical bond is directed upward with occupation probability p (independently of the other
bonds), while each horizontal bond is directed rightward with occupation probability 1. Furthermore, it is known that the
boundary of the Domany–Kinzelmodel has the same distribution as the one-dimensional last passage percolationmodel [7].
A three-dimensional version of Domany–Kinzel model with occupation probability 1 along two spatial directions was
considered in Ref. [8]. Recently, the model has been considered in more general cases. For example, the directed percolation
model on the square latticewhose vertical edges occupiedwith a probability pv and horizontal edges in the nth row occupied
with a probability 1 if n is even and ph if n is odd [9]; the directed percolation model on the triangular lattice in terms of a
square lattice with vertical probability y, horizontal probabilities 1 and x alternatively, and diagonal edges from lower-left
to upper-right or from lower-right to upper-left with probability d [10]; the directed percolation model on the honeycomb
lattice as bricks such that vertical edges are directed upward with probability y, and horizontal edges are directed rightward
with probabilities 1 and x in alternate rows [11]; the directed percolationmodel on square lattice such that horizontal edges
are directed rightward with probabilities one, and vertical edges are directed upward with probabilities p1, p2 alternatively
in even rows and probabilities p2, p1 alternatively in odd rows [12].

In this article, we consider the long-range directed bond percolation models on the square lattice as follows. The
horizontal edges are directed rightward with probabilities one, and the directed bond from (i, j) to (i − k + 1, j + 1), k =

0, 1, . . . ,m with respective probabilities pk ∈ (0, 1), where m is a non-negative integer (see Fig. 1). Notice that this model
has been considered in [13]. However, the critical value derived there is questionable, and the rate of convergence has not
yet been discussed.

The vertices (sites) of the square lattice are located at a two-dimensional rectangular net {(i, j) ∈ Z × Z+ : i ≤ M and
0 ≤ j ≤ N}. Throughout this article, we denote qk = 1 − pk, k = 0, 1, . . . ,m for convenience. We say that the vertex (i, j)
is percolating if there is at least one connected-directed path of occupied edges from (0, 0) to (i, j). Given any α ∈ R, denote
Nα = ⌊αN⌋ = sup{i ∈ Z : i ≤ αN} with N ∈ Z+. Let P be the probability distribution of the bond variables, and define the
two point correlation function

τm(Nα,N) = P((Nα,N) is percolating) . (1.1)

2. Main results

For convenience, define

q̄m = q0 · · · qm−1qm ,

and the notation a1 ≈ a2 means that a1/a2 ∈ (0, ∞). f (N) ≈N→∞ g(N) and f (α) ≈α→αc g(α) mean that the limits
limN→∞f (N)/g(N) and limα→αc f (α)/g(α) are bounded from zero and infinite, respectively. We have the following main
theorem.

Theorem 2.1. Given a finite m ∈ Z+ and pk ∈ (0, 1), k = 0, 1, 2, . . . ,m, there is a critical aspect ratio

αm,c =

∏m
j=1 q

j
j

1 − q̄m
−

m∑
k=2

(
1 − qkq2k+1 · · · qm−k+1

m

)
, (2.1)

such that

τm(Nαm,c ,N) =
1
2

+ O(
1

√
N
) (2.2)

in the large N limit, and when α is close to αm,c but not equal to αm,c

τm(Nα,N) ≤ e−NI(α) for α < αm,c ,

1 − τm(Nα,N) ≤ e−NI(α) for α > αm,c ,
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where

I(α) ≈ (α − αm,c)2 . (2.3)

Notice that the rate function I(α) in (2.3) is optimal [14], which gives the upper bound of τm(Nα,N) or 1 − τm(Nα,N) as
e−NI(α) when α is smaller or larger than αm,c , respectively.

Remark 2.2. (2.1) can be written as

αm,c =

∑m
k=1 qkq

2
k+1 · · · qm−k+1

m + q̄m
∑m

k=2(1 − qkq2k+1 · · · qm−k+1
m ) − (m − 1)

1 − q̄m
, (2.4)

which corrects the expression

αm,c =

∑m
k=1 qkqk+1 · · · qm − (m − 1)

1 − q̄m
(2.5)

given in [13]. These two expressions of αm,c are equal only when m = 0 or m = 1. In particular, α2,c should be
q1q22

1−q0q1q2
− p2 using (2.4), rather than q1q2+q2−1

1−q0q1q2
=

q1q2(p0+q0q2)
1−q0q1q2

− p2 using (2.5). From Theorem 2.1, we obtain α0,c =
1
p0
,

and α1,c =
1−p0

p0+p1−p0p1
corresponds to that for the triangle lattice in [15]. While Ref. [13] only gave the limiting behavior of

τm, here in Theorem 2.1 we obtain the rate of convergence of τm as well, namely, the main result of [13] is extended.

Next result is the investigation of the asymptotic phenomena of τm(Nα−

m,N
,N) and τm(Nα+

m,N
,N), where α+

m,N ↓ αm,c and
α−

m,N ↑ αm,c as N ↑ ∞. A sequence {ℓn}
∞

n=1 is called a regularly varying sequence if limn→∞ℓ⌊λn⌋/ℓn = 1 for any λ ∈ (0, ∞).
We obtain the following corollary, which can be shown by the argument used in the proof of Theorem 2.3 in [12]. In the
following expressions of upper bounds, c stands for a certain positive constant whose value varies from one equation to
another.

Corollary 2.3. Given a finite m ∈ Z+ and pk ∈ (0, 1), k = 0, 1, 2, . . . ,m, let α−

m,N = αm,c −N−
ρ
2 ℓN and α+

m,N = αm,c +N−
ρ
2 ℓN ,

where ρ ∈ (0, ∞) and {ℓN}
∞

N=1 is a positive regularly varying sequence. We obtain

τm(Nα−

m,N
,N), 1 − τm(Nα+

m,N
,N)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤ exp
(
−cN1−ρℓ2N

)
, if ρ ∈ (0, 1),

≤ exp
(
−cℓ2N

)
, if ρ = 1, and lim

N→∞

ℓN = ∞,

= Ψ (L) + O(1)max{ℓN − L,
1

√
N

}, if ρ = 1, and lim
N→∞

ℓN = L ∈ [0, ∞),

=
1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, if ρ ∈ (1, 2],

=
1
2

+ O
( 1
√
N

)
, if ρ > 2.

(2.6)

It is interesting to investigate the behavior in the limitm → ∞, and the rest part of this section is devoted to such limit.
Again we define

τ (Nα,N) = P((Nα,N) is percolating) . (2.7)

It is necessary that pk → 0 as k → ∞, we can rewrite

q̄m = e
∑m

k=0 log(1−pk), qkq2k+1 · · · qm−k+1
m = e

∑m−k+1
j=1 j log(1−pk+j−1) , (2.8)

and

− pk(1 + pk) ≤ log(1 − pk) ≤ −pk for pk ∈ (0, 0.6838026238) ,

so that

q̄m ≈
m→∞

e−
∑m

k=0 pk (2.9)

and for k ≥ 1

qkq2k+1 · · · qm−k+1
m ≈

m→∞
e−

∑m−k+1
j=1 jpk+j−1 . (2.10)
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Therefore by (2.1), under the condition pk → 0 as k → ∞ we obtain

αc := lim
m→∞

αm,c ≈ lim
m→∞

(exp(−
∑m

j=1 jpj)

1 − e−
∑m

k=0 pk
−

m∑
k=2

(
1 − exp(−

m−k+1∑
j=1

jpk+j−1)
))

. (2.11)

Hereafter we shall omit the subscriptm for the limitm → ∞.
Let us consider the following three cases form → ∞, i.e., pn ∈ [0, 1) with n ∈ Z+. (i) pn =

a
a+1+n with a > 0; (ii). pn =

β

m
with β ∈ (0,m). (iii) pn ≈n→∞

p
ns with p ∈ (0, 1), s > 0.

Consider the case (i), it is easy to see that limm→∞

∑m
j=1jpj = ∞ and limm→∞

∑m
j=1pj = ∞. Moreover,

lim
m→∞

m∑
k=2

exp
(
−

m−k+1∑
j=1

jpk+j−1
)

= lim
m→∞

m∑
k=2

exp
(
−

m−k+1∑
j=1

ja
a + k + j

)
= lim

m→∞

m∑
k=2

exp
(
−a(m − k + 1) + a(a + k)[Ψ(a + m + 2) − Ψ(a + k + 1)]

)
,

where

Ψ(k) =
Γ ′(k)
Γ (k)

is the digamma function. It follows that limm→∞

∑m
k=2 exp

(
−

∑m−k+1
j=1 jpk+j−1

)
< ∞, and by (2.11) we have

αc := lim
m→∞

αm,c = −∞ . (2.12)

For the case (ii), by (2.11) again it is easy to see that αc = −∞.
Case (iii) is most interesting, because its behavior is quite different from the case with finite m. We obtain the following

result.

Theorem 2.4. Let pn ∈ [0, 1) with n ∈ Z+ and pn ≈n→∞
p
ns with p ∈ (0, 1) and s > 0. For s ∈ (0, 3] we have

τ (Nα,N) → 1, as N → ∞ (2.13)

for any α ∈ R. For s > 3, we have

αc ∈ (−∞, 1) (2.14)

and

τ (Nαc ,N)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈ (0, 1), s ∈ (3, 4),

=
1
2

+ O
( 1
logN

)
, s = 4,

=
1
2

+ O
( 1

N
s−4
2

)
, s ∈ (4, 5),

=
1
2

+ O
( logN

√
N

)
, s = 5,

=
1
2

+ O
( 1
√
N

)
, s > 5,

(2.15)

in the large N limit. Moreover for s > 3, when α is close to αc but not equal to αc , we obtain

τ (Nα,N) ≤
1

(αc − α)s−2N s−3 for α < αc ,

1 − τ (Nα,N) ≤ e−NI(α) for α > αc , (2.16)

where

I(α) ≈

{
(α − αc)1+

1
s−3 for s ∈ (3, 4] ,

(α − αc)2 for s > 4 .
(2.17)

The critical power sc can be defined such that αc = −∞ if s ≤ sc , and αc ∈ (−∞, 1) if s > sc . We find here that the
critical power sc is equal to 3, which corrects the value 2 given in [13]. For s ∈ (3, 4), the convergence of τ (Nαc ,N) is too
weak to decide its value as N → ∞, such that τ (Nαc ,N) in (2.15) may not always tend to 1

2 as N → ∞. We shall discuss
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this further in Remark 5.1. It is appropriate to define some standard critical exponents and to sketch the phenomenological
scaling theory of τ (Nα,N). For α > αc and α close to αc , let us write the upper bound of τ (Nα,N) as (c.f. [16])

τ (Nα,N) ≤ exp(
−BN

(αc − α)−ν
) . (2.18)

By Theorem 2.4, if s ∈ (3, 4) we have ν = 1 +
1

s−3 > 2, and if s ≥ 4 we have ν = 2. For α < αc and α close to αc , the decay
of the upper bound for τ (Nα,N) is not exponential.

The last result of this article is the investigation of the asymptotic phenomena of τ (Nα−

N
,N) and τ (Nα+

N
,N) where α+

N ↓ αc

and α−

N ↑ αc as N ↑ ∞. For convenience, we denote Φ(x) =
1

√
2π

∫ x
−∞

e−
u2
2 du as the standard cumulative distribution

function of Gaussian distribution with mean 0, variance 1 and let Ψ (x) = 1 − Φ(x) =
1

√
2π

∫
∞

x e−
u2
2 du. It is not difficult to

see that

Ψ (x) =
e−

x2
2

√
2πx

(
1 + O(x−2)

)
for large x , (2.19)

1
2

− Ψ (x) =
x

√
2π

(
1 + O(x−2)

)
for small x . (2.20)

In the following expressions of upper bounds, c stands for certain positive constant whose value varies from one equation
to another, and is independent of pn and n. We have the following theorem.

Theorem 2.5. Given pn ∈ [0, 1) with n ∈ Z+ and pn ≈n→∞
p
ns with p ∈ (0, 1) and s > 3, let α−

N = αc − N−
ρ(s∧4−3)
(s∧4−2) ℓN and

α+

N = αc +N−
ρ(s∧4−3)
(s∧4−2) ℓN , where ρ ∈ (0, ∞) and {ℓN}

∞

N=1 is a positive regularly varying sequence. We obtain the following results
in the large N limit. For ρ < 1, we have

τ (Nα−

N
,N) ≤

1
N (s−3)(1−ρ)ℓs−2

N

, 1 − τ (Nα+

N
,N) ≤ exp

(
−cN1−ρℓ

s∧4−2
s∧4−3
N

)
. (2.21)

For s ∈ (3, 4) and ρ ≥ 1, we have

1 − τ (Nα+

N
,N) ≈

m→∞

⎧⎨⎩exp(−cℓ
s−2
s−3
N ), ρ = 1, lim

N→∞

ℓN = ∞,

∈ (0, 1), ρ = 1, lim
N→∞

ℓN ∈ (0, ∞), or ρ > 1,

and

τ (Nα−

N
,N) ≤

⎧⎨⎩
1

ℓs−2
N

, ρ = 1, lim
N→∞

ℓN = ∞,

∈ (0, 1), ρ = 1, lim
N→∞

ℓN ∈ (0, ∞), or ρ > 1.

For s ≥ 4 and ρ = 1, we have both

τ (Nα−

N
,N), 1 − τ (Nα+

N
,N)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)max{
√
logN
ℓN

e−
cℓ2N
logN ,

1
logN

}, if s = 4 and lim
N→∞

ℓN
√
logN

= ∞,

λ1 + O(1)max{|
ℓN

√
logN

− L|,
1

logN
}, if s = 4 and lim

N→∞

ℓN
√
logN

= L ∈ [0, ∞),

O(1)max{
1
ℓN

e−
ℓ2N
2σ2 ,

1

N
s−4
2

}, if s ∈ (4, 5), lim
N→∞

ℓN = ∞,

λ2 + O(1)max{|ℓN − L|,
1

N
s−4
2

}, if s ∈ (4, 5), lim
N→∞

ℓN = L ∈ [0, ∞),

O(1)max{
1
ℓN

e−
ℓ2N
2σ2 ,

logN
√
N

}, if s = 5, lim
N→∞

ℓN = ∞,

λ3 + O(1)max{|ℓN − L|,
logN
√
N

}, if s = 5, lim
N→∞

ℓN = L ∈ [0, ∞),

O(1)max{
1
ℓN

e−
ℓ2N
2σ2 ,

1
√
N

}, if s > 5, lim
N→∞

ℓN = ∞,

λ4 + O(1)max{|ℓN − L|,
1

√
N

}, if s > 5, lim
N→∞

ℓN = L ∈ [0, ∞),

(2.22)
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where λi with i = 1, 2, 3, 4 are different constants between (0, 1), σ 2 is a finite constant and stands for the variance of a certain
random variable.

For s ≥ 4 and ρ > 1, we have both

τ (Nα−

N
,N), 1 − τ (Nα+

N
,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

+ O(
1

logN
), if s = 4,

1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, if s ∈ (4, 5), ρ ∈ (1, s − 3],

1
2

+ O
( 1

N
s−4
2

)
, if s ∈ (4, 5), ρ > s − 3,

1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, if s = 5, ρ ∈ (1, 2),

1
2

+ O(1)max{
ℓN
√
N

,
logN
√
N

}, if s = 5, ρ = 2,

1
2

+ O
( logN

√
N

)
, if s = 5, ρ > 2,

1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, if s > 5, ρ ∈ (1, 2],

1
2

+ O
( 1
√
N

)
, if s > 5, ρ > 2.

(2.23)

3. Derivation of αm,c and σ2
m

For any N ∈ N, we say that an occupied vertical edge in a bond configuration is wet if it lies on a percolating path where
(Nα,N) is percolating. For a certain occupied vertical edge ending at (k, n), we say that it is primary wet if it is the wet edge
with smallest k value for that n. In a percolating configuration where (Nα,N) is percolating, there is one primary wet edge
for each n ∈ {1, 2, . . . ,N}. Define Cm,N (k) as the probability that the primary wet edge for n = N ending at (k,N), and let us
formally define Cm,0(k) = δ0,k where δ is the Kronecker delta. Since the primary wet edge can occur at any value of k ≤ Nα ,
we have

τm(Nα,N) =

∑
k≤Nα

Cm,N (k) (3.1)

for N ∈ N.
By the definition of our model, for any k ∈ Z and n ∈ Z+, we have

Cm,n+1(k) =

∑
j∈Z

Cm,n(k − j)Dm(j) , (3.2)

where

Dm(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if j ≤ −m,

1 − qm if j = −m + 1,
Um(j) if j ∈ {−m + 2, . . . , 0},

(q̄m)j−1(
m∏
l=1

qll)(1 − q̄m) if j ≥ 1,

(3.3)

with

Um(j) = q−j+2q2−j+3 · · · qm+j−1
m (1 − q−j+1 · · · qm), if j ∈ {−m + 2, . . . , 0} .

As an example, we illustrate D2(0) in Fig. 2 and D2(1) in Fig. 3 form = 2.
For any probability distribution f : Z+ → R+, its generating function can be defined as

f̂ (t) =

∑
j∈Z

f (j)t j, where |t| is less than the radius of convergence. (3.4)

It follows that

Ĉm,n(t) = D̂m(t)n. (3.5)
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Fig. 2. Illustrations for D2(0), including (a) P({(0, 0) → (0, 1)}) = p1q2 and (b) P({(1, 0) → (0, 1)}) = p2(q1q2). The connection with an arrow is occupied,
while the others with a cross is unoccupied. The dotted lines can be either occupied or unoccupied.

Fig. 3. Illustrations for D2(1), including (a) P({(0, 0) → (1, 1)}) = (p0q1q2)q2 , (b) P({(1, 0) → (1, 1)}) = (q0q1q2)(p1q2), (c) P({(2, 0) → (1, 1)}) =

(q0q1q2)(q1q2)p2 . The connection with an arrow is occupied, while the others with a cross is unoccupied. The dotted lines can be either occupied or
unoccupied.

By (3.3), we have

D̂m(t) = Ûm(t) + (1 − qm)t−m+1
+

(
∏m

l=1 q
l
l)(1 − q̄m)t

1 − q̄mt
, (3.6)

with

Ûm(t) =

m−2∑
j=0

qj+2q2j+3 · · · qm−j−1
m (1 − qj+1 · · · qm)t−j .

Note that

(1 − qm) + Ûm(1) = 1 − q1q22 · · · qmm = 1 −

m∏
j=1

qjj , (3.7)

such that D̂m(1) = 1.
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Define the average mean of 1-step walk as

µm =

∑
j∈Z

jDm(j) = D̂′

m(1). (3.8)

We shall show in next section that

αm,c = µm. (3.9)

By (3.6), we have

d
dt

D̂m(t) =
d
dt

Ûm(t) − (m − 1)(1 − qm)t−m
+

(
∏m

j=1 q
j
j)(1 − q̄m)

(1 − q̄mt)2
, (3.10)

where

d
dt

Ûm(t) = −

m−2∑
j=1

jqj+2q2j+3 · · · qm−j−1
m (1 − qj+1 · · · qm)t−j−1 .

Taking t = 1, we have( d
dt

Ûm(t) − (m − 1)(1 − qm)t−m)
|t=1

= −(m − 1)(1 − qm) − (m − 2)qm(1 − qm−1qm) − · · · − q3q24 · · · qm−2
m (1 − q2q3 · · · qm)

= −(m − 1) +

m∑
k=2

(qkq2k+1 · · · qm−k+1
m ).

Therefore from (3.9) and (3.10), we obtain

αm,c =

∏m
j=1 q

j
j

1 − q̄m
− (m − 1) +

m∑
k=2

qkq2k+1 · · · qm−k+1
m

=

∏m
j=1 q

j
j

1 − q̄m
−

m∑
k=2

(
1 − qkq2k+1 · · · qm−k+1

m

)
. (3.11)

Furthermore, the variance of 1-step walk is defined as

σ 2
m =

∑
j∈Z

j2Dm(j) − µ2
m , (3.12)

so the variance of the two-point function is given by

σ 2
m =

d2

dt2
D̂m(1) + αm,c − α2

m,c . (3.13)

By (3.10), we have

d2

dt2
D̂m(t)|t=1 =

d2

dt2
Ûm(t)|t=1 + m(m − 1)(1 − qm) +

2q̄m(
∏m

j=1 q
j
j)

(1 − q̄m)2
, (3.14)

where

d2

dt2
Ûm(t) =

m−2∑
j=1

j(j + 1)qj+2q2j+3 · · · qm−j−1
m (1 − qj+1 · · · qm)t−j−2 .

Therefore, we find

d2

dt2
Ûm(t)|t=1 + m(m − 1)(1 − qm) = m(m − 1) − 2

m−1∑
k=1

kq1k+1 · · · qm−k
m ,

such that

σ 2
m = m(m − 1) − 2

m−1∑
k=1

kq1k+1 · · · qm−k
m +

2q̄m(
∏m

j=1 q
j
j)

(1 − q̄m)2
+ αm,c − (αm,c)2. (3.15)
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4. Proof of Theorem 2.1

As we have obtained the expression of αm,c in the previous section, here we shall study the behavior of τm(Nα,N) when
α is close to this value. Let m ∈ N be fixed in this section. Define a N-step random walk Sm,N where the distribution of each
step is given by Dm and the probability Probm such that Probm(Sm,N = j) = Cm,N (j) with j ∈ Z and Probm(Sm,0 = j) = δ0,j. The
expectation for Probm is denoted by Expm. It is easy to see that Sm,n is the n-sum of these independent random variables and
each random variable has finite third moment. By the law of large number, we have

Sm,N

N
→ αm,c a.s. when N → ∞ , (4.1)

where a.s. stands for ‘‘almost surely’’. Notice that the variance of Sm,N is given byNσ 2
m. Berry–Esseen theorem (c.f. [17]) asserts

that ⏐⏐Probm
(Sm,N − αm,cN√

Nσ 2
m

≤
N(α − αm,c)√

Nσ 2
m

)
−

∫ N(α−αm,c )√
Nσ2

m

−∞

1
√
2π

e−
u2
2 du

⏐⏐
≤ O(

∑
j∈Z |j|3Dm(j)
√
Nσ 3

m

). (4.2)

With the definition of Nα given in the introduction, we have

Probm
(
Sm,N ≤ αN − 1

)
≤ τm(Nα,N) = Probm(Sm,N ≤ Nα) ≤ Probm

(
Sm,N ≤ αN

)
. (4.3)

Setting α = αm,c and using
∑

j∈Z|j|
3Dm(j) < ∞, we obtain

τm(Nαm,c ,N) =

∫ 0

−∞

1
√
2π

e−
u2
2 du + O(

1
√
N
) =

1
2

+ O(
1

√
N
) , (4.4)

which gives (2.2).
In the following part of this section, we shall consider a general α ̸= αm,c . When α < αm,c , we set η = − log t > 0 and

use Chernov inequality to have

Probm(Sm,N ≤ Nα) ≤ inf
η>0

Expm(e−ηSm,N )
e−ηαN = inf

t∈(0,1)

Ŝm,N (t)
tαN

≤ e−NIm(α), (4.5)

where

Im(α) = sup
t>0

{
α log t − log D̂m(t)

}
:= α log tα − log D̂m(tα) . (4.6)

Similarly, when α > αm,c , we set η = log t > 0 to have

Probm(Sm,N > Nα) = inf
η>0

Probm(eηSm,N > eηαN−ηcα )

≈
N→∞

inf
η>0

Probm(eηSm,N > eηαN )

≤ inf
η>0

Expm(eηSm,N )
eηαN

≤ e−NIm(α), (4.7)

where cα ∈ [0, 1).
By (4.6), we have

α

tα
=

D̂′
m(tα)

D̂m(tα)
, (4.8)

such that

I ′m(α) = log tα −
( D̂′

m(tα)

D̂m(tα)
−

α

tα

)d tα
dα

= log tα . (4.9)
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As D̂m(t = 1) = 1 and dD̂m(t)/dt|t=1 = αm,c , setting tα = 1 in (4.8) leads to tαm,c = D̂m(tαm,c ) = 1 and hence
Im(αm,c) = I ′m(αm,c) = 0. Furthermore, by the definition of the generating function and (4.8), we have

α =

∑
n∈Z nDm(n)tnα∑
n∈Z Dm(n)tnα

=
tαD̂′

m(tα)

D̂m(tα)
. (4.10)

Taking derivative with respect to α on both sides of (4.8) leads to

1
tα

−
α d tα

dα

t2α
=

( D̂′′
m(tα)

D̂m(tα)
−

( D̂′
m(tα)

D̂m(tα)

)2)d tα
dα

.

It follows that

I ′′m(α) =

d tα
dα

tα
=

1
Vm(α)

, where Vm(α) =

∑
n∈Z n2Dm(n)tnα

D̂m(tα)
− α2

∈ (0, ∞) for all α ∈ R. (4.11)

Therefore, Im(α) is a strictly convex function with local minimum at αm,c and Im(αm,c) = 0.
As tα is continuous with respect to α, we have |tα − tαm,c | ∈ (0, 1) when α is close to αc . By (4.9) we get

I ′m(α) = log tα = log
(
tαm,c + (tα − tαm,c )

)
= (tα − tαm,c ) + O(1)(tα − tαm,c )

2,

while using mean value theorem and (4.11), we have I ′m(α) ≈ I ′′m(αm,c)(α − αm,c). It follows that

tα − tαm,c ≈
α→αm,c

α − αm,c ,

so that

Im(α) =

∫ α

αm,c

I ′m(u) d u ≈
α→αm,c

∫ α

αm,c

(tu − tαm,c ) d u ≈
α→αm,c

∫ α

αm,c

(u − αm,c) d u =
(α − αm,c)2

2
.

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.4

In this section, we shall consider pn ∈ [0, 1) with n ∈ Z+ and pn≈n→∞
p
ns with p ∈ (0, 1) and s > 0. Since

m∑
j=1

jpj ≈
m→∞

m∑
j=1

pj
js

{
= ∞ if s ≤ 2,
∈ (0, ∞) if s > 2,

and
m−k+1∑
j=1

jpk+j−1 ≈
m→∞

m−k+1∑
j=1

pj
(k + j)s

{
= ∞ if s ≤ 2,
≈ pk2−s if s > 2,

by (2.11) we obtain

αc

⎧⎪⎨⎪⎩
= −∞ if s ∈ (0, 2],

≈ lim
m→∞

m∑
k=2

−
(
1 − e−pk2−s)

+ p if s > 2,⎧⎪⎨⎪⎩
= −∞ if s ∈ (0, 2],

≈ lim
m→∞

m∑
k=2

−pk2−s
+ p if s > 2,{

= −∞ if s ∈ (0, 3],
∈ (−∞, 1) if s > 3. (5.1)

That is, αc exists for any p ∈ (0, 1) when s > 3. We find αc = −∞ when s ∈ (0, 3], and τ (Nα,N) → 1 for any α ∈ R.
Therefore, we shall only consider s > 3 in the following discussion of this section.



122 S.-C. Chang, L.-C. Chen / Physica A 506 (2018) 112–127

Let us consider the variance ofD(j). We need to analyze the first two terms of (3.15) in the limitm → ∞. Similar to (2.10),
for s > 3 asm → ∞ we have

m(m − 1) − 2
m−1∑
k=1

kq1k+1 · · · qm−k
m = 2

m−1∑
k=1

k(1 − q1k+1 · · · qm−k
m )

≈
m→∞

m−1∑
k=1

k
(
1 − e−pk2−s)

≈
m→∞

p
m−1∑
k=1

k3−s. (5.2)

By (2.9) and (2.10), it is easy to see that limm→∞

q̄m(
∏m

j=1q
j
j)

(1−q̄m)2
is finite for s > 3, and so is αc . Using (5.2) in (3.15), we obtain

σ 2
:= lim

m→∞
σ 2
m

{
= ∞ s ∈ (3, 4],
∈ (0, ∞), s > 4. (5.3)

More precisely, the asymptotic behavior of the variance in the infinitem limit is given by

σ 2
m ≈

m→∞

{
m4−s, if s ∈ (3, 4),
logm, if s = 4, (5.4)

and

σ 2
m − σ 2

≈
m→∞

1
ms−4 , if s > 4. (5.5)

By (3.3) with infinitem, we have

D(−j) ≈
j→∞

e
−

p
js−2 (1 − e

−
p

js−1 ) ≈
j→∞

p
js−1 . (5.6)

Note that combining (3.4) and (5.6), the generating function

D̂(t) =

∞∑
j=−1

D(−j)t−j
≈

∞∑
j=1

p
js−1 t

−j (5.7)

is well defined for t ≥ 1 and s > 2.
Denote the probability Prob. such that Prob.(SN = j) = CN (j) with j ∈ Z and Prob.(S0 = j) = C0(j) = δ0,j where

CN (k) =
∑

j∈ZCN−1(k − j)D(j) for N ≥ 1. The expectation for Prob. is denoted by Exp. It is easy to see that Sn is the n-sum
of independent random variables. Since σ 2

= ∞ for s ∈ (3, 4], we cannot use Berry–Esseen theorem directly and the
probability should be separated into two parts,

Prob.(SN ≤ αcN) = Prob.(S̃N ≤ αcN)

+ Prob.(SN ≤ αcN, ∃j ∈ {1, 2 . . . ,N} such that Yj < −NT (s)).

The first term is the truncation with the definition S̃N =
∑N

k=1Ỹk, where Ỹk are i.i.d. random variables with distribution

Prob.(Ỹk = j) =

{
bD(j) if j ≥ −NT (s),
0 if j < −NT (s),

where b is a normalization constant and

NT (s) =

{
(−αc ∨ 1)N

1
s∧4−2 , s > 3 and s ̸= 4,

(−αc ∨ 1)
√
N logN, s = 4,

(5.8)

for any N ≥ 2. By (2.11), (5.6) and using αc ∈ (−∞, 1), we find

αNT − αc ≈
N→∞

⎧⎪⎪⎨⎪⎪⎩
1

N
s−3

s∧4−2
, s > 3 and s ̸= 4,

1
√
N logN

, s = 4,
(5.9)
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where αNT = Exp.(Ỹ1). From (5.4) and (5.5), we have

σ 2
NT

= var(Ỹ1) ≈
N→∞

⎧⎨⎩N
4−s
s−2 , s ∈ (3, 4),

log
√
N logN, s = 4,

1 s > 4.
(5.10)

More precisely,

σ 2
NT

− σ 2
≈

N→∞

1

N
s−4
2

, if s > 4 (5.11)

that will be used in next section. Similarly we also obtain

Exp.(Ỹ1)3 ≈
N→∞

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N
5−s
s−2 , s ∈ (3, 4),√
N logN, s = 4,

N
5−s
2 , s ∈ (4, 5),

log
√
N, s = 5,

1, s > 5.

(5.12)

Note that the variance of S̃N is N×var (Ỹ1). Berry–Esseen theorem (c.f. [17]) asserts that for any α ∈ R

Prob.(S̃N ≤ αN) =

∫ N(α−αNT
)√

Nσ2
NT

−∞

1
√
2π

e−
u2
2 du + O

(Exp.(Ỹ1)3
√
Nσ 3

NT

)
. (5.13)

Combining (5.10) and (5.12), the error term in (5.13) is given by

Exp.(Ỹ1)3
√
Nσ 3

NT

≈
m→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, s ∈ (3, 4),
(logN)−1, s = 4,

N−
s−4
2 , s ∈ (4, 5),

logN
√
N

, s = 5,

1
√
N

, s > 5.

(5.14)

Combining (5.9) and (5.10) and setting α = αc , the upper limit of the integral in (5.13) is given by

N(αc − αNT )√
Nσ 2

NT

≈
N→∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, s ∈ (3, 4),

−
1

logN
, s = 4,

−
1

N
s−4
2

, s > 4 ,

such that (5.13) becomes

Prob.(S̃N ≤ αcN) =

∫ N(αc−αNT
)√

Nσ2
NT

−∞

1
√
2π

e−
u2
2 du + O

(Exp.(Ỹ1)3
√
Nσ 3

NT

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ O(1)

−∞

1
√
2π

e−
u2
2 du + O(1), s ∈ (3, 4),

1
2

+ O
( 1
logN

)
, s = 4,

1
2

+ O
( 1

N
s−4
2

)
, s ∈ (4, 5),

1
2

+ O
( logN

√
N

)
, s = 5,

1
2

+ O
( 1
√
N

)
, s > 5.

(5.15)
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The second part of the probability has the following upper bound by (5.6)

Prob.(SN ≤ αcN : ∃Yj < −NT (s))
≤ NProb.(SN ≤ αcN and Y1 < −NT (s))
≤ NProb.(Y1 < −NT (s))

≈
N→∞

N
NT (s)s−2

≈
N→∞

⎧⎨⎩
1, s ∈ (3, 4),
(logN)−1, s = 4,
N−

s−4
2 , s > 4.

(5.16)

Combining (5.15) and (5.16), we find

Prob.(SN ≤ αcN)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈ (0, 1), s ∈ (3, 4),

=
1
2

+ O(
1

logN
), s = 4,

=
1
2

+ O
( 1

N
s−4
2

)
, s ∈ (4, 5),

=
1
2

+ O
( logN

√
N

)
, s = 5,

=
1
2

+ O
( 1
√
N

)
, s > 5.

(5.17)

With the definition of Nα given in the introduction, (2.15) is proved.

Remark 5.1. The probability is undecided when s ∈ (3, 4) in (5.17). In order to see if this probability can be determined, let
us redefine NT (s) = (−αc ∨ 1)N

1
s−2 w(N) for a certain positive sequence {w(N)}. Note that (5.8) corresponds to the choice

such that all {w(N)} are equal to one. Using the same argument of (5.15), we have

Prob.(S̃N ≤ αcN) =

∫
−w(N)1−

s
2

−∞

1
√
2π

e−
u2
2 du + O(w(N)

s−2
2 ) ,

where we must choose w(N) → 0 as N → ∞ to diminish the error term. On the other hand, using the same argument of
(5.16), we get

Prob.(SN ≤ αcN : ∃Yj < −NT (s))
≈

N → ∞ w(N)2−s ,

here we should choose w(N) → ∞ as N → ∞ to avoid divergent. The probability is the sum of these two contributions,
and there is no appropriate sequence {w(N)} we can use to settle the value.

In the following part of this section, we shall consider a general α ̸= αc . Let us deal with α > αc first. By the same
argument of (4.7), we obtain

Prob.(SN > Nα) ≤ e−NI(α), (5.18)

where

I(α) = sup
t>1

{
α log t − log D̂(t)

}
:= α log tα − log D̂(tα) . (5.19)

According to (5.19), we have

α

tα
=

dD̂(tα )
d t

D̂(tα)
:=

D̂′(tα)

D̂(tα)
and I ′(α) = log tα. (5.20)

As D̂(t = 1) = 1 and D̂′(1) = αc , setting tα = 1 in (5.20) leads to tαc = D̂(tαc ) = 1 and hence I(αc) =
d
dα I

′(α)|α=αc = 0. It
is easy to see that I(α) and tα are both strictly increasing function for α > αc . Since d2 D̂(t)

dt2
|t=tαc =1 =

∑
k∈Zk(k − 1)D(k) ≈

p
∑

∞

k=1k
2/ks−1

= ∞ for s ∈ (3, 4] using (5.6), d tα
dα

|α=αc does not exist and so does I ′′(α) in (4.11). We must turn to the
Riemann–Liouville functional derivative (c.f. [18]) as follows:

dγ f (α)
dαγ

=
1

Γ (1 − γ )
d
dα

∫ α

0
(α − u)−γ f (u) d u, for γ ∈ (0, 1) .

It is easy to check that d1+ϵ D̂(t)
d t1+ϵ |t=tαc =

dϵ D̂′(t)
d tϵ |t=tαc = O(1)

∑
n∈Zn

1+ϵD(n) exists for ϵ ∈ (0, s − 3) with s ∈ (3, 4].
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Under the condition α − αc ∈ (0, 1), by Taylor formula we have

α log t − log D̂(t)
= α log

(
tαc + (t − tαc )

)
− log

(
D̂(tαc ) + D̂′(tαc )(t − tαc ) + O(t − tαc )

1+ϵ
)

= α log
(
1 + (t − tαc )

)
− log

(
1 + αc(t − tαc ) + O(t − tαc )

1+ϵ
)

= (α − αc)(t − tαc ) + O(t − tαc )
1+ϵ

for ϵ ∈ (0, s − 3) with s ∈ (3, 4] and t > 1. Taking t = tα , we have

I(α) = (α − αc)(tα − tαc ) + O(tα − tαc )
1+ϵ . (5.21)

Therefore although d tα
dα

|α=αc does not exist, we find that dϵ tα
dαϵ exists for ϵ ∈ (0, s − 3) with s ∈ (3, 4] by (5.20). Moreover,

(5.20) can be rewritten as αD̂(tα) = tαD̂′(tα) for all tα . It follows that

(α − αc)D̂(tαc ) + α
(
D̂(tα) − D̂(tαc )

)
= tα

(
D̂′(tα) − D̂′(tαc )

)
+ αc(tα − tαc ). (5.22)

Using Taylor formula asα is close toαc , wehave D̂(tα)−D̂(tαc ) = αc(tα−tαc )+O(tα−tαc )
1+ϵ and D̂′(tα)−D̂′(tαc )≈α→αc (tα−tαc )

ϵ

for ϵ ∈ (0, s − 3). When αc − α ∈ (0, 1), the order of the left hand side of (5.22) is (α − αc) + ααc(tα − tαc ), while the order
of the right hand side of (5.22) is tα(tα − tαc )

ϵ . It follows that tα − tαc≈α→αc (α − αc)
1
ϵ . From (5.21), we have

0 < I(α) ≈
α→αc

(α − αc)1+
1
ϵ .

For 0 < α − αc < 1, the upper bound of 1 − τ (Nα,N) is tightest as ϵ approaches to s − 3.

1 − τ (Nα,N) ≤ lim
ϵ↑s−3

e−cN(α−αc )1+
1
ϵ

= e−cN(α−αc )
1+ 1

s−3

for some c ∈ (0, ∞).
Next consider the condition α < αc . We cannot use the same argument of (4.5) since D̂(t) is divergent for any t < 1

by (5.7). Let us separate the probability into two cases as follows. The first case allows at least one of the random variables
assumes a large value, while the second case does not.

Prob.(SN ≤ αN) = Prob.(SN ≤ αN, ∃j ∈ {1, 2 . . . ,N} such that Yj < (α − αc)N)
+ Prob.(SN ≤ αN, ∀j ∈ {1, 2 . . . ,N} such that Yj ≥ (α − αc)N) . (5.23)

For the first case, we use the same argument of (5.16) to have

Prob.(SN ≤ αN : ∃Yj < (α − αc)N)
≤ NProb.(SN ≤ αN and Y1 < (α − αc)N)
≤ NProb.(Y1 < (α − αc)N)

≈
N→∞

∫
∞

(αc−α)N

N
xs−1 d x

≈
N→∞

1
(αc − α)s−2N s−3 . (5.24)

For the second case Prob.(SN ≤ αN, ∀j ∈ {1, 2 . . . ,N} such that Yj ≥ (α − αc)N), let us define S̄N =
∑N

k=1Ȳk where Ȳk are
i.i.d. random variables with distribution

Prob.(Ȳk = j) =

{
b′D(j) if j ≥ (α − αc)N,

0 if j < (α − αc)N,

where b′ is a normalization constant. Then the argument of (4.7) can be used since D̂(t) is well-defined for t < 1. Using the
same argument from (5.18) to (5.21), we have

Prob.(SN ≤ αN, ∀j ∈ {1, 2 . . . ,N} such that Yj ≥ (α − αc)N) ≤ e−N(αc−α)1+
1
ϵ
. (5.25)

Comparing (5.24) and (5.25) in (5.23), the first case dominates so that

Prob.(SN ≤ αN) ≤
O(1)

(αc − α)s−2N s−3 .

Notice that this upper bound should be optimal since by Proposition A.2 of [19] we find

Prob.(SN ≤ Nα) ≥

∫
∞

N(αc−α)

N
xs−1 d x≈N→∞

N(
N(αc − α)

)s−2 =
1

(αc − α)s−2N s−3 .
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6. Proof of Theorem 2.5

According to the definition stated in Theorem 2.5,

α+

N − αc = αc − α−

N =

{
N−ρ s−3

s−2 ℓN s < 4 ,

N−ρ/2ℓN s ≥ 4 .

Let us consider s ∈ (3, 4) first. From (2.16) and (2.17), we have

1 − τ (Nα+

N
,N) ≤ exp

(
−cN1−ρℓ

s−2
s−3
N

)
≈

N→∞

⎧⎨⎩exp
(
−cN1−ρℓ

s−2
s−3
N

)
ρ ∈ (0, 1),

exp(−cℓ
s−2
s−3
N ), ρ = 1, lim

N→∞

ℓN = ∞,
(6.1)

and

τ (Nα−

N
,N) ≤

⎧⎪⎪⎨⎪⎪⎩
1

N (s−3)(1−ρ)ℓs−2
N

, ρ ∈ (0, 1),

1
ℓs−2
N

, ρ = 1, lim
N→∞

ℓN = ∞ .

Moreover, for ρ = 1 with limN→∞ℓN ∈ (0, ∞) or ρ > 1, we have

lim
N→∞

τ (Nα−

N
,N) = 1 − lim

N→∞

τ (Nα+

N
,N) = lim

N→∞

τ (Nαc ,N) ∈ (0, 1).

when s ∈ (3, 4) again.
Similarly, when s ≥ 4 and ρ ∈ (0, 1), it is easy to see that

τ (Nα−

N
,N) ≤

1
N (s−3)(1−ρ/2)−ρ/2ℓs−2

N

, 1 − τ (Nα+

N
,N) ≤ exp

(
−cN1−ρℓ2N

)
.

Consider s = 4 and ρ ≥ 1, we have σ 2
NT

≈ logN by (5.10). Using (5.13) and (5.14) with α = α−

N so that α−

N − αNT =

α−

N − αc + αc − αNT and using (5.16), we have

τ (Nα−

N
,N) =

∫
−

cN
1−ρ
2 ℓN√
logN

−
O(1)
logN

−∞

1
√
2π

e−
u2
2 d u + O

( 1
logN

)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O(1)max{
√
logN
ℓN

e−
cℓ2N
logN ,

1
logN

}, ρ = 1, if lim
N→∞

ℓN
√
logN

= ∞,

λ1 + O(1)max{|
ℓN

√
logN

− L|,
1

logN
}, ρ = 1, if lim

N→∞

ℓN
√
logN

= L ∈ [0, ∞),

1
2

+ O(
1

logN
), ρ > 1,

(6.2)

where λ1 ∈ (0, 1). Therefore we obtain (2.22) and (2.23) for s = 4.
When s > 4, we have σ 2

NT
= σ 2

+ O(N
4−s
2 ) by (5.11). Consider s ∈ (4, 5) and ρ ≥ 1, by (4.2) and the same argument of

(6.2), we have

τ (Nα−

N
,N) =

∫ −N
(
N

−
ρ
2 ℓN+O(N

3−s
2 )

)
σ (1+O(1)N

4−s
4 )

√
N

−∞

1
√
2π

e−
u2
2 d u + O

( 1

N
s−4
2

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)max{
σ

ℓN
e−

ℓ2N
2σ2 ,

1

N
s−4
2

}, ρ = 1, lim
N→∞

ℓN = ∞,

λ2 + O(1)max{|ℓN − L|,
1

N
s−4
2

}, ρ = 1, lim
N→∞

ℓN = L ∈ [0, ∞),

1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, ρ ∈ (1, s − 3],

1
2

+ O
( 1

N
s−4
2

)
, ρ > s − 3,

(6.3)

where λ2 ≡ Ψ ( L
σ
) is a constant. Therefore we obtain (2.22) and (2.23) for s ∈ (4, 5).
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Consider s = 5 and ρ ≥ 1, by (4.2) and the same argument of (6.2), we have

τ (Nα−

N
,N) =

∫ −N
(
N

−
ρ
2 ℓN+O(N

−
1
2 )

)
σ (1+O(1)N

−1
4 )

√
N

−∞

1
√
2π

e−
u2
2 d u + O

( logN
√
N

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)max{
σ

ℓN
e−

ℓ2N
2σ2 ,

logN
√
N

}, ρ = 1, if lim
N→∞

ℓN = ∞,

λ3 + O(1)max{|ℓN − L|,
logN
√
N

}, ρ = 1, if lim
N→∞

ℓN = L ∈ [0, ∞),

1
2

+
ℓN

N
ρ
2 −

1
2
, ρ ∈ (1, 2),

1
2

+ O(1)max{
ℓN
√
N

,
logN
√
N

}, ρ = 2,

1
2

+ O
( logN

√
N

)
, ρ > 2,

(6.4)

where λ3 ≡ Ψ ( L
σ
) is a constant. Therefore we obtain (2.22) and (2.23) for s = 5.

Consider s > 5 and ρ ≥ 1, by (4.2) and the same argument of (6.2), we have

τ (Nα−

N
,N) =

∫ −N
(
N

−
ρ
2 ℓN+O(N

−
s−3
2 )

)
σ (1+O(1)N

4−s
4 )

√
N

−∞

1
√
2π

e−
u2
2 d u + O

( 1
√
N

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)max{
σ

ℓN
e−

ℓ2N
2σ2 ,

1
√
N

}, ρ = 1, if lim
N→∞

ℓN = ∞,

λ4 + O(1)max{|ℓN − L|,
1

√
N

}, ρ = 1, if lim
N→∞

ℓN = L ∈ [0, ∞),

1
2

+ O
( ℓN

N
ρ
2 −

1
2

)
, ρ ∈ (1, 2],

1
2

+ O
( 1
√
N

)
, ρ > 2,

(6.5)

where λ4 ≡ Ψ ( L
σ
) is a constant. Therefore we obtain (2.22) and (2.23) for s > 5.

The corresponding result for α = α+

N can be obtained by the same method, and the proof of Theorem 2.5 is completed.
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