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HIGHLIGHTS

We consider a long-range Domany-Kinzel model for directed bond percolation on the rectangular lattice.
The critical aspect ratio for this percolation model in the thermodynamic limit is corrected.

We investigate the cases with infinite bonds from one vertex to the next row for this model.

[ ]
[ ]
e The asymptotic behavior of this percolation model near the critical aspect ratio is obtained.
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A special case with infinite bonds is studied in details, and its critical power is derived.
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We consider a long-range Domany-Kinzel model proposed by Li and Zhang (1983), such
that for every site (i, j) in a two-dimensional rectangular lattice there is a directed bond
present from site (i, j) to (i+ 1, j) with probability one. There are also m+ 1 directed bounds
present from (i, j) to (i—k+1, j+1),k = 0, 1, ..., m with probability p; € [0, 1), wheremis
anon-negative integer. Let 7,,(M, N) be the probability that there is at least one connected-
directed path of occupied edges from (0, 0) to (M, N). Defining the aspect ratio @« = M/N,
we derive the correct critical value a4, . € R such thatas N — oo, (M, N) converges to
1,0and 1/2 foro > ame, @ < o and & = oy ¢, respectively, and we study the rate of
convergence. Furthermore, we investigate the cases in the infinite m limit. Specifically, we
discuss in details the case such that p, € [0, 1)withn € Z, and p,~,_,.opn~* forp € (0, 1)
and s > 0. We find that the behavior of lim,_, - t(M, N) for this case highly depends on
the value of s and how fast one approaches to the critical aspect ratio. The present study
corrects and extends the results given in Li and Zhang (1983).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Directed percolation, or oriented percolation, can be thought of simply as a percolation process on a directed lattice in
which connections are allowed only in a preferred direction. It was first studied by Broadbent and Hammersley in 1957 [1],
and it has remained to this day as one of the most outstanding interesting problems in probability and statistical mechanics.
Furthermore, directed percolation is closely related to the Reggeon field theory in high-energy physics and the Markov
processes with branching, recombination and absorption that occur in chemistry and biology [2,3], etc. Various properties,
results and conjectures of directed percolation can be found in [4,5] and the references therein. However, very little is known
in the way of exact solutions for the directed percolation problem.
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Fig. 1. The long-range directed bond percolation model.

Domany and Kinzel [6] defined a solvable version of compact directed percolation on the square lattice in 1981 as follows.
Given a fixed p € (0, 1), each vertical bond is directed upward with occupation probability p (independently of the other
bonds), while each horizontal bond is directed rightward with occupation probability 1. Furthermore, it is known that the
boundary of the Domany-Kinzel model has the same distribution as the one-dimensional last passage percolation model [7].
A three-dimensional version of Domany-Kinzel model with occupation probability 1 along two spatial directions was
considered in Ref. [8]. Recently, the model has been considered in more general cases. For example, the directed percolation
model on the square lattice whose vertical edges occupied with a probability p, and horizontal edges in the nth row occupied
with a probability 1 if n is even and pj, if n is odd [9]; the directed percolation model on the triangular lattice in terms of a
square lattice with vertical probability y, horizontal probabilities 1 and x alternatively, and diagonal edges from lower-left
to upper-right or from lower-right to upper-left with probability d [ 10]; the directed percolation model on the honeycomb
lattice as bricks such that vertical edges are directed upward with probability y, and horizontal edges are directed rightward
with probabilities 1 and x in alternate rows [ 11]; the directed percolation model on square lattice such that horizontal edges
are directed rightward with probabilities one, and vertical edges are directed upward with probabilities p1, p, alternatively
in even rows and probabilities p,, p1 alternatively in odd rows [12].

In this article, we consider the long-range directed bond percolation models on the square lattice as follows. The
horizontal edges are directed rightward with probabilities one, and the directed bond from (i,j)to (i — k+ 1,j + 1), k =
0, 1, ..., m with respective probabilities p, € (0, 1), where m is a non-negative integer (see Fig. 1). Notice that this model
has been considered in [13]. However, the critical value derived there is questionable, and the rate of convergence has not
yet been discussed.

The vertices (sites) of the square lattice are located at a two-dimensional rectangular net {(i,j) € Z x Z : i < M and
0 < j < N}. Throughout this article, we denote gy = 1 — px, k = 0, 1, ..., m for convenience. We say that the vertex (i, j)
is percolating if there is at least one connected-directed path of occupied edges from (0, 0) to (i, j). Given any « € R, denote
Ny = l[aN| =supf{i € Z : i < aN} with N € Z,. Let P be the probability distribution of the bond variables, and define the
two point correlation function

Tm(Ng, N) = P((Ny, N) is percolating) . (1.1)

2. Main results

For convenience, define

Gmn =90 qm-1Gm »

and the notation a; & a, means that a;/a; € (0, 00). f(N) ~y_o &(N)and f(«) Xy_e g() mean that the limits
limy_ oof(N)/g(N) and lim,_, o f(c)/g(e) are bounded from zero and infinite, respectively. We have the following main
theorem.

Theorem 2.1. Given a finitem € Z, and py, € (0, 1), k=0, 1, 2, ..., m, there is a critical aspect ratio
Mn.q¢ <& B
e = == = (1= @iy, an ), (2.1)
1-— qm k=2
such that
1 1
Tm(Nago» N) = = + 0(—=) (2.2)

2 VN

in the large N limit, and when « is close to am  but not equal to otm

Tm(Ny, N) < e M@ for a < Um,c »
1= tm(Ng,N) < e M@ for o > Am.c
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where
o) ~ (o — otmc ) . (2.3)

Notice that the rate function I(«) in (2.3) is optimal [14], which gives the upper bound of t,,(N,, N) or 1 — 7,4(N,, N) as
e~N(@) when « is smaller or larger than Qm,c, respectively.

Remark 2.2. (2.1) can be written as

_ Dkt Dy G+ G Yy (1— Qg ap ) — (m—1)

Om,ec = — s (2.4)
1- qm
which corrects the expression
m
e = > ket Gt 1 Gm ( ) (2.5)
1- dm

given in [13]. These two expressions of o are equal only when m = 0 or m = 1. In particular, ;. should be
G i G19+0R-1 _ N©192(Po+dod2) _ ; . _ 1
a0z — P2 u]smg (2.4), rather than 00 = aonits p» using (2.5). From Theorem 2.1, we obtain op = oo
and oy . = ———F2%— corresponds to that for the triangle lattice in [15]. While Ref. [13] only gave the limiting behavior of

Po+P1—PoP1
Tm, here in Theorem 2.1 we obtain the rate of convergence of 7, as well, namely, the main result of [ 13] is extended.

Next result is the investigation of the asymptotic phenomena of T’"(N“;N’ N) and rm(Na;N, N), where a;lr’N J am and
o,y T amcasN 1 oo. Asequence {£,};2, is called a regularly varying seqlience if limn_moﬂmj /€, = 1forany A € (0, co).
We obtain the following corollary, which can be shown by the argument used in the proof of Theorem 2.3 in [12]. In the
following expressions of upper bounds, ¢ stands for a certain positive constant whose value varies from one equation to
another.

Corollary 2.3. Givenafinitem € Z, andp, € (0,1),k=0,1,2,...,m,let o y = ¢ —N’geN and a;j’N = Omc +N’§€N,
where p € (0, oo) and {€y}3_, is a positive regularly varying sequence. We obtain

Tm(Na;Ns N),1-— Tm(Na;Na N)
<exp(—cN'""¢3), if p€(0,1),
< exp(—cty), if p=1,and lim £y = oo,
1 N—oo
=Y (L)4+0(1)max{fy — L, —}, if p=1, and lim £y =L € [0, co),
. . VN N=—o0 (2.6)
N )
=—40 , if pe(1,2],
5+ (Ng_%) if pe(1,2]
1 1
=-+4+0(——), if p>2.
2 HOR)

It is interesting to investigate the behavior in the limit m — oo, and the rest part of this section is devoted to such limit.
Again we define

T(Ny, N) = P((Ny, N) is percolating) . (2.7)

It is necessary that py — 0 as k — oo, we can rewrite

m—k+1

G = eXito log(1-pi) CkaIﬁH o quk+1 _ eZ]-:1 Jlog(1—pr4j—1) , (2.8)
and
— pe(1+ pi) <log(1—pi) < —px for p € (0,0.6838026238),
so that
Gm ~ e ZicoPk (2.9)
m—00

and fork > 1

_yom—k+1 .
Qinq . qm—k+1 ~ e j=1 JPk+J—1. (2.10)

m—oo
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Therefore by (2.1), under the condition p, — 0 as k — oo we obtain

m—k+1

exp(
@ = lim e ~ lim (M —Z (1— exp(— Z Pt ) (2.11)

m—o00 ’ m— 00 1—e¢ Zk 0 Pk

Hereafter we shall omit the subscript m for the limit m — oo.

Let us consider the following three cases form — oo, i.e., p, € [0, 1)withn € Z,. (i) p, =
with 8 € (0, m). (iii) pn *n—oo ,% withp € (0, 1),s > 0.

Consider the case (i), it is easy to see that limmﬁooz Jpj = oo and llmmaooz 1pj = 00. Moreover,

)
a1 Witha > 0; (ii). pn = o

m—k+1 m—k+1

i Yool Y ) = fm Yenl= 2 i)

j=1

= lim Zexp(—a(m —k+1)+a(a+k[®a+m+2)—¥a+k+1)]),

is the digamma function. It follows that limm%ooz;?:z exp(—erZkijkH,]) < 00, and by (2.11) we have

ac = lim oy =—00. (2.12)
m—o0
For the case (ii), by (2.11) again it is easy to see that ¢, = —o0.

Case (iii) is most interesting, because its behavior is quite different from the case with finite m. We obtain the following
result.

Theorem 2.4. Let p, € [0, 1) withn € Z, and p, ~y— % withp € (0, 1)and s > 0. For s € (0, 3] we have

T(Ny,N)—> 1, asN — oo (2.13)

forany a € R. For s > 3, we have

ac € (—oo, 1) (2.14)
and
€ (0, 1), s€(3,4),
! + o(—] ) 4
= - . S = N
2 log N
1 1
:*+O(ﬁ), s €(4,5),
T(Ng,, N) 2 N7 (2.15)
1 log N
= — + O ) S = 5,
2 TN
Lol sss
= ) >,
2 VN
in the large N limit. Moreover for s > 3, when « is close to «. but not equal to «, we obtain
1
T(Ng, N) < (o —ay N for o <ac,
1—1t(Ng,N) < e M@ for o> a., (2.16)
where
1
lo)~ (@ —a) " forse(3.4]. (2.17)
(¢ — ac ) fors > 4.
The critical power s, can be defined such that ¢, = —oco if s < s;, and o, € (—o0, 1) if s > s.. We find here that the

critical power s, is equal to 3, which corrects the value 2 given in [13]. For s € (3, 4), the convergence of T(N,,, N) is too
weak to decide its value as N — oo, such that (N,., N) in (2.15) may not always tend to % as N — oo. We shall discuss
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this further in Remark 5.1. It is appropriate to define some standard critical exponents and to sketch the phenomenological
scaling theory of t(N,, N). For ¢ > «. and « close to «., let us write the upper bound of t(N,, N) as (c.f. [16])
—BN
T(Na, N) < exp(———). (2.18)
(ac —a)™

By Theorem 2.4, ifs € (3,4) we havev = 1 + é > 2,and if s > 4 we have v = 2. For @ < «a, and « close to «., the decay
of the upper bound for 7(N,, N) is not exponential.
The last result of this article is the investigation of the asymptotic phenomena ofr(Naﬁ ,N)and T(N“fvr’ N)where aﬁ 1 o

2
and ay 1 o as N 1 oo. For convenience, we denote @(x) = f f =7 du as the standard cumulative distribution

function of Gaussian distribution with mean 0, variance 1 and let ¥(x) = 1 — &(x) = f f e 2 du. It is not difficult to
see that

(8]

_X

2

U(x) = rx( +0(x?)) forlargex, (2.19)
1_ _ X -2
5 U(x) = \/E(l +0(x™?)) forsmallx. (2.20)

In the following expressions of upper bounds, ¢ stands for certain positive constant whose value varies from one equation
to another, and is independent of p, and n. We have the following theorem.

(sA4—3)
Theorem 2.5. Given p, € [0, 1) withn € Z, and p, ~y_.o & withp € (0, 1)ands > 3, let ay =ac— N ra=ny Ly and
p(snd—3)

a,\f =ac+N ©42 fy, where p € (0, 00) and {€y}}’_, is a positive regularly varying sequence. We obtain the following results
in the large N limit. For p < 1, we have

s

‘1 1 sAn4—2
_— — _ —p pSAA=3
T(N,.» N) < eI 1—7(N,+.N) < exp(—cN'™"4y"7). (2.21)
Fors € (3,4)and p > 1, we have
s=2
exp(—cly ), =1, lim ¢y = oo,
1- (N N) ~ p(=cty™). p=1. lim by
N m—oo | (0, 1), p=1, Nllm Iy €(0,00), or p=>1,
—00

and
1

(N,-.N) < { 6%
N €(0,1), p=1, Nlim Iy €(0,00), or p>1.
—00

,021, lim ZN:OO,
N—oo

For s > 4 and p = 1, we have both

(N, N), 1= 7(N,¢, N)

VIogN _ % 1 ¢

O(])max{ige lﬂg%, 1, if s=4and llm N ,
i logN logN

A1+ O(1) max(| oy L| ! }, ifs=4and lim v _ L € [0, 00)
! JIogN "logN "’ N N—oo /TogN P

1 % 1
O(1)max{—e 202, —}, if s€(4,5), lim €y = oo,

EN v N—oo

1
Xo +O0(1)max{|fy — L, — =}, if s€(4,5), Nlirrl Iy =L € [0, 00),
N=2 —00
= (2.22)

0(1) max{— oo logN, if s=5, lim fy =

n ) «/N , =>, Jm N = 00,

log N . .

A3+ O(1)max{|¢y — L|, T , ifs=5, NILIT;OKN =L e [0, 00),
o1 ! 767[2\’2 —] i 5, lim ¢

_ 20 =

( )max{ENe ’«/N}’ if s> » Jim £y = oo,
1 . .

Ag 4+ O(1)max{|fy — L|, ﬁ}, if s>5, NILIT;OKN =L e [0, 00),
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where X; withi = 1, 2, 3, 4 are different constants between (0, 1), o2 is a finite constant and stands for the variance of a certain
random variable.
For s > 4 and p > 1, we have both

1 1

Y 0 ) iS:4’

2+ (logN) f

1 In .

§+O( 1) if se(4,5), pe(l,s-3],
N2 2

1 1 )

7 +0(—=). ifs€(4.5), p>s—3.

2 NT

1 Iy '

5+O( . 7) ifs=5,pe(l,2),

_ _ Nz72
PN N0 1= 2N N) =19 v logh (2.23)

=+ 0(1) max{—= g Y, ifs=5,p=2

2 NN =2

1 log N

— (0] s l’S:S7 27

2+ (\/N) f p >

1 L )

5+O( EN_l)’ if s>5, pe(1,2],
N272

S +0(—) ifs>5 p>2

Y =) ys>»o, > 2.

2 N Y

3. Derivation of ¢y ¢ and o2,

For any N € N, we say that an occupied vertical edge in a bond configuration is wet if it lies on a percolating path where
(Ny, N) is percolating. For a certain occupied vertical edge ending at (k, n), we say that it is primary wet if it is the wet edge
with smallest k value for that n. In a percolating configuration where (N,, N) is percolating, there is one primary wet edge
foreachn € {1, 2, ..., N}. Define G, ny(k) as the probability that the primary wet edge for n = N ending at (k, N), and let us
formally define Gy o(k) = 8o x where § is the Kronecker delta. Since the primary wet edge can occur at any value of k < Ny,
we have

Tm(Na N) =)~ G (k) (3.1)
k<Ng
for N € N.
By the definition of our model, for any k € Z and n € Z., we have
Crnt1(K) =Y Gk = )Dm(i) (32)
JEZ
where
0, if j<-m,
1—qm if j=-m+1,
Dp(j) = Un(j) if je{-m+2,...,0}, (3.3)

m
@Y Jap1—am) if j=1,
=1
with

m+j—1

Un() = Gj2@ iz qn? (1= qojqr -+ qm). if je{—m+2,...,0}.

As an example, we illustrate D,(0) in Fig. 2 and D,(1) in Fig. 3 for m = 2.
For any probability distribution f : Z, — R, its generating function can be defined as

f(t) = Zf(i)tj, where |t| is less than the radius of convergence. (3.4)
JEL

It follows that

6‘m,n(t) = f)m(t)n- (3.5)
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NP TN KN
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(a) (b)

Fig. 2. Illustrations for D,(0), including (a) P({(0, 0) — (0, 1)}) = p1q2 and (b) P({(1, 0) — (0, 1)}) = p2(q1q2). The connection with an arrow is occupied,
while the others with a cross is unoccupied. The dotted lines can be either occupied or unoccupied.

(_171) 1 (071) 1 (17.1) 1 (27.1) 1 _
NG pog
0o I o I @y T
(a)
q2 o q2 q0 P1.'
0o T o I @y T
(b)
(_1.71) 1 ‘(071) 1 ‘(171) 1 k(27.1) 1 A
q2 qfq2 Q(()]fm.
0o T o L @y I
(©)

Fig. 3. Illustrations for D»(1), including (a) P({(0,0) — (1, 1)}) = (poq192)q2, (b) P({(1,0) — (1, 1)}) = (goq192)(P142), (c) P({(2,0) — (1, 1)}) =
(909192)(9192)p2. The connection with an arrow is occupied, while the others with a cross is unoccupied. The dotted lines can be either occupied or
unoccupied.

By (3.3), we have
) g (ITi2: )1 = Gm)t

ﬁm(t) = Un(t) + (1 — qm) 1—3 s (3.6)
- qmt
with
m—2
Un(t) = qu+2q_7‘2+3 T = g gt
j=0
Note that
m .
(1—gm)+ UM =1-qg3---qn=1-[[q, (3.7)
j=1

such that ﬁm(l) =1
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Define the average mean of 1-step walk as
pm =Y _ jDm(j) = Djp(1).
JEL

We shall show in next section that

Um.c = Um-
By (3.6), we have
dp o= (T2, a1
T —Up(t) — (m — 1)(1 — gu)t ™ + 1—’
—Dn(t) = 2-0n(6) = (m = 1)1 — gu) 2
where
7Um Z]q]+2q]+3 qm_j_](l — Qj+1- - qm)t_j—l .

Taking t = 1, we have

d ~
(aUm(f) —(m = 1)1 = qm)t ™) |y

— — 1 + Z qqu-H m I<+1)

Therefore from (3.9) and (3.10), we obtain

L9
Omec = EL L + quqk+1 m ke
1-— Qm
Mhg &
— = _ 1— 2 m—k+1
Tog, ~ 2 (- adi - a ™).

k=2
Furthermore, the variance of 1-step walk is defined as
2= i’Dnl) = 1 .
JEZ

so the variance of the two-point function is given by

2 dz 2
oy = i Dim(1) + ame —ap, -
By (3.10), we have
@ . @ 5 2417, 4))
@Dm(t”t:] i Un()le=1 +m(m — 1)(1 — qm) + A—ap
where
dz m—2 : Ly
22 On(0) = ;JU + 120 s a7 (= g gt
Therefore, we find
2 K
23 Un(O)le—y +m(m — 1)(1 = ) = m(m — 1) —2quk+1 an*
such that
2Gu([ T )
0’,,21 -2 qukJrI m —k M +amc — (am,6)2~

(1= qm)?

—(m — )(1—qm)—( M —2)qn(1 — qm-1Gm) — -+ — G343 - - - G (1 — qaqs3 - -

'Qm)

119

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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4. Proof of Theorem 2.1

As we have obtained the expression of o, . in the previous section, here we shall study the behavior of 7,,(N,, N) when
« is close to this value. Let m € N be fixed in this section. Define a N-step random walk S, y where the distribution of each
step is given by Dy, and the probability Prob,, such that Proby, (S, v = j) = Cnn(j) withj € Z and Proby,,(Sm,0 = j) = 8oj. The
expectation for Prob, is denoted by Exp,,. It is easy to see that Sy, , is the n-sum of these independent random variables and

each random variable has finite third moment. By the law of large number, we have

Sm N
T‘ — Om,c as. whenN — oo,

(4.1)

where a.s. stands for “almost surely”. Notice that the variance of S, y is given by N aé. Berry-Esseen theorem (c.f.[17]) asserts

that

s N N ) a1 e
Prob,, (2mN — ¥m.c < @ Gmely Noi o7 du
[Probu JNa2 VNa2 ) o0 Var |

.3 .

__|i’D
- o Bz iPu)

«/ﬁarﬁ

With the definition of N,, given in the introduction, we have
Proby, (Smn < aN — 1) < 1in(Ny, N) = Proby(Spy < Ne) < Proby (Smy < aN).
Setting & = ot c and using Y, |jI>Dm(j) < o0, we obtain

| 2 1 1 1
N, ,N)= T du+0(—)=-+0(—),
Tm( m,c ) /;oo \/ﬂe 2 ll+ (\/N) 2+ (\/N)

which gives (2.2).
In the following part of this section, we shall consider a general @ # oy . When o < oy ¢, we set n =
use Chernov inequality to have

Expp(emN) Sy (1)
Proby,(Smy < N,) < inf —%—_~° = f :
rob,( mN < Ng) < ;:EO e tel(r(},l) faN

—NIm(a)

IA

e

where

In(a) = sup{a logt — logﬁm(t)} = «logt, — logﬁm(ta) .
t>0

Similarly, when o > a, ., we set n = logt > 0 to have
Proby(Smn > No) =  inf Proby(e7mN > em*N=nt)
n>0

~ inf Proby(e™mN > "Ny
N—oo n>0

EXpy(€75m)

< inf
- ;20 enaN
< e—Nlm(a)’
where ¢, € [0, 1).
By (4.6), we have
o Dp(t)
ty ﬁm(toc) 7
such that
D (t, dt,
I/ () = logt, — (A’"( ) e
Dm(t&x) [ do

(4.2)

(4.4)

—logt > 0and

(4.7)
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As f)m(t = 1) = 1and df)m(t)/dtltzl = Oy, setting t, = 1in (4.8) leads to t,, = lA)m(tam,C) = 1 and hence
Im(ctm,c) = I},(am,c) = 0. Furthermore, by the definition of the generating function and (4.8), we have

_ ZneZ Tle(Tl)tg _ totﬁ;ﬂ(ta)

= = — (4.10)
ZneZ Dm(n)tg Dm(ta)
Taking derivative with respect to « on both sides of (4.8) leads to
dty N/ N
1o (D4 D))t
O Du(te)  Dm(ts)” / det
It follows that
dla 1 > ey M Di()ET 5
()= 4% = ——, where Vp(a) = ="——"% —a* € (0,00) forallae € R. (4.11)
[ Vin(@) Di(ty)
Therefore, I,(«) is a strictly convex function with local minimum at am  and Ip(otm,c) = 0.
As t, is continuous with respect to o, we have |t, — t4, .| € (0, 1) when « is close to a.. By (4.9) we get
In(@) = log ty =108 (tay,c + (ta = ta)) = (te = ta ) + O(1)(te — tay, ),
while using mean value theorem and (4.11), we have I (o) & Iy (atm,c & — am,¢). It follows that
by —tgpe =~ A —dnc,
’ a—>m,c
so that
o o o _ 2
Im(a)=/ I(wdu =~ / (tu— b, )du =~ f (U — o) du = e
e a—om,c am.c ’ o—>Um,c omc 2
This completes the proof of Theorem 2.1.
5. Proof of Theorem 2.4
In this section, we shall consider p,, € [0, 1) withn € Z, and pn%n_mo% with p € (0, 1) and s > 0. Since
- = pj ifs <2
. =0 <2,
PRI {e (0,00) ifs > 2,
i=1 j=
and
mfl. o m§1 pj =00 ifs <2,
= Pzt & (k+ir 1~ pk*~ ifs > 2,
by (2.11) we obtain
= —00 ifs € (0, 2],
m
LT PR (1 _ o—pk*S :
mll_r)réoz (1—e )+p ifs>2,
k=2
= —00 ifs € (0, 2],
m
~ li _ 2=S :
~n111_£1C1>OZ pk“™ +p ifs> 2,
k=2
= —00 ifs € (0, 3],
€(—o00,1) ifs> 3. (5.1)
That is, . exists for any p € (0, 1) whens > 3. We find . = —oo whens € (0, 3], and 7(N,,N) — 1forany @ € R.

Therefore, we shall only consider s > 3 in the following discussion of this section.
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Let us consider the variance of D(j). We need to analyze the first two terms of (3.15) in the limit m — oo. Similar to (2.10),
fors > 3asm — oo we have

m—1) _ZZkaH G = 2) k1 —qg--dn )

k=1
m—1
~ pYy K (5.2)
m—o0
k=1
By (2.9) and (2.10), it is easy to see that limmﬁw% is finite for s > 3, and so is a. Using (5.2) in (3.15), we obtain
2._ 2 =00 s €(3,4],
o= i O :e (0,00), s> 4. (5.3)
More precisely, the asymptotic behavior of the variance in the infinite m limit is given by
4—s :
2 . Jm™,  ifse (3,4),
Mmoo {logm, ifs=4 (5.4)
and
02 -0 =~ L ifs > 4. (5.5)
m m—oo mS—4 ’
By (3.3) with infinite m, we have
__P_ R p
D(—j) ~ e P ?(1—e F1) & —. (5.6)
Jj—o00 j—o0 _]571
Note that combining (3.4) and (5.6), the generating function
(o]
=Yoo=k 7

j=—1

is well defined fort > 1and s > 2.

Denote the probability Prob. such that Prob.(Sy = j) = Cy(j) with j € Z and Prob.(So = j) = G(j) = &o; where
Cn(k) = ZjEZC,\H(k — j)D(j) for N > 1. The expectation for Prob. is denoted by Exp. It is easy to see that S;, is the n-sum
of independent random variables. Since 62 = oo for s € (3, 4], we cannot use Berry-Esseen theorem directly and the
probability should be separated into two parts,

Prob.(Sy < a:N) = Prob.(Sy < aN)
+Prob.(Sy < acN,3j € {1,2..., N} such that ¥; < —Nr(s)).

The first term is the truncation with the definition Sy = ZL] 17k, where f/k are i.i.d. random variables with distribution

Rl R B

where b is a normalization constant and

1
—a¢ V 1)Nsrd=2 s>3ands #4
Ni(s) = | (7% : ’ (538)
! i(—acv])‘/NlogN, s=24,
forany N > 2.By (2.11), (5.6) and using a, € (—o0, 1), we find
1
— s> 3ands # 4,
an, — o X N#a2 (5.9)
N—>oo 1

———, s=4,
/N logN
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where ay, = Exp.( 1). From (5.4) and (5.5), we have

4—s

Ns=2, (3 4),

GﬁT—Var(Yl M log\/NlogN

s>4

More precisely,

1 .
0‘13 —0? =~ —, ifs>4
T N—oo NS%

that will be used in next section. Similarly we also obtain

Nf%, s €(3,4),
NlogN, s=4,
v\ oA —s
Exp.(Y1) M N2 s € (4,5),
logvN, s=5,
1, s> 5.

Note that the variance of Sy is N xvar (Y;). Berry-Esseen theorem (c.f. [17]) asserts that for any & € R

N(otfo(NT)
3 vz 1 @2 Exp.(Y1)?
Prob.(S 5aN)=/ N e” 7 du+ 0(———).
N —00 \/27'[ ( Waﬁr )
Combining (5.10) and (5.12), the error term in (5.13) is given by
1, s€(3,4),
(logN)™!, s=4,
_s4
EXp.(?l )3 N~ , S € (4, 5),
VNo} mfoo logN s=5
NT \/N b £
1
—_—, s> 5.
VN
Combining (5.9) and (5.10) and setting « = «, the upper limit of the integral in (5.13) is given by
1, s€(3,4),
1
- ———, s=4,
Nlae = any) A~ logN
/N 2 N—oo 1
GNT ) s>4 .
N7z
such that (5.13) becomes
N(ac*DtNT)
~ No2 1 2 Exp.(Y;)?
Prob.(Sy < acN) =/ Moo——e7 7 du+ O(—————
‘ —00 V27T ( \/NO‘ST )
o 1 2
e” 2z du+ 0(1), s € (3,4),
/;oo \/27'[
L o( ! ) s=4
2 logN”’ -
= 1+o( ! ) s €(4,5)
5 N »9)s
1 log N
—+0 s s=25,
5 +0(E)
1 1
-+ 0(—=), s>5
5+ 0() -

123

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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The second part of the probability has the following upper bound by (5.6)

Prob.(Sy < acN : 3Y; < —Nr(s))

< NProb.(Sy < a¢N and Y; < —Nz(s))
< NProb.(Y; < —Ng(s))
N N
N—oo NT(
1, € (3,4),
(lo N , s=4, (5.16)
|\ s> 4.
Combining (5.15) and (5.16), we find
€ (0, 1), s€(3,4),
1 1
=-40 , s=4,
2 + (logN)
1 1
=-+40(—). se€(45),
Prob.(Sy < acN) 2 N7T (5.17)
1 logN
=-+0(—=), s=5,
2 0N
L o) 5
= — —), S > 0.
2 /N

With the definition of N,, given in the introduction, (2.15) is proved.

Remark 5.1. The probability is unldecided whens € (3, 4)in (5.17). In order to see if this probability can be determined, let

us redefine Ny(s) = (—a, VvV 1)Ns=2w(N) for a certain positive sequence {w(N)}. Note that (5.8) corresponds to the choice
such that all {w(N)} are equal to one. Using the same argument of (5.15), we have

1-5
—w(N) 2 1

Prob.(Sy < acN) = / -5 du+ O(w(N)').

S v 27r
where we must choose w(N) — 0as N — oo to diminish the error term. On the other hand, using the same argument of
(5.16), we get

Prob.(Sy < acN : 3Y; < —Nr(s)) N — oo w(N)*™*,

here we should choose w(N) — oo as N — oo to avoid divergent. The probability is the sum of these two contributions,
and there is no appropriate sequence {w(N)} we can use to settle the value.

In the following part of this section, we shall consider a general @ # «,. Let us deal with @« > . first. By the same
argument of (4.7), we obtain

Prob.(Sy > N,) < e M@, (5.18)
where
I(a) = sup{(x logt — 1og15(t)} — alogt, —logD(t,) . (5.19)
t>1
According to (5.19), we have
dD(ty) A
D(t,
o _Tae D) 1) = logt,. (5.20)
to D(tot) D(tot)

As f)(t =1)=1and f)’(l) = o, setting t, = 11in(5.20) leads to t,, = f)(tac) = 1 and hence I(a) = %I’(a)la:ac =0.1It
is easy to see that I(«) and t, are both strictly increasing function for « > «.. Since dzd’?z(t) lt=ty=1 = Y kezk(k — 1)D(k) ~
PY o k?/k7! = oo fors € (3, 4] using (5.6), § dle 2| ,—q does not exist and so does I”(«) in (4.11). We must turn to the
Riemann—Liouvillefunctional derivative (c.f.[18]) as follows:

d" fle) _

da?

(1_ da/(oz—u “Vf(u)du, fory €(0,1).

defte“)h:[ac = 0(1)Y_,,n'T*D(n) exists for € € (0, s — 3) with's € (3, 4].

It is easy to check that ¢

dt 1+e |t =tac
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Under the condition o — « € (0, 1), by Taylor formula we have
alogt — logf)(t)
= alog(ty, + (t — to,)) — log(Dlty,) + D'(tu. Nt — t,) + Ot — ty)' ")
alog(1+ (t — ty.)) — log(1 4 ac(t — ty.) + Ot — to,)' ")
= (@ = ac)(t — to.) + Ot — tg,)'**
fore € (0,s — 3) withs € (3,4]and t > 1. Taking t = t,, we have

I(Ol) = (Ol - ac)(tot - tl)tc) + O(tot - totc )1+€- (5.2])

Therefore although %”M:ac does not exist, we find that ‘f;;g’ exists for € € (0,s — 3) with s € (3, 4] by (5.20). Moreover,

(5.20) can be rewritten as aD(t,) = taﬁ’(ta) for all t,. It follows that

(@ — ot )D(te) + (D) — Dlta)) = tu(D'(te) — D'(ta,)) + tc(te — to)- (5.22)

Using Taylor formula as « is close to o, we have 15( ty )—ﬁ(tac ) = ot (ty—ty, )+0(te—t, )T and f)/(ta )—ﬁ/(tac oo (ta—ta. )
fore € (0,s — 3). When . — o € (0, 1), the order of the left hand side of (5.22) is (o — a) + averc(t, — ty, ), while the order
of the right hand side of (5.22) is t,(t, — t4.)¢. It follows that t, — t, ~Xg—a (0 — ac)%. From (5.21), we have

0<l(a) ~ (a—a)*t.
For0 < o — a. < 1, the upper bound of 1 — 7(N,, N) is tightest as ¢ approaches to s — 3.

1
1—17(Ng, N) < lim e‘CN(“‘“C)H% — o~ Nla—ac) '53
€rs—3

for some ¢ € (0, c0). A

Next consider the condition « < «.. We cannot use the same argument of (4.5) since D(t) is divergent for any t < 1
by (5.7). Let us separate the probability into two cases as follows. The first case allows at least one of the random variables
assumes a large value, while the second case does not.

Prob.(Sy < aN) = Prob.(Sy <aN,3Jj e {1,2...,N}suchthat; < (@ — ac)N)
+Prob.(Sy <aN,Vje{1,2...,N}suchthat¥; > (¢ — a)N). (5.23)

For the first case, we use the same argument of (5.16) to have

Prob.(Sy < aN : 3Y; < (@ — ac)N)
NProb.(Sy < aNand Y; < (¢ — a¢)N)
NProb.(Y; < (¢ — a¢)N)

o N
~ s—1 dx
N—o0 (c—a)N X

1

N . 5.24
N—oo (Olc — a)5*2N3*3 ( )

=
=

For the second case Prob.(Sy < aN,Vj € {1,2..., N} suchthatY; > (&« — a)N), let us define Sy = Y_}_,Y; where Y are
i.i.d. random variables with distribution

5 _ . _ |P'DG) ifj > (¢ —ac)N,
Prob (Yy =j) = {0 ifj < (o — ac)N,

where b’ is a normalization constant. Then the argument of (4.7) can be used since ﬁ(t) is well-defined for t < 1. Using the
same argument from (5.18) to (5.21), we have

1
Prob.(Sy < aN,Vj € {1,2..., N} suchthat ¥; > (& — ac)N) < e Nee-e'" ¢ (5.25)

Comparing (5.24) and (5.25) in (5.23), the first case dominates so that
0(1)
Notice that this upper bound should be optimal since by Proposition A.2 of [19] we find
o N N 1

Prob.(Sy < N,) > / — dx~N_ — = .
Neae—a) X! ~ (N(ae — )" (e —aP 2N

Prob.(Sy < aN) <
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6. Proof of Theorem 2.5

According to the definition stated in Theorem 2.5,
NSy s <4,

NP0y  s>4.

Let us consider s € (3, 4) first. From (2.16) and (2.17), we have

ot;,r—otczotc—a,;:{

2

— _ 1-pps—3
1-1(N+.N) = exp(—cN' 7€)

52
exp(—cN';”E,f,”) p €(0,1),

~ 5=2 (6.1)
N—co | exp(—cly), p=1, lim £y = oo,
N—oo
and
1
_ 0,1
ooz PEOD,
‘L'(Naﬁ, N) < 1 N

E;Vj7 o =1, NILHSOENZOO'
Moreover, for p = 1 with limy_, ¢y € (0, 00)or p > 1, we have
lim z(N,-,N)=1— lim t(N_,+,N) = lim (N4, N) € (0, 1).
N—o0 N N—o00 N N—o0o
when s € (3, 4) again.
Similarly, whens > 4 and p € (0, 1), it is easy to see that

1
TNy, N) S ———— o,
N NGE=3)1-p/2) p/2gil

1—1(N.N) < exp(—cN'"Pey).

Consider s = 4 and p > 1, we have aﬁT ~ log N by (5.10). Using (5.13) and (5.14) with @ = ) so that oy — oy, =
oy — ac + ac — ay, and using (5.16), we have

1—p
N Z oy o)

- IogN "~ logN 1 u?
N _,N)= e 2du+0
o ay ) /_Oo 27 + (logN)

JIogN <% 1 ¢

0(1) max{ Y8 o mEn 3, p=1,if lim — — oo,
o logN N—co /logN
INn

A1 + O(1) max -z, , =1, if lim = £ € [0, 00), (6.2)
1+0(1) “W | logN} p WM. JlogN [0, 00)
1 1
-+ 0 , 1,
2 + (logN) p=

where A; € (0, 1). Therefore we obtain (2.22) and (2.23) for s = 4.

When s > 4, we have ‘7161 =0+ O(N? )by (5.11). Consider s € (4,5) and p > 1, by (4.2) and the same argument of
(6.2), we have

—N(N7§5N+O(N% ))

(N.—,N) / o TN L _e=% ¢ o( ! )
(N - = o(14+0(1)N N e 2du+
—00 %

N’ 2 N%
[2

o _ N 1 .
O(1)max{—e 202, —}, p=1, lim £y = o0,

9y N7 N—o0

1
ho+0()max{|ey — Ll — =}, p =1, lim &y = L€ [0, ),
_ N7z N—o0 (6.3)

1 N
- +0 s e(1,s— 3],
2+ (Ng_%) p e ]
1 1
- +0 s >Ss— 3,
2 (N%) r

where A, = W(%) is a constant. Therefore we obtain (2.22) and (2.23) for s € (4, 5).
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Consider s = 5and p > 1, by (4.2) and the same argument of (6.2), we have

—N(N_ 5 KN+O(N_% ))

-1 1 u? log N
r(Na,,N) = / o(I+0(N 4 WN — e~ 2 du+0
N —00 \/27{ ( \/N )
o _ % logN
O(1)max{—e 202, s =1, if lim £y = oo,
(1) {EN W} P Jim £y = oo
log N I
A3+ O(1)max{|éy — L|, —}, p=1,if lim &y =L € [0, 00),
N N—o0
1 L
=15+ p€(1,2), (6.4)
2 N5
1 Iy logN
— 4+ 0(1) max{—, 1, p =2,
2 VN VN
1 logN
-+0 , p>2,
2 )

where A3 = W(é) is a constant. Therefore we obtain (2.22) and (2.23) for s = 5.
Consider s > 5and p > 1, by (4.2) and the same argument of (6.2), we have

,N(N’ 5 zN+o(N’% ))

= 1 u? 1
7(N,-,N) = / o(+0ON 4 WN  — 77 du+ 0(—
N —o0 2r (\fN)
0(1) max{~ - LI 1,if lim €
max{—e 202, —}, =1,if lim £y = oo,
ZN \/N L N—o0 N
1
Ag + O(1)max{|éy — L|, —=}, p =1, if lim &y =L € [0, 00),
_ VN N—o0 (6.5)
T ot pel,2]
2 Ni—2" o
1+o( 1 ) 5
Z —), p>2,
2 VN

where A4 = ¥( 5) is a constant. Therefore we obtain (2.22) and (2.23) for s > 5.
The corresponding result for o = aﬁ can be obtained by the same method, and the proof of Theorem 2.5 is completed.
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