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優化資料清理與機器學習的機制 

摘要 

 近年來人工智慧在機器學習的應用扮演重要的角色，而相較於大數據分析的統計

方法，ANN 成為最有用方法中的其中一個，為了處理動態環境中的時間序列資料和

離群值，Wu (2017)提出一個資料清理和機器學習的機制，實驗結果顯示提出的機制

在資料清理和機器學習方面是很有效的，Wu (2017)已經透過單一隱藏層倒傳遞神經

網路實作 RLEM，這個研究將使用兩個方法優化此機制，一個是在 RLEM 的損失函

數(loss function)加上正規化項來避免過度擬合(overfitting)的問題，另一個是修改

RLEM 並透過新版的 Tensorflow 實作來達成目標。 

 

 

關鍵字: 人工神經網路、正規化、單一隱藏層倒傳遞神經網路、RLEM 
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The refined mechanism for data cleaning and 

machine learning 

Abstract 

In recent years, artificial intelligence (AI) has become an important part in the 

application of machine learning, and the artificial neural networks (ANN) serves as one of 

the most useful methods compared to statistical methods for the purpose of big data 

analytics. To cope with the time series data that may have concept-drifting phenomenon 

and outliers, Wu (2017) had derived a mechanism for effective data cleaning and machine 

learning. The experiment results had shown that the proposed mechanism is promising in 

effective data cleaning and machine learning. Wu (2017) had implemented the resistant 

learning with envelope module (RLEM) via the adaptive single-hidden layer feed-forward 

neural networks (SLFN). This research will add the regularization term to loss function to

prevent overfitting and will refine RLEM to improve the accuracy of the predicted return of 

carry trade. The refined mechanism will be implemented via the updated version of 

Tensorflow. 

Keyword: artificial neural networks, regularization, single-hidden layer feed-forward neural 

networks, resistant learning with envelope module 
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Chapter 1 Introduction 

1.1 Background 

In recent years, artificial intelligence (AI) has become an important part in the 

application of machine learning that interacts with or imitates humans in a convincingly 

intelligent way. Instead of building a traditional program comprised of logical statements 

and decision trees, a neural network is built specifically for training and learning. The 

network is based on a parallel network of neurons, each set up for a specific purpose 

(Android Authority, 2018). It is often used in the field of healthcare, business, education, 

finance, law and manufacturing.  

ANN serves as one of the most useful methods compared to traditional statistical 

methods for virtual classification especially in financial predictions. It is a highly accurate 

model and yet limited by many assumptions. The process of ANN is also very hard to be 

realized that makes it difficult to be applied despite the advantages. It will be more 

convenient for the users to interpret the results if the process can be more easily understood 

(Monthly Archives, 2016).  

Additionally, ANN offers a number of advantages, including requiring less formal 

statistical training, ability to implicitly detect complex nonlinear relationships between 

dependent and independent variables, ability to detect all possible interactions between 

predictor variables, and the availability of multiple training algorithms. Disadvantages 

include its black box nature, greater computational burden, proneness to overfitting, and the 

empirical nature of model development (Tu, 1886). Among these advantages, overfitting is 

a problem that many people encountered. Training a network may be done in many 

different ways that all involve a brute force iterative approach. This approach is to 

maximize output accuracy and train the optimum paths through the networks (Android 

Authority, 2018).  
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Wu (2017) derive a mechanism to cope with the time series data that may have 

concept-drifting phenomenon and outliers. The proposed mechanism is implemented via 

TensorFlow and GPU for effective data cleaning and machine learning. The ANN 

mechanism corresponds to the U.K. against the U.S. from January 1990 to December 2016 

(324 months) with the data set of nominal exchange rates, LIBOR, CPI, money supply, and 

GDP for the U.S., and any of the other counterparty countries. Due to the random initial 

weights, the total amount of adopted hidden nodes and training time needed depending on 

each   value (  = 0.75, 0.5, 0.25, 0.1). There are two stages in the experiment. In the first 

stage, the resistant learning algorithm is used with the envelope module to learn the training 

block and then remove the detected outlier candidates. In the second stage, the SLFN 

obtained in stage one is applied to each data in the testing block. As a result, the total 

number of adopted hidden nodes and training time spent increase as the   value decreases. 

The smaller   value is, the greater effectiveness will be. In addition, the movement of 

excess returns of carry trade can be well predicted with this mechanism.  

1.2 Motivation 

As ANN becomes more and more popular, a problem in machine learning rises as how 

to make an algorithm perform well not only on the training data but also on new inputs. 

Many strategies are designed to reduce the test error, probably at the expense of increased 

training error (Goodfellow et al., 2016). Rather than a black box problem in the deep 

learning process, it is more important to know what drives the performance and get good 

results in a more systematic way. Therefore, developing more effective strategies has 

become one of the significant goals in this field. 

Compared to CPU, graphic processing unit (GPU) has a massively parallel 

architecture consisting of thousands of smaller and more efficient cores designed for 

handling multiple tasks simultaneously (NVIDIA, 2018). NVIDIA has released lots of 
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libraries that implement common computational primitives. These primitives are highly 

optimized for GPUs needed in deep learning. As Tensorflow is able to compute all the 

gradients, it is more convenient that we do not have to write backward pass. The other 

advantage about Tensorflow is that we can switch all this computation between CPU and 

GPU (Li et al., 2017).  

Our goal is to refine the learning process of a model and get higher accuracy rate. 

Considering that GPU is more efficient and yet more expensive, we decided to improve 

mechanism with different aspects. Among the ANN algorithms, the most common method 

is backpropagation, which will update the variables until it achieves the training goal. Even 

though optimization has been proposed and shown its advantages on some models, we are 

not sure it will suit our needs in training process. Therefore, we adopt several strategies 

such as regularization to resolve the situation of overfitting while training complicated 

ANN models, refined backpropagation and refined cramming mechanism to improve the 

RLEM that mentioned above. 

1.3 Objective 

To achieve the goal, this research refines the mechanism for data cleaning and 

machine learning in the concept drifting environment (Wu, 2017) to increase the accurate 

of carry trade prediction with different strategies. In this research, we will add the 

regularization term to the loss function to prevent overfittting and will refine the 

backpropagation and cramming mechanism. As the mechanism contains a great number of 

matrix multiplications, the refined mechanism will be implemented via the updated version 

of Tensorflow. 

This is an experimental research that combines AI field and financial field using 

refined mechanism to improve the results of predicting the return of carry trade. I am 

looking forward to contributing both AI and financial fields in the future.  
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Chapter 2 Literature Review 

 This chapter is a brief introduction containing five parts of literature review. The first 

section is the regularization that avoids the problem of overfitting. The second section is 

about how to combine backpropagation and gradient descent to adjust the parameters in the 

neural network. The third section is GPU and the Tensorflow, which is one of the major 

deep learning frameworks. The fourth section is the mechanism of coping with outliers in 

the concept drifting environment. And the last section is the mechanism for data cleaning 

and machine learning. 

2.1 Regularization 

 Overfitting is a common issue in machine learning, which occurs when we build a 

model that not only captures the signal but also the noise in a dataset. In order to avoid 

overfitting, we can create models that generalize and perform well on different data points 

to correct overfitting with regularization. It is the concept of adding an additional term to 

the loss function. In addition to the data loss, it should fit the training data. Regularization 

is just anything that you do to model, rather than explicitly trying to fit the training data, 

that sort of penalizes somehow the complexity of the model (Li et al., 2017). 

 “Regularization is any modification we make to a learning algorithm that is intended 

to reduce its generalization error but not training error” (Goodfellow et al., 2016, page 221). 

Regularization is a very important technique in machine learning to prevent overfitting. 

There are lots of regularization strategies. For instance, extra constraints are put on a 

machine learning model, such as adding restrictions on the parameter values. Extra terms 

can also be put in the objective function that may be thought of as corresponding to a soft 

constraint on the parameter values. The performance can be improved by these extra 

constraints and penalties on the test set if we choose correctly. Regularization of an 

estimator works by trading increased bias for reduced variance. We can realize that an 
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effective regularizer makes a profitable trade, reducing variance significantly while the bias 

is not overly increasing (Goodfellow et al, 2016). 

 One of the most common regularization methods is L2 regularization (also called 

Ridge), that only the weights are regularized n different layers differently strong instead of 

biases. The L2 regularization is the sum of the square of the weights and its computational 

efficient due to having analytical solutions and it forced the parameters to be relatively 

small, the bigger the penalization, the smaller the coefficients will be (Enhance Data 

Science, 2017). As follows: 

L2 regularization adds a penalty equal to the sum of the squared value of the coefficients: 

R(w) = ∑ |  
 |                             (1) 

2.2 Gradient descent optimization algorithms 

 In order to minimize or maximize a loss function, we need optimization algorithm that 

is simply a mathematical function dependent on the Model’s internal learnable parameters 

which are used in computing the target values from the set of predictors used in the model. 

The weight and bias values in the neural networks are internal learnable parameters which 

are used in computing the output values and are learned and updated in the direction of 

optimal solution such as minimize the loss function and also play an important part in the 

training process of the neural network model (Towards Data Science, 2017). 

 There are two major types of optimization algorithm including first order optimization 

algorithms and second order optimization algorithms. The former algorithms are used to 

minimize or maximize a loss function using its gradient values with respect to the 

parameters like gradient descent. The first order derivative tells us whether the function is 

increasing or decreasing at a particular point and gives us a line which is tangential to a 

point on its error surface. The latter is used to minimize or maximize the loss function and 

tells us whether the first derivative is increasing or decreasing which hints at the function’s 
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curvature. It provides us with a quadratic surface which touches the curvature of the error 

surface. So we can choose different optimization strategy according to these characteristics, 

the first order optimization techniques are easy to compute and less time consuming 

especially on large data sets. Unless the second order derivative is known, the second order 

techniques are always slower and costly to compute in terms of both memory and time 

(Towards Data Science, 2017).  

Backpropagation  

To optimize the neural network, backpropagation is a technique to calculate derivatives 

quickly. It is a way that we can apply an activation function to those sums of products after 

we propagate forward calculating the dot product of Inputs signals and their corresponding 

weights. And then we use gradient descent to propagate backwards in the network carrying 

error terms and update weight values (Towards Data Science, 2017). The backpropagation 

learning algorithm can be shown as: 

The learning is an optimization problem that minimizes  ( ). 

Step 0.1: Generate and store the initial values of Z.  

Step 0.2: Input all training data {(X1, d1), …, (XN, dN)}, with dc being the desired response 

vector corresponding to the c
th

 stimulus vector Xc. 

Step 1: Execute the forward operation of SLFN regarding all training data: calculate 

 (     
 ) i  c and store them, then calculate  (     

     ) l  c and 

store them. 

Step 2: Based upon  (     
     ) and dcl values, calculate the  ( ) value and store it. 

Step 3: If  ( ) is less than the predetermined value (says, 1), then STOP. 

Step 4: Based upon values of  (     
 ) i  c and  (     

     ) l  c, execute the 

following backward operations: 

Step 4.1: calculate the values of 
  ( )

    
  ∑ ( (     

     )     )
 
     l 
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and store them. 

Step 4.2: calculate the values of  

  ( )

    
  ∑ ( (     

     )     ) (     )
 
     l  i and store them. 

Step 4.3: calculate the values of  

  ( )

    
  ∑ ∑ ( (     

     )     )(  ( (     
 )) )   

  
   

 
     i and store 

them. 

Step 4.4: calculate the values of  

  ( )

    
  ∑ ∑ ( (     

     )     )(  ( (     
 )) )   

  
      

 
     i  

 j and store them. 

We are given some function  ( ) where   is a vector of inputs and we are 

computing the gradient of   at   (i.e.  ( )). The backward-flowing gradient can be 

interpreted on an intuitive level, for instance, the most common used in neural networks 

that back propagation performs during the backward pass are add gate and multiply gate. 

The add gate takes the gradient on its output and distributes it equally to all of its inputs, 

regardless of what their values were during the forward pass. While the multiply gate takes 

the input activations, swaps them and multiplies by its gradient (Li et al., 2017).  

Many concepts extend in a straight-forward manner to matrix and vector operations 

which are the matrix-matrix multiplication multiply operations. In addition, the gradient 

with respect to a variable should have the same shape as the variable (Li et al., 2017). The 

matrix multiplication on the left composed of a bunch of rows matrix multiplies that on the 

right by another matrix composed of a bunch of columns matrix. This produces a final 

matrix where each element in the output matrix is a dot product between one of the rows 

and one of the columns of the two input matrices. These dot products are all independent, it 

can be split up completely and have each of those different elements of the output matrix 
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all being computed in parallel. Besides, they all sort of are running the same computation 

which is taking a dot product of these two vectors (Li et al., 2017). 

 

Figure 1: Matrix Multiplication  

(Source: Li et al., 2017) 

2.3 GPU and Tensorflow 

 The graphic card also called Graphics Processing Unit (GPU) is really developed. 

Most common talking about GPUs in deep learning are NVIDIA GPUs. Both GPUs and 

CPUs are kind of a general purpose computing machine where they can execute programs 

and do sort of arbitrary instructions, but they're qualitatively pretty different. The difference 

between a GPU and a CPU is that consumer GPUs have thousands of cores, each of those 

cores runs at a much slower clock speed. Instead of operating independently, the GPU 

cores have to work together and sort of paralyze one task across many cores rather than 

each core totally doing its own thing. While these days desktop CPU has four or six even 

up to 10 cores. This means hardware can physically run, like maybe 8 or up to 20 threads 

concurrently. So the CPU can maybe do 20 things in parallel at once. It is not only a 

gigantic number, but those threads for a CPU are pretty powerful. Every CPU can actually 

do a lot of things fast and independently. Another thing to show between CPUs and GPUs 

is memory. CPUs have some cache, but that's relatively small and the majority of the 

memory for CPU is pulling from system memory. GPUs also have their own caching 

DOI:10.6814/THE.NCCU.MIS.011.2018.A0



DOI:10.6814/THE.NCCU.MIS.011.2018.A05 

 

15 
 

system similar to the caching hierarchy in a CPU where there are sort of multiple 

hierarchies of caching between the 12 gigabytes of GPU memory and the actual GPU cores. 

The GPUs typically have their own relatively large block of memory within the card itself. 

To summarize, GPUs are specialized for highly paralyzable algorithms. So the prototypical 

algorithm of something that works really well and is like perfectly suited to a GPU is 

matrix multiplication. The CPUs are good for general purpose processing and they can do a 

lot of different things (Li et al., 2017). 

 When the data are read from different places in the two input matrices, a GPU can 

have all of this elements of the output matrix all computed in parallel and that could make 

this thing compute very fast. This is kind of the prototypical type of problem that a CPU 

might have to go in and step through sequentially and compute 

Each of these elements comes one by one. CPUs these days have multiple cores, so 

they can do vectorized instructions as well. Nevertheless, GPUs tend to have much better 

throughput for massively parallel problems especially when these matrices get really big 

(Li et al., 2017).  

Tensorflow is probably a main deep learning framework from Google as a better 

choice for a lot of research type problems these days. In Tensorflow, we can divide 

computation into two major stages. The first stage is to define computational graph and 

then run the graph over and over again and actually feed data into the graph to perform 

whatever computation wanted to perform. So this is the common pattern while using 

Tensorflow (Li et al., 2017). 

2.4 The Resistant learning with envelope module (RLEM) 

Tsaih and Cheng (2009) present a resistant learning procedure single-hidden layer 

feed-forward neural network (SLFN) to detect outliers. The SLFN fitting function is 

defined as: 
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  ( )       (    
    ∑    

   
 
    ),               (2) 

 ( )    
   ∑   

      (    
    ∑    

   
 
    ) 

        (3) 

where     ( )  
       

        ,   is the number of explanatory variables (  ) ;    

(          ) ;   is the adaptive number of adopted hidden nodes;   
  is the bias value 

of the     hidden node; the superscript   throughout the paper refers to quantities related 

to the hidden layer;    
  is the weight between the     explanatory variable    and the     

hidden node;   
  is the bias value of the output node; the superscript o throughout the 

paper refers to quantities related to the output layer; and   
  is the weight between the     

hidden node and the output node. In their study, a character in bold represents a column 

vector, a matrix, or a set, and the superscript T indicates the transposition. 

 Through this SLFN tool, the coming information   is first transformed into 

(          )
 
, and the corresponding value of f is generated by a rather than  . Namely, 

given the observation, all the corresponding values of hidden nodes are first calculated with 

        (   
     ∑    

   
 
   )  for all I, and the corresponding value  ( )  is then 

calculated as  ( )    ( )     
   ∑   

  
     . 

 In the learning stage, a set of N training cases {(      ), (      )  . . . , (      )} 

is given. Regarding all training cases, the learning goal is to seek a   where, for all 

  (            ) and       (              ), 

|   - (     
     )|                             .                                   

 ( )   
 

 
∑ ∑ (      (     

     ))
 

 
   

 
    

            (4) 
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Figure 2: The Network Structure of The Single-hidden Layer Feed-forward Neural 

Networks (SLFN) with multiple output nodes 

 

 

Figure 3: The Activation Value of Hidden Node 

 

Figure 4: The Activation Value of Output Node 

 Tsaih and Cheng (2009) proposed a resistant learning mechanism (RL) with the SLFN 

and a tiny pre-specified ε value      to deduce a function form. The RL takes the training 

examples one by one. The RL implements both robustness analysis and deletion diagnostics 

to exclude potential outliers at the early stage, thus prevent SLFN from learning them. 

Hereafter, the outlier is the observations far away from the fitting function deduced from a 
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subset of the given observations. The idea of robustness analysis contains features for 

deriving an (initial) subset of m+1 reference observations to fit the linear regression model, 

ordering the residuals of all N observations at each stage and then augmenting the reference 

subset gradually, based upon the smallest trimmed sum of the squared residuals principle. 

The deletion diagnostics employs with the diagnostic quantity being the number of pruned 

hidden nodes when one observation is excluded from the reference pool. The RL also 

dynamically adapts the number of adopted hidden nodes and the associated weights of 

SLFN during the training process. 

To sum up, the RL implements the weight-tuning mechanism, the recruiting 

mechanism, and the reasoning mechanism to allow the SLFN to evolve dynamically during 

the learning process and to explore an acceptable nonlinear relationship between 

explanatory variables and the responses in the presence of outliers. 

Huang et al. revised RL into the RLEM to speed up the process of identifying the 

potential outlier shown in Table 1. The envelope width of the RLEM is   . The   value 

0.05 proposed in RLEM is larger than a tiny   value (10
-6

) proposed in RL. The parameter 

k in Step 2 refers to the percentage of potential outlier, which means at least N(1-k) 

reference observations will be wrapped into the envelope. For instance, assume we suspect 

that there are approximately at least 95 percent non-outliers and at most 5 percent outliers, 

then we can set k as 5% and the RLEM will result in a fitting function with an envelope 

that contains 95 percent reference observations into consideration while building the SLFN 

estimate. A SLFN estimate is acceptable at the     stage if all of the smallest n squared 

residuals are less than the pre-specified ε. 

 

Table 1: The resistant learning with envelope module (adapted from Huang et al., 

2014). N is the total amount of training data, m is the amount of input nodes, k is the 

percentage of potential outlier, and the envelope width is 2ε. 
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Step 1: Use the first m+1 reference observations in the training data set to set up an 

acceptable SLFN estimate with one hidden node. Set n = m+2. 

Step 2: If n > N*(1-k), STOP. 

Step 3.1: Use the obtained SLFN to calculate the squared residuals regarding all N 

training data. 

Step 3.2: Present the n reference observations that are the ones with the smallest n 

squared residuals among the current squared residuals of all N training 

data. 

Step 4: If all of the smallest n squared residuals are less than ε (the envelope width), 

then go to Step 7; otherwise, there is one and only one squared residual that 

is larger than ε. 

Step 5: Set  ̃   . 

Step 6: Apply the gradient descent mechanism to adjust weights w of SLFN. Use the 

obtained SLFN to calculate the squared residuals regarding all training data. 

Then, either one of the following two cases occurs: 

If the envelope of obtained SLFN does contain at least n observations, then 

go to Step 7. 

If the envelope of obtained SLFN does not contain at least n observations, 

then set     ̃ and apply the augmenting mechanism to add extra hidden 

nodes to obtain an acceptable SLFN estimate. 

Step 7: Implement the pruning mechanism to delete all of the potentially irrelevant 

hidden nodes; n + 1  n; go to Step 2. 

2.5 The mechanism for data cleaning and machine learning 

  Carry trade is a trading strategy which borrows at a low interest rate and invests in an 

asset that provides a higher rate of return. It is based on borrowing in a low interest rate 
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currency and converting the borrowed amount into another currency, with these proceeds 

either placed on deposit in the second currency if it offers a higher rate of interest, or 

deployed into assets – such as stocks, commodities, bonds, or real estate that are 

denominated in the second currency (Investopedia, 2018).  

 The behavior of exchange rates and the professional is the only unknown in a carry 

trade has mostly settled into a belief that fundamental explanations of the exchange rate 

have no predictive value in the short-run. Jordà et al. (2012) knit together basic no-arbitrage 

conditions in international economics to derive a predictive frame-work that nests 

commonly used carry trade strategies. According to Jordà et al. (2012) the ex-post nominal 

excess returns to a carry trade are: 

           (  
    )                           (5) 

Where      is the log nominal exchange rate in U.S. dollars per foreign currency, and    

and   
  are nominal interest rates home (U.S.) and abroad for a riskless deposit with a 

one-period maturity. Given that the interest rates in are observed at time t, the major task of 

grasping a positive carry trade return hinges on developing a good forecasting model for 

    . It is well known that economic fundamentals do not have good predictive power for 

the exchange rate, especially in the short-term. Nevertheless, some evidence shows that 

these macroeconomic fundamental might be useful in generating positive return from carry 

trade. Therefore, the mechanism of (Wu, 2017) proposed is used to forecast the return of 

carry trade one year later and predicted the exchange rate using macro fundamentals. i.e., 

they forecast h period ahead exchange rates as: 

          (     
 )    (     

 )    (     
 )    (         

 )         (6) 

where    is log money supply,    is log GDP,    is nominal interest rate, and      is the 

expected next period rate of inflation from the home country. Mark of * represents the 

values from foreign country. To achieve the estimation purpose, researchers may use the 

long-term government bond rate as a proxy for the expected inflation rate. The investor can 
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make use of eq. (5) to determine the trade orientation with the prediction of the exchange 

rate (Wu, 2017). 

 For data cleaning and machine learning, this study adapts the works of Tsaih and 

Cheng (2009) and Huang et al. (2016) to present a mechanism that implements the moving 

window and RLEM. M is the index of the current window, N is the sample size of the 

training block, B is the sample size of the testing block, s is the standard deviation of 

training data in the training block, and   represents the maximal deviation between actual 

and predicted outputs (Wu, 2017). The proposed mechanism is shown as Table 2: 

Table 2: The proposed ANN mechanism of Wu (2017) 

Step 0: Set M as 1. 

Step 1.1:  Apply the RLEM stated in Table 1 (with envelope width = 2) to the N 

training examples {(x
(M-1)B+1

, y
(M-1)B+1+h

), (x
(M-1)B+2

, y
(M-1)B+2+h

), …, 

(x
(M-1)B+N

, y
(M-1)B+N+h

)} to filter out Nk potential outliers and obtain an 

acceptable SLFN. 

Step 1.2:  Remove the outlier candidates, and then use the SLFN obtained in Step 

1.1 and the RLEM stated in Table 1 (with envelope width = 2) again to 

learn the remained N(1-k) training examples. (start from n = 1) 

Step 2: Apply the SLFN obtained in Step 1.2 to the B testing examples {(x
(M-1)B+N+1

, 

y
(M-1)B+N+1+h

), (x
(M-1)B+N+2

, y
(M-1)B+N+2+h

), …, (x
MB+N

, y
MB+N+h

)}.  

Step 3:  For more data, M  M+1 and GOTO Step 1.1; otherwise, STOP. 

 In Step 1.1, we apply the RLEM stated in Table 1 (with envelope width = 2) to N 

training examples in the current training block to result in an acceptable SLFN whose 

envelope contains at least N(1-k) examples.  is the standard deviation of training examples 

in the current training block. Furthermore, we also obtain the order information and 

deviance information regarding all training examples in the current training block. Here, 
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the “order information” is the order of the data sequence learning by the SLFN and the 

“deviance information” is the distance between actual and predicted outputs of SLFN. The 

RLEM guarantees that the N(1-k) data in the training block are wrapped into the envelope. 

The last Nk data are the potential outliers, which may not be wrapped into the envelope. 

Namely, Step 1.1 adopts both the deviance information and the order information to 

identify Nk examples in the current training block that will be excluded in Step 1.2. In Step 

1.2, remove the outlier candidates, and then use the SLFN obtained in Step 1.1 and the 

RLEM stated in Table 1 (with envelope width = 2) again to learn the remained N(1-k) 

training examples.  represents the maximal deviation between actual and predicted outputs 

of SLFN regarding all N(1-k) training examples. 

In Step 2, we apply the obtained SLFN to the testing examples. Step 3 examines the 

stopping criteria. If there are more examples, this mechanism slides the window further and 

goes back to Step 1.1. If there are no more examples, the mechanism stops. 

According to the statements of (Huang et al., 2014), Step 1.1 can act as an effective 

outlier-filter. According to the statements of (Tsaih and Cheng, 2009), Step 1.2 can result in 

an effective learning of the patterns embedded in the data resulted from Step 1.1 (Wu, 

2017).  

Based on the aforementioned theories of carry trade, the variables of input datasets for 

a month interval (end-of-month) include (1) nominal exchange rates, (2) LIBOR 

(one-month London interbank offered rates), (3) consumer price indices (CPI), (4) money 

supplies, and (5) GDPs, as shown in Table 3 (Wu, 2017). 
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 Table 3: The definition of all variables in the input vector (Wu, 2017) 

   (  
    

    
    

    
    

    
    

    
 ) at time epoch   

Variable Definition 

  
  nominal exchange rates between U.K. and U.S. 

  
  12-month LIBOR for the U.S. 

  
  CPI for the U.S.  

  
  money supplies for the U.S.  

  
  GDPs for the U.S.  

  
  12-month LIBOR for the U.K. 

  
  CPI for the U.K. 

  
  money supplies for the U.K. 

  
  GDPs for the U.K. 
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Chapter 3 Experiment Design 

This research refines the mechanism for data cleaning and machine learning in the 

concept drifting environment based on the one proposed mechanism (Wu, 2017) to predict 

the return of carry trade. The experiment is designed to optimize the efficiency of resistant 

learning mechanism and increase the accuracy. This chapter is a brief introduction 

containing two parts of experiment design. The first section is the daata description 

according to the U.S. and U.K. data from January 1990 to December 2016. The second 

section is about the experiment design, and the experimental environment is shown as 

Table 4: 

 Table 4: The computer infrastructure used in the experiment 

OS Ubuntu 16.04 LTS 

GPU ASUS ROG STRIX GeForce®  GTX 1080-O8G 

CPU Intel®  Core
TM

 i7-6900K 

RAM DDR4-2133 64G 

Language Python 3.5 

API Tensorflow-gpu r1.3 

CUDA CUDA 8.0.27 

3.1 Data description 

In this research, the variables are shown in Table 3 and dataset is from (Wu, 2017). 

We use the data (102 months) of the U.K. against the U.S. observed at a monthly frequency. 

In this experiment, we use two moving windows with the training block and the testing 

instance to illustrate the experiment result. According to the training and testing block in 

Table3, when M = 1, the first window training block consists of 1
st
 to 100

th
 instances and 

the testing block is the 101
st
 instance. When M = 2, the training block consists of 2

nd
 to 
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101
st
 instances and the testing block is the 102

nd
 instance. The arrangement of moving 

window is shown as Figure 5.  

 

Figure 5: The proposed arrangement of moving window. 

3.2 Experiment design 

The refined mechanism includes two stages, the first stage will filter out the 5% 

potential outliers and the second stage will learn the remained data to predict the outputs of 

the carry trade. In the learning stage, a set of N training cases {(      ), (      )  . . . , 

(      )} is given. Regarding all training cases, the learning goal is to seek a   where, 

for all   (            )  and       (              ) , 

|   - (     
     )|                             . The training optimization algorithm 

consists of two terms: the first one called loss term, which measures how well the model 

fits the data. And the second term we added to penalize the model complexity using the L2 

regularization term, which is the sum of the squared weights.    (also called the 

regularization rate) is a hyper-parameter regularization strength to represent a scalar value 

that controls how weights are balanced.                                   

 ( )   
 

 
∑ ∑ (      (     

     ))
 

 
   

 
    

 +  ∑   
  

         (7) 

The learning becomes an optimization problem: 

     ( )                              (8) 
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 The flowchart of refined ANN mechanism is shown in Figure 6 which is modified 

based on the mechanism for data cleaning and machine learning in the concept drifting 

environment (Wu, 2017). There are two portions of the mechanism we refined including 

cramming mechanism and weight tuning mechanism, furthermore, the refined mechanism 

will be implemented via the updated version of Tensorflow. The weight tuning mechanism 

is shown in Figure 7 to adjust weights and minimize the loss function where         and    

are given tiny numbers, e
c
     - (     

     ). 

 

 

Figure 6: The flowchart of proposed algorithm 

Table 5 shows the refined resistant learning with envelope module (Adapted from 

Huang et al., 2014). The   ̅ in cramming mechanism is calculated in step 6(c) instead of an 

assigned number. N is the total amount of training data, m is the amount of input nodes, k is 

the percentage of potential outlier, and the envelope width is 2ε. (code reference: 

https://github.com/rlem). Figure 7 shows the refined flowchart of backpropagation. 
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Table5: The refined resistant learning with envelope module (RLEM)  

for Stage 1 and Stage 2 

Stage 1 

Step 1: Use the first  +1 reference observations in the training data set 

to set up an acceptable SLFN estimate with one hidden node. Set 

     . 

Stage 2 Step 1:     

Stage 1 

and 

Stage 2 

Step 2: If    (   ), STOP. 

Step 3.1: Use the obtained SLFN to calculate the squared residuals 

regarding all   training data. 

Step 3.2: Present the   reference observations (     ) that are the ones 

with the smallest   squared residuals among the current 

squared residuals of all   training data. Let I( ) be the set of 

indices of these observations. 

Step 4:  If (  )      c  I( ), go to Step 7; otherwise, there is one 

and only one squared residual that is larger than 
 
. Assume  

 I( ), ( )  >    c  I( ), and (  )      c  

I( )-{}  c  I( ). 

Step 5: Set  ̃   . 

Step 6: Apply the gradient descent mechanism to adjust weights    of 

SLFN until either one of the following two cases occurs: 

(1) If the envelope of obtained SLFN does contain at least   

observations, then go to Step 7. 

(2) If the envelope of obtained SLFN does not contain at least   

observations, then apply the following augmenting mechanism to 

add two extra hidden nodes to obtain an acceptable SLFN estimate: 
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(a) Set     ̃ and find an m-vector  of length one such that 

 (    )  0   c  I( )-{}. 

(b) For every c  I( )-{}, compute  (    )  Let  ̅ be the 

smallest index c yielding       ( )   |
 (    )|  

(c) Set  ̅ = |

      (√
     ( )   

 
    (  )

       ( )(
 

    (  )
  )

) 

 (  ̅  )
|, where  is a given small 

number and   
     ( ) 

(   )|    
  ∑   

   
 

   
|
.  

Step 6(2)(d): Let p+2  p and add new hidden nodes p-1 and p to the 

existing SLFN with       
  = ζ- ̅  ,     

  =  ̅,     
  

= ζ+ ̅  ,   
  = - ̅, and     

  =   
  = 

    
  ∑   

   
   

   

     ( )
.  

Step 7: Implement the pruning mechanism to delete all of the potentially 

irrelevant hidden nodes;      ; go to Step 2. 

 

 

Figure 7: The weight tuning mechanism (BP) 
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Chapter 4 Experiment Result 

During the experiment, the training block are {(x
1
, y

13
),…,( x

100
, y

112
)}, {(x

2
, 

y
14

),…,( x
101

, y
113

) and the testing instances are {(x
101

, y
113

) and ( x
102

, y
114

)}. In the Step 

1.1 of Table 2, we get the half envelope width σ, the deviation of 100 training data in the 

training block is approximately 1.5409 in the first moving window. And in the Step 1.2 of 

Table 2, we set the half envelope width ε as 0.75. Table 6 indicates the total number of 

adopted hidden nodes and training time of whole learning process. We get more adopted 

hidden nodes and it takes more time because of complicated backpropagation. 

Table 6: Total number of adopted hidden nodes and training time 

  Step 1.1 Step 1.2 Total 

The 1
st
 

window 

(σ =1.5409, 

ε = 0.75) 

Total number 

of adopted 

hidden nodes 

37 89 89 

Time spent 

(hh:mm:ss) 
03:06:11 12:29:17 15:35:28 

The 2
nd

 

window 

(σ =1.5214, 

ε = 0.75) 

Total number 

of adopted 

hidden nodes 

41 92 92 

Time spent 

(hh:mm:ss) 
03:13:07 12:35:29 15:48:36 

 

Figure 8 shows the envelope module of the step 1.1, and No. 31, 32, 34, 35 and 36 

instances are identified as potential outliers. The remaining inliers in are all wrapped in the 

envelope width in both of two steps. Figure 9 shows the actual and predicted return of carry 
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trade in step 1.2 with the testing instances 1.3918. We reduce the error of the prediction of 

carry trade but we get more adopted hidden nodes.  

Figure 8 and Figure 9 show that besides outliers in red-cross notes, inliers in blue dashed 

line presents the actual return of carry trade. The envelope module in gray dotted line 

wrapped the inlier instances in the envelope width, the orange solid line represents the 

predicted return of carry trade.  

Figure 8: The envelope module of the Step 1.1 to identify the outliers with σ = 1.5409 

 

Figure 9: Actual and predicted return of carry trade with ε = 0.75 

 

Figure 10 shows the envelope module of the step 1.1, and No. 30, 31, 33, 34 and 35 

instances are identified as potential outliers. The remaining inliers are all wrapped in the 

envelope width in both of two steps. Figure 11 shows the actual and predicted return of 

carry trade in step 1.2 with the testing instances 1.5941. Figure 10 and Figure 11 show that 
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besides outliers in red-cross notes, inliers in blue dashed line presents the actual return of 

carry trade. The envelope module in gray dotted line wrapped the inlier instances in the 

envelope, the orange solid line represents the predicted return of carry trade. 

 

Figure 10: The envelope module of the Step 1.1 to identify the outliers with σ = 1.5214 

 

 

Figure 11: Actual and predicted return of carry trade with ε = 0.75 

 

Table 7 shows the deviation between actual and predicted return of carry trade in 

different σ for two moving windows. The mean and variance of inlier training instances are 

both smaller than σ = 1.5409 (Step 1.1) and ε = 0.75 (Step 1.2) for the first moving window. 

In the second moving window, the mean and variance of inlier training instances are also 

both smaller than σ = 1.5214 (Step 1.1) and ε = 0.75 (Step 1.2).  

In Table 8, it shows the accuracy of movement prediction for the Step 1.1 and Step 1.2. 

Step 1.1 can recognize positive movement but can’t recognize negative movement of the 

training instances. After Step 1.2, both of positive and negative movement can be 
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recognized correctly for the two moving windows. The smaller variance of deviation 

indicates that we had overcome overfitting and reduced deviation. 

Table 7: Deviation between actual and predicted return of carry trade 

Moving 

window 
RLEM 

Step 1.1 Step 1.2 

training 

instance 

(inlier:95) 

training 

instance 

(all:100) 

1 testing 

instance 

training 

instance 

(inlier:95) 

1 testing 

instance 

1 

Mean of 

Deviation 
0.4371 0.5107 0.5493 0.2275 0.2446 

Variance of 

Deviation 
0.0784 0.1807 / 0.0478 / 

2 

Mean of 

Deviation 
0.5233 0.4477 0.5492 0.2395 0.5380 

Variance of 

Deviation 
0.1855 0.0755 / 0.0440 / 

 

Table 8 shows accuracy of movement prediction for the Step 1.1 and Step 1.2 

M 
Actual 

movement 

Step 1.1 Step 1.2 

training 

instance 

(inlier:95) 

training 

instance 

(all:100) 

1 testing 

instance 

training 

instance 

(inlier:95) 

1 testing 

instance 

+ - + - + - + - + - 

1 
+ 93/93 N/A 98/98 N/A 1/1 N/A 93/93 N/A 1/1 N/A 

- 2/2 N/A 2/2 N/A N/A N/A N/A 2/2 N/A N/A 

2 
+ 93/93 N/A 98/98 N/A 1/1 N/A 93/93 N/A 1/1 N/A 

- 2/2 N/A 2/2 N/A N/A N/A N/A 2/2 N/A N/A 
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Chapter 5 Conclusion and Future Work 

This research refined a mechanism for data cleaning and machine learning to cope 

with outliers and predict the return of carry trade. The refined mechanism is implemented 

via the Tensowflow and GPU. We add the regularization to the loss function to prevent the 

problem of overfitting, and refine the cramming mechanism and weight tuning mechanism 

of RLEM to improve the accuracy of the predicted return of carry trade. 

After the experiment, we find out that the regularization term reduce the overfitting, 

we not only get less error in the training data but also less error in testing data. The testing 

result is getting closer to the actual predicted return of carry trade but it takes more time in 

learning with the refined backpropagation of RLEM.  

The experiment result indicates that the refined mechanism can predict movement of 

the return of carry trade better. We find out some valuable issues in the experiment: 

1. Issue on technology field: Because of the less knowledge and new software 

library of machine learning, the version of Tensorflow is still being updated and 

improved, we have to try constantly and get more information about it. To 

improve the training models, we must need to choose a suitable way via knowing 

the reason of the error between the desired and actual return of carry trade. 

2. Issue on application field: Although we had refined the ANN mechanism, it still 

needs to concentrate on finding other ways to achieve real-world solution such as 

getting more feature as input which can affect the consquence of output results 

especially for the finance field. It is also significant for us to assign parameters 

and moving windows properly of the experiment model. 

3. Issue on hardware: Besides using the Tensorflow, it is also important to use 

TensorFlow running faster on the latest GPUs and scales well across GPUs to 

train the models in hours instead of days. 
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There are several research limitations that need to be improved and future goals as the 

following: 

1. We prevent overfitting but the testing data is not precisely to the actual return of 

carry trade at all, so it might need more data for the learning process. Try to make 

all of the moving windows finish and get more information of the entire 

experiment. 

2. It takes a lot of time for learning, so we can improve the hardware or adopt 

multiple GPUs with different machine to reduce the learning time and finish the 

moving windows. 
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