
DOI:10.6814/THE.NCCU.MIS.011.2018.A05

國立政治大學資訊管理學研究所

碩士學位論文

優化資料清理與機器學習的機制

The refined mechanism for data cleaning and machine

learning

指導教授:蔡瑞煌 博士

研究生:余艾玨 撰

中華民國一Ｏ七年七月

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

1

謝辭

碩士班的這兩年裡，很感謝得到許多老師和同學的指導與幫助，讓我的畢業論文

可以順利的完成，過程中雖然艱辛，但是能夠有如此大的收穫，真的是非常值得。

首先要感謝我的論文指導教授蔡瑞煌老師，他不斷地協助我，引導我來完成論文，

從應用的領域到實驗設計，除了教我專業知識，還常常花時間和我討論如何改善演算

法，讓程式可以順利的執行，因為他辛苦和耐心的指導，我才能順利的完成實驗和論

文。也很感謝我的家人，爸爸和媽媽在我成長的過程中，不斷地在背後支持我、鼓勵

我，有你們的支持，我才可以專心讀完碩士學位和完成論文。

畢業論文展現了我在碩士班兩年裡的學習過程和成果，如何將所學加以應用並解

決問題是最重要的部分，遇到困難的時候非常感謝有老師的指導、家人的支持、還有

同學們的協助，論文雖然還有需要改進的地方，但也是我努力後的成果。

余艾玨 敬筆

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

2

優化資料清理與機器學習的機制

摘要

 近年來人工智慧在機器學習的應用扮演重要的角色，而相較於大數據分析的統計

方法，ANN 成為最有用方法中的其中一個，為了處理動態環境中的時間序列資料和

離群值，Wu (2017)提出一個資料清理和機器學習的機制，實驗結果顯示提出的機制

在資料清理和機器學習方面是很有效的，Wu (2017)已經透過單一隱藏層倒傳遞神經

網路實作 RLEM，這個研究將使用兩個方法優化此機制，一個是在 RLEM 的損失函

數(loss function)加上正規化項來避免過度擬合(overfitting)的問題，另一個是修改

RLEM 並透過新版的 Tensorflow 實作來達成目標。

關鍵字: 人工神經網路、正規化、單一隱藏層倒傳遞神經網路、RLEM

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

3

The refined mechanism for data cleaning and

machine learning

Abstract

In recent years, artificial intelligence (AI) has become an important part in the

application of machine learning, and the artificial neural networks (ANN) serves as one of

the most useful methods compared to statistical methods for the purpose of big data

analytics. To cope with the time series data that may have concept-drifting phenomenon

and outliers, Wu (2017) had derived a mechanism for effective data cleaning and machine

learning. The experiment results had shown that the proposed mechanism is promising in

effective data cleaning and machine learning. Wu (2017) had implemented the resistant

learning with envelope module (RLEM) via the adaptive single-hidden layer feed-forward

neural networks (SLFN). This research will add the regularization term to loss function to

prevent overfitting and will refine RLEM to improve the accuracy of the predicted return of

carry trade. The refined mechanism will be implemented via the updated version of

Tensorflow.

Keyword: artificial neural networks, regularization, single-hidden layer feed-forward neural

networks, resistant learning with envelope module

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

4

Index

Abstract………………………………………………………………………………..3

Figure Index…………………………………………….……………………………..5

Table Index…………………………………………….………………………………6

1 Introduction……………………………………….…………………………....…7

1.1 Background…………………………………………………………………7

1.2 Motivation…………………………………………………………………..8

1.3 Objective……………………………………………………………………9

2 Literature Review………………………………………………………………..10

2.1 Regularization……………………………………………………………..10

2.2 Gradient descent optimization algorithms………………………………...11

Backpropagation…….……………………………………………………..12

2.3 GPU and Tensorflow…………………………………………………...….14

2.4 The resistant learning with envelope module……………………………...15

2.5 The mechanism for data cleaning and machine learning…………………..19

3 Experiment Design……………………………………………………………….24

3.1 Data description…………………………………………………………....24

3.2 Experiment design………………………………………………………....25

4 Experiment results…………………………………………………………….....29

5 Conclusion and future work.…………………………………………………….33

Reference……………………………………………………………………………..35

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

5

Figure Index

Figure 1: Matrix Multiplication………………………………………………………14

Figure 2: The Network Structure of The Single-hidden Layer Feed-forward Neural

Networks (SLFN) with multiple output nodes ………………………………………17

Figure 3: The Activation Value of Hidden Node…………………………………….17

Figure 4: The Activation Value of Output Node……………………………………..17

Figure 5: The proposed arrangement of moving window………………………….....25

Figure 6: The flowchart of proposed algorithm……………………………………....26

Figure 7: The weight tuning mechanism (BP)……………………………………….28

Figure 8: The envelope module of the Step 1.1 to identify the outliers (M=1)……....30

Figure 9: Actual and predicted return of carry trade (M=1)………………………….30

Figure 10: The envelope module of the Step 1.1 to identify the outliers (M=2)……..31

Figure 11: Actual and predicted return of carry trade (M=2)…...……………………31

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

6

Table Index

Table 1: The resistant learning with envelope module……….……………………...18

Table 2: The proposed ANN mechanism of Wu (2017)…...…...……………………21

Table 3: The definition of all variables in the input vector……………………….….23

Table 4: The computer infrastructure used in the experiment……..………...…….…24

Table5: The refined resistant learning with envelope module………………………..27

Table 6: Total number of adopted hidden nodes and training time…………………..29

Table 7: Deviation between actual and predicted return of carry trade………..……..32

Table 8: Accuracy of movement prediction…………………………………………..32

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

7

Chapter 1 Introduction

1.1 Background

In recent years, artificial intelligence (AI) has become an important part in the

application of machine learning that interacts with or imitates humans in a convincingly

intelligent way. Instead of building a traditional program comprised of logical statements

and decision trees, a neural network is built specifically for training and learning. The

network is based on a parallel network of neurons, each set up for a specific purpose

(Android Authority, 2018). It is often used in the field of healthcare, business, education,

finance, law and manufacturing.

ANN serves as one of the most useful methods compared to traditional statistical

methods for virtual classification especially in financial predictions. It is a highly accurate

model and yet limited by many assumptions. The process of ANN is also very hard to be

realized that makes it difficult to be applied despite the advantages. It will be more

convenient for the users to interpret the results if the process can be more easily understood

(Monthly Archives, 2016).

Additionally, ANN offers a number of advantages, including requiring less formal

statistical training, ability to implicitly detect complex nonlinear relationships between

dependent and independent variables, ability to detect all possible interactions between

predictor variables, and the availability of multiple training algorithms. Disadvantages

include its black box nature, greater computational burden, proneness to overfitting, and the

empirical nature of model development (Tu, 1886). Among these advantages, overfitting is

a problem that many people encountered. Training a network may be done in many

different ways that all involve a brute force iterative approach. This approach is to

maximize output accuracy and train the optimum paths through the networks (Android

Authority, 2018).

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

8

Wu (2017) derive a mechanism to cope with the time series data that may have

concept-drifting phenomenon and outliers. The proposed mechanism is implemented via

TensorFlow and GPU for effective data cleaning and machine learning. The ANN

mechanism corresponds to the U.K. against the U.S. from January 1990 to December 2016

(324 months) with the data set of nominal exchange rates, LIBOR, CPI, money supply, and

GDP for the U.S., and any of the other counterparty countries. Due to the random initial

weights, the total amount of adopted hidden nodes and training time needed depending on

each value (= 0.75, 0.5, 0.25, 0.1). There are two stages in the experiment. In the first

stage, the resistant learning algorithm is used with the envelope module to learn the training

block and then remove the detected outlier candidates. In the second stage, the SLFN

obtained in stage one is applied to each data in the testing block. As a result, the total

number of adopted hidden nodes and training time spent increase as the value decreases.

The smaller value is, the greater effectiveness will be. In addition, the movement of

excess returns of carry trade can be well predicted with this mechanism.

1.2 Motivation

As ANN becomes more and more popular, a problem in machine learning rises as how

to make an algorithm perform well not only on the training data but also on new inputs.

Many strategies are designed to reduce the test error, probably at the expense of increased

training error (Goodfellow et al., 2016). Rather than a black box problem in the deep

learning process, it is more important to know what drives the performance and get good

results in a more systematic way. Therefore, developing more effective strategies has

become one of the significant goals in this field.

Compared to CPU, graphic processing unit (GPU) has a massively parallel

architecture consisting of thousands of smaller and more efficient cores designed for

handling multiple tasks simultaneously (NVIDIA, 2018). NVIDIA has released lots of

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

9

libraries that implement common computational primitives. These primitives are highly

optimized for GPUs needed in deep learning. As Tensorflow is able to compute all the

gradients, it is more convenient that we do not have to write backward pass. The other

advantage about Tensorflow is that we can switch all this computation between CPU and

GPU (Li et al., 2017).

Our goal is to refine the learning process of a model and get higher accuracy rate.

Considering that GPU is more efficient and yet more expensive, we decided to improve

mechanism with different aspects. Among the ANN algorithms, the most common method

is backpropagation, which will update the variables until it achieves the training goal. Even

though optimization has been proposed and shown its advantages on some models, we are

not sure it will suit our needs in training process. Therefore, we adopt several strategies

such as regularization to resolve the situation of overfitting while training complicated

ANN models, refined backpropagation and refined cramming mechanism to improve the

RLEM that mentioned above.

1.3 Objective

To achieve the goal, this research refines the mechanism for data cleaning and

machine learning in the concept drifting environment (Wu, 2017) to increase the accurate

of carry trade prediction with different strategies. In this research, we will add the

regularization term to the loss function to prevent overfittting and will refine the

backpropagation and cramming mechanism. As the mechanism contains a great number of

matrix multiplications, the refined mechanism will be implemented via the updated version

of Tensorflow.

This is an experimental research that combines AI field and financial field using

refined mechanism to improve the results of predicting the return of carry trade. I am

looking forward to contributing both AI and financial fields in the future.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

10

Chapter 2 Literature Review

 This chapter is a brief introduction containing five parts of literature review. The first

section is the regularization that avoids the problem of overfitting. The second section is

about how to combine backpropagation and gradient descent to adjust the parameters in the

neural network. The third section is GPU and the Tensorflow, which is one of the major

deep learning frameworks. The fourth section is the mechanism of coping with outliers in

the concept drifting environment. And the last section is the mechanism for data cleaning

and machine learning.

2.1 Regularization

 Overfitting is a common issue in machine learning, which occurs when we build a

model that not only captures the signal but also the noise in a dataset. In order to avoid

overfitting, we can create models that generalize and perform well on different data points

to correct overfitting with regularization. It is the concept of adding an additional term to

the loss function. In addition to the data loss, it should fit the training data. Regularization

is just anything that you do to model, rather than explicitly trying to fit the training data,

that sort of penalizes somehow the complexity of the model (Li et al., 2017).

 “Regularization is any modification we make to a learning algorithm that is intended

to reduce its generalization error but not training error” (Goodfellow et al., 2016, page 221).

Regularization is a very important technique in machine learning to prevent overfitting.

There are lots of regularization strategies. For instance, extra constraints are put on a

machine learning model, such as adding restrictions on the parameter values. Extra terms

can also be put in the objective function that may be thought of as corresponding to a soft

constraint on the parameter values. The performance can be improved by these extra

constraints and penalties on the test set if we choose correctly. Regularization of an

estimator works by trading increased bias for reduced variance. We can realize that an

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

11

effective regularizer makes a profitable trade, reducing variance significantly while the bias

is not overly increasing (Goodfellow et al, 2016).

 One of the most common regularization methods is L2 regularization (also called

Ridge), that only the weights are regularized n different layers differently strong instead of

biases. The L2 regularization is the sum of the square of the weights and its computational

efficient due to having analytical solutions and it forced the parameters to be relatively

small, the bigger the penalization, the smaller the coefficients will be (Enhance Data

Science, 2017). As follows:

L2 regularization adds a penalty equal to the sum of the squared value of the coefficients:

R(w) = ∑ |
 | (1)

2.2 Gradient descent optimization algorithms

 In order to minimize or maximize a loss function, we need optimization algorithm that

is simply a mathematical function dependent on the Model’s internal learnable parameters

which are used in computing the target values from the set of predictors used in the model.

The weight and bias values in the neural networks are internal learnable parameters which

are used in computing the output values and are learned and updated in the direction of

optimal solution such as minimize the loss function and also play an important part in the

training process of the neural network model (Towards Data Science, 2017).

 There are two major types of optimization algorithm including first order optimization

algorithms and second order optimization algorithms. The former algorithms are used to

minimize or maximize a loss function using its gradient values with respect to the

parameters like gradient descent. The first order derivative tells us whether the function is

increasing or decreasing at a particular point and gives us a line which is tangential to a

point on its error surface. The latter is used to minimize or maximize the loss function and

tells us whether the first derivative is increasing or decreasing which hints at the function’s

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

12

curvature. It provides us with a quadratic surface which touches the curvature of the error

surface. So we can choose different optimization strategy according to these characteristics,

the first order optimization techniques are easy to compute and less time consuming

especially on large data sets. Unless the second order derivative is known, the second order

techniques are always slower and costly to compute in terms of both memory and time

(Towards Data Science, 2017).

Backpropagation

To optimize the neural network, backpropagation is a technique to calculate derivatives

quickly. It is a way that we can apply an activation function to those sums of products after

we propagate forward calculating the dot product of Inputs signals and their corresponding

weights. And then we use gradient descent to propagate backwards in the network carrying

error terms and update weight values (Towards Data Science, 2017). The backpropagation

learning algorithm can be shown as:

The learning is an optimization problem that minimizes ().

Step 0.1: Generate and store the initial values of Z.

Step 0.2: Input all training data {(X1, d1), …, (XN, dN)}, with dc being the desired response

vector corresponding to the c
th

 stimulus vector Xc.

Step 1: Execute the forward operation of SLFN regarding all training data: calculate

 (
) i  c and store them, then calculate (

) l  c and

store them.

Step 2: Based upon (
) and dcl values, calculate the () value and store it.

Step 3: If () is less than the predetermined value (says, 1), then STOP.

Step 4: Based upon values of (
) i  c and (

) l  c, execute the

following backward operations:

Step 4.1: calculate the values of
 ()

 ∑ ((

))

  l

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

13

and store them.

Step 4.2: calculate the values of

 ()

 ∑ ((

)) ()

  l  i and store them.

Step 4.3: calculate the values of

 ()

 ∑ ∑ ((

))(((
)))

  i and store

them.

Step 4.4: calculate the values of

 ()

 ∑ ∑ ((

))(((
)))

  i

 j and store them.

We are given some function () where is a vector of inputs and we are

computing the gradient of at (i.e. ()). The backward-flowing gradient can be

interpreted on an intuitive level, for instance, the most common used in neural networks

that back propagation performs during the backward pass are add gate and multiply gate.

The add gate takes the gradient on its output and distributes it equally to all of its inputs,

regardless of what their values were during the forward pass. While the multiply gate takes

the input activations, swaps them and multiplies by its gradient (Li et al., 2017).

Many concepts extend in a straight-forward manner to matrix and vector operations

which are the matrix-matrix multiplication multiply operations. In addition, the gradient

with respect to a variable should have the same shape as the variable (Li et al., 2017). The

matrix multiplication on the left composed of a bunch of rows matrix multiplies that on the

right by another matrix composed of a bunch of columns matrix. This produces a final

matrix where each element in the output matrix is a dot product between one of the rows

and one of the columns of the two input matrices. These dot products are all independent, it

can be split up completely and have each of those different elements of the output matrix

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

14

all being computed in parallel. Besides, they all sort of are running the same computation

which is taking a dot product of these two vectors (Li et al., 2017).

Figure 1: Matrix Multiplication

(Source: Li et al., 2017)

2.3 GPU and Tensorflow

 The graphic card also called Graphics Processing Unit (GPU) is really developed.

Most common talking about GPUs in deep learning are NVIDIA GPUs. Both GPUs and

CPUs are kind of a general purpose computing machine where they can execute programs

and do sort of arbitrary instructions, but they're qualitatively pretty different. The difference

between a GPU and a CPU is that consumer GPUs have thousands of cores, each of those

cores runs at a much slower clock speed. Instead of operating independently, the GPU

cores have to work together and sort of paralyze one task across many cores rather than

each core totally doing its own thing. While these days desktop CPU has four or six even

up to 10 cores. This means hardware can physically run, like maybe 8 or up to 20 threads

concurrently. So the CPU can maybe do 20 things in parallel at once. It is not only a

gigantic number, but those threads for a CPU are pretty powerful. Every CPU can actually

do a lot of things fast and independently. Another thing to show between CPUs and GPUs

is memory. CPUs have some cache, but that's relatively small and the majority of the

memory for CPU is pulling from system memory. GPUs also have their own caching

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

15

system similar to the caching hierarchy in a CPU where there are sort of multiple

hierarchies of caching between the 12 gigabytes of GPU memory and the actual GPU cores.

The GPUs typically have their own relatively large block of memory within the card itself.

To summarize, GPUs are specialized for highly paralyzable algorithms. So the prototypical

algorithm of something that works really well and is like perfectly suited to a GPU is

matrix multiplication. The CPUs are good for general purpose processing and they can do a

lot of different things (Li et al., 2017).

 When the data are read from different places in the two input matrices, a GPU can

have all of this elements of the output matrix all computed in parallel and that could make

this thing compute very fast. This is kind of the prototypical type of problem that a CPU

might have to go in and step through sequentially and compute

Each of these elements comes one by one. CPUs these days have multiple cores, so

they can do vectorized instructions as well. Nevertheless, GPUs tend to have much better

throughput for massively parallel problems especially when these matrices get really big

(Li et al., 2017).

Tensorflow is probably a main deep learning framework from Google as a better

choice for a lot of research type problems these days. In Tensorflow, we can divide

computation into two major stages. The first stage is to define computational graph and

then run the graph over and over again and actually feed data into the graph to perform

whatever computation wanted to perform. So this is the common pattern while using

Tensorflow (Li et al., 2017).

2.4 The Resistant learning with envelope module (RLEM)

Tsaih and Cheng (2009) present a resistant learning procedure single-hidden layer

feed-forward neural network (SLFN) to detect outliers. The SLFN fitting function is

defined as:

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

16

 () (
 ∑

), (2)

 ()
 ∑

 (
 ∑

)

 (3)

where ()

 , is the number of explanatory variables () ;

() ; is the adaptive number of adopted hidden nodes;
 is the bias value

of the hidden node; the superscript throughout the paper refers to quantities related

to the hidden layer;
 is the weight between the explanatory variable and the

hidden node;
 is the bias value of the output node; the superscript o throughout the

paper refers to quantities related to the output layer; and
 is the weight between the

hidden node and the output node. In their study, a character in bold represents a column

vector, a matrix, or a set, and the superscript T indicates the transposition.

 Through this SLFN tool, the coming information is first transformed into

()

, and the corresponding value of f is generated by a rather than . Namely,

given the observation, all the corresponding values of hidden nodes are first calculated with

 (
 ∑

) for all I, and the corresponding value () is then

calculated as () ()
 ∑

 .

 In the learning stage, a set of N training cases {(), () . . . , ()}

is given. Regarding all training cases, the learning goal is to seek a where, for all

 () and (),

| - (
)|   .

 ()

∑ ∑ ((

))

 (4)

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

17

Figure 2: The Network Structure of The Single-hidden Layer Feed-forward Neural

Networks (SLFN) with multiple output nodes

Figure 3: The Activation Value of Hidden Node

Figure 4: The Activation Value of Output Node

 Tsaih and Cheng (2009) proposed a resistant learning mechanism (RL) with the SLFN

and a tiny pre-specified ε value to deduce a function form. The RL takes the training

examples one by one. The RL implements both robustness analysis and deletion diagnostics

to exclude potential outliers at the early stage, thus prevent SLFN from learning them.

Hereafter, the outlier is the observations far away from the fitting function deduced from a

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

18

subset of the given observations. The idea of robustness analysis contains features for

deriving an (initial) subset of m+1 reference observations to fit the linear regression model,

ordering the residuals of all N observations at each stage and then augmenting the reference

subset gradually, based upon the smallest trimmed sum of the squared residuals principle.

The deletion diagnostics employs with the diagnostic quantity being the number of pruned

hidden nodes when one observation is excluded from the reference pool. The RL also

dynamically adapts the number of adopted hidden nodes and the associated weights of

SLFN during the training process.

To sum up, the RL implements the weight-tuning mechanism, the recruiting

mechanism, and the reasoning mechanism to allow the SLFN to evolve dynamically during

the learning process and to explore an acceptable nonlinear relationship between

explanatory variables and the responses in the presence of outliers.

Huang et al. revised RL into the RLEM to speed up the process of identifying the

potential outlier shown in Table 1. The envelope width of the RLEM is . The value

0.05 proposed in RLEM is larger than a tiny value (10
-6

) proposed in RL. The parameter

k in Step 2 refers to the percentage of potential outlier, which means at least N(1-k)

reference observations will be wrapped into the envelope. For instance, assume we suspect

that there are approximately at least 95 percent non-outliers and at most 5 percent outliers,

then we can set k as 5% and the RLEM will result in a fitting function with an envelope

that contains 95 percent reference observations into consideration while building the SLFN

estimate. A SLFN estimate is acceptable at the stage if all of the smallest n squared

residuals are less than the pre-specified ε.

Table 1: The resistant learning with envelope module (adapted from Huang et al.,

2014). N is the total amount of training data, m is the amount of input nodes, k is the

percentage of potential outlier, and the envelope width is 2ε.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

19

Step 1: Use the first m+1 reference observations in the training data set to set up an

acceptable SLFN estimate with one hidden node. Set n = m+2.

Step 2: If n > N*(1-k), STOP.

Step 3.1: Use the obtained SLFN to calculate the squared residuals regarding all N

training data.

Step 3.2: Present the n reference observations that are the ones with the smallest n

squared residuals among the current squared residuals of all N training

data.

Step 4: If all of the smallest n squared residuals are less than ε (the envelope width),

then go to Step 7; otherwise, there is one and only one squared residual that

is larger than ε.

Step 5: Set ̃ .

Step 6: Apply the gradient descent mechanism to adjust weights w of SLFN. Use the

obtained SLFN to calculate the squared residuals regarding all training data.

Then, either one of the following two cases occurs:

If the envelope of obtained SLFN does contain at least n observations, then

go to Step 7.

If the envelope of obtained SLFN does not contain at least n observations,

then set ̃ and apply the augmenting mechanism to add extra hidden

nodes to obtain an acceptable SLFN estimate.

Step 7: Implement the pruning mechanism to delete all of the potentially irrelevant

hidden nodes; n + 1  n; go to Step 2.

2.5 The mechanism for data cleaning and machine learning

 Carry trade is a trading strategy which borrows at a low interest rate and invests in an

asset that provides a higher rate of return. It is based on borrowing in a low interest rate

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

20

currency and converting the borrowed amount into another currency, with these proceeds

either placed on deposit in the second currency if it offers a higher rate of interest, or

deployed into assets – such as stocks, commodities, bonds, or real estate that are

denominated in the second currency (Investopedia, 2018).

 The behavior of exchange rates and the professional is the only unknown in a carry

trade has mostly settled into a belief that fundamental explanations of the exchange rate

have no predictive value in the short-run. Jordà et al. (2012) knit together basic no-arbitrage

conditions in international economics to derive a predictive frame-work that nests

commonly used carry trade strategies. According to Jordà et al. (2012) the ex-post nominal

excess returns to a carry trade are:

 (
) (5)

Where is the log nominal exchange rate in U.S. dollars per foreign currency, and

and
 are nominal interest rates home (U.S.) and abroad for a riskless deposit with a

one-period maturity. Given that the interest rates in are observed at time t, the major task of

grasping a positive carry trade return hinges on developing a good forecasting model for

 . It is well known that economic fundamentals do not have good predictive power for

the exchange rate, especially in the short-term. Nevertheless, some evidence shows that

these macroeconomic fundamental might be useful in generating positive return from carry

trade. Therefore, the mechanism of (Wu, 2017) proposed is used to forecast the return of

carry trade one year later and predicted the exchange rate using macro fundamentals. i.e.,

they forecast h period ahead exchange rates as:

 (
) (

) (
) (

) (6)

where is log money supply, is log GDP, is nominal interest rate, and is the

expected next period rate of inflation from the home country. Mark of * represents the

values from foreign country. To achieve the estimation purpose, researchers may use the

long-term government bond rate as a proxy for the expected inflation rate. The investor can

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

21

make use of eq. (5) to determine the trade orientation with the prediction of the exchange

rate (Wu, 2017).

 For data cleaning and machine learning, this study adapts the works of Tsaih and

Cheng (2009) and Huang et al. (2016) to present a mechanism that implements the moving

window and RLEM. M is the index of the current window, N is the sample size of the

training block, B is the sample size of the testing block, s is the standard deviation of

training data in the training block, and represents the maximal deviation between actual

and predicted outputs (Wu, 2017). The proposed mechanism is shown as Table 2:

Table 2: The proposed ANN mechanism of Wu (2017)

Step 0: Set M as 1.

Step 1.1: Apply the RLEM stated in Table 1 (with envelope width = 2) to the N

training examples {(x
(M-1)B+1

, y
(M-1)B+1+h

), (x
(M-1)B+2

, y
(M-1)B+2+h

), …,

(x
(M-1)B+N

, y
(M-1)B+N+h

)} to filter out Nk potential outliers and obtain an

acceptable SLFN.

Step 1.2: Remove the outlier candidates, and then use the SLFN obtained in Step

1.1 and the RLEM stated in Table 1 (with envelope width = 2) again to

learn the remained N(1-k) training examples. (start from n = 1)

Step 2: Apply the SLFN obtained in Step 1.2 to the B testing examples {(x
(M-1)B+N+1

,

y
(M-1)B+N+1+h

), (x
(M-1)B+N+2

, y
(M-1)B+N+2+h

), …, (x
MB+N

, y
MB+N+h

)}.

Step 3: For more data, M  M+1 and GOTO Step 1.1; otherwise, STOP.

 In Step 1.1, we apply the RLEM stated in Table 1 (with envelope width = 2) to N

training examples in the current training block to result in an acceptable SLFN whose

envelope contains at least N(1-k) examples.  is the standard deviation of training examples

in the current training block. Furthermore, we also obtain the order information and

deviance information regarding all training examples in the current training block. Here,

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

22

the “order information” is the order of the data sequence learning by the SLFN and the

“deviance information” is the distance between actual and predicted outputs of SLFN. The

RLEM guarantees that the N(1-k) data in the training block are wrapped into the envelope.

The last Nk data are the potential outliers, which may not be wrapped into the envelope.

Namely, Step 1.1 adopts both the deviance information and the order information to

identify Nk examples in the current training block that will be excluded in Step 1.2. In Step

1.2, remove the outlier candidates, and then use the SLFN obtained in Step 1.1 and the

RLEM stated in Table 1 (with envelope width = 2) again to learn the remained N(1-k)

training examples.  represents the maximal deviation between actual and predicted outputs

of SLFN regarding all N(1-k) training examples.

In Step 2, we apply the obtained SLFN to the testing examples. Step 3 examines the

stopping criteria. If there are more examples, this mechanism slides the window further and

goes back to Step 1.1. If there are no more examples, the mechanism stops.

According to the statements of (Huang et al., 2014), Step 1.1 can act as an effective

outlier-filter. According to the statements of (Tsaih and Cheng, 2009), Step 1.2 can result in

an effective learning of the patterns embedded in the data resulted from Step 1.1 (Wu,

2017).

Based on the aforementioned theories of carry trade, the variables of input datasets for

a month interval (end-of-month) include (1) nominal exchange rates, (2) LIBOR

(one-month London interbank offered rates), (3) consumer price indices (CPI), (4) money

supplies, and (5) GDPs, as shown in Table 3 (Wu, 2017).

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

23

 Table 3: The definition of all variables in the input vector (Wu, 2017)

 (

) at time epoch

Variable Definition

 nominal exchange rates between U.K. and U.S.

 12-month LIBOR for the U.S.

 CPI for the U.S.

 money supplies for the U.S.

 GDPs for the U.S.

 12-month LIBOR for the U.K.

 CPI for the U.K.

 money supplies for the U.K.

 GDPs for the U.K.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

24

Chapter 3 Experiment Design

This research refines the mechanism for data cleaning and machine learning in the

concept drifting environment based on the one proposed mechanism (Wu, 2017) to predict

the return of carry trade. The experiment is designed to optimize the efficiency of resistant

learning mechanism and increase the accuracy. This chapter is a brief introduction

containing two parts of experiment design. The first section is the daata description

according to the U.S. and U.K. data from January 1990 to December 2016. The second

section is about the experiment design, and the experimental environment is shown as

Table 4:

 Table 4: The computer infrastructure used in the experiment

OS Ubuntu 16.04 LTS

GPU ASUS ROG STRIX GeForce® GTX 1080-O8G

CPU Intel® Core
TM

 i7-6900K

RAM DDR4-2133 64G

Language Python 3.5

API Tensorflow-gpu r1.3

CUDA CUDA 8.0.27

3.1 Data description

In this research, the variables are shown in Table 3 and dataset is from (Wu, 2017).

We use the data (102 months) of the U.K. against the U.S. observed at a monthly frequency.

In this experiment, we use two moving windows with the training block and the testing

instance to illustrate the experiment result. According to the training and testing block in

Table3, when M = 1, the first window training block consists of 1
st
 to 100

th
 instances and

the testing block is the 101
st
 instance. When M = 2, the training block consists of 2

nd
 to

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

25

101
st
 instances and the testing block is the 102

nd
 instance. The arrangement of moving

window is shown as Figure 5.

Figure 5: The proposed arrangement of moving window.

3.2 Experiment design

The refined mechanism includes two stages, the first stage will filter out the 5%

potential outliers and the second stage will learn the remained data to predict the outputs of

the carry trade. In the learning stage, a set of N training cases {(), () . . . ,

()} is given. Regarding all training cases, the learning goal is to seek a where,

for all () and () ,

| - (
)|   . The training optimization algorithm

consists of two terms: the first one called loss term, which measures how well the model

fits the data. And the second term we added to penalize the model complexity using the L2

regularization term, which is the sum of the squared weights. (also called the

regularization rate) is a hyper-parameter regularization strength to represent a scalar value

that controls how weights are balanced.

 ()

∑ ∑ ((

))

 + ∑

 (7)

The learning becomes an optimization problem:

 () (8)

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

26

 The flowchart of refined ANN mechanism is shown in Figure 6 which is modified

based on the mechanism for data cleaning and machine learning in the concept drifting

environment (Wu, 2017). There are two portions of the mechanism we refined including

cramming mechanism and weight tuning mechanism, furthermore, the refined mechanism

will be implemented via the updated version of Tensorflow. The weight tuning mechanism

is shown in Figure 7 to adjust weights and minimize the loss function where and

are given tiny numbers, e
c
 - (

).

Figure 6: The flowchart of proposed algorithm

Table 5 shows the refined resistant learning with envelope module (Adapted from

Huang et al., 2014). The ̅ in cramming mechanism is calculated in step 6(c) instead of an

assigned number. N is the total amount of training data, m is the amount of input nodes, k is

the percentage of potential outlier, and the envelope width is 2ε. (code reference:

https://github.com/rlem). Figure 7 shows the refined flowchart of backpropagation.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

27

Table5: The refined resistant learning with envelope module (RLEM)

for Stage 1 and Stage 2

Stage 1

Step 1: Use the first +1 reference observations in the training data set

to set up an acceptable SLFN estimate with one hidden node. Set

 .

Stage 2 Step 1:

Stage 1

and

Stage 2

Step 2: If (), STOP.

Step 3.1: Use the obtained SLFN to calculate the squared residuals

regarding all training data.

Step 3.2: Present the reference observations () that are the ones

with the smallest squared residuals among the current

squared residuals of all training data. Let I() be the set of

indices of these observations.

Step 4: If ()    c  I(), go to Step 7; otherwise, there is one

and only one squared residual that is larger than 

. Assume 

 I(), () >   c  I(), and ()    c 

I()-{}  c  I().

Step 5: Set ̃ .

Step 6: Apply the gradient descent mechanism to adjust weights of

SLFN until either one of the following two cases occurs:

(1) If the envelope of obtained SLFN does contain at least

observations, then go to Step 7.

(2) If the envelope of obtained SLFN does not contain at least

observations, then apply the following augmenting mechanism to

add two extra hidden nodes to obtain an acceptable SLFN estimate:

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

28

(a) Set ̃ and find an m-vector  of length one such that

 ()  0  c  I()-{}.

(b) For every c  I()-{}, compute  () Let ̅ be the

smallest index c yielding  ()  |
 ()|

(c) Set ̅ = |

 (√
 ()

 ()

 ()(

 ()
)

)

 (̅ )
|, where  is a given small

number and  
 ()

()| 
 ∑



|
.

Step 6(2)(d): Let p+2  p and add new hidden nodes p-1 and p to the

existing SLFN with
 = ζ- ̅ ,

 = ̅,

= ζ+ ̅ ,
 = - ̅, and

 =
 =

 
 ∑



 ()
.

Step 7: Implement the pruning mechanism to delete all of the potentially

irrelevant hidden nodes; ; go to Step 2.

Figure 7: The weight tuning mechanism (BP)

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

29

Chapter 4 Experiment Result

During the experiment, the training block are {(x
1
, y

13
),…,(x

100
, y

112
)}, {(x

2
,

y
14

),…,(x
101

, y
113

) and the testing instances are {(x
101

, y
113

) and (x
102

, y
114

)}. In the Step

1.1 of Table 2, we get the half envelope width σ, the deviation of 100 training data in the

training block is approximately 1.5409 in the first moving window. And in the Step 1.2 of

Table 2, we set the half envelope width ε as 0.75. Table 6 indicates the total number of

adopted hidden nodes and training time of whole learning process. We get more adopted

hidden nodes and it takes more time because of complicated backpropagation.

Table 6: Total number of adopted hidden nodes and training time

 Step 1.1 Step 1.2 Total

The 1
st

window

(σ =1.5409,

ε = 0.75)

Total number

of adopted

hidden nodes

37 89 89

Time spent

(hh:mm:ss)
03:06:11 12:29:17 15:35:28

The 2
nd

window

(σ =1.5214,

ε = 0.75)

Total number

of adopted

hidden nodes

41 92 92

Time spent

(hh:mm:ss)
03:13:07 12:35:29 15:48:36

Figure 8 shows the envelope module of the step 1.1, and No. 31, 32, 34, 35 and 36

instances are identified as potential outliers. The remaining inliers in are all wrapped in the

envelope width in both of two steps. Figure 9 shows the actual and predicted return of carry

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

30

trade in step 1.2 with the testing instances 1.3918. We reduce the error of the prediction of

carry trade but we get more adopted hidden nodes.

Figure 8 and Figure 9 show that besides outliers in red-cross notes, inliers in blue dashed

line presents the actual return of carry trade. The envelope module in gray dotted line

wrapped the inlier instances in the envelope width, the orange solid line represents the

predicted return of carry trade.

Figure 8: The envelope module of the Step 1.1 to identify the outliers with σ = 1.5409

Figure 9: Actual and predicted return of carry trade with ε = 0.75

Figure 10 shows the envelope module of the step 1.1, and No. 30, 31, 33, 34 and 35

instances are identified as potential outliers. The remaining inliers are all wrapped in the

envelope width in both of two steps. Figure 11 shows the actual and predicted return of

carry trade in step 1.2 with the testing instances 1.5941. Figure 10 and Figure 11 show that

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

31

besides outliers in red-cross notes, inliers in blue dashed line presents the actual return of

carry trade. The envelope module in gray dotted line wrapped the inlier instances in the

envelope, the orange solid line represents the predicted return of carry trade.

Figure 10: The envelope module of the Step 1.1 to identify the outliers with σ = 1.5214

Figure 11: Actual and predicted return of carry trade with ε = 0.75

Table 7 shows the deviation between actual and predicted return of carry trade in

different σ for two moving windows. The mean and variance of inlier training instances are

both smaller than σ = 1.5409 (Step 1.1) and ε = 0.75 (Step 1.2) for the first moving window.

In the second moving window, the mean and variance of inlier training instances are also

both smaller than σ = 1.5214 (Step 1.1) and ε = 0.75 (Step 1.2).

In Table 8, it shows the accuracy of movement prediction for the Step 1.1 and Step 1.2.

Step 1.1 can recognize positive movement but can’t recognize negative movement of the

training instances. After Step 1.2, both of positive and negative movement can be

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

32

recognized correctly for the two moving windows. The smaller variance of deviation

indicates that we had overcome overfitting and reduced deviation.

Table 7: Deviation between actual and predicted return of carry trade

Moving

window
RLEM

Step 1.1 Step 1.2

training

instance

(inlier:95)

training

instance

(all:100)

1 testing

instance

training

instance

(inlier:95)

1 testing

instance

1

Mean of

Deviation
0.4371 0.5107 0.5493 0.2275 0.2446

Variance of

Deviation
0.0784 0.1807 / 0.0478 /

2

Mean of

Deviation
0.5233 0.4477 0.5492 0.2395 0.5380

Variance of

Deviation
0.1855 0.0755 / 0.0440 /

Table 8 shows accuracy of movement prediction for the Step 1.1 and Step 1.2

M
Actual

movement

Step 1.1 Step 1.2

training

instance

(inlier:95)

training

instance

(all:100)

1 testing

instance

training

instance

(inlier:95)

1 testing

instance

+ - + - + - + - + -

1
+ 93/93 N/A 98/98 N/A 1/1 N/A 93/93 N/A 1/1 N/A

- 2/2 N/A 2/2 N/A N/A N/A N/A 2/2 N/A N/A

2
+ 93/93 N/A 98/98 N/A 1/1 N/A 93/93 N/A 1/1 N/A

- 2/2 N/A 2/2 N/A N/A N/A N/A 2/2 N/A N/A

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

33

Chapter 5 Conclusion and Future Work

This research refined a mechanism for data cleaning and machine learning to cope

with outliers and predict the return of carry trade. The refined mechanism is implemented

via the Tensowflow and GPU. We add the regularization to the loss function to prevent the

problem of overfitting, and refine the cramming mechanism and weight tuning mechanism

of RLEM to improve the accuracy of the predicted return of carry trade.

After the experiment, we find out that the regularization term reduce the overfitting,

we not only get less error in the training data but also less error in testing data. The testing

result is getting closer to the actual predicted return of carry trade but it takes more time in

learning with the refined backpropagation of RLEM.

The experiment result indicates that the refined mechanism can predict movement of

the return of carry trade better. We find out some valuable issues in the experiment:

1. Issue on technology field: Because of the less knowledge and new software

library of machine learning, the version of Tensorflow is still being updated and

improved, we have to try constantly and get more information about it. To

improve the training models, we must need to choose a suitable way via knowing

the reason of the error between the desired and actual return of carry trade.

2. Issue on application field: Although we had refined the ANN mechanism, it still

needs to concentrate on finding other ways to achieve real-world solution such as

getting more feature as input which can affect the consquence of output results

especially for the finance field. It is also significant for us to assign parameters

and moving windows properly of the experiment model.

3. Issue on hardware: Besides using the Tensorflow, it is also important to use

TensorFlow running faster on the latest GPUs and scales well across GPUs to

train the models in hours instead of days.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

34

There are several research limitations that need to be improved and future goals as the

following:

1. We prevent overfitting but the testing data is not precisely to the actual return of

carry trade at all, so it might need more data for the learning process. Try to make

all of the moving windows finish and get more information of the entire

experiment.

2. It takes a lot of time for learning, so we can improve the hardware or adopt

multiple GPUs with different machine to reduce the learning time and finish the

moving windows.

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

35

Reference

1. Android Authority (2018) “Artificial intelligence vs machine learning : what’s the

difference?”, available at

https://www.androidauthority.com/artificial-intelligence-vs-machine-learning-832331/

(accessed 5 March 2018)

2. J. Cao, Y. Pang, X. Li, J. Liang (2018) “Randomly translational activation inspired by

the input distributions of ReLU,” Neurocomputing (275), pp:859-868

3. D.A. Clevert, T. Unterthiner, S. Hochreiter (2016) “Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs),” Published as a conference paper at

ICLR

4. Educational Research Techniques (2016) “Black Box Method-Artificial Neural

Networks”, available at

https://educationalresearchtechniques.com/2016/07/06/black-box-method-artificial-ne

ural-networks/ (accessed 5 March 2018)

5. Enhance Data Science (2017) “Machine Learning Explained: Regularization”,

available at

http://enhancedatascience.com/2017/07/04/machine-learning-explained-regularization/

(accessed 5 March 2018)

6. I. Goodfellow , Y. Bengio, A. Courville (2016), “Deep Learning,” The MIT Press

7. S. Y. Huang, J. W. Lin, and R. H. Tsaih (2106), “Outlier Detection in the Concept

Drifting Environment,” In: Proceedings of the International Joint Conference on

Neural Networks (IJCNN), pp:31-37

8. S. Y. Huang, F. Yu, R. H. Tsaih, and Y. Huang (2104), “Resistant learning on the

envelope bulk for identifying anomalous patterns,” In: Proceedings of the 2014

International Joint Conference on Neural Networks (IJCNN), pp:3303-3310

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

https://www.androidauthority.com/artificial-intelligence-vs-machine-learning-832331/
http://enhancedatascience.com/2017/07/04/machine-learning-explained-regularization/

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

36

9. Investopedia “Carry Tradde” available at

https://www.investopedia.com/terms/c/carry-trade.asp-0 (accessed 20 March 2018)

10. Ò . Jordà, and A. M. Taylor (2012), “The carry trade and fundamentals: Nothing to fear

but FEER itself,” Journal of International Economics, vol. 88, pp:74-90

11. F. F. Li, J. Johnson, S. Yeung (2017), “Convolutional Neural Networks for Visual

Recognition, Stanford University School of Engineering,” available at

http://cs231n.stanford.edu/ (accessed 5 March 2018)

12. J. D. Olden, M. K. Joy, R. G. Death (2004), “An accurate comparison of methods for

quantifying variable importance in artificial neural networks using simulated data,”

Ecological Modeling (178:3), pp:389-397

13. Quora (2013), “Differences between L1 and L2 as Loss Function and Regularization”,

available at

http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularizatio

n/ (accessed 5 March 2018)

14. S. Ruder (2016), “An overview of gradient descent optimization algorithms”, available

at http://ruder.io/optimizing-gradient-descent/index.html#adam (accessed 5 March

2018)

15. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov (2014)

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of

Machine Learning Research (15) 2014, pp:1929-1958

16. The Theory of Everything (2017), “Understanding Activation Functions in Neural

Networks”, available at

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-n

eural-networks-9491262884e0 (accessed 5 March 2018).

17. Towards Data Science (2017), “Types of Optimization Algorithms used in Neural

Networks and Ways to Optimize Gradient Descent”, available at

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

DOI:10.6814/THE.NCCU.MIS.011.2018.A05

37

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-netw

orks-and-ways-to-optimize-gradient-95ae5d39529f (accessed 5 March 2018).

18. R. H. Tsaih, T. C. Cheng (2009), “A resistant learning procedure for coping with

outliers,” Annals of Mathematics and Artificial Intelligence (57:2), pp:161-180

19. J. V. Tu (1996), “Advantages and disadvantages of using artificial neural networks

versus logistic regression for predicting medical outcomes” Journal of Clinical

Epidemiology 49(11), pp:1225-1231.

20. F. Y. Tzeng, K. L. Ma (2005), “Opening the Black Box — Data Driven Visualization

of Neural Networks”, Visualization, IEEE

21. L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus (2013), “Regularization of Neural

Networks using DropConnect” Proceedings of the 30th International Conference on

Machine Learning, PMLR (28:3), pp:1058-1066

22. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma (2009), “Robust face

recognition via sparse representation,” IEEE Transactions (31:1), pp:210-227

23. J. Wu. (2017), “Application of Machine Learning to Predicting the Returns of Carry Trade.

Unpubliched Master Thesis,” National Chengchi University, Taipei

24. S. N. Zeng, J. P. Gou, L. M. Deng (2017), “An antinoise sparse representation method

for robust face recognition via joint l1 and l2 regularization,” Expert Systems with

Applications (82), pp:1-9

DOI:10.6814/THE.NCCU.MIS.011.2018.A0

