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Foreword 

Data analysis is one of the most frequent activities of scientists, managers, en
gineers, and other professionals. Special scientific disciplines such as statistics 
and probability theory have been developed to serve this purpose. Probability 
theory provides mathematical models that are used for data modelling. On 
the other hand, statistics offers special procedures to solve practical prob
lems. Thousands of successful applications of statistical methods confirm its 
applicability in many areas of science, engineering, medicine, business, etc. In 
all these applications, and their respective mathematical models, there exists 
one crucial assumption: randomness is the only source of uncertainty which 
has to be analyzed using statistical methods. For many years this assumption 
has not been questioned, neither by statisticians nor by practitioners. This 
situation has been changing during the last twenty or more years as data 
analysis has been extensively used in such areas as social science, economy, 
etc. 

In traditional statistics we are dealing with objects measured in an ob
jective way. Therefore, the results of statistical experiments are represented 
by precise numerical data. The paradigm of the existence of precise data has 
been changed tagether with the application of statistical methods for the 
analysis of data generated by humans. In many practical cases the attempts 
to be "as precise as possi ble" have been o bviously unsuccessful. Statisticians 
have found that many statistical data they have had to deal with were in
herently imprecise and vague. Many specialists have realized that even in 
the cases which traditionally have been treated as crisp there is a need to 
introduce new models that would be closer to reality. Practical problems of 
data analysis require various mathematical models and statistical tools. Spe
cific methods should be used for imprecise linguistic data analysis, others for 
the description of subjective opinions, yet other methods for the analysis of 
missing data, etc. To describe and analyze all these problems new methods 
that are tailored for a particular type of imprecise data have to be used. 

During the last thirty years a considerable number of papers have been 
published with the aim to extend the existing theory of probability and math
ematical statistics. The common feature of those attempts is to "soften" the 
classical theory. Some "softening" approaches utilize concepts and techniques 
developed in such theories like fuzzy sets theory, rough sets, possibility theory, 
theory of belief functions and imprecise probabilities, etc. 

First attempts to describe different types of uncertainty, vagueness and 
lack of precision were considered by the statistical community as an assault 
agairrst probability and statistics. Even now, many traditional statisticians 
view newly emerged theories dealing with those uncertainties as antagonistic 
to classical probability and statistics. Fortunately, this is far from being true. 
Recent developments in the theories mentioned above have indicated that 
they are complementary to classical probability and statistics, and in many 
cases may be regarded as their generalizations. 



VI 

The soft methods in probability and statistics have obviously many com
mon features. Interesting mathematical models and methods have been pro
posed in the frameworks of different theories. Therefore, we have decided to 
establish a new conference oriented on people who are involved in the theo
retical and applied research, to bring together experts representing different 
approaches used in soft probability and statistics. Most of the papers pre
sented in this book have been presented at the First International Workshop 
on Soft Methods in Probability and Statistics, SMPS'2002, held in Warsaw 
in September 2002. 

The papers presented in this book have been grouped in four parts. The 
volume starts with an introductory part with more general papers by distin
guished scientists, Professors Didier Dubois, Henri Prade and Lotfi Zadeh, 
devoted to quantitative possibility theory and perception-based theory of 
probabilistic reasoning. 

The second section is devoted to fundamental problems of "soft" probabil
ity, e.g. modeling uncertain and imprecise events, cardinality of fuzzy sets in 
random environment, intersection of probability theory and fuzzy sets, fuzzy 
measures in the framework of the probability theory, problems of indepen
dence in a fuzzy logic framework, analysis of random sets, problems of the 
theory of imprecise probabilities (lower and upper probabilities, lower and 
upper previsions), mutual relations between of the Dempster-Shafer theory 
and the theory of probability, etc. 

In the next section papers have been collected which are devoted to fuzzy 
statistical problems considered from both frequentist and Bayesian point of 
view, papers on probabilistic fuzzy reasoning and different applications of 
fuzzy stochastic models. 

Fuzzy stochastic models are not the only possible models for the analysis 
of data. Papers belanging to the last section present different approaches in 
data analysis. There are papers showing fuzzy counterparts of well known 
statistical problemssuch as time series analysis and conjoint analysis, papers 
dedicated to problems of fuzzy aggregation of data, identification of fuzzy 
measures from sample information, fusion of expert and learnt information, 
papers on rough sets approach to data mining and classification problems. 
Other papers describe solutions of practical problems using non-standard 
statistical methods. 

The editors would like to express their thanks to all authors. A particu
lar acknowledgment goes to Professor Janusz Kacprzyk, the Editor-in-Chief 
of this series, for benevolent promotion and support during publishing this 
volume. We also deeply thank Edyta Mr6wka B.Sc. for her editorial support 
in preparing the final version of the volume. 

Warsaw, September 2002 Przemyslaw G rzegorzewski 
Olgierd Hryniewicz 
Maria Angeles Gil 
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Quantitative Possibility Theory and its 
Probabilistic Connections 

Didier Dubois and Henri Prade 

IRJT-CNRS, Universite Paul Sabatier, Toulouse, France 
E-mail: e-mail: dubois@irit.fr 

Abstract. Possibility theory is a representation framework general enough to 
model various kinds of information items: numbers, intervals, consonant random 
sets, special kind of probability families, as weil as linguistic information, and un
certain formulae in logical settings. This paper focuses on quantitative possibility 
measures cast in the setting of imprecise probabilities. Recent results on possi
bility /probability transformations are recalled. The probabilistic interpretation of 
possibility measures sheds some light on defuzzification methods and suggests a 
common framework for fuzzy interval analysis and calculations with random para
meters. 

1 Introduction 

Possibility theory refers to the study of maxitive and minitive set-functions, 
such that the possibility degree of a disjunction of events is the maximum or 
the minimum of the possibility degrees of events in the disjunction. In 1978, 
Zadeh published a paper proposing a theory of possibility based on fuzzy 
sets. The aim was to propose an approach to model flexible restrictions con
structed from vague pieces of information, described by means of fuzzy sets. 
Possibility theory can also be viewed as a non-classical theory of uncertainty, 
different from probability theory, an idea which was actually first proposed 
and formalised by the economist Shackle (1961) already in the late forties. 
The comparison between possibility and probability theories is made easy by 
the parallelism of the constructs, which is not the case for fuzzy sets and prob
ability. As a mathematical object, maxitive set functions have been already 
studied by (Shilkret, 1971). Possibility theory can also be viewed as a graded 
extension of modal logic where the dual notions of possibility and necessity 
already exist for a long time, in an all-or-nothing format. The notion "more 
possible than" was actually first modelled by David Lewis (1979), in the set
ting of modallogics of counterfactuals, by means of a complete preordering 
relation among events satisfying some prescribed properties. On finite sets, 
these relations are completely characterised by their restrictions to singletons. 
This notion was independently rediscovered in (Dubois, 1986) in the setting 
of decision theory, in an attempt to propose Counterparts of comparative 
probability relations for possibility theory. Since then, maxitive set-functions 
or equivalent notions have emerged as a key tool in various domains, such 
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as belief revision (Spohn, 1988), non monotonic reasoning (Benferhat et al. 
1997), game theory (the so-called unanimity games, Shapley, 1971), impre
cise probabilities (Walley, 1991), etc. Due to the ordinal nature of the basic 
axioms of possibility and necessity functions, there is no commitment to nu
merical possibility and necessity degrees. So there are basically two kind of 
possibility theories: quantitative and qualitative. In quantitative theories, de
grees of possibility are numbers and one must indicate where they come from, 
in order to understand their meaning. Qualitative possibility theory inherits 
from Lewis proposals and is closely connected to non-monotanie reasoning as 
shown by Benferhat et al. (1997) for instance. All possibility theories agree 
on the maxitivity axiom for possibility functions: 

II (AU B) = max (II (A), II (B)) (1) 

but they disagree on the conditioning operation. 
This paper is devoted to a survey of results in quantitative possibility the

ory, which has close connections to probability theory and statistics, contrary 
to qualitative possibility theory. There are not so many extensive works on 
possibility theory. The first book on this topic (Dubois and Prade, 1988) em
phasises the close links between possibility theory and fuzzy sets, and mainly 
deals with numerical possibility and necessity measures. It already pointsout 
their links with probability theory. Klir and Folger (1988) focus on the fact 
that possibility theory is a special case of belief function theory, with again 
a numerical flavour. A more recent detailed survey by the authors (Dubois 
and Prade, 1998) distinguishes between quantitative and qualitative sides 
of the theory. Basic mathematical aspects of possibility theory are studied 
at length by De Cooman (1997) More recently this author has investigated 
possibility theory as a special case of imprecise subjective probability (De 
Cooman, 2001). This paper relies on (Dubois Nguyen and Prade, 2000) and 
some recent findings in probability-possibility transformations. 

2 Possibility as Plausibility 

In the same way as probabilities can be interpreted in different ways (e.g., 
frequentist view vs. subjective view), possibility theory can support various 
interpretations. Basically there are four ideas each of which can be conveyed 
by the word 'possibility'. First is the idea of feasibility, such as ease of achieve
ment, also referring to the solution to a problem, satisfying some constraints. 
At the linguistic level this meaning is at work in expressions such as "it is 
possible to solve this problem". Another notion of possibility is that of plau
sibility, referring to the propensity of events to occur. At the grammatical 
Ievel this semantics is expressed by means of sentences such as "it is possible 
that the train arrives on time". Yet another view of possibility is logical and 
it refers to consistency with available information. Namely, stating that a 
proposition is possible means that it does not contradict this information. It 
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is an all-or-nothing version of plausibility. The last semantics of possibility is 
deontic, whereby possible means allowed, permitted by the law. In this paper 
we shall focus on plausibility. 

2.1 The Logical View 

Possibility as logical consistency has been put forward by Yager (1980). 
Namely, let a piece of incomplete information be given as a set E such that 
"x E E" is known for sure where x is some ill-known object. Let set E refer to 
the information possessed by an agent. It is incomplete insofar as E contains 
more than one element, i.e., the value of x can be any one (but only one) of 
the elements in E. Given such a piece of information, a set-function IIE is 
built from E by the following procedure 

IIE (A) = { ~ ifAnE=f:0 
otherwise 

( x E A and x E E are consistent) 
(A and E are mutually exclusive) 

Clearly, IIE (A) = 1 means that given that x E E, x E Ais possible because 
the intersection between set A and set E is not empty, while IIE (A) = 0 
means that x E A is impossible knowing that x E E. It is easy to verify that 
IIE satisfies the maxitivity axiom (1). 

2.2 Objective vs. Subjective Possibility 

Hacking (1975) also pointed out that possibility can be understood either as 
an objective notion (referring to properties of the physical world) or as an 
epistemic one (referring to the state of knowledge of an agent). Feasibility 
and plausibility can be envisaged from both points of view. Possibility, as 
objective feasibility, means physically easy to achieve, as in the sentence "it 
is possible for Hans to eat six eggs for breakfast". Physical possibility has 
been advocated by Zadeh (1978) so as to justify the axiomatic rule of possi
bility measures (1). The degree of ease of some action that produces AU B 
is given by the easiest of two actions, one that produces A and one that pro
duces B. The idea of ease of attainment often comes along with the idea of 
preference: considering mutually exclusive alternatives, the most feasible(s) 
one(s) (in some sense) isjare usually preferred. Hence, subjective feasibility 
can be interpreted as the willingness of an agent to make a decision. Then, 
possibility refers to choice preference. As shown in Dubois Fargier and Prade 
(1996), the whole calculus of possibility theory can be interpreted in the light 
of preference modeling and optimization theory as much as in terms of partial 
belief. 

The epistemic notion of plausibility has been put forward by Shackle 
(1961). He proposed a calculus of degrees of "potential surprise" that matches 
the possibilistic framework. Following Shackle, the potential surprise attached 
to an event by an agent reflects the level of contradiction between the oc
currence of this event and the agent's knowledge. Plausibility here means 
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Iack of surprise and ernborlies the above mentioned logical view of consis
tency with available knowledge. Shackle claimed that decisions are guided at 
least as much by expectations that Iook possible as by those that Iook prob
able, because probabilities are often not available. This is the subjectivist 
side of possibility in relation to uncertainty modelling. Actually, this kind of 
possibility, like probability, has objectivist sides as weil. Rather early works 
(Wang, 1983, Dubois and Prade, 1986) have developed a frequentist view of 
possibility, which bridges the gap between possibility theory and the mathe
matics of probability theory. Possibility degrees then o:ffer a simple approach 
to imprecise (set-valued) statistics, in terms of upper bounds of frequency. 
However possibility degrees were introduced in terms of ease of attainment 
and flexible constraints by Zadeh and as an epistemic uncertainty notion by 
Shackle, with little reference to probability and/or statistics. 

2.3 Necessity 

Plausibility is dually related to certainty, in thesensethat the certainty of an 
event reflects a Iack of plausibility of its opposite. This is a striking di:fference 
with probability which is self-dual. The expression It is not probable that 
"not A" means that It is probable that A, while It is not possible that "not 
A" does not mean It is possible that A. It has a stronger meaning: It is 
necessary that A. Conversely, it is possible that A does not entail anything 
about the possibility nor the impossibility of "not A ". Here we are dealing 
with a dual pair possibility / necessity. 

A semantic analysis of necessity can be done paralleling the one of pos
sibility. There exists physical necessity as weil as epistemic necessity (the 
latter coincides with the notion of certainty). Objective necessity refers to 
laws of nature: if we drop an object it is necessary that it falls. Subjective 
necessity viewed as the dual of preference means priority. Objective necessity 
refers to lower bounds of frequency measurements, while subjective certainty 
means belief, acceptance, probable provability. Namely believing a propo
sition means accepting to reason using this proposition as if it were true, 
until some new information refutes the proposition. A proposition is certain 
if and only if it logically derives from the available knowledge. Hence neces
sity also conveys a logical meaning in terms of deduction, just as possibility 
is a matter of logical consistency (Yager, 1980). The certainty of the event 
"x E A", knowing that "x E E", is then evaluated by the following index, 
called necessity measure: 

NE (A) = { ~ if E ~ A 
otherwise 

Clearly the information x E E logically entails x E A when E is contained 
in A, so that certainty applies to events that are logically entailed by the 
available evidence. It can be easily seen that NE (A) = 1- IIE (not A), i.e., 
A is necessarily true if and only if 'not A' is impossible. 
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3 The Possibilistic Representation of Incomplete Data 

Consider an ill known parameter x. Let U denote the referential where x takes 
its values. The available information on the actual value of x is supposed to 
be modelled by a possibility distribution 1rx • It is a mapping from U to a 
totally ordered plausibility scale, here [0, 1]. A possibility distribution can be 
viewed as a representation of the more or less plausible values of an unknown 
quantity x. These values are assumed tobe mutually exclusive, since x takes 
on only one value (its true value). Since one of the elements of U is the true 
value of x, 1rx (u*) = 1 for at least one value u* EU. This is the normalisation 
condition, that claims that at least one value is viewed as totally possible. 
If u and u' are such that 1rx (u) > 1rx (u'), u is considered to be a more 
plausible value than u'. When 1rx (u) = 0, then x cannot take on value u. The 
possibility degree of an event A, understood as a subset of U is 

li (A) = sup 1rx (u) (2) 
uEA 

It is computed on the basis of the most plausible values of x in A, neglect
ing other realisations. A possibility distribution 1rx is at least as informative 
(more specific) as another one 1r~ if and only if 1rx ~ 1r~ (see, e.g., Yager, 
1992). In particular, if'v'u EU, 1rx (u*) = 1,7rx contains no information at all 
(since it expresses that any value in u is possible for x). 

Remark. The possibility measure defined in (2) satisfies a strong form of 
maxitivity (1) for the union of infinite families of sets. On infinite sets, axiom 
(1) alone does not imply the existence of a possibility distribution satisfying 
(2). For instance, consider the natural integers, and a set function assigning 
possibility 1 to infinite subsets of integers, possibility 0 to finite subsets. This 
function is a possibility measure in the sense of (1) but does not fulfil (2). 

The possibilistic representation is capable of modelling several kinds of 
imprecise information within a unique setting. 

3.1 Intervals 

The simplest form of a possibility distribution on a numerical interval U is 
the characteristic function of a sub-interval I of U, i.e., 1rx (u) = 1 if x EI, 0 
otherwise. This type of possibility distribution is naturally obtained from ex
perts stating that "x lies between a and b". This way of expressing knowledge 
is more natural than giving a point-value u* for x right away, because it al
lows for some imprecision. However this binary representation is not entirely 
satisfactory. If the interval is too narrow, the piece of information is not so 
reliable. When 1rx (u) = 0 for some u, it means that x = u is impossible. This 
is too strong, and one is then tempted to use wide uninformative intervals. 
Sometimes, even the widest, safest interval does not rule out some residual 
possibility that the value of x lies outside it. 
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3.2 Confidence Intervals 

It is more satisfactory to describe imprecise information by means of several 
intervals with various levels of confidence. A possibility distribution 1r x can 
then represent a finite family of nested confidence subsets {At, A2, ... ,Am} 
where Ai C Ai+b i = 1, m -1. Each confidence subset Ai is attached a pos
itive confidence level Ai· The set of possibility values {1r(u) I u EU} is then 
finite. The links between the confidence levels Ai's and the degrees of possi
bility are defined by postulating Ai is the degree of necessity (i.e. certainty) of 
Ai which is defined as N(Ai) = 1-ll(Ai)where ll(Ai) is the degree of possi
bility of the complement Ai of A (Dubois and Prade, 1988). This entails that 
A1 :::; ... :::; Am due to the monotonicity of the necessity function N. The possi
bility distribution equivalent to the family {(At, Al), (A2, A2), ... , (Am, Am)} 
is defined as the least informative possibility distribution 1r that obeys the 
constraints Ai = N(Ai), i = 1, m. It comesdown to maximizing the degrees 
of possibility 1r(u) for all u in U, subject to these constraints. The solution is 
unique and is 

if u E A1 
otherwise 

which also reads 'lrx (u) =mini max(1-Ai, Ai(u)), where A (-) is the charac
teristic function of Ai. This solution is the least committed one with respect to 
the available data, since by allowing the greatest possibility degrees in agree
ment with the constraints, it defines the least restrictive possibility distrib
ution. Conversely, the family (At, A1), (A2, A2), ... , (Am, Am)} of confidence 
intervals can be reconstructed from the possibility distribution 'lrx. Suppose 
that the set of possibility values 1rx(u) is {a1 = 1, a2 ~ a 3 ~ ... ~ am} and 
let am+l = 0. Then 

Ai={ul7rx(u)~ai}, Ai=1-ai+b Vi=1, ... ,m. 

In particular Am = 1 and Am is the subset which for sure contains x; 
moreover, Am = U if no strict subset of U surely includes x. This analysis 
extends to an infinite nested set of confidence intervals {(Aa, 1- a), a > 0}, 
where N(Aa) = 1- a, and 1rx(u) = infa max(a, Aa(u)). 

3.3 Random Sets 

Letting Pi= ai- ai+l, Vi = 1, ... , m note that 

Vu, 'lrx (u) = L Pi (3) 
i:uEA; 

The sum of weights p1 , ... , Pm is 1. Hence the possibility distribution can 
be cast in the setting of random sets (Dubois and Prade, 1982), and more 
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precisely the theory of evidence (Shafer, 1987). From a mathematical point 
of view, the information modelled by 1r x can be viewed as a nested random 
set { (A;, Pi), i = 1, m }, which allows for imprecision (reflected by the size of 
the Ai) and uncertainty (the Pi)· And Pi is the probability that the source 
supplies exactly Ai as a faithful representation of the available knowledge 
of x (it is not the probability that x belongs to Ai)· The random set view 
of possibility theory is developed in details in (Gebhardt and Kruse, 1993, 
1994a,b ). Namely given a bunch of imprecise (not necessarily nested) obser
vations, equation (3) supplies an approximate representation of the data (see 
also Joslyn, 1997). 

3.4 Imprecise Probability 

The level of confidence Ai can also be conveniently interpreted as a lower 
bound on the probability that the true value of x hits Ai. Then the possibility 
distribution encodes the family of probability measures P = { P, P(Ai) ~ 
Ai, i = 1, m} because the possibility measure II(B) coincides with the upper 
probabilityP*(B) = sup{P(B),P E 1P} while the necessity measure N(B) = 
inf{P(B), PEP} is the lower probability; see (Dubois and Prade, 1992, De 
Cooman and Aeyels, 1999) for details. These intervals can be interpreted in 
terms of fractiles of a probability distribution. 

3.5 Likelihood Functions 

Yet another interpretation of the possibility distribution 1r consists in view
ing it as a likelihood function, that is, identifying 1r(u) to the probability 
P(um I u) that the source indicates the measured value Um, when the actual 
value of x is u. Indeed suppose only P(um I u) is known, 'Vu EU. The prob
ability P( Um I u) is understood as the likelihood of x = u, in the sense that 
the greater P(um I u) the more x = u is plausible. In particular, note that 
'VA~ U 

minP(um I u):::; P(um I A):::; maxP(um I u) 
uEA uEA 

Identifying 1r(u) to P(umlu), the upper bound of the probability 
P(um I A) is a possibility measure (see Dubois et al., 1997). Hence there is 
a strong similarity between maximum likelihood reasoning and possibilistic 
reasoning in the finite case. The degree of possibility that x = u in the face the 
measurement Um can be defined as 1r m ( u) 1r x ( u I Um) 
P (Um I u). This setting is adapted to measurements, for instance. 

In general supu P( Um I u) =/=- 1 since in this approach, the normalisation 
with respect to u is not warranted. Andin the continuous case P(um I u) may 
be greater than 1. Yet, it is natural to assume that maxu P(um I u) = 1. It 
corresponds to existing practice in statistics whereby the likelihood function 
is renormalized via a proportional rescaling (Edwards, 1972). It means there 



10 

is at least one value x = u that makes the observation Xm = Um completely 
possible; in other words Um is a completely relevant observation for the set 
of assumptions U. Indeed, iffor instance maxu P(um I u) = 0, it would mean 
that it is impossible to observe Xm = Um for any value x = u E U. 

3.6 Linguistic Information 

Human-originated information, even when it pertains to orders of magnitude, 
is often linguistic. In some contexts, only witnesses can supply information, 
and they use words. Zadeh (1965, 1979) proposed the theory of fuzzy sets as 
a tool for mathematical modelling of linguistic information, especially on nu
merical universes. A possibility distribution can be identified to the member
ship function of a fuzzy set modelling linguistic terms like "tall" (for heights) 
"hot" (for temperatures) "far" ( for distances), etc. of possible values of a 
quantity x. So linguistic information taking the form of statements like "this 
man is tall", "the room temperature is hot", "the robot is far from the table" 
can be modelled by means of possibility distributions as well. However, the 
semantics of the possibility degrees is then described in terms of distance 
to fuzzy set prototypes, whose membership values is maximal. If the piece 
of information is of the form "x is F", where F is a fuzzy set, the closer a 
value u to a prototype u* of F the moreplausible it is, which is expressed by 
letting 1l"x(u) = F(u), where F(-) is the membership function of F, suchthat 
F(u*) = 1. Nguyen (1994) related fuzzy linguistic terms to random sets. De 
Cooman and Walley (1999) interpreted linguistic possibility distributions in 
terms of imprecise subjective possibilities. 

4 N umerical Possibilistic Conditioning 

Conditioning in possibility theory has been studied as a counterpart to prob
abilistic conditioning. However there is no Ionger a unique meaningful defin
ition. And the main difference between numerical and qualitative possibility 
theories lies in the conditioning process. The notion of conditional possibility 
measure goes back to Hisdal (1978) who introduced the set function II(- I A) 
through the equality 

VB, B n A =/= 0, II (An B) = min (II (B I A), II (A)) (4) 

In order to overcome the existence of several solutions to this equation, the 
conditional possibility measure can be defined, as proposed by Dubois and 
Prade (1988), as the least specific solution to this equation, that is, when 
II(A) > 0, 

II(B I A) = {h(AnB) 
if II(AnB)=II(A) 
otherwise 
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The only difference with conditional probability is that the renormalisa
tion via division is changed into a simple move of the most plausible elements 
in A to 1. The conditioning equation agrees with a purely ordinal view of pos
sibility theory and makes sense in a finite setting only. However, this form 
of conditioning applied to infinite numerical settings creates discontinuities, 
and theinfinite maxitivity axiom is then not preserved by conditioning. Espe
cially II (B I A) = supuEB 1r( u I A) may fail to hold for non-compact events 
B (De Cooman, 1997). 

The use of the product instead of min in the conditioning equation equa
tion ( 4) avoids discontinuity problems. In close agreement with probability 
theory, it leads to 

'-' A ...J. (1\ II (B A) = II ( An B) vB,Bn -rv, n II(A) 

provided that II(A) =I= 0. Then N(B I A) = 1 - II(Bc I A). This is formally 
like Dempster rule of conditioning, specialised to possibility measures, i.e., 
consonant plausibility measures of Shafer (1976). See De Baets et al. (1999) 
for a complete mathematical study of possibilistic conditioning, leading to the 
unicity of the product-based notion, in the infinite setting. The possibilistic 
counterpart of Bayes theorem looks formally the same as in probability the
ory: 

II(B I A) . II(A) = II(A I B) . II(B) 

Considering the problern of testing hypothesis A against its complement, 
upon observing B. The expression of II(B I A) in terms of II(A I B), 
II(A I Be), II(B), II(Bc) differs from the probabilistic form, due to the 
the maxitivity axiom . Namely 

II B A _ II(A I B) · II(B) 
( I ) - max (II(A I B) · II(B), II(A I Be)· II(Bc)) 

The uninformed case, with uniform possibility II(B) = II(Bc) = 1 leads to 
compute 

II(A I B) 
II(B I A) = max (II(A I B), II(A I Be)) 

and compare it to II(Bc I A). It corresponds to some existing practice in 
statistics, called likelihood ratio tests, whereby the likelihood function is 
renormalized via a proportional rescaling (Edwards, 1972; Barnett, 1973). 
This approach has been recently successfully developed for use in practical 
applications by Lapointe and Bobee (2000). 

Viewing possibility degrees as upper bounds of probabilities leads to 
Bayesian conditionalization of possibility measures. Notice that in probabil
ity theory, P(B I A) is an increasing function of both P(BnA) and P(NUB) 
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and this function is exactly f(x, y) = (x+~-y). Then a natural counterpart of 
Bayesian conditioning in quantitative possibility theory is 

11(A n B) 11(A n B) 
11(B I A) = 11(A n B) + 1- 11(Ac u B) = 11(A n B) + N(A n ßc) 

Then, the dual conditional necessity is such that 

c N(An B) 
N(B I A) = 1 - 11 (B I A) = N(A n B) + 11(A n ßc) 

This view of conditioning, that we shall call Bayesian possibilistic condition
ing (Dubois and Prade, 1997; Walley, 1996), is in accordance with impre
cise probabilities since 11(B I A) = sup {P(B I A), P(A) > 0, P :::; 11}. 
Bayesian conditioning preserves consonance of possibility measures and the 
corresponding conditional possibility distribution has support A (11'(u I A) = 0 
if u rf. A) and, if u E A: 

( 
71' (u) ) 

11'(uiA)=max 11'(u),11'(u)+N(A) 

which indicates that the result is less specific than 71' on A and coincides with 
the characteristic function of A if N(A) = 0. It contrasts with Dempster 
conditioning which always supplies more specific results than the above. See 
De Cooman (2001) for a detailed study ofthisform of conditioning. 

5 Possibility-Probability Transformations 

Possibility distributions may also come from the transformation of a prob
ability distribution. Namely, given a unimodal probability density p on the 
realline, a (nested) set of confidence intervals of p can be encoded as a pos
sibility distribution. The problern of transforming a possibility distribution 
into a probability distribution and conversely has received more and more 
attention in the past years (Klir, 1990; Dubois et al. 1993). This question 
is meaningful in the scope of uncertainty combination with heterogeneaus 
sources (some supplying statistical data, other linguistic data, for instance). 

5.1 Basic Principles 

The starting point is that some consistency exists between possibilistic and 
probabilistic representations of uncertainty. Zadeh (1978) defined the degree 
of consistency between a possibility distribution 71' and a probability dis
tribution p as follows: p(11') = I:~=l 11'iPi· It is the probability of the fuzzy 
event whose membership function is 71'. However Zadeh also described the 
consistency principle between possibility and probabilityinan informal way, 
whereby what is probable should be possible. Dubois and Prade (1980) have 
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translated this requirement via the inequality JI(A) ~ P(A) that founds the 
interpretation of possibility measures as upper probability bounds. P and 1I 
are then said to be consistent. 

In the finite case, if we let 1r(ui) = 1l"i and P({ui}) =Pi and assume 
Pl ~ ... ~ Pn ~ Pn+l = 0, then P and 1I are consistent if and only if 
1l"i ~ ~j=1 pj, Vi = 1, ... ,n (Delgado and Moral, 1987). More conditions 
for consistency could be added. For instance one may also require that the 
orderings induced by the probability and the possibility distributions on U 
be the same. However we cannot require the same condition for events since 
the possibility ordering is generally coarser than the probability ordering on 
finite sets. 

Possibility and probability theories do not have the same descriptive 
power. It is clear that there are some states of information that probability 
can describe while possibility cannot (e.g., total randomness). The converse is 
true: a single probability distribution cannot express ignorance, as advocated 
at length by Dubois, Prade and Smets (1996). It can be advocated that the 
possibilistic representation of ignorance is weaker than the probabilistic rep
resentation, in the sense that the first is additive and supplies precise degrees 
of confidence and the other relies on an ordinal structure induced by the con
sonance assumption and only provides bounds on degrees of probability. It 
does not mean that precise probabilistic representations subsume possibilistic 
representations, since possibilistic representations can capture weaker states 
of information that probability distributions cannot model. 

There are two basic approaches to possibility jprobability transformations. 
They respect probability-possibility consistency. One, due to Klir (see Klir, 
1990; Geer and Klir, 1992) is based on a principle of information invariance, 
the other (Dubois et al., 1993) is based on optimizing information content. 

In Klir's view, the transformation should be based on three assumptions: 

• A scaling assumption that forces each value 1l"i tobe a function of Ei.(where 
Pl 

PI ~ P2 ~ ... ~ Pn, that can be ratio-scale, interval scale, Log-interval 
scale transformations, etc. 

• An uncertainty invariance assumption according to which the entropy 
H(p) should be numerically equal to the measure of informationE(1r) 
contained in the transform 1r of p. E( 1r) can be the logarithmic imprecision 
index of Higashi and Klir (1982), for instance. 

• Transformations should satisfy the consistency condition 1r( u) ~ p( u), 
'Vu, stating that what is probable must be possible. 

The uncertainty invariance equation E(1r) = H(p), along with a scaling 
transformation assumption (e.g., 1r(x) = ap(x) + ß, 'Vx), reduces the problern 
of computing 1r from p to that of solving an algebraic equation with one or 
two unknowns. 

Klir's assumptions are debatable. First the scaling assumption leads to 
assume that 1r (u) is a function of p(u) only. This pointwiseness assumption 
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may conflict with the probability jpossibility consistency principle that re
quires II ~ P for all events. See Dubois and Prade (1980, pp. 258-259) for 
an example of such a violation. Then, the nice link between possibility and 
probability, casting possibility measures in the setting of upper and lower 
probabilities cannot be maintained. 

The second and the most questionable prerequisite assumes that possi
bilistic and probabilistic information measures are commensurate. The basic 
idea is that the choice between possibility and probability is a mere matter of 
translation between languages "neither of which is weaker or stronger than 
the other" (quoting Klir and Parviz, 1992). It means that entropy and im
precision capture the same facet of uncertainty, albeit in different guises. The 
alternative approach recalled below does not make this assumption. 

5.2 Transformations Based on Optimizing Information Content 

If we accept that possibility distributions are weaker representations of un
certainty than probability distributions, the transformation problern can still 
be stated in a clear way. Namely going from possibility to probability leads 
to increase the informational content of the considered representation, while 
going the other way around means a loss of information. However the adopted 
transformations must be as little arbitrary as possible. Hence, the principles 
behind the two following transformations are different and are not always the 
converse of each other (Dubois et al. 1993): 

• Prom possibility to probability: 
A generalised Laplacean indifference principle is adopted: the weights mi 

bearing on the nested family of levels cuts of 1r are uniformly distributed 
on the elements of these cuts. This transformation, already proposed by 
Dubois and Prade (1982) comes down to selecting the gravity center 
of the set P = {P I 'v'A, P(A) :::; II(A)} of probability distributions 
dominated by II. This transformation also coincides with the so-called 
pignistic transformation of belief functions (Smets 1990) and the Shap
ley value in game theory, where a cooperative game can be viewed as 
a non additive set function (Shapley, 1971). The rationale behind this 
transformation is to minimize arbitrariness by preserving the symmetry 
properties of the representation. If we let 1r (ui) = 11"i and p(ui) =Pi and 
assume 11"1 ~ ••• ~ 11"n ~ 11"n+1 = 0, the transformation yields 

Pi= t (7rj- ~j-1) 
j=1 J 

(5) 

• Prom probability to possibility: 
in this case, the rationale of the transformation is not the same according 
to whether the probability distribution we start with is subjective or 
objective. 
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In the case of a statistically induced probability distribution, the rationale 
is to preserve as much information as possible; hence we select as the result of 
the transformation of P, the most specific element of the set F(P) of possi
bility measures dominating P. This most specific element is generally unique 
if P induces a linear ordering on U. Otherwise if there are equiprobable ele
ments, unicity is preserved if equipossibility of the corresponding elements is 
enforced. In particular, uniform probability is then transformed into uniform 
possibility (Delgado and Moral, 1987). 

In the finite case, if we let n(ui) = 1ri and p(ui) =Pi and assume Pl > 
P2 > ... > Pn > Pn+l = 0 the transformation into a possibility distribution 
takes the following form 

n 

1ri = LPj 
j=i 

(6) 

where 1r1 = 1 > ... > 1rn. However if Pl = ... = Pn = ~ then selecting 
any linear ordering of elements and applying the above formula gives a most 
specific possibility distribution consistent with p. More generally if E 1 , ... , Ek 
is the well-ordered partition of U induced by p ( elements in Ei have the same 
probability which is greater than the one of elements in Ei+1 ), then the most 
specific possibility distributions consistent with p are given by (6) applied 
to any linear ordering of U coherent with E 1 , .•. , Ek (arbitrarily reordering 
elements within each Ei)· 

In the case of a subjective probability, the rationale is very different. 
It is assumed that a subjective probability supplied by an agent is only a 
trace of the agent's belief because it is forced to be additive by the rules 
of exchangeable bets. For instance the agent provides a uniform probability 
distribution whether (s)he knows nothingabout the concerned phenomenon, 
or if (s)he knows the concerned phenomenon is purely random. More gen
erally, it is assumed that the agent entertains beliefs that can be modelled 
by belief functions in the sense of the Transferable Belief Model (Smets & 
Kennes, 1994). In that framework, the agent uses a probability function in
duced by his or her beliefs, using the pignistic transformation (Smets, 1990) 
or Shapley value. Then the transformation from a subjective probability con
sists in reconstructing the underlying belief function. There are clearly sev
eral belief functions whose Shapley value is prescribed. Dubois et al. (2001) 
have proposed to consider the least informative of those, in the sense of a 
non-specificity index. They prove that the least informative belief function 
is based on a possibility distribution, previously suggested in (Dubois and 
Prade, 1983): 

n 

1ri = L min(pj,Pi) 
j=l 

(7) 
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Equation (7) gives results that are less specific than (6). It is the trans
formation converse to (5). 

5.3 Confidence Intervals 

Applied to continuous universes, the transformation of a unimodal objective 
probability density p with strictly monotonic sides into a possibility distri
bution is closely related to the notion of confidence interval. First it is a 
known fact that the confidence interval of length L, i. e., the interval with 
maximal probability is h = [aL, aL + L] such that p(aL) = p(aL + L). 
This interval has degree of confidence P(h)(often taken as 95%). The most 
specific possibility distribution consistent with p is 7r such that VL > 0, 
7r(aL) = 1r(aL + L) = 1- P(h). Hence the a-cut of the optimal (most spe
cific) 7r is the (1 - a)- confidence interval of p (Dubois et al., 1993). These 
confidence intervals are nested around the mode of p, viewed as the "most fre
quent value". Going from objective probability to possibility means adopting 
a representation of uncertainty in terms of confidence intervals. 

More recently Mauris et al. (2001) have found more results along this line 
(see also Dubois et al., 2002) for symmetric densities. Noticeably, each side 
of the optimal possibilistic transform is convex and there is no derivative for 
the mode of 7r. Hence given a probability density on a bounded interval [a, b], 
the triangular fuzzy number whose core is the mode of 7r and the support is 
[a, b] is an upper approximation of p regardless of its shape. In the case of 
a uniform distribution on [a, b], any triangular fuzzy number with support 
[a, b] provides a most specific upper approximation. These results justify the 
use of triangular fuzzy numbers as fuzzy Counterparts to uniform probability 
distributions. This setting is adapted to sensor measurements. Well-known 
inequalities of probability theory, such as Chebyshev and Camp-Meidel ones, 
can also be viewed as possibilistic approximations of probability functions, 
since they provide families of (loose) intervals. However they provide shapes 
of fuzzy numbers that can act as generic possibilistic approximations of prob
ability functions, regardless of their shapes. 

6 Quantitative Possibility and Choquet Integrals 

Possibility and necessity measures are very special cases of Choquet capacities 
and can encode families of probabilities. The integral of function F from a 
set U, equiped with a Choquet capacity, to the reals can be evaluated with 
respect to a fuzzy measure M using a Choquet integral, defined as follows: 

1 

EM(F) = J M (Fa) da 
0 
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See Denneberg (1994) for a mathematical introduction. When M = P, a 
probabibility measure, it reduces to a Lebesgue integral. When M = II,. a 
possibility measure, or M = N, a necessity measure, it reads 

1 1 

EM(F) = J N (Fa) da:= J inf {F (u): 7r (F (u)) 2:: o:} da: 
0 0 

1 1 

EII(F) = J II (Fa) da:= J sup {F (u): 1r (F (u)) 2:: o:} da: 
0 0 

If F is the membership function of a fuzzy set, the latter equation is a 
definition of the possibility offuzzy events different from Zadeh's (1978). But 
the maxitivity of EII(F) w.r.t. to Fis not preserved. 

In the finite setting, U = {1, 2, ... , n }, these expressions read (Dubois 
and Prade, 1985; Grabisch et al., 1995): 

n 

= L (F (ua(i))- F (ua(i-1))) Tl? (1- 7r (ucr(k))) 
i=1 

n 

= L (ni- 'Tri+t) min {F (u): u E Ai} 
i=1 

n 

= L (F (ua(i))- F (ua(i-1))) rr~r (n (ua(k))) 
i=1 -

n 

= L (ni- 7ri+1) max {F (u) : u E Ai} 
i=1 

where, without loss of generality, 1r1 = 1 2:: ... 2:: 7rn 2:: 7rn+1 = 0, and Ai is the 
1ri-cut of F, and F (ua(1)) :':::: ... :':::: F (ua(n))· The interval [EN(F), EII(F)] 
is the range of the expectations of F with respect to probability measures 
P such that II 2:: P. To any function F from U to the reals, associate the 
functions F+ and F- defined by : 

F- (i) = min{F(u): u E A} 
F+ (i) = max{F (u): u E A} 
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Since the Ai are nested, F- is decreasing and F+ is decreasing in the wide 
sense and EN(F) = EN(F-), EII(F) = EII(F+). Possibilistic expectations 
of F arealso regular expectations of F- or F+ w.r.t. a probability function 
defined by Pi = (1ri - 7ri+I)· Moreover, F- and p are comonotonic, and 
so are F- and c- (resp. F+ and c+) for any F and G. It is well-known 
that Choquet integrals are additive for comonotonic functions. Possibilistic 
integrals are thus additive for larger subsets of functions. For instance, if F 
and Gare suchthat (F+G)- = F- +G- then EN(F+G) = EN(F)+EN(G). 
More on possibilistic Choquet integrals can be found in (De Cooman, 2001). 

1 Fuzzy Intervals in the Probabilistic Setting 

A fuzzy interval is a fuzzy set M of real numbers whose cuts are nested 
intervals, usuallly closed ones (see Dubois, Kerre et al., 2000) for an extensive 
survey. Relating fuzzy intervals to probability is based on the fact that fuzzy 
sets can be viewed as consonant plausibility functions in the sense of Shafer 
(1976), or imprecise probabilities. there are actually three probabilistic views 
of a fuzzy interval. 

(i) In the imprecise probability view, M encodes a set of probability measures. 
The upper and lower distribution functions are limits of distribution func
tions in this set (Dubois and Prade, 1987). Let [m*, m*] be the core of 
M. The upper distribution function F* is: 

'Va, F* (a) =!IM (( -oo, a]) 

= sup{M(x): x:::; a} = { ~(a) if a:::; m* 
otherwise. 

Similarly, the lower distribution function F* such that: 

't/a, F* (a) =NM (( -oo, a]) = 1- !IM ([a, oo)) 

{ 
0 if a < m* 

= inf { 1 - M ( x) : x > a} = 1 - lim M ( x) otherwise. 
x-+a 

The upper distribution function F* matches the increasing part of the 
membership function of lvf. The lower distribution function F* refl.ects the 
decreasing part of the membership function of M of wich it is the fuzzy com
plement. 
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(ii) In the random set view, M encodes the one point coverage function of a 
random interval, defined by a probability measure on the unit interval (for 
instance the uniformly distributed one) and a family of nested intervals, 
via a multivalued mapping from (0, 1] to r, following Dempster (1967). For 
instance a fuzzy interval M can be obtained by carrying the Lebesgue 
measure from the unit interval to the real line via the multiple-valued 
mapping that assigns to each level a E (0, 1] the cut M01.. (see Dubois 
and Prade, 1987, Heilpern, 1992, for instance). The fuzzy interval M 
is then viewed as a random interval IM and M(a) = P(a E IM) the 
probability that a belongs to a realization of IM. This view presupposes 
that a probability measure P could have been obtained from the available 
statistics if outcomes had been precisely observed. 

(iii) M standsforapair of PDFs view, whereby M is defined by two random 
variables x- and x+ with distributions F* and F* yielding the random 
interval [x-, x+] with possibly independent end-points (See Heilpern, 
1992, 1997; Gil, 1992). Namely let M>. = [m~, m*>.] be the cuts of M. 
One may have x- and x+ depend on a single parameter >. such that 
[x-(>.), x+(>.)] = [m~, m*>.], or the generated intervals may appear in an 
asymmetric way: e.g., [x-(>.), x+(>.)] = [m~, md->.]. Or one may have 
x- and x+ depending on two independent parameters >. and >.' such 
that [x-(>.), x+(>.')] = [m~, m*>.]. Note that the intersection of all such 
generated intervals is not empty so as to ensure the normalization of M. 

The first view is more general than the second one, and can be under
stood as the specification of an imprecise probability function; and the third 
view is also more general, since the second view corresponds to a random 
process that delivers nested intervals as a whole (hence a clear dependence 
between endpoints) while the third view is one where end-points of the in
terval are separately generated, possibly in an independent way. A thorough 
development of each point of view is a matter of further research. 

7.1 The Mean Interval and Defuzzification 

The simplest non-fuzzy substitute of the fuzzy interval is its core (or its 
mode when it is a fuzzy number). In Dubois and Prade (1980), what is called 
mean value of a fuzzy number is actually its modal value. Under the random 
set interpretation of a fuzzy interval, upper and lower mean values of M 
in the sense of Dempster {1967), can be defined, i.e., E*(M) and E*(M), 
respectively, suchthat (Dubois and Prade, 1987; Heilpern, 1992): 

1 

E*(M) = j (supMOI.)da; 

0 
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1 

E. (M) = J (inf Mcx) da. 

0 

Note that these expressions are Choquet integrals with respect to the 
possibility and the necessity measures induced by M. The mean mean interval 
of a fuzzy interval M is defined as E ( M) = [ E* ( M), E* ( M) ]. It is also the 
interval containing the mean values of all random variables compatible with 
M(i.e., PE PM). That the mean value of a fuzzy interval is an interval seems 
to be intuitively satisfactory. Particularly the mean interval of a (regular) 
interval [a, b] is this interval itself. The same mean interval obtains in the 
three probabilistic settings for fuzzy intervals. 

The upper and lower mean values (Equations (10.8) or (10.9)) areadditive 
with respect to the fuzzy addition, since they satisfy, for u.s.c. fuzzy intervals 
(Dubois and Prade, 1987; Heilpern, 1992): 

E*(M tB N) = E*(M) + E*(N); 

E*(M tB N) = E*(M) + E*(N). 

This property is a consequence of the additivity of Choquet integral for the 
sum of comonotonic functions . 

Finding a scalar representative value of a fuzzy interval is often called 
defuzzification in the literature of fuzzy control (See Yager and Filev, 1993, 
1994, and Van Leekwijk and Kerre, 1999 for extensive overviews). Various 
proposals exist: 

-) the mean of maxima (MOM), which is the middle point in the core of 
the fuzzy interval M, 

-) the center of gravity. This is the center of gravity of the support of M, 
weighted by the membership grade. 

-) the center of area (median): This is the point of the support of M that 
equally divides the area under the membership function. 

The MOM soundsnatural as a representative of a fuzzy interval M in the 
scope of possibility theory where values of highest possibility are considered 
as default plausible values. This is in the particular case when the maximum 
is unique. However it makes sense especially if a revision process is in order, 
that may affect the MOM, by deleting the mostplausible values upon arrival 
of new information. In a numerical perspective, the MOM clearly does not 
exploit all the information contained in M since it neglects the membership 
function. Yager and Filev (1993) present a general methodology for extracting 
characteristic values from fuzzy intervals. They show that all methods come 
down to a possibility-probability transformation followed by the extraction of 
characteristic value such as a mean value. Note that the MOM, the center of 
gravity and the center of area come down to renormalizing the fuzzy interval 
as a probability distribution and computing its mode, expected value or its 
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median, respectivelyo These approaches are debatable, because the renormal
ization technique is itself arbitrary since the obtained probability may not 
belang to PM, the set of probabilities dominated by the possibility measure 
attached to M (Dubois and Prade, 1980)0 

In view of the quantitative possibility setting, it seems that the most nat
ural defuzzication proposal is the middle point of the mean interval (Yager, 
1981) 

1 

ß# (M) = I (inf Mcr. ~ sup Mcr.) da 

0 

E* (M) + E* (M) 
= 

2 

Only the mean interval accounts for the specific possibilistic nature of the 
fuzzy interval. The choice of the middle point expresses a neutral attitude of 
the user and extends the MOM to an average mean of cutso Other choices 
are possible, for instance using a weighted average of E*(M) and E*(M)o 

E(M) has a natural interpretation in terms of simulation of a fuzzy vari
able, an idea originally due to Kaufmann (1980) and Yager (1982)0 Chanas 
and Nowakowski (1988) investigate this problern in greater detail. Namely, 
consider the two step random generator which selects a cut at random (by 
choosing a. E (0, 1]), and a number in the cuto The corresponding random 
quantity is x( a., .X) = .X 0 inf Mcr. + (1 - .X) 0 sup Mcr.o The mean value of this 
random variable is ß#(M)o It corresponds to the mean value of the Shap
ley value PM E PM obtained by considering cuts as uniformly distributed 
probabilities (Dubois, Prade and Sandri, 1993) : 

1 

p M (X) = I M>.. (X) d.X 
(sup M>.. - inf M>..) 

0 

PM is in fact, the center of gravity of PMoThe mean value ß#(M) is linear in 
the sense of fuzzy addition and scalar multiplication (Fortemps and Roubens, 
1996)0 

7.2 Calculations with Possibilistic Variables 

The extension principle of Zadeh (1975) can be explained in a random set 
viewo Consider a two place function fo If a joint possibility relating two 
variables x 1 and x2 is separable, i.eo, 1r = min(1r1, 1r2), then the possibility 
distribution 1rf of f ( 1!"1, 1r2) is 

1rf ( { v}) = { sup { min ( 1r1 ( u1) , 1r2 ( u2)) : f ( u1, u2) = v} if f- 1
0 

( { v}) =/= 0 
0 otherw1se 
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In the setting of random sets, the above notion of joint possibility dis
tributions relies on a dependence assumption between confidence levels. It 
presupposes that if the first random process delivers a cut (A1 ).x of 1l'1 then 
the other one delivers (A2 ).x for the same value of .X. Two nested random 
sets with associated one-point coverage functions 1l'1 and 1l'2 then produce a 
nested random set of one-point coverage function min('iTI> 1l'2 ). In other words, 
it comes down to working with confidence intervals with the same levels of 
confidence. 

On the contrary, the assumption that cuts (AI).x and (A2 )v may bejointly 
observed will not lead to a nested random set, hence is not equivalent to a 
joint possibility distribution (Dubois and Prade, 1991). Assuming indepen
dence between the choice of confidence levels leads to compute 'iTf by means 
of a counterpart of Dempster rule of combination of belief functions, where 
the intersection of focal sets is changed into interval computations on cut 
intervals. The result can be approximated by a possibility distribution ob
tained by a sup-product extension principle (Dubois and Prade, 1990) This 
setting encompasses both fuzzy interval and random variable computation. 

8 Conclusion 

Quantative possibility theory seems to be a promising framework for proba
bilistic reasoning under incomplete information. This is because some fami
lies of probability measures can be encoded by possibility distributions. The 
simplicity of possibility distributions make them attractive for practical ap
plications of imprecise probabilities (De Cooman, 2001). Of course the prob
abilistic view is only one among other interpretive settings for possibility 
measures. Besides, cognitive studies for the empirical evaluation of possi
bility theory have recently appeared (Raufaste, Da Silva Neves, 1998). Their 
experiments suggest "that human experts might behave in a way that is closer 
to possibilistic predictions than probabilistic ones". The cognitive validation 
of possibility theory is clearly an important issue for a better understanding 
of when possibility theory is most appropriate. 
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Abstract. The perception-based theory of probabilistic reasoning which is out
lined in this paper is not in the traditional spirit. Its principal aim is to lay the 
groundwork for a radical enlargement of the role of naturallanguages in probability 
theory and its applications, especially in the realm of decision analysis. To this end, 
probability theory is generalized by adding to the theory the capability to operate 
on perception-based information, e.g., "Usually Robert returns from work at about 
6 p.m", or "It is very unlikely that there will be a significant increase in the price of 
oil in the near future". A key idea on which perception-based theory is based is that 
the meaning of a proposition, p, which describes a perception, may be expressed as 
a generalized constraint of the form X isr R, where X is the constrained variable, 
R is the constraining relation and isr is a copula in which r is a discrete variable 
whose value defines the way in which R constrains X. In the theory, generalized 
constraints serve to define imprecise probabilities, utilities and other constructs, 
and generalized constraint propagation is employed as a mechanism for reasoning 
with imprecise probabilities as weil as for computation with perception-based in
formation. 

Key words: Perception-based information; Fuzzy set theory; Fuzzy logic; Gener
alized constraints; Constraint languages 

1 Introduction 

Interest in probability theory has grown markedly during the past decade. 
Underlying this growth is the ballistic ascent in the importance of informa
tion technology. A related cause is the concerted drive toward automation 
of decision-making in a wide variety of fields ranging from assessment of 
creditworthiness, biometric authentication, and fraud detection to stock mar
ket forecasting, and management of uncertainty in knowledge-based systems. 
Probabilistic reasoning plays a key role in these and related applications. 

A side effect of the growth of interest in probability theory is the widen
ing realization that most real-world probabilities are far from being precisely 

* Reprinted from Journal of Statistical Planning and Inference 105 (2002), 233-264, 
with kind permission from Elsevier Science 
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known or measurable numbers. Actually, reasoning with imprecise probabili
ties has a long history (Walley, 1991) but the issue is of much greater impor
tance today than it was in the past, largely because the vast increase in the 
computational power of information processing systems makes it practicable 
to compute with imprecise probabilities to perform computations which are 
far more complex and less amenable to precise analysis than computations 
involving precise probabilities. 

Transition from precise probabilities to imprecise probabilities in proba
bility theory is a form of generalization and as such it enhances the ability 
of probability theory to deal with real-world problems. The question is: Is 
this mode of generalization sufficient? Is there a need for additional modes of 
generalization? In what follows, I argue that the answers to these questions 
are, respectively, No and Yes. In essence, my thesisisthat what is needed is 
a move from imprecise probabilities to perception-based probability theory-a 
theory in which perceptions and their descriptions in a naturallanguage play 
a pivotal role. 

The perception-based theory of probabilistic reasoning which is outlined 
in the following is not in the traditional spirit. Its principal aim is to lay 
the groundwork for a radical enlargement in the role of natural languages 
in probability theory and its applications, especially in the realm of decision 
analysis. 

For convenience, Iet PT denote standard probability theory of the kind 
found in textbooks and taught in courses. What is not in dispute is that 
standard probability theory provides a vast array of concepts and techniques 
which are highly effective in dealing with a wide variety of problems in which 
the available information is lacking in certainty. But alongside such problems 
we see many very simple problems for which PT offers no solutions. Here are 
a few typical examples: 

1. What is the probability that my tax return will be audited? 
2. What is the probability that my car may be stolen? 
3. How long does it take to get from the hotel to the airport by taxi? 
4. Usually Robert returns from work at about 6 p.m. What is the probability 

that he is home at 6:30 p.m.? 
5. A box contains about 20 balls of various sizes. A few are small and several 

are large. What is the probability that a ball drawn at random is neither 
large nor small? 

Another dass of simple problems which PT cannot handle relates to com
monsense reasoning (Kuipers, 1994; Fikes and Nilsson, 1971; Smithson, 1989; 
Shen and Leitch, 1992; Novak et al., 1992; Krause and Clark, 1993) exempli
fied by 

6. Most young men are healthy; Robert is young. What can be said about 
Robert's health? 
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7. Most young men are healthy; it is likely that Robert is young. What can 
be said about Robert's health? 

8. Slimness is attractive; Cindy is slim. What can be said about Cindy's 
attractiveness? 

Questions of this kind are routinely faced and answered by humans. The 
answers, however, are not numbers; they are linguistic descriptions of fuzzy 
perceptions of probabilities, e.g., not very high, quite unlikely, about 0.8, etc. 
Such answers cannot be arrived at through the use of standard probability 
theory. This assertion may appear to be in contradiction with the existence 
of a voluminous Iiterature on imprecise probabilities (Walley, 1991). In may 
view, this is not the case. 

What are the sources of difficulty in using PT? In Problems 1 and 2, the 
difficulty is rooted in the basic property of conditional probabilities, namely, 
given P(X), all that can be said about P(XIY) isthat its value is between 
0 and 1, assuming that Y is not contained in X or its complement. Thus, 
if I start with the knowledge that 1% of tax returns are audited, it tells 
me nothing about the probability that my tax return will be audited. The 
same holds true when I add more detailed information about myself, e.g., my 
profession, income, age, place of residence, etc. The Interna! Revenue Service 
may be able to tell me what fraction of returns in a particular category are 
audited, but all that can be said about the probability that my return will 
be audited is that it is between 0 and 1. The tax-return-audit example raises 
some non-trivial issues which are analyzed in depth in a paper by Nguyen et 
al. (1999). 

A closely related problern which does not involve probabilities is the fol
lowing. 

Consider a function, y = f(x), defined on an interval, say [0; 10], which 
takes values in the interval [0; 1]. Suppose that I am given the average value, 
a, of f over [0; 10], and am asked: What is the value of f at x = 3? Clearly, 
all I can say isthat the value is between 0 and 1. 

Next, assume that I am given the average value of f over the interval 
[2; 4], and am asked the same question. Again, all I can say is that the value 
is between 0 and 1. As the length of the interval decreases, the answer remains 
the same so long as the interval contains the point x = 3 and its length is not 
zero. As in the previous example, additional information does not improve 
my ability to estimate /(3). The reason why this conclusion appears to be 
somewhat counterintuitive is that usually there is a tacit assumption that f 
is a smooth function. In this case, in the limit the average value will converge 
to /(3). Note that the answer depends on the way in which smoothness is 
defined. 

In Problem 3, the difficulty is that we are dealing with a time series 
drawn from a nonstationary process. When I pose the question to a hotel 
clerk, he/she may tell me that it would take approximately 20-25 min. In 
giving this answer, the clerk may take into consideration that it is raining 
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lightly and that as a result it would take a little Ionger than usual to get to 
the airport. PT does not have the capability to operate on the perception
based information that "it is raining lightly" and factor-in its effect on the 
time of travel to the airport. 

In problems 4-8, the difficulty is more fundamental. Specifically, the prob
lern is that PT-as stated above-has no capability to operate on perceptions 
described in a naturallanguage, e.g., "usually Robert returns from work at 
about 6 p.m.", or "the box contains severallarge balls" or "most young men 
are healthy". This is a basic shortcoming that will be discussed in greater 
detail at a later point. 

What we seeisthat standard probability theory has many strengths and 
many limitations. The limitations of standard probability theory fall into 
several categories. To see the min a broad perspective, what has to be con
sidered is that a basic concept which is immanent in human cognition is that 
of partiality. Thus, we accept the reality of partial certainty, partial truth, 
partial precision, partial possibility, partial knowledge, partial understand
ing, partial belief, partial solution and partial capability, whatever it may be. 
Viewed through the prism of partiality, probability theory is, in essence, a 
theory of partial certainty and randombehavior. What it does not address-at 
least not explicitly-is partial truth, partial precision and partial possibility
facets which are distinct from partial certainty and fall within the province of 
fuzzy logic {FL) (Zadeh, 1978; Dubois and Prade, 1988; Novak, 1991; Klir and 
Folger, 1988; Reghis and Roventa, 1998; Klir and Yuan, 1995; Grabisch et al., 
1995). This observation explains why PT and FL are, for the most part, com
plementary rather than competitive (Zadeh, 1995; Krause and Clark, 1993; 
Thomas, 1995). 

A simple example will illustrate the point. Suppose that Robert is three
quarters German and one-quarter French. If he were characterized as German, 
the characterization would be imprecise but not uncertain. Equivalently, if 
Robert stated that he is German, his statement would be partially true; 
more specifically, its truth value would be 0. 75. Again, 0. 75 has no relation 
to probability. 

Within probability theory, the basic concepts on which PT rests do not 
reflect the reality of partiality because probability theory is based on two
valued Aristotelian logic. Thus, in PT, a process is random or not random; 
a time series is stationary or not stationary; an event happens or does not 
happen; events A and B are either independent or not independent; and so 
on. The denial of partiality of truth and possibility has the effect of seriously 
restricting the ability of probability theory to deal with those problems in 
which truth and possibility are matters of degree. 

A case in point is the concept of an event. Arecent Associated Press article 
carried the headline, "Balding on Top Tied to Heart Problems; Risk of disease 
is 36 percent higher, a study finds". Now it is evident that both balding on 
top, and heart problems, are matters of degree or, more concretely, are fuzzy 
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Fig. 1. f-Granularity (fuzzy granularity). 

events, as defined in Zadeh (1968), Kruse and Meyer (1987) and Wang and 
Klir (1992). Such events are the norm rather than exception in real-world 
settings. And yet, in PT the basic concept of conditional probability of an 
event B given an event A is not defined when A and B are fuzzy events. 

Another basic, and perhaps more serious, Iimitation is rooted in the fact 
that, in general, our assessment of probabilities is based on information which 
is a mixture of measurements and perceptions (Vallee, 1995; Barsalou, 1999). 
Reflecting the bounded human ability to resolve detail and store information, 
perceptions are intrinsically imprecise. More specifically, perceptions are f
granular (Zadeh, 1979, 1997), that is: (a) perceptions are fuzzy in the sense 
that perceived values of variables are not sharply defined and (b) perceptions 
are granular in the sense that perceived values of variables are grouped into 
granules, with a granule being a clump of points drawn together by indistin
guishability, similarity, proximity or functionality (Fig. 1). For example, the 
fuzzy granules of the variable Age might be young, middle-aged and old (Fig. 
2). Similarly, the fuzzy granules of the variable Probability might be likely, 
not likely, very unlikely, very likely, etc. 

Perceptions are described by propositions expressed in a naturallanguage. 
For example 

• Dana is young, 
• it is a warm day, 
• it is likely to rain in the evening, 
• the economy is improving, 
• a box contains several large balls, most of which are black. 

An important dass of perceptions relates to mathematical constructs such 
as functions, relations and counts. For example, a function such as shown in 
Fig. 3 may be described in words by a collection of linguistic rules (Zadeh, 
1973, 1975, 1996) . 

In particular, a probability distribution, e.g., discrete-valued probability 
distribution of Carol's age, P*, may be described in words as 
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Fig. 3. Coarse description of a function by a collection of linguistic rules. Linguistic 
representation is perception-based. 

Prob{ Carol is young } is low, 

Prob{ Carol is middle-aged } is high, 

Prob{ Carol is old } is low 

or as a linguistic rule-set 

if Age is young then P* is low , 

if Age is middle-aged then P * is high, 

if Age is old then P* is low . 

For the latter representation, using the concept of a fuzzy graph (Zadeh, 
1996, 1997), which will be discussed later, the probability distribution of 
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Fig. 4. Cartesian granulation. Granulation of X and Y induces granulation of 
(X, Y). 
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Fig. 5 . CStructure of information: measurement-based, perception-based and 
pseudo-measurement based information. 

Carol's age may be represented as a fuzzy graph and written as 

P* = young x low + middle - aged x high + old x low 

which, as shown in Fig. 4, should be interpreted as a disjunction of cartesian 
products of linguistic values of Age and Probability (Zadeh, 1997; Pedrycz 
and Gomide, 1998). 

An important observation is in order. If I were asked to estimate Carol's 
age, it would be unrealistic to expect that I would come up with a numerical 
probability distribution. But I would be able to describe my perception of 
the probability distribution of Carol's age in a natural language in which 
Age and Probability are represented-as described above-as linguistic, that is, 
granular variables (Zadeh, 1973, 1975, 1996, 1997) . 
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Fig. 6 . f-Generalization (fuzzification) . Fuzzification is a mode of generalization 
from crisp concepts to fuzzy concepts. 

Information which is conveyed by propositions drawn from a naturallan
guage will be said to be perception-based (Fig. 5) . 

In my view, the most important shortcoming of standard probability the
ory is that it does not have the capability to process perception-based in
formation. lt does not have this capability principally because there is no 
mechanism in PT for ( a) representing the meaning of perceptions and (b) 
computing and reasoning with representations of meaning. 

To add this capability to standard probability theory, three stages of 
generalization are required. 

The firststage is referred to as f-generalization (Zadeh, 1997). In this mode 
of generalization, a point or a set is replaced by a fuzzy set. f-generalization 
of standard probability theory, PT, leads to a generalized probability theory 
which will be denoted as PT+. In relation to PT, PT+ has the capability to 
deal with 

1. fuzzy numbers, quantifiers and probabilities, e.g., about 0.7, most, not 
very likely, 

2. fuzzy events, e.g., warm day, 
3. fuzzy relations, e.g., much larger than, 
4. fuzzy truths and fuzzy possibilities, e.g., very true, quite possible. 

In addition, PT+ has the potential-as yet largely unrealized-to fuzzify such 
basic concepts as independence, stationarity and causality. A move in this 
direction would be a significant paradigmshift in probability theory. 

The second stage is referred to as f.g-generalization (fuzzy granulation) 
(Zadeh, 1997). In this mode of generalization, a point or a set is replaced by 
a granulated fuzzy set (Fig. 6). For example, a function, J, is replaced by 
its fuzzy graph, f* (Fig. 7). f.g-generalization of PT leads to a generalized 
probability theory denoted as PT++. 

PT++ adds to PT+ further capabilities which derive from the use of 
granulation. They are, mainly 
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Fig. 7. Fuzzy graph of a function. A fuzzy graph is a generalization of the concept 
of a graph of a function. 
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Fig. 8. Representation of most . Crisp, fuzzy and f-granular . 

1. linguistic (granular) variables, 
2. linguistic (granular) functions and relations, 
3. fuzzy rule-sets and fuzzy graphs, 
4. granular goals and constraints, 
5. granular probability distributions. 

As a simple example, representation of the membership function of the fuzzy 
quantifier most (Zadeh, 1983) in PT, PT+ and PT++ is shown in Fig. 8. 

The third stage is referred to a p-generalization (perceptualization) . In 
this mode of generalization, what is added to PT++ is the capability to pro
cess perception-based information through the use of the computational the
ory of perceptions (CTP) (Zadeh, 1999, 2000) . p-generalization of PT leads 
to what will be referred to as perception-based probability theory (PTp ). 

The capability of PTp to process perception-based information has an 
important implication. Specifically, it opens the door to a major enlargement 
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Fig. 9. Countertraditional conversion of measurements into perceptions. Tradition
ally, perceptions are converted into measurements. 

of the role of naturallanguages in probability theory. As a simple illustration, 
instead of describing a probability distribution, P, analytically or numerically, 
as we normally do, P could be interpreted as a perception and described as 
a collection of propositions expressed in a naturallanguage. A special case of 
such description is the widely used technique of describing a function via a 
collection of linguistic if-then rules (Zadeh, 1996). For example, the function 
shown in Fig. 7 may be described coarsely by the rule-set 

f: if Xis small then Y is smal, 

if X is medium then Y is Zarge, 

if X is Zarge then Y is small, 

with the understanding that the coarseness of granulation is a matter of 
choice. 

In probability theory, as in other fields of science, it is a long-standing 
tradition to deal with perceptions by converting them into measurements. 
PTp does not put this tradition aside. Rather, it adds to PT a countertradi
tional capability to convert measurements into perceptions, or to deal with 
perceptions directly, when conversion of perceptions into measurements is 
infeasible, unrealistic or counterproductive (Fig. 9). 

There are three important points that are in need of clarification. First, 
when we allude to an enlarged role for naturallanguages in probability the
ory, what we have in mind is not a commonly used natural language but a 
subset which will be referred to as a precisiated naturallanguage (PNL). In 
essence, PNL is a descriptive language which is intended to serve as a basis 
for representing the meaning of perceptions in a way that lends itself to com
putation. As will be seen later, PNL is a subset of a naturallanguage which 
is equipped with constraint-centered semantics and is translatable into what 
is referred to as the generalized constraint language (GCL). At this point, it 
will suffice to observe that the descriptive power of PNL is much higher than 
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that of the subset of a natural langnage which is translatable into predicate 
logic. 

The second point is that in moving from measurements to perceptions, 
we move in the direction of lesser precision. The underlying rationale for 
this move is that precision carries a cost and that, in general, in any given 
situation there is a tolerance for imprecision that can be exploited to achieve 
tractability, robustness, lower cost and better rapport with reality. 

The third point is that perceptions are more general than measurements 
and PTp is more general that PT. Reflecting its greater generality, PTp has a 
more complex mathematical structure than PT and is computationally more 
intensive. Thus, to exploit the capabilities of PT, it is necessary to have the 
capability to perform large volumes of computation at a low level of precision. 

Perception-based probability theory goes far beyond standard probability 
theory both in spirit and in content. Full development of PT P will be a long 
and tortuous process. In this perspective, my paper should be viewed as a 
sign pointing in a direction that departs from the deep-seated tradition of 
according more respect to numbers than to words. 

Basically, perception-based probability theory may be regarded as the sum 
of standard probability theory and the computational theory of perceptions. 
The principal components of the computational theory of perceptions are (a) 
meaning representation and (b) reasoning. These components of CTP are 
discussed in the following sections. 

2 The basics of perception-based probability theory; 
the concept of a generalized constraint 

As was stated already, perception-based probability theory may be viewed as 
a p-generalization of standard probability theory. In the main, this general
ization adds to PT the capability to operate on perception-based information 
through the use of the computational theory of perceptions. What follows is 
an informal precis of some of the basic concepts which underlie this theory. 

To be able to compute and reason with perceptions, it is necessary to have 
a means of representing their meaning in a form that lends itself to computa
tion. In CTP, this is clone through the use of what is called constraint-centered 
semantics of naturallanguages (CSNL) (Zadeh, 1999). 

A concept which plays a key role in CSNL is that of a generalized con
straint (Zadeh, 1986). Introduction of this concept is motivated by the fact 
that conventional crisp constraints of the form X E C, where X is a variable 
and C is a set, are insufficient to represent the meaning of perceptions. 

A generalized constraint is, in effect, a family of constraints. An uncondi
tional constraint on a variable X is represented as 

X isr R, (1) 
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Fig. 10. Membership function of young (context-dependent). Two modes of pre
cisiation. 

where R is the constraining relation and isr, pronounced as ezar, is a variable 
copula in which the discrete-valued variable r defines the way in which R 
constrains X. 

The principal constraints are the following: 
r ·-
r: blank 

r:v 

r:p 

r: pv 

r: rs 

r: fg 

r:u 

equality constraint; X = R 
possibilistic constraint; X is R; R is the possibility 
distribution of X (Zadeh; 1978; Dubois and Prade; 1988) 
veristic constraint; X isv R; R is the verity distribution of 
X (Zadeh; 1999) 
probabilistic constraint; X isp R; R is the probability 
distribution of X 
probability-value constraint; X ispv R; X is the probability 
of a fuzzy event (Zadeh, 1968) and R is its value 
random set constraint; X isrs R; R is the fuzzy-set-valued 
probability distribution of X 
fuzzy graph constraint; X isfg R; X is a function and R is 
its fuzzy graph 
usuallity constraint; X isu R; means: usually (X is R). 

As an illustration, the constraint 

Carol is young 

in which young is a fuzzy set with a membership function such as shown 
in Fig. 10, is a possibilistic constraint on the variable X : Age(Carol). This 
constraint defines the possibility distribution of X through the relation 

Poss{X = u} = /-Lyoung(u), 

where u is a numerical value of Age; /-Lyoung is the membership function of 
young; and Poss{ X = u} is the possibility that Carol's age is u. 
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Fig. 11. Membership function of likely (context-dependent). 

The veristic constraint 
X isv R (2) 

means that the verity ( truth value) of the proposition {X = u} is equal to 
the value of the verity distribution R at u. For example, in the proposition 
"Alan is half German, quarter French and quarter Italian", the verity of the 
proposition "Alan is German" is 0.5 . It should be noted that the numbers 
0.5 and 0.25 are not probabilities. 

The probabilistic constraint 

(3) 

means that X is a normally distributed random variable with mean m and 
variance o-2 . 

The proposition 

p : it is likely that Carol is young (4) 

may be expressed as the probability-value constraint 

Prob{Age(Carol)is young}is likely. (5) 

In this expression, the constrained variable is X :Prob{Age(Carol) is young} 
and the constraint 

X is likely (6) 

is a possibilistic constraint in which likely is a fuzzy probability whose mem
bership function is shown in Fig. 11. 

In the random-set constraint, X is a fuzzy-set-valued random variable. 
Assuming that the values of X are fuzzy sets {Ai; i = 1, . . . , n} with re
spective probabilities p1 , ... , Pn,the random-set constraint on X is expressed 
symbolically as 

X isrs(pl \A1 + .. . + Pn \An)· (7) 
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It should be noted that a random-set constraint may be viewed as a 
combination of (a) a probabilistic constraint, expressedas 

Xis P(Pl \u1 + ... + Pn \un); Ui EU (8) 

and a possibilistic constraint expressed as 

(X, Y) is R, (9) 

where R is a fuzzy relation defined on U x V, with membership function 
f-lR: u X V----> [0; 1]. 

If Ai is a section of R, defined as in Zadeh (1997) by 

/-lA, (v) = f-lR (ui, v), (10) 

then the constraint on Y is a random-set constraint expressed as 

Y isrs (PI \A1 + ... + Pn \An)· (11) 

Another point that should be noted is that the concept of a random
set constraint is closely related to the Dempster-Shafer theory of evidence 
(Dempster, 1967; Shafer, 1976) in which the focal sets are allowed to be 
fuzzy sets (Zadeh, 1979). 

In the fuzzy-graph constraint 

X isfg R, 

the constrained variable, X , is a function,j, and R is a fuzzy graph (Zadeh, 
1997) which plays the role of a possibility distribution of X . More specifi
cally, if f: U x V----> [0;1] and Ai; i = 1, ... ,m and Bj, j = 1, ... ,n, are, 
respectively, fuzzy granules in U and V (Fig. 12), then the fuzzy graph of f 
is the disfunction of cartesian products (granules) Ui X VJ , expressed as 

f* = 

m,n 

~ U· X V:. L.-t 2 J, 

i=l,j=l 

with the understanding that the symbol L should be interpreted as the 
union rather than as an arithmetic sum, and Ui and Vj take values in the 
sets {AI, ... , Am} and {BI, ... , Bn}, respectively. 

A fuzzy graph of f may be viewed as an approximate representation of f. 
Usually, the granules Ai and Bj play the role of values of linguistic variables. 
Thus, in the case of the function shown in Fig. 7, its fuzzy graph may be 
expressed as 

j* = small x small +medium x Zarge+ Zarge x small. (12) 
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Fig. 12. Fuzzy-graph constraint. f* is a fuzzy graph which is an approximate rep
resentation of f. 

Equivalently, if f is written as Y = f(X), then f* may be expressed as 
the rule-set 

f* : if X is small then Y is small, 

if X is medium then Y is Zarge, 

if X is Zarge then Y is small, 

This rule-set may be interpreted as a description-in a naturallanguage-of 
a perception of f. 

The usuallity constraint is a special case of the probability-value con
straint. Thus, 

X isu A, 

should be interpreted as an abbreviation of 

usually (X is A), 

which in turn may be interpreted as 

Prob{X is A} is usually , 

(13) 

(14) 

with usually playing the role of a fuzzy probability which is close to 1. In this 
sense, A is a usual value of X . More generally, A is a usual value of X if the 
fuzzy probability of the fuzzy event {Xis A} is close to one and A has high 
specificity, that is, has a tight possibility distribution, with tightness being a 
context-dependent characteristic of a fuzzy set. It is important to note that, 
unlike the concept of the expected value, the usual value of a random variable 
is not uniquely determined by its probability distribution. What this means 
is that the usual value depends on the calibration of the context-dependent 
naturallanguage predicates "close to one" and "high specificity". 

The difference between the concepts of the expected and usual values goes 
to the heart of the difference between precise and imprecise probability the
ories. The expected value is precisely defined and unique. The usual value is 
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context-dependent and hence is not unique. However, its definition is precise 
if the natural language predicates which occur in its definition are defined 
precisely by their membership functions. In this sense, the concept of the 
usual value has a flexibility that the expected value does not have. Further
more, it may be argued that the concept of the usual value is closer to our 
intuitive perception of "expected value" than the concept of the expected 
value as it is defined in PT. 

In the foregoing discussion, we have focused our attention on uncondi
tional generalized constraints. More generally, a generalized constraint may 
be conditional, in which case it is expressed in a generic form as an if-then 
rule 

if X isr R then Y iss S, (15) 

or, equivalently, as 
Y iss S if X isr R. (16) 

Furthermore, a generalized constraint may be exception-qualified, in which 
case it is expressed as 

X isr R unless Y iss S. (17) 

A generalized rule-set is a collection of generalized if-then rules which 
collectively serve as an approximate representation of a function or a rela
tion. Equivalently, a generalized rule-set may be viewed as a description of a 
perception of a function or a relation. 

As an illustration, consider a function, f : (U x V) -t [0; 1], expressed 
as Y = f(X), where U and V are the domains of X and Y , respectively. 
Assurne that U and V are granulated, with the granules of U and V denoted, 
respectively, as Ai; i = 1, ... , m, and Bj, j = 1, ... , n. Then, a generic form 
of a generalized rule set may be expressed as 

f* : {if X isr Ui then Y iss ltj} i = 1, ... , m; j = 1, ... , n, (18) 

where Ui and ltj take values in the sets {Ab ... , Am} and {BI. ... , Bn}, 
respectively. In this expression, f* represents a fuzzy graph of f. 

A concept which plays a key role in the computational theory of percep
tions is that of the Generalized Constraint Language, GCL (Zadeh, 1999). 
Informally, GCL is a meaning-representation language in which the principal 
semantic elements are generalized constraints. The use of generalized con
straints as its semantic elements makes a GCL a far more expressive language 
than conventional meaning-representation languages based on predicate logic. 

3 Meaning-representation: constraint-centered 
semantics of natural languages 

In perception-based probability theory, perceptions-and, in particular, per
ceptions of likelihood, dependency, count and variations in time and space-are 
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described by propositions drawn from a naturallanguage. To mechanize rea
soning with perceptions, it is necessary to have a method of representing 
the meaning of propositions in a way that lends itself to computation. In the 
computational theory of perceptions, a system that is used for this purpose is 
called the constraint-centered semantics of naturallanguage (CSNL) (Zadeh, 
1999). 

Meaning-representation is a central part of every logical system. Why, 
then, is it necessary to introduce a system that is significantly different from 
the many meaning representation methods that are in use? The reason has to 
do with the intrinsic imprecision of perceptions and, more particularly, with 
their f-granularity. It is this characteristic of perceptions that puts them well 
beyond the expressive power of conventional meaning-representation meth
ods, most of which are based on predicate logic. 

To illustrate, consider the following simple perceptions: 

• Ann is much younger than Mary. 
• A box contains black and white balls of various sizes. Most are large. 

Most of the large balls are black. 
• Usually it is rather cold in San Francisco during the summer. 
• It is very unlikely that there will be a significant increase in the price of 

oil in the near future. 

Conventional meaning-representation methods do not have the capability to 
represent the meaning of such perceptions in a form that lends itself to com
putation. 

A key idea which differentiates CSNL from conventional methods isthat 
the meaning of a proposition, p, drawn from a naturallanguage, is represented 
as a generalized constraint, with the understanding that the constrained vari
able and the constraining relation are, in general, implicit rather than explicit 
in p. For example, in the proposition 

p: likely that Kateis young, 

the constraint is possibilistic; the constrained variable is the probability that 
Kate is young; and the constraining relation is likely. 

The principal ideas and assumptions which underlie CSNL may be sum
marized as follows: 

1. Perceptions are described by propositions drawn from a naturallanguage. 
2. A proposition, p, may be viewed as an answer to a question. In general, 

the question is implicit and not unique. For example, the proposition 
"Carol is young" may be viewed as an answer to the question: "How old 
is Carol'', or as the answer to "Who is young?" 

3. A proposition is a carrier of information. 
4. The meaning of a proposition, p, is represented as a generalized constraint 

which defines the information conveyed by p. 



44 

5. Meaning-representation is viewed as translation from a language into the 
GCL. 

In CSNL, translation of a proposition, p, into GCL is equated to explic
itation of the generalized constraint which represents the meaning of p. In 
symbols 

translation X . R 
p 1. . . tsr . 

exp tcltat10n 
(19) 

The right-hand member of this relation is referred to as a canonical form of 
p, written as CF(p). Thus, the canonical form of p places in evidence (a) the 
constrained variable which, in general, is implicit in p; (b) the constraining 
relation, R; and (c) the copula variabler which defines the way in which R 
constrains X . 

The canonical form of a question, q, may be expressed as 

CF(q): X isr ?R (20) 

and read as "What is the generalized value of X?" 
Similarly, the canonical form of p, viewed as an answer to q, is expresed 

as 
CF(p): X isr R (21) 

and reads "The generalized value of X isr R". As a simple illustration, if the 
question is "How old is Carol?", its canonical form is 

CF(q): Age(Carol) is ?R. (22) 

Correspondingly, the canonical form of 

p : Carol is young (23) 

is 
CF(p) : Age(Carol) is young. (24) 

If the answer to the question is 

p : it is likely that Carol is young (25) 

then 
CF(p) : Prob{Age(Carol) is young} is likely (26) 

More explicitly, if Age(Carol) is a random variable with probability den
sity g, then the probability measure (Zadeh, 1968) of the fuzzy event "Carol 
is young" may be expressed as 

120 

~ ~young(u)g(u)du, 
0 

(27) 
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where /-Lyoung is the membership function of youngo Thus, in this interpreta
tion the constrained variable is the probability density g, and, as will be seen 
later, the membership function of the constraining relation is given by 

( 
120 ) 

/-LR (g) = /-Llikely / /-Lyoung(u)g(u)du o (28) 

A concept which plays an important role in CSNL is that of cardinality, 
that is, the count of elements in a fuzzy set (Zadeh, 1983; Ralescu, 1995; Haf
fek, 1998)0 Basically, there are two ways in which cardinality can be defined: 
(a) crisp cardinality and (b) fuzzy cardinality (Zadeh, 1983; Ralescu et al., 
1995; Ralescu, 1995)0 In the case of (a), the count of elements in a fuzzy set 
is a crisp number; in the case of (b) it is a fuzzy numbero For our purposes, 
it will suffice to restriet our attention to the case where a fuzzy set is defined 
on a finite set and is associated with a crisp count of its elementso 

More specifically, consider a fuzzy set A defined on a finite set U = 
{ u1 , 0 0 0, un} through its membership function /-LA : U ---> [0; 1]0 The sigma
count of A is defined as 

n 

LCount(A) = LI-LA(ui)o (29) 
i=l 

If A and B are fuzzy sets defined on U, then the relative sigma-count, 
2::: Count(A = B), is defined as 

where 1\ = min, and summations are arithmetico 
As a simple illustration, consider the perception 

p: most Swedes are tallo 

In this case, the canonical form of p may be expressed as 

(30) 

1 n 
CF(p): L Count(tall o Swedes / Swedes) is - L /-Ltall 0 Swede(ui), (31) 

n i=l 

where Ui is the height of the ith Swede and /-Ltall 0 Swede ( Ui) is the grade of 
membership of the ith Swede in the fuzzy set of tall Swedeso 

In a general setting, how can a given proposition, p, be expressed in its 
canonical form? A framework for translation of propositions drawn from a 
natural language into GCL is partially provided by the conceptual structure 
of test-score semantics (Zadeh, 1981)0 In this semantics, X and Rare defined 
by procedures which act on an explanatory database, ED, with ED playing 
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the role of a collection of possible worlds in possible world semantics (Cress
well, 1973). As a very simple illustration, consider the proposition (Zadeh, 
1999) 

p : Carol lives in a small city near San Francisco 

and assume that the explanatory database consists of three relations: 

ED = POPULATION[Name;Residence] (32) 

+ SMALL[City; t-L] + NEAR[City1; City2; fL]. 

In this case, 

X= Residence(Carol) =Residence POPULATION[Name = Carol], (33) 

R = SMALL[City;] ncityl NEAR[City2 = SanFrancisco]. (34) 

In R, the first constituent is the fuzzy set of small cities; the second con
stituent is the fuzzy set of cities which are near San Francisco; and n denotes 
the intersection of these sets. Left subscripts denote projections, as defined 
in Zadeh (1981). 

There are many issues relating to meaning-representation of perception
based information which go beyond the scope of the present paper. The brief 
outline presented in this section is sufficient for our purposes. In the following 
section, our attention will be focused on the basic problern of reasoning based 
on generalized constraint propagation. The method which will be outlined 
contains as a special case a basic idea suggested in an early paper of Good 
(1962). A related idea was employed in Zadeh (1955). 

4 Reasoning based on propagation of generalized 
constraints 

One of the basic problems in probability theory is that of computation of 
the probability of a given event from a body of knowledge which consists of 
information about the relevant functions, relations, counts, dependencies and 
probabilities of related events. 

As was alluded to earlier, in many cases the available information is a 
mixture of measurements and perceptions. Standard probability theory pro
vides a vast array of tools for dealing with measurement-based information. 
But what is not provided is a machinery for dealing with information which 
is perception-based. This limitation of PT is exemplified by the following 
elementary problems-problems in which information is perception-based. 

1. X is a normally distributed random variable with small mean and small 
variance. Y is much larger than X. What is the probability that Y is 
neither small nor large? 
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2. Most Swedes are tall. 
Most Swedes are blond. 
What is the probability that a Swede picked at random is talland blond? 

3. Consider a perception-valued times series 

in which the ti's are perceptions of, say temperature, e.g., warm, very 
warm, cold, .... For simplicity, assume that the ti's are independent and 
identically distributed. Furthermore, assume that the ti 's range over a 
finite set of linguistic values, A 1 ; A2 , ... , An, with respective probabilities 
P1 , ... , Pn. What is the average value ofT? 

To be able to compute with perceptions, it is necessary, as was stressed 
already, to have a mechanism for representing their meaning in a form that 
lends itself to computation. In the computational theory of perceptions, this 
purpose is served by the constraint-centered semantics of naturallanguages. 
Through the use of CSNL, propositions drawn from a natural language are 
translated into the GCL. 

The second stage of computation involves generalized constraint propa
gation from premises to conclusions. Restricted versions of constraint prop
agation are considered in Zadeh (1979), Bowen et al. (1992), Dubois et al. 
(1993), Katai et al. (1992) and Yager (1989). The main steps in generalized 
constraint propagation are summarized in the following. As a preliminary, a 
simple example is analyzed. 

Assurne that the premises consist of two perceptions: 

p1 : most Swedes are tall, 

p2 : most Swedes are blond. 

and the question, q, is: What fraction of Swedes are tall and blond? This 
fraction, then, will be the linguistic value of the probability that a Swede 
picked at random is tall and blond. 

To answer the question, we first convert p 1 ; p 2 and q into their canonical 
forms: 

CF(pl) : L Count(tall . Swedes/ Swedes) is most, (35) 

CF(p2) : L Count(blond. Swedes/Swedes) is most, (36) 

CF(q): L Count(tall n blond 0 SwedesjSwedes) is ?Q, (37) 

where Q is the desired fraction. 
Next, we employ the identity (Zadeh, 1983) 

L Count(AnB)+ L Count(AUB) = L Count(A)+ L Count(B), (38) 
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in which A and B are arbitrary fuzzy sets. Fromth is identity, we can readily 
deduce that 

L Count(A) + L Count(B) - 1 :::; L Count(A n B) (39) 

:::; min(L Count(A), L Count(B)), 

with the understanding that the lower bound is constrained to lie in the inter
val [0; 1]. It should be noted that the identity in question is a generalization 
of the basic identity for probability measures 

P(A n B) + P(A U B) = P(A) + P(B). (40) 

Using the information conveyed by canonical forms, we obtain the bounds 

2most- 1:::; L Count(tall n blond. SwedesjSwedes):::; most, (41) 

which may be expressed equivalently as 

L:Count(tallnblond. SwedesjSwedes) is :::; mostn;::: (2most-1). (42) 

Now 
S most = [0; 1] 

and 
;::: (2most- 1) = 2most- 1, 

in virtue of monotonicity of most (Zadeh, 1999). 
Consequently, 

(43) 

(44) 

L Count( tall n blond . Swedes / Swedes) is 2most - 1 ( 45) 

and hence the answer to the question is 

a: (2most- 1)SwedesT aretalland blond. (46) 

In a more general setting, the principal elements of the reasoning process 
are the following. 

1. Question (query), q. The canonical form of q is assumed tobe 

X isr ?Q. (47) 

2. Premises. The collection of premises expressed in a naturallanguage con
stitutes the initial data set (IDS). 

3. Additional premises which are needed to arrive at an answer to q. These 
premises constitute the external data set (EDS). Addition of EDS to IDS 
results in what is referred to as the augmented data set (IDS+ ). 



Example. Assurne that the initial data set consists of the propositions 

p1 : Carollives near Berkeley, 

p2 : Pat lives near Palo Alto. 

49 

Suppose that the question is: How far is Carol from Pat? The external data 
set in this case consists of the proposition 

distance between Berkeley and Palo Alto is approximately 45 miles. ( 48) 

4. Through the use of CSNL, propositions in IDS+ are translated into the 
GCL. The resulting collection of generalized constraints is referred to as 
the augmented initial constraint set ICS+. 

5. With the generalized constraints in ICS+ serving as antecedent con
straints, the rules which govern generalized constraint propagation in 
CTP are applied to ICS+, with the goal of deducing a set of generalized 
constraints, referred to as the terminal constraint set, which collectively 
provide the information which is needed to compute q. 

The rules governing generalized constraint propagation in the computa
tional theory of perceptions coincide with the rules of inference in fuzzy logic 
(Zadeh, 1999, 2000). In general, the chains of inference in CTP are short 
because of the intrinsic imprecision of perceptions. The shortness of chains 
of inference greatly simplifies what would otherwise be a complex problem, 
namely, the problern of selection of rules which should be applied in suc
cession to arrive at the terminal constraint set. This basic problern plays a 
central role in theorem proving in the context of standard logical systems 
(Fikes and Nilsson, 1971). 

6. The generalized constraints in the terminal constraint set are re-translated 
into a naturallanguage, leading to the terminal data set. This set serves 
as the answer to the posed question. The process of re-translation is 
referred to as linguistic approximation (Pedrycz and Gomide, 1998). Re
translation will not be addressed in this paper. 

The basic rules which govern generalized constraint propagation are of 
the general form 

P1 

P2 

Pk 

Pk+1 
(49) 

where Pl, ... , Pk are the premises and Pk+ 1 is the conclusion. Generally, k = 1 
or 2. 

In a generic form, the basic constraint-propagation rules in CTP are ex
pressed as follows (Zadeh, 1999): 
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1. Conffunctive rule 1: 

X isr R 
X iss S 

X ist T. 
(50) 

The different symbols r; s, t in constraint copulas signify that the constraints 
need not be of the same type. 

2. Conffunctive rule 2: 

3. Disffunctive rule 1: 

4. Disffunctive rule 2: 

5. Proffective rule: 

6. Surffective rule: 

7. Inversive rule: 

where f(X) is a function of X . 

X isr R 
Y iss S 

(X, Y) ist T. 

X isr R 
or X iss S 

X ist T. 

X isr R 
or Y iss S 

(X, Y) ist T. 

(X, Y) isr R 

(Y) iss S. 

X isr R 

(X, Y) iss S. 

f(X) isr R 

X iss S, 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

From these basic rules the following frequently used rules may be derived: 

8. Compositional rule: 
X isr R 

or (X, Y) iss S 

Y ist T. 
(57) 



9. Generalized extension principle: 

f(X) isr R 
g(X) iss S, 
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(58) 

where f and g are given functions. The generalized extension principle is the 
principal rule of inference in fuzzy logic. 

The generic rules lead to specialized rules for various types of constraints. 
In particular, for possibilistic constraints we have, for example (Pedrycz and 
Gomide, 1998) 

Conffunctive rule 1: 
Xis R 
Xis S 

Xis RnS, 

where R and S are fuzzy sets and R nS is their intersection. 
Compositional rule: 

X is R 
(X, Y) isS 

Y is R• S, 

(59) 

(60) 

where R • S is the composition of R and S. If conjunction and disjunction 
are identified with min and max, respectively, then 

f-LR•s(v) = max(min(f.1R(u); f.ls(u; v))), 
u 

where f-LR and /18 are the membership functions of RandS. 
Generalized extension principle (Fig. 13): 

where 

f(X) isr R 
g(X) is g (f-1 (R)), 

f-19(!--l(R))(v) = max f-LR (f (u) .) 
u!v=g(u) 

Compositional rule for probabilistic constraints (Bayes' rule): 

X ispR 
XIY isp S 

Y isp R• S, 

(61) 

(62) 

(63) 

where YIX denotes Y conditioned on X, and R • S is the composition of the 
probability distributions R and S. 

Compositional rule for probabilistic and possibilistic constraints (random
set constraint): 

X ispR 
(X, Y) is S 

Y isrs T, 
(64) 
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Fig. 13. Generalized extension principle. Constaint on f(X) induces on g(X). 

where T is a random set. As was stated at an earlier point , if X takes values 
in a finite set { u 1 , .. . , un} with respective probabilities Pb ... , Pn , then the 
constraint X isp Rmay be expressed compactly as 

X isp (tPi\ui) · 
t=l 

(65) 

When X takes a value ui, the possibilistic constraint (X; Y) is S induces a 
constraint on Y which is given by 

(66) 

where Si is a fuzzy set defined by 

(67) 

From this it follows that when X takes the values u 1, . .. , Un with respec
tive probabilities Pl, . . . , Pn , the fuzzy-set-valued probability distribution of 
Y may be expressed as 

(68) 

This fuzzy-set-valued probability distribution defines the random set Tin the 
random-set constraint 

Y isrs T. (69) 

Conffunctive rule for random set constraints: For the special case in which 
R and S in the generic conjunctive rule are random fuzzy sets as defined 



above, the rule assumes a more specific form: 

m 
X isrs L Pi\Ri 

i=l 
n 

X isrs L qi\Si 
i=l 

m,n 

X isrs L Piqj\ (Ri n Sj) 
i=l,j=l 
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(70) 

In this rule, Ri and Si are assumed to be fuzzy sets. When Ri and Si are 
crisp sets, the rule reduces to the Dempster rule of combination of evidence 
(Dempster, 1967; Shafer, 1976). An extension of Dempster's rule to fuzzy 
sets was described in a paper dealing with fuzzy information granularity 
(Zadeh, 1979). It should be noted that in (4.37) the right-hand member is 
not normalized, as it is in the Dempster-Shafer theory (Strat, 1992). 

The few simple examples discussed above demonstrate that there are 
many ways in which generic rules can be specialized, with each specializa
tion leading to a distinct theory in its own right. For example, possibilis
tic constraints lead to possibility theory (Zadeh, 1978; Dubois and Prade, 
1988); probabilistic constraints lead to probability theory; and random-set 
constraints lead to the Dempster-Shafer theory of evidence. In combination, 
these and other specialized rules of generalized constraint propagation pro
vide the machinery that is needed for a mechanization of reasoning processes 
in the logic of perceptions and, more particularly, in a perception-based the
ory of probabilistic reasoning with imprecise probabilities. 

As an illustration, let us consider a simple problernthat was stated earlier
a typical problern which arises in situations in which the decision-relevant 
information is perception-based. Given the perception: Usually Robert re
turns from work at about 6 p.m.; the question is: What is the probability 
that he is home at 6:30 p.m.? An applicable constraint-propagation rule in 
this case is the generalized extension principle. More specifically, let g denote 
the probability density of the time at which Robert returns from work. The 
initial data set is the proposition 

p : usually Robert returns from work at about 6 p.m. 

This proposition may be expressed as the usuallity constraint 

X isu 6*, (71) 

where 6* is an abbreviation for "about 6 p.m.", and Xis the time at which 
Robert returns from work. Equivalently, the constraint in question may be 
expressed as 

p: Prob{X is 6*} is usually. (72) 
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Fig. 14. Example of an electronically included eps figure 

Using the definition of the probability measure of a fuzzy event (Zadeh, 
1968), the constraint on g may be expressed as 

12 J g (u) f-L6• (u) du is usually, 

0 

where f.L6•(u) is the membership function of6* (Fig. 14). 

(73) 

Let P(g) denote the probability that Robert is at home at 6:30 p.m. This 
probability would be a number if g were known. In our case, information 
about g is conveyed by the given usuallity constraint. This constraint defines 
the possibility distribution of g as a functional : 

(74) 

In terms of g, the probability that Robert is home at 6:30p.m. may be written 
as a functional: 

6:30 

P(g) = j g(u)du. 

0 

(75) 

The generalized extension principle reduces computation of the possibility 
distribution of P to the solution of the variational problern 

subject to 
6:30 

v = j g(u)du. 

0 

(76) 
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The reduction of inference to solution of constrained variational problems is 
a basic feature of fuzzy logic (Zadeh, 1979). 

Solution of variational problems of form ( 4.43) may be simplified by 
a discretization of g. Thus, if u is assumed to take values in a finite set 
U = { u1, ... , Un}, and the respective probabilities are Pl, ... , Pn, then the 
variational problem( 4.43) reduces to the nonlinear program 

subject to 

f-Lp (v) = m:x (f.Lusually (tPi/-L6• (u))) 

m 

v= LPj, 
j=l 

0 ~Pi~ 1, 
n 

~P-1 
~ ~-' 
i=l 

where p =(Pb ... ,Pn), and m is suchthat Um= 6: 30. 

(77) 

In general, probabilities serve as a basis for making a rational decision. As 
an illustration, assume that I want to call Robert at home at 6:30 p.m. and 
have to decide on whether I should call him person-to-person or station-to
station. Assurne that we have solved the variational problem( 4.43) and have in 
hand the value of P defined by its membership function f.Lp(v). Furthermore, 
assume that the costs of person-to-person and station-to-station calls are a 
and b, respectively. 

Then the expected cost of a person-to-person call is 

A=aP, 

while that of a station-to-station call is 

B=b, 

where Ais a fuzzy number defined by (Kaufmann and Gupta, 1985) 

More generally, if X is a random variable taking values in the set of 
numbers U = {ab ... , an} with respective imprecise (fuzzy) probabilities 
Pb ... , Pn, then the expected value of Xis the fuzzy number (Zadeh, 1975; 
Kruse and Meyer, 1987) 

n 

E(X) = L aiPi. (78) 
i=l 
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The membership function of E(X) may be computed through the use of fuzzy 
arithmetic (Kaufmann and Gupta, 1985; Mares, 1994). More specifically, if 
the membership functions of Pi are /Li, then the membership function of E(X) 
is given by the solution of the variational problern 

subject to the constraints 

n 

LUi = 1, 
i=l 

n 

v = Laiui. 
i=l 

(79) 

Returning to our discussion of the Robert example, if we employ a gener
alized version of the principle of maximization of expected utility to decide on 
how to place the call, then the problern reduces to that of ranking the fuzzy 
numbers A and B. The problern of ranking of fuzzy numbers has received 
considerable attention in the literatme (see Pedrycz and Gomide, 1998), and 
a number of ranking algorithms have been described. 

Our discussion of the Robert example is aimed at highlighting some of the 
principal facets of the perception-based approach to reasoning with imprecise 
probabilities. The key point is that reasoning with perception-based infor
mation may be reduced to solution of variational problems. In general, the 
problems are computationally intensive, even for simple examples, but well 
within the capabilities of desktop computers. Eventually, novel methods of 
computation involving neural computing, evolutionary computing, molecular 
computing or quantum computing may turn out to be effective in computing 
with imprecise probabilities in the context of perception-based information. 

As a further illustration of reasoning with perception-based information, 
it is instructive to consider a perception-based version of a basic problern in 
probability theory. 

Let X and Y be random variables in U and V, respectively. Let f be a 
mapping from U to V. The basic problern is: Given the probability distribu
tion of X, P(X), what is the probability distribution of Y? 

In the perception-based version of this problern it is assumed that what we 
know are perceptions of fand P(X), denoted as f* and P*(X), respectively. 
More specifically, we assume that X and f are granular (linguistic) variables 
and f* is described by a collection of granular (linguistic) if-then rules: 

j* : {if X is A then Y is Bi}, i = 1, ... , m, (80) 
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where Ai and Bi are granules of X and Y, respectively (Fig. 12). Equivalently, 
f* may be expressed as a fuzzy graph 

m 

f*=LAixBi, (81) 
i=l 

where Ai X Bi is a cartesian granule in U X V. Furthermore, we assume that 
the perception of P(X) is described as 

n 

P*(X) is LPi\Cj, (82) 
j=l 

where the Cj are granules of U, and 

Pi= Prob{X is Ci}· (83) 

N ow, let f* ( Cj) denote the image of Cj . Then, application of the extension 
principle yields 

m 

!* (Cj) = L mij 1\ Bi, (84) 
i=l 

where the matehing coeffcient, mij , is given by 

(85) 

with the understanding that 

sup(Ai n Cj) = sup(J.LAi(u) 1\ J.Lc1 (u)), (86) 
u 

where u E U and J.LAi and J.Lc; are the membership functions of Ai and Cj, 
respectively. 

In terms of f* (Cj), the probability distribution of Y may be expressed 
as 

n 

P*(Y) is LPi\f* (Cj) (87) 
j=l 

or, more explicitly, as 

P*(Y) is tPi\ (~ mij 1\ Bi). 
J=l • 

(88) 

What these examples show is that computation with perception-based 
functions and probability distribution is both more general and more complex 
than computation with their measurement-based Counterparts. 
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5 Concluding remarks 

The perception-based theory of probabilistic reasoning which is outlined in 
this paper may be viewed as an attempt to add to probability theory a signif
icant capability-a capability to operate on information which is perception
based. It is this capability that makes it possible for humans to perform a 
wide variety of physical and mental tasks without any measurements and any 
computations. 

Perceptions are intrinsically imprecise, reelecting a fundamental Iimita
tion on the cognitive ability of humans to resolve detail and store informa
tion. Imprecision of perceptions places them well beyond the scope of exist
ing meaning-representation and deductive systems. In this paper, a recently 
developed computational theory of perceptions is used for this purpose. Ap
plicability of this theory depends in an essential way on the ability of modern 
computers to perform complex computations at a low cost and high reliabil
ity. 

Naturallanguages may be viewed as systems for describing perceptions. 
Thus, to be able to operate on perceptions, it is necessary to have a means of 
representing the meaning of propositions drawn from a naturallanguage in a 
formthat lends itself to computation. In this paper, the so-called constraint
centered semantics of natural languages serves this purpose. 

A conclusion which emerges from these observations is that to enable 
probability theory to deal with perceptions, it is necessary to add to it con
cepts and techniques drawn from semantics of natural languages. Without 
these concepts and techniques, there are many situations in which probabil
ity theory cannot answer questions that arise when everyday decisions have 
to be made on the basis of perception-based information. Examples of such 
questions are given in this paper. 

A related point is that, in perception-based theory of probabilistic reason
ing, imprecision probabilities. In particular, imprecision can occur on the level 
of events, counts and relations. More basically, it can occur on the level of 
definition of such basic concepts as random variable, causality, independence 
and stationarity. The concept of precisiated natural language may suggest a 
way of generalizing these and related concepts in a way that would enhance 
their expressiveness and operationality. 

The confluence of probability theory and the computational theory of 
perceptions opens the door to a radical enlargement of the role of natural 
languages in probability theory. The theory outlined in this paper is merely a 
first step in this direction. Many further steps will have to be taken to develop 
the theory more fully. This will happen because it is becoming increasingly 
clear that real-world applications of probability theory require the capability 
to process perception-based information as a basis for rational decisions in 
an environment of imprecision, uncertainty and partial truth. 
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Abstract. Probability is one of the most common examples of valuation function. 
The relationship between subsets is expressed by their joint probability and gives 
rise to the concept of statistical dependence. In fuzzy logic this relationship is 
based in connection properties. The aim of this work is to analyse how valuations 
about subsets may be made. In a frrst part some theorems are recalled in order to 
situate the essential role of connectives as t-norms, then the equivalence between 
Fuzzy Logic's and probabilistic spaces is proven when Frank's t-norms are used. 
Dependence and independence between subsets are analysed under the light of the 
previous results, and gives rise to a new concept of dependence degree, as weil as 
its possible use in uncertain reasoning schemes. 

Keywords: Probability, Fuzzy Logic, Connectivity. 

1 Introduction 

The aim of this work is to extend the concept of statistical or probabilistic 
dependence to valuations of subsets by means of fuzzy measures. Zadeh's Fuzzy 
Logic is an example of space using the connectivistic properties of maximum and 
minimum. Subsequent approaches use as logical connectives t-norms for the 
conjunction, and consequently t-conorms for the disjunction, in order to preserve 
compatibility with Boolean algebra. 

Most of mathematical concepts areweil known in the different areas of study, 
nevertheless we shall recall them for the sake of establishing the relations between 
contrasted mathematical models: this has been mainly done by labelling 
DEFINITIONS, and THEOREMS. To clarify the deductive links between 
propositions stated in this paper, a theorem has been Iabelied RECIPROCAL, and 
two Straightforward consequences called COROLLARIES have been stated 
without proofs. 
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2 Algebra and Probability 

Let E be a lattice, its minimal and its maximal elements are denoted respectively 0 
and J. As usual given x,ye E X/\Y and xvy mean respectively the minimum and 
the maximum in the pair {x,y}. A lattice is complemented if 'II x, 3 x' suchthat 
xAx'=O and xvx'=J. 

A Boolean algebra is a distributive complemented lattice. The isomorphism 
between any algebra of subsets and a Boolean algebra is given by the Stone 
theorem, and authorises to replace [J ,0] by [.Q,0] , conjunction 1\ by intersection 
n and disjunction v by union u, complementation x' by set complementation Cx 

Definition 1. Let A be the Boolean algebra of the subsets of .Q, a probability p(x) 
isapositive real mapping such that: 

1) p(0)=0 and p(.Q)=l (Ist. "Kolmogorov axiom) 
2) for any given pair x,ye A , p(xAy) + p(xvy) = p(x) + p(y) 

Let us examine some consequences of this definition: 

- For any xeA , OSp(x)Sl 
- p(x')=l-p(x), 
- 'II x,ye A ; X/\Y = 0, then p(xvy) = p(x) + p(y). (2nd "Kolmogorov axiom ) 

The 3rd. "Kolmogorov axiom" adds the following limit property for any 
infinite collection of disjoint elements of A { xi} such that : 

Finally the conditional probability of y given x is defined as p(y/x) = 
p(xAy)/p(x), and a subsequent notion is the probabilistic independence of a pair 
x,ye A, if p(y/x) = p(y), or equivalently p(x/y) = p(x). 

3 Predicate Algebra and Semantic Systems 

Definition 2. A predicate algebra L is a formallanguage where: 

1) {xi} arevariables or constants 
2) TT( x1, x2, ..... Xn) is a n-argument predicate 

3) Finiteset of connectives r= { cj} 

4) Given two predicates TT1 and TT2, TT3 = TT1 Cj TT2 is a well formed formula 

(wwf) belonging to L. 

A semantic system S = {L , v} where L is a predicate algebra and v a 
valuation function v, P(.Q) ~ [0,1] called also "generalized truth function". 
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A connectivistic space consists on: 

1) a subset r* ofr 
2) a semantic system K = {L *, v} where L * is a restriction of L to the wwfs 

involving only connectives in r*, 
3) a subset of elementary predicates A, suchthat "iiaeA v(a) is known, 
4) a set of connective functions { cK} such that 

The boolean semantic system is the a particular connectivistic space r*={ N, &,+}, 
where the valuation function is a dichotomy P(U) ~ {0, 1 }, and N stands for 
negation (1-x), & for conjunction (min) and + for disjunction (max). 

Given a finite family a={<Xi} of elementary predicates, A(a) stands for its 

Lindenbaum algebra, i.e. the minimum set of predicates containing a and closed 
under Operations in r*, ifv is a boolean function A(a) is its boolean closure. 

4 Fuzzy Logic Connectivistic Spaces 

The aim of this work is to analyse how valuations about subsets may be 
generalised on Q including probability and fuzzy measures. lt is clear from the 
above considerations that: 

1) Probability spaces are described as a whole by global probability 
distributions. For two given subsets a and b, the knowledge of marginal valuations 
v(a) and v(b) does not suffice for the knowledge of joint valuations as v(a&b). A 
global probability measure must be given, and the relative position (intersection) 
of a and b, must be known. 

2) Connectivistic spaces are semantic systems described separately for 
elementary predicates a, and by means of connective functions any compound 
predicate can be valuated, therefore any subset of the universe Q can be valuated 
as a function of the marginal valuations of its components. 

Notall functions v from A(a) to [0,1] are good candidates as connectives. lt is 
necessary that some restrictions hold, in order to maintain the compatibility with 
Boolean spaces, they have been developed in the Fuzzy Logic framework. 

Definition 3. f(x,y) is ajunctor if: 

J1 : f is commutative f(x,y)=f(y,x) 
J2 : f is non-decreasing in both arguments 
J3 : Ground condition: f(x,O)=O 
J4: Margin condition: f(x,1)=x 

f(x,y) is Archimedean if f(x,x)<x 
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An associative junctor is called t-norm ( triangular norm), i.e. 

15 : f(x,f(y,z))=f(f(x,y),z) 

A 2-copula is a function satisfying at least J2, 13, and J4. 

Theorem 1. Schweizer-Sklar 1 [SCHWEIZER & SKLAR 1983] 

Arehirneclean strictly increasing t-norms can be expressed by means of a bijective 
function g(.) called additive generator, as follows: 

From now on we only will be concerned by continuous strictly increasing 
arehirneclean t-norms (csiat-norms) except for some Iimit situations. 

Definition 4. c(x1,x2, ... xn) is a n-copula if: 

Cl : c is a n-increasing function 
C2: c is grounded i.e. c(-,-,-, ... -,0,-,-,-,)=0 
C3 : margins of c are identities, i.e. c(l,l,l,l, .. ,l,x,l,l,l)=x 

The following theorem relies n-copulre and probability spaces: 

Theorem 2. Frechet-Schweizer-Sklar [SCHWEIZER & SKLAR 1983] 

Given a n-dimensional probability space { .O,A,p}, such that all marginal 
distributions Ft,F2, ... ,Fn are continuous, there exist a unique n-copula c suchthat 

By associativity a n-norm t*n is obtained by n-1 iterations oft. We shall analyse 
here the conditions for a t-norm to generate a n-copula. 

Theorem 3. Schweizer & Sklar 2 [SCHWEIZER & SKLAR 1983] 

Let t be a csiat-norm, and g its additive generator, the n-place function t*n is a n
copula if, and only if, for all m:Sn the following N-monotonicity condition C4 
holds: 

C4: 'V m:SN; (-l)ffi.(dffigldxm) > 0 

A Fuzzy Logic space defined by a t-norm can be related to a probabilistic space, 
only if the iterated n-norm is a n-copula. The exact nature of this correspondence 
will be analysed here. 
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5 Frank T-Norms and Copula 

Let us introduce here an important family of t-norms called the Frank's Family: 

Definition 5. The following function t<p is called Frank t-norm, <p is its parameter; 

tqt:x,y) = .!.Log 11 + (ecpx- 1)(e<f'Y- 1) ]· 
<p (e<p- 1) 

The limit values are: 

Loo(x,y)=min(x,y) 

t0(x,y)=x.y 

t+oo (x,y)=max(x+y-l,O)=luk(x,y) 

lt shall be noticed that for l<pl<oo all Frank's t-norms are csiat-norms, and 
therefore hold marginal bijectivity. The Frank theorem gives a characteristic 
property of Frank's t-norms essential for their interpretation as connectives. 

The s-norm s is the dual of a t-norm t with respect to N(x)=l-x, canonical 
negation, : s(x,y)=N(t(N(x),N(y))= 1 - t(l-x, 1-y). 

Theorem 4. Frank [FRANK 1979] and [KLEMENT 1981] 

Given a csiat-norm t, the following additive property Al holds if, and only if, it 
belongs to the Frank family: 

Al : t(x,y)+h(x,y)=x+y 

Corollary 1. If a given csiat-norm t is a 2-copula, then t is a Frank's t-norm 

Corollary 2. If t*r is the r-th iterate of a t-norm t, then, t*r is a r-copula , if and 
only if t is a Frank's t-norm and C4 holds for nSr. 

6 Probability and Fuzzy Logic Connectivistic Spaces 

A probability space can be constructed from a Semantic system, (Lindenbaum 
algebra) A( a), and a measurable function p. This construction assumes the 
knowledge of the function p on P(Q). 

Fuzzy Logic as introduced by Zadeh [ZADEH, 1965] leads to a space where 
conjunction is represented by the function min. Later other authors [SUGENO 
1974], [YAGER 1985] extended this concept to more general functions, junctors as 
defined formerly, finally the concept ofDe Morgan triads, i.e. a t-norm, a negation 
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and its dual co-norm, has been studied in [TRILLAS 1979] and [ESTEVA & PIERA 
1982]. Connectivistic spaces based on csiat-norms are Fuzzy Logic based on De 
Morgan triads. An immediate consequence of last Theorems and Corollaries can 
be stated as follows: 

Theorem 5. Necessary Imbedding Condition, 
Let a connectivistic space K be characterised by a csiat-norm t(x,y), the necessary 
condition for the existence of a probability space E such that Es;;K, is that t 
belongs to the Frank's family of t-norms 

Proof. Let K be a connectivistic space such that there exist a probability space 
Es;;K, , and Iet us choose arbitrarily two propositions A and B of K, their 
valuations being a and b, and the joint valuation t(a,b). If the probability measure 
in E is suchthat p(A)=a, p(B)=B and P(A&B)=t(a,b), then there exist a 2-copula 
c(.,.) suchthat: P(A&B)=c(p(A),p(B))=t(a,b). 
Obviously t(.,.) and c(.,.) must be the same function because A and B have been 
chosen arbitrarily, therefore t(.,.) must be a 2-copula, and by COROLARY 1 it 
must be a Frank's t-norm. 

Reciprocal. Sufficient lmbedding Condition 

Let G*M be the set of iterates t*M of the csiat-norm t, up to degree M-1, and Iet 
KM be the restriction of K to the propositions involving at most M-1 times the 

same connective ye r*, the sufficient condition for the existence of a probability 
space E suchthat EeKM, is that t belongs to the Frank's family of t-norms, and 

that the N-monotonicity condition C4 holds for NSM. 

Proof. Let AM= {Aih=1, ... M be a finite set ofM propositions of KM and Iet their 

valuations be ai. The valuation of any compound proposition obtained by the 

conjunction of m<M propositions of AMis suchthat: 

m 
Cm=At &A2& ... &Ai& ... &Am, then Cm= t* (a1,a2, ... ,ai•···•am)· 

The valuations ai can always be considered as marginal probabilities but Cm is a 

joint probability only if t*m is a m-copula, this is only possible if the N
monotonicity condition C4 holds. 

7 Dependence and lndependence 

Independent pair of events 
Let us consider, in a probabilistic space, a pair of independent events, then the 
following relation holds : 

p(a&b) = p(a).p(b) and p(a+b)= p(a)+p(b)-p(a).p(b) 
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The t-norm product and its dual probabilistic sum are respectively used for the 
conjunction and the disjunction of events. This collection is a particular case of 
Sugeno's space where p(avb)= p(a)+p(b)-A..p(a).p(b), for the value A.=l. 

Causal collection of events 
Let us consider, now, a collection Cx of events such that there exist a strong 

implication between any pair, i.e.: 
V { a,b} E CxxCx either a~b or b~a, then the following relations hold: 

p(a&b)=min[p(a),p(b)] and p(a+b)= max[p(a),p(b)] 

The t-norm min and its dual max are respectively used for the conjunction and the 
disjunction of events. Fuzzy valuated spaces as Zadeh introduced initially are 
collections ofthat type. 

Lukasiewicz collection of events 
Let us consider, now, a first collection C1 of disjoint events, the following 

relations hold in C 1 : 

V {a,b} E C1xC1 p(a&b) = 0 and p(a+b)= p(a)+p(b) 

and a second collection C2 of the pairs of complements of the events of C 1, 

i.e. V a E C2, 3 a' E Cl suchthat a+a' = n, and a&a' = 0 

Then the following relations hold in C2 : 

V {a,b} E c2 p(a&b)=p(a)+p(b)-1 andp(a+b)= 1 

Let Cz = C1 U C2, and the above relations be condensed into: 

V {a,b} E CzXCzp(a&b)=max[p(a)+p(b)-1,0], 

p(a+b) = rnin[ [p(a)+p(b),l] 

The t-norm use here is known as Lukasiewiczfunction and its dual is the bounded 
sum, they are respectively used for the conjunction and the disjunction of events. 

The three above collections of events, or propositions, are connectivistic spaces 
corresponding to the three more used t-norms: product, minimum, and 
Lukasiewicz. They can be looked as Fuzzy Logic called respectively, probabilistic, 
Zadeh's or strict, and Lukasiewicz's. It can be noticed [TRILLAS, ALSINA & 
VALVERDE, 1982], that only the second isadistributive lattice. 

Frank's collection of events 
Let us consider a Frank's t-norm t<p and its co-norm s<p(x,y) = 1- t<p((l-x),(l-y)) 

And a collection C<p of events such that: 

V { a,b }E C<pxC<p p(a&b) = t<p[p(a),p(b)] and p(a+b) = s<p[p(a),p(b)] 
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According to the definition of Frank's t-norms the collections above mentioned 
correspond respectively for: 

<p=- 00 

<p=O 

<p= + 00 

to causal collection Cm 

to independent collection cp 

to Lukasiewicz's collection Cz 

Definition 6. Let us consider in a probability space two propositions a and b such 
that a = p(a), ß = p(b) and 11= p(a&b). The dependence degree 8 between two 
propositions is the value 8 of <p suchthat 11= t3( a,ß) 

Fora given pair a,ß the function ha,ß(<p) = t<p(a,ß) is monotonaus and its inverse 

exists, therefore 8 = ha,ß- 1(11) 

This definition of the dependence degree can be applied to any two events in 
the framewerk of classical probability, it is nevertheless clear that this degree is a 
non-probabilistic one, although it imbeds for <p = 0 the probabilistic independence. 
1t graduates dependence between its two extreme situations: complete inclusion 
that can be interpreted as full causality, and complete exclusion, corresponding to 
complete contradiction. 

8 Conditioning 

Another consequence of the imbedding of fuzzy logic connectivistic spaces in 
probabilistic spaces is the possibility of interpreting, through a connectivistic point 
of view, the conditional valuations. 

The classical definition of conditional probability measure is as follows: 

Py(x) = p(x/y) = p(x&y) I p(y). 

lt can be easily noticed that it includes the definition of independence. lt is clear 
that p(x&y) = Py(x).p(y), Iet us assume that it is possible to find at least one 

proposition z, independent ofy, such that: 

p(z) = Py(x), and therefore p(x&y) = p(z).p(y) . 

Because ofthe independence p(z&y) = p(z).p(y), so p(x&y) = p(z&y). 
The world of events independent of y, will be called, independent world 

anchored to y, and z is a representative of x in that world. This notion is easily 
extended to the <p-dependence (dependence of degree <p) introduced above. 

By these considerations, a new notion of conditional valuation that includes 
conditional probability can be introduced: 
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Definition 7. The <p·conditional valuation of propos1t10n a with respect to 
proposition b is the valuation of a representative of a in the <p-world anchored to b. 

Let us fix the value <p, the <p-world anchored to b contains all the collections of 
propositions Xcp such that: 

A proposition a<p is a representative of a in the <p-world anchored to b if v(acp&b) = 
v(a&b) , its valuation is called <p-conditional valuation of a with respect tob. 

This conditional valuation is obtained by solving with respect to X= vcp(alb) the 

equation: 

tcp[ X, v(b)] = v(a&b) (*) 

If we only consider Frank's t-norms so that l<pl<oo, we can write: 

(**) 

A particular Iook to the infinite Iimit values of <p reflects the traditional difficulties 
encountered in [NGUYEN 1978] and others for the conditioning in classical fuzzy 
set theory, for the generalisation of Bayes-type rules [SHAFER & SHENOY 1988]. In 
that cases (*) holds but it is no Ionger possible to write (**), therefore an indirect 
technique could be proposed so as to establish v cp(alb) for a <p finite and to analyse 

lim<p-+oo[ V cp(alb)]. 

9 Connectivistic Reasoning under Uncertainty 

A causal rule relating a proposition a to another proposition b taken as its 
uncertain consequence can be stated as : if a then b with value v(alb). 
Reasoning using the knowledge given by this rule consists in combining it with 
some real world observation that is interpreted as v(a) and gives some information 
about b or v(b) about a. 

In [SUPPES 1966] , the extensions based on the interpretation of v(alb)as the 
prob(a~b), have been proposed, and in [LOPEZ DE MANTARAS 1992] the 
possibilistic approach has been described. 
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We shall here use the conditional valuations in the modus ponens and modus 
tollens mechanisms as follows: 

modus ponens modus tollens 

v(a/b) ~ x v(alb) ~ x 

v(a) ~ y v(b) S z 

v(b) = tcp[ vcp(a/b),v(b)] ~ tcp[ x,y] v(b) = scp[ (1-vcp(a/b)),v(b)] S t<p [(1~x),z] 

This mechanism allows adjusting the uncertain reasoning to known situations by 
means of the parameter <p. 

10 Conclusion 

The purpose of this paper was to analyse the formal links between two approaches 
of valuation theory, the first based in probability measures defined for any subset 
of the universe, and the second related to Fuzzy Logic and defined as 
connectivistic spaces. The main result is the necessary and partially sufficient 
conditions for imbedding a connectivistic space in a probabilistic world. When this 
imbedding is effective many interesting conclusions can be deduced, such as a new 
Iook to dependence and conditioning. Important consequences are: the definition 
of a general degree of dependence, and a new scope on conditioning in non
probabilistic environments, as uncertain reasoning in expert systems. 

This approach was first presented in [AGUILAR-MARTIN 1985] and later 
developed in [AGUILAR-MARTIN 1988], finally a first draft of this paper was 
presented at the Prague Conference in 1990, published in [AGUILAR-MARTIN 
1992]. lt is more restrictive than the approach of from the approach of [M. E. 
HOFFMAN, M.E., MANEVITZ & E. K. WONG] as it is based uniquely in the 
properties of t-norms, and more specifically Frank t-norms, in the case where the 
description of events can be embedded in particular probability spaces according 
to the strict definition of conditional measures. 

Many questions remain to be developed, particularly concerning the subsets of 
propositions using alternatively several logical connectives, as weil as an accurate 
analysis of continuous spaces introducing densities. 
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Abstract. This work is devoted to investigation of algebraic structures on the set 
of fuzzy measures that are closed relatively convex sum and multiplication of fuzzy 
measures. It is shown that the basic convex families of fuzzy measures considered 
in [1] own such properties. 

1 Introduction 

In this paper we consider classification and basic properties of fuzzy measure 
families, investigated in [1]. This classification is produced due to conception 
of ideal. Ideals are such convex families of fuzzy measures, which are closed 
relatively an operation of fuzzy measure's multiplication. It is shown that the 
basic fuzzy measure families that can be interpreted as lower probabilities own 
such a property. 

The paper has the following structure. In section 2 we introduce the basic 
convex families of fuzzy measures that are analyzed in the article. Section 3 
represents the result obtained in [1]. It gives the algebraic description of the 
convex family of all fuzzy measures by primitive measures. Section 4 bears 
subsidiary function. It gives us the well-known results about set-theoretical 
operations on filters, which are used below. And finally, sections 5,6 are di
rectly devoted to the ideal description - its definition, ways of construction, 
including some algebraic operations on ideals. 

This investigation can be considered as a development of the theory, where 
upper and lower estimates of probabilities are used for description imprecise 
and uncertain information [2-5]. 

2 The main notions and theoretical constructions 

The set function g on a finite algebra ~ = 2x of a finite space X is called a 
fuzzy measure [6,7] if 

1) g(0) = 0, g(X) = 1 (norming); 
2) g(A) ;::: 0 for A E ~ (non-negativeness); 
3) g(A) :::;; g(B) if A ~ B (monotonicity). 

Lemma 1. Let g be a fuzzy measure an the algebra ~ of the space X. Then 
the set function q(A) = •g(A) = 1- g(Ä) is also a fuzzy measure an~. 



77 

The fuzzy measure q from lemma 1 is called usually as a dual one to 
the generating measure 9· It is clear that the duality relation among fuzzy 
measures is symmetric, i.e. the fuzzy measure g from the lemma 1 is dual to 

'9· 
Consider the basic classes of fuzzy measures, which can be interpreted as 

lower estimations of probabilities [1]. 
The fuzzy measure 9 is called a lower probability if there exists a proba

bility measure P on ~such as 9(A) :::; P(A) for all A E ~. Introduce the 
following notation: 9 :::; q if 9(A) :::; q(A) for all A E ~. 

Let 9 be a lower probability. This measure is called an accurate lower 
probability if for an arbitrary A E ~ it can be found a probability measure P, 
9:::; P, with the following property P(A) = 9(A). 

The fuzzy measure 9 is called superadditive if it satisfies the following 
inequality: 9(A) + 9(B) :::; 9(A n B) + 9(A U B) for all A, B E ~. 

The fuzzy measure Bel is called a belief measure [3], if we can construct 
the non-negative set function m on ~ and 9 can be represented by 

Bel(A) = L m(B). (1) 
BE!il<IB~A 

3 Representation of fuzzy measure by the convex sum 
of primitive fuzzy measures 

We establish some simple facts about the structure of the set of fuzzy mea
sures on a finite algebra ~ of a type 2x ( the space X has a finite number 
of elements). Let 91 and 92 be two fuzzy measures on ~. Then their convex 
combination 9 = 0191 +a292, a1 +a2 = 1, a1. a2 ~ 0, is also a fuzzy measure. 
Indeed, 9(0) = 0, 9(X) = 1 and if A s;;; B, then 9(A) = a191(A) + a292(A):::; 
O!I91(B) + a292(B) = 9(B). Thus, the set of all fuzzy measures is convex. 

Introduce the following definition. The fuzzy measure is called a primitive 
measure if its values belong to the set {0, 1} for an arbitrary event. For more 
detailed description of the set of fuzzy measures we need some definitions of 
the theory of partially ordered sets ( or posets). We shall consider the algebra 
~ as the poset with respect to the ordinary set-theoretical inclusion. Filter 
is such a subset f of ~ that if A E f and A s;;; B then B E f . We take by 
definition that neither filter contains 0. However, each filter contains a set of 
minimal elements {A1 , A2 , ... , Ak}, i.e. such mutually incomparable elements 
that f = {A E ~ j3Ai s;;; A}. Clearly minimal elementsgenerate a filter f: this 
fact is noted by f = (AI. A2 , ... , Ak). The filter f is principal if it is generated 
by one minimal element, i.e. f = (A). 

Lemma 2. Let f be an arbitrary filter in ~ and "lf be a characteristic func
tion of the filter f, i.e. 

(A) _ { 1, A E f, 
"lr - 0, A ~ f. 
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Then 'f/f is a primitive measure. Conversely each primitive measure is asso
ciated with a certain jilter f. 

Notice that among primitive measures we can extract primitive necessity 
measures [8] being associated with principal filters f = (A) in~. Sometimes 
these measures are called Dirac measures. In particular, when (A) = ( { xi}) , 
Xi EX, Dirac measure is a probability measure concentrated in the point Xi. 

The following theorems describe important characteristics of the convex set 
of fuzzy measures. 

Theorem 1. Any fuzzy measure g can be represented as a convex combina
tion of primitive measures. 

Theorem 2. Neither primitive measure can be represented by a convex sum 
of other primitive measures. 

One can easily prove that representation of fuzzy measure by the convex 
combination of primitive measures is not unique. This can be shown by exam
ples. We also point out that plausibility (belief) measures can be represented 
in a form of a convex linear combination of primitive possibility (necessity) 
measures. Actually, consider the primitive necessity measure 

(B) { 1, A ~ B, A B 0.< 
'f/(A} = 0, A ~ B, ' E ~. 

Then, using expression (1), we obtain equality 

Bel(B) = L m(A)'f/(A}(B). (2) 
AE\J' 

By analogy the formula for the plausibility measure can be derived. It is 
based on the convex sum of primitive possibility measures. One can prove 
[3] that the representation (2) is determined uniquely. It is natural to put a 
question - what kind of primitive measures are lower probabilities and what 
fuzzy measures can be represented by the convex sum of such measures. The 
following results give us the answer. 

Lemma 3. Let 'f/f be a primitive measure generated by a jilter f = (Ab A 2 , ... , 
k 

Ak). Then 'f/f is a lower probability if and only if n Ai =f. 0. 
i=l 

4 Algebraic operations on filters 

Lemma 4. Let f1 and f2 be jilters of algebra ~ then sets f1 n f2, f1 U f2 are 
also jilters of ~. 

Lemma 5. Any jilter f = (Ab A 2 , ... , Ak) can be represented as a union of 
principal jilters in the following way: f = (A1) U (A2) U ... U (Ak). 
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Lemma 6. Let (A), {B) be some principal filters of ~ then {A) n {B) = 
{AUE). 

One can put a question - how to calculate the intersection of arbitrary 
filters? The following lemma solves this problem. 

Lemma 7. Let f1 = {At,A2, ... ,Ak), f2 = {Bt,B2, ... ,Bm) then f1 n f2 = 
U{AUBj)· 
i,j 

k 

Definition 1. The filter f1 = {At, A2, ... , Ak) is called coherent if n Ai =/= 0. 
i=l 

Lemma 8. Let f1 be an arbitrary coherent filter and f2 be an arbitrary filter, 
which is non-coherent in general. Then filter f1 n f2 will be coherent. 

5 Ideals 

In this section we introduce the operation of fuzzy measure's multiplication. 
The justification of this operation is given in the following lemma. 

Lemma 9. Let 91 and 92 be fuzzy measures on the algebra ~. then the set 
function constructed by a rule: g(A) = 91(A)92(A) for all A E ~. is also fuzzy 
measure. 

Further we name the rule, described in the lemma, as a rule of fuzzy 
measure multiplication. 

Lemma 10. Let "1ft and 'f/f2 areprimitive fuzzy measures then "1ft 'f/f2 = "lftnf2 • 

Lemma 11. Let 91, 92, q be fuzzy measures for arbitrary At, A2 ~ 0, Al+ 
A2 = 1. Then (A191 + A292)q = A191q + A292q. 

Corollary 1. Let fuzzy measures 9 q have the following representations by 
m n 

convex sums of primitive measures: 9 = 2: CY.k'f/fik, q = 2: ßl'f/f11 • Then 
k=l 1=1 

m n m n 

9q = 2: 2: akßl'f/fik 'f/f11 = 2: 2: akßl'f/fiknf11 • 

k=1 1=1 k=l 1=1 

Lemma 12. Let 91 and 92 are fuzzy measures, in addition, 91 is lower prob
ability. Then 9192 is also lower probability. 

Definition 2. The family g of fuzzy measures is called an ideal if this family 
is convex and closed relatively multiplication of fuzzy measures, i.e. 

1) if 91 E g, 92 E g then Al91 + A292 E g, Al+ A2 = 1, At, A2 ~ 0; 
2) if 91 E 9 92 E g, then 9192 E g. 

Theorem 3. The following convex families of fuzzy measures are ideals: 1} 
the set of all fuzzy measures {Mo}; 2} the set of lower probabilities {M1}; 
3) the convex family of fuzzy measures, 9enerated by primitive lower prob
abilities (M3}; 4) the set of accurate lower probabilities {M4}; 5} the set of 
superadditive measures {M5}; 6} the set of belief measures {M6}· 
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6 Some ways for ideal construction 

It is obvious that any ideal g is a convex subset of the family of all fuzzy mea
sures. However an arbitrary convex set is not an ideal in general. In particular, 
(including the most important cases), an ideal has a form of polyhedron in 
the real vector space R 21 x 1_ 2 • The vertexes of this polyhedron determine a 
set of fuzzy measures with finite power. The description of such a type of 
convex families is given in the following definition. 

Definition 3. Let M be a convex family of fuzzy measures. Fuzzy measures 
{gi} ~ M are called generating elements of M, if any fuzzy measure g E M 
can be represented in the form of a convex combination of fuzzy measures 
from {gi}. The system of generating elements is called minimal if neither 
generating element can be represented by a convex sum of other generating 
elements. 

Theorem 4. Let the convex set M have a finite set of generating elements 
{91> 92, ... , 9n}· Then M is an ideal if 9i9k E M for any pair of indexes 
i,kE {1,2, ... ,n}. 

Further we shall be interested in closed ideals, which are described with 
the help of the following definition. 

Definition 4. An ideal g is called closed one, if for any sequence {gn} :=I of 
fuzzy measures from g we have lim 9n = g and g E g. 

n->oo 

Remark. One can notice that this definition coincides with the notion of 
closed set in real vector space R 21 x 1_ 2 if we consider the values of fuzzy 
measures as components of such vectors. 

Consider an arbitrary fuzzy measure g and construct a closed ideal having 
minimal properties and containing the fuzzy measure g. It is obvious that this 
ideal has to contain fuzzy measures gn, n = 1, 2, ... too. 

Theorem 5. Let g be a fuzzy measure. Then a set M of fuzzy measures of 
a type 

00 

ft(A) = Ao9o(A) + L Aigi(A), 
i=l 

where f Ai = 1, Ai ;:::: 0, go(A) = lim gn(A) = { 01• g((AA)) = 11' is a closed 
i=l n->oo ' g < ' 

ideal. Any other closed ideal g, containing fuzzy measure g, includes also the 
ideal M, i.e. M ~ g. 

Theorem 6. The minimal ideal M from theorem 5 has a finite system of 
generating elements if and only if the number of fuzzy measure 's g values is 
not more than 3, i.e. J{g(A) JA E SS}J:::; 3. 
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Show briefly the way of proving this theorem. If l{g(A) lA E <s }I = 2 then 
the fuzzy measure g is primitive. Therefore g = g0 and gn = g0 , n = 1, 2, ... , 
i.e. theorem 6 is true by theorem 5. If l{g(A) lA E <J}I = 3, we can use the 
following representation for fuzzy measure g: g = A7Jr1 + (1 - >-.)ryr2 , where 
f1 ;:;"? f2 and 

(A) _ { 1, g(A) > 0, 
% - 0 g(A) = 0, 

Then 

and we must check only the case, when l{g(A) lA E <J}I > 3. To do it, we can 
use the following lemma. 

n-1 

Lemma 13. The polynomial f(x) = xn- 2:: aixi has a unique root on the 
i=O 

interval (0, +oo) if ai ~ 0, i = 1, 2, ... , n- 1 and a0 > 0. 

Theorem 7. Let a convex set M of fuzzy measures have a finite set of gen
erating elements and be closed relatively the operation of fuzzy measure's 
multiplication. Then M is closed ideal. 

Theorem 8. If a convex set of fuzzy measures is described by a finite system 
of non-strict linear inequalities then this set has a finite generating system. 

This theorem is the well-known fact from the theory of linear inequalities. 

Corollary 2. It is obvious that lower probabilities, accurate lower probabili
ties , superadditive measures can be described by a finite system of non-strict 
linear inequalities. Applying theorems 7 and 8, we get that these convex fam
ilies are closed ideals. 

7 Algebraic operations on ideals 

In this section we consider only closed ideals. 

a) Intersection of ideals. 

Lemma 14. Let 91 and 92 two arbitrary ideals. Then the set 9 = 91 n g2 is 
also an ideal. 

Lemma 15. Let ideals 91 and 92 have finite generating systems. Then ideal 
9 = 91 n 92 has a finite generating system too. 

Definition 5. Let M be an arbitrary set of fuzzy measures. We denote by 
9(M) a minimal closed ideal, containing the set M. Minimality of 9(M) 
means that any other closed ideal 91, satisfying M s;; 91 , must contain the 
ideal 9(M). 
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The basic theorem. For any set M an ideal 9(M) exists and it is deter
mined uniquely. 

b) Sum of ideals. 

Definition 6. The ideal 9 (91 U 92) is called a sum of ideals 91 and 92. This 
fact we denote 9 = 91 + 92· 

Theorem 9. Letideals 91 and 92 have finite generating systems {gb ... , Yn}, 
{ q1, ... , qm} correspondingly. Then the ideal 9 = 91 + 92 has the following 
generating system {giqj} i=l, .. ,n U {Yih=l, .. ,n U { qj} j=l, .. ,m · 

j=l, .. ,m 

Corollary 3. Let ideals 91 and 92 have finite generating systems. Then ideal 
9 = 91 + 92 has a finite generating system too. 

c) Multiplication of ideals 

Definition 7. Let M be a set of all products /LlfL2 offuzzy measures /Ll and 
fL2 that belong to ideals 91 and 92, i.e. M = {/Ll/L2I/Ll E 91, /L2 E 92}. Then 
the ideal 9(M) is called a product of ideals 91 and 92 • It is used the notation: 
9(M) = 9192· 

Theorem 10. Letideals 91 and 92 have finite generating systems {gb ... , Yn}, 
{qb ... , qm} correspondingly. Then the ideal 9 = 9192 has the finite generating 
system {Yi% h=l, .. ,n · 

j=l, .. ,m 

Theorem 11. Let 9 be an arbitrary ideal and notations of the theorem 3 are 
used. Then the following relations are true: 

1} 9n ~ g, n = 1, 2, ... ; 
2} Mo9 2 9; 
3} M19 ~ M1; 
4) M39 ~ M3; 
5) MoM1 = M1; 
6} MoM3 = M3; 
7) MoM6 = M3; 
8} MiMi =Mi, i = 0,3,6. 

8 Conclusions 

1. The algebraic structure of ideal can be interpreted as an effect of Lukasiewicz 
logic on the set of fuzzy measures. Actually, consider an ideal 9 = {gi} and 
the dual convex family of fuzzy measures --,9 = { --,gi}· With the help of not 
complicated computations it is not hard to show that this convex family 
is closed relatively an operation f(x, y) = x + y- xy. This with negation 
--,x = 1 - x together gives us justification for such conclusion. 
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2. Due to introduced ideals we can get classical families of fuzzy measures 
in a very natural way. In particular, consider the family P = {Pi} of all 
probability measures, then an ideal g(P), contains any belief measure, i.e. 
g(P) = Mß. 
3. Wehave to imagine what types of relationships among introduced ideals 
exist. Using results of this paper and [1], one can show that the following 
inclusions are fulfilled: Mo :J M1, M3 :J Ms, M4 :J M 5 , M6 :J M 5 , however 
M3"jJ M4, M3 ct M4. Therefore one can consider an ideal M3nM4. It is clear 
that Ms c M3 n M4, but it is easy to show M5 =F M3 n M4. 
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Abstract. In this paper we investigate different mappings of fuzzy measures in 
the framework of probabilistic approach. Usually these mappings in the decision
making theory are called convolution (aggregation) operators [1,2]. We study what 
kind of restrictions is required to the convolution operator that one family of fuzzy 
measures (for example belief measures) is mapped to the same family. 

1 Introduction 

This paper presents some results devoted to convolution of fuzzy measures. 
This mathematical tool is applied in decision-making theory for solving the 
multi-criterion choice problern under fuzzy restrictions [1,2]. This investi
gation gives us another view to the description of the set of the different 
convolution operators. In the framework of the probabilistic approach to the 
fuzzy measure theory we divide the whole set of fuzzy measures into three 
classes [3-5]: 

1) lower probabilities that can be interpreted as lower estimations of prob
abilities; 

2) upper probabilities that can be interpreted as upper estimations of prob
abilities; 

3) contradictory measures. 

Taking this into consideration we study the effect of applying convolution 
operators in a sense how they preserve the properties of fuzzy measures fam
ilies they belong to, for instance, when lower probabilities are mapped into 
the similar family of fuzzy measures. This investigation is carried out on the 
various families of fuzzy measures, considered in [3]. 

2 Basic fuzzy measures families in the scope of 
probabilistic approach 

The set function g upon the algebra 2{ = 2x of a space X = { Xt, x2, ... , x N} 
is called a fuzzy measure [6] if the following conditions holds: 
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a) 9(0) = 0, 9(X) = 1 (norming); 

b) 9(A) ;::: 0 for all A E 21 (non-negativeness); 

c) 9(A) :::; 9(B) if A ~ B (monotonicity). 

Let M be the set of all fuzzy measures. Further we shall use a partial order 
on M by a rule: 91 :::; 92 if 91(A) :::; 92(A) for all A E 21. We introduce the 
following families of fuzzy measures [2]: 

Mo is the family of probability measures; 

M1 = {9 E MI 3P E Mo : 9:::; P} is the family of fuzzy measures that 
are called lower probabilities; 

M2 = { 9 E MI VB E A, 9(B) =I 0 : g(~~f) E Ml }; 

M3 = {9 E M1 I VA E A 3P E Mo : 9:::; P, 9(A) = P(A)} is the family 
of fuzzy measures being called accurate lower probabilities; 

M4 is the family of superadditive fuzzy measures that satisfy the follow
ing inequality: 9(A U B) ;::: 9(A) + 9(B) - 9(A n B) for all A, B E 21; 

M5 is the family of belief measures if the following inequality holds 

L (-l)k-IBIJL (Au U Ai);::: o 
B~{l, ... ,k} iEB 

for an arbitrary system A, A1, ... , Ak of mutually exclusive sets [5]. 

One can prove the following embeddings: M 2 M1 2 M2 2 M3 2 M4 2 
M5 2 Mo. 

3 Characterizations of monotone functions and fuzzy 
measures through the use of the difference theory 

Here we shall consider different functions cp : Rn ---+ R. A first order difference 
of this function is determined by 

Llcp(x; Llx) = cp(x + Llx)- cp(x), x, Llx ERn. 

By analogy we can define differences of an arbitrary order: 

Ll2cp(x; Llx1, Llx2) = Ll(Llcp(x; Llxl); Llx2) = 

cp(x + Llx1 + Llx2) - cp(x + Llx1) - cp(x + Llx2) + cp(x), x, Llx17 Llx2 E Rn, 
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Lln<p(x; Llx1, Llx2, ... , Llxn) = Ll(Lln-l<p(x; Llx1, ... , Llxn-1); Llxn) = 

= t ( -1)n-k L <p ( x + L:=l Llxi"'), x, Llx1, ... , Llxn ERn. 
k=O {i1 , ... ,ik}~{l, ... ,n} 

In the difference theory one of important tools is the Euler's formula [9). For 
the sake of brevity introduce the following notations: 

Llk<p(x; Llxiu Llxi2 , ••• , Llxik) = Llti2 ••• ik<pLl0<p = <p(x). 

Then the Euler's formula is written as follows: 

In particular, <p(x + Llx1) = Ll0<p + Ll~<p, <p(x + Llx1 + Llx2) = Ll0 <p + Ll~<p + 
Ll~<p + Ll~ 2'P· 

We ca~ consider the Euler's formula as an analog of the inverse Mobius 
transform [8). But it has more general sense. This connection can be shown 
on monotone, superadditive and belief measures. To do this, we must consider 
each fuzzy measure g on the algebra 2l of a space X = {x1 , x2 , ... , XN} as a 
function g(A) = g(a) = g(ab ... ,aN), where 

{ 1, Xi E A 
O:i = 0, Xi ~ A , 

determined only on the vertices of a binary cube {0, 1}N. On the {0, 1}N 
amy be applied the relation of the partial ordering: x :::; y if Xi :::; Yi for 
all i = 1, ... , N. It is clear that the disjunction on the binary cube can be 
produced as usual sum for disjoint sets. Call the function g to be associated 
with the fuzzy measure g. Thus we can apply the difference theory to fuzzy 
measures. In this way one can easily prove the following theorem. 

Theorem 1. Let g(x), x E {0, 1}N, be a function, determined only on the 
vertices of the binary cube. Then this function is associated with a fuzzy 
measure g if and only if 

1} g(O) = 0, g(1) = 1; 

2} Llg(x; Llx) 2:: 0 for all x, Llx 2:: 0, x + Llx :::; 1 

In addition, 

a) the fuzzy measure g is superadditive if and only if Ll2g(x; Llx1, Llx2) ;;::: 0, 
forall x, Llx1, Llx2 2:: 0, x + Llx1 + Llx2 :::; 1 

b) the fuzzy measure is belief measure if and only if x + Llx1 + Llx2 :::; 1, for 
all x, Llx1, ... , Llxn 2:: 0, x + Llx1 + ... + Llxn :::; 1. 
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Further we shall use the following notations and vector operations. Let 

a-1 = { a = (ai)~=I, ai 2::0, i~ ai = 1 }, Dn = [0, 1t, let C(D) and Ck(D) 

be sets of continuous and k-differentiable functions correspondingly with the 
range of definition D. If a E a1, x, y E Dn, then we consider the following 
vector Operations a · X = cti XI + ... + ctnXn, X"' = xr1 •• • x~n, X + y = (XI + 
YI, ... , Xn + Yn), xjy = (xi/yi, ... , Xn/Yn), xy = (xiYI, ... , XnYn)· In addition, 
we write x::::; y if Xi ::::; Yi for all i = 1, ... , n. 

Introduce by analogy the following classes of functions that play an im
portant role for describing monotone, superadditive and belief measures. 
Let g : Dn ____, D then g E Hm, (m = 1, 2, ... ) if g(O) = 0, g(l) = 1, 
Llng(x; Llxi, ... , Llxn) 2:: 0, n = 1, ... , m for all x, Llx1, ... , Llxn 2:: 0, x + 
Llxi + ... + Llxn :S: 1. 

Using the Euler's formula one can prove the following theorem. 

Theorem 2. Let g = (gi, g2 , ... , gn) E H;;:, be a Cartesian product of func
tions gi, g2, ... , gn E Hm and cp E Hm, then rp(g) E Hm. 

Theorem 3. Let g E Cm(D), g(O) = 0, g(l) = 1, then g E Hm if and only 
if dng(x; dx) 2:: 0 (n = 1, ... , m) for all x, dx 2:: 0. 

4 Convolution operators. Their investigation 

Let g = (gi, g2, ... , gn) E Mn be a Cartesian product of fuzzy measures 
gi, g2 , ... , gn E M, then the operator of n-convolution is a functional mapping 
cp : Mn ____, M defining by a rule: g = rp(g) if g(A) = rp(g(A)) for all A E 
2l. For the sake of simplicity we shall call 2-convolution simply convolution 
(without 2-) and 1-convolution as a fuzzy measure function. The following 
theorem is obviously true. 

Theorem 4. The function cp : [0, 1t ____, [0, 1] is an n-convolution if and 
only if cp E HI. 

Theorem 5. Let cp E C(Dn) then cp : M0 ____, M0 if and only if rp(x) = a · x 
for a certain vector a E a1. 

Proof. Necessity. Let cp: M0 ____,Mo and A, B E 2l such as An B = 0. Then 
for any probability measure P = (PI, ... , Pn) E M0 we have P(A U B) = 
cp(P(A U B)) =rp(P(A) + P(B)) =P(A) + P(B) =rp(P(A)) + rp(P(B)). 

On the other hand, there exists probability measure P E M0 with the 
following property: x = P(A), y = P(B) for any x, y E Dn. Thus, rp(x+y) = 
rp(x) + cp(y) if x, y E nn and x + y E nn. Last condition and continuity [10] 
(p.157) of the function together lead to the representation rp(x) a · x. 
Because of equality rp(l) = 1 we get a E a1. 

It is easy to see that sufficiency is also true. 0 
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Theorem 6. Let the function cp satisfy all the conditions of the theorem 1 
and the condition cp(x) ::; a ·X is fulfilled for a certain vector a E af and an 
arbitrary x E Dn, then cp: Mf--+ M1. 

Proof. Let g E Mf. Then there exists measure P E Mf) such as g ::; P. 
Consider P = a · P. Then P E Mo and P(A) = a · P(A) ;;::: a · g(A) ;;::: 
cp(g(A)) = g(A). Thus, cp(g) E M1, and the theorem has been proved. D 

Example 1. Consider a function x 1 = x1 • ... · Xn. Using the chain of in
equalities tll(x) = x 1 = X ..... X < xj+ ... +x; < "' 1 + .. ,txn X E nn we get 

.,- 1 n- n - n ' ' 
cp(x) ::; a · x, where a = (n- 1 , ... , n-1 ) E af. Thus, cp: Mf--+ M1. 

Notice that in the case n = 1 the converse proposition to the theorem 3 
is justified, namely 

Theorem 7. Let cp E C(D1 ) be a 1-convolution operator then cp: M 1 --+ M 1 

if and only if cp(x) ::; x. 

Proof. Let cp : M 1 --+ M1. Suppose the contradictory statement that 
there is a point xo E (0, 1), for which cp(xo) > xo. Without putting any 
restrictions we can assume that x0 = mjn is a rational quantity. On the 
space X = { X1, x2, ... , xn} we can choose the probability measure P such as 
P(xi) = 1/n for all i = 1, ... , n. Consider events Ai1 ... i"' = {xi1 , ... , Xi,.,J· Then 
P (Ai1 ... i"') = mjn. It is easy to see that the number of all such sets with 

the power m is ( ~). According to our supposition cp(P) E M1 , therefore 

we can find a probability measure P' such as P';;::: cp(P). Thus, 

and 

(1) 

On the other hand, 

but this equality contradicts the estimation (1) and this finishes the proof of 
our theorem. D 

Theorem 8. Let cp be an n-convolution operator and the following inequality 
cp(x) ::; (a · xjy) cp(y) holds for a certain vector a E af and any x, y E Dn, 
x::; y, then cp: M:f--+ M2. 
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Proof. Let g E M2, i.e. there exist probability measures Pi E Mo with 
the following property: 9i9:~~i :5: Pi(A), i = 1, ... , n, for any sets Bi E 21, 
9i(Bi) =1- 0. Since 9i(A n Bi) :5: 9i(Bi) and <p(x) :5: (a · xjy) <p(y) for any 
x, y E nn, X::::;; y, then, putting Xi = 9i(A n Bi), Yi = 9i(Bi), i = 1, ... , n, we 
get 

Since a ·PE Mo then <p(g) E M2, and the required statement is proved. 0 

Example 2. The function <p(x) = xa = xf1 · ... · x~n, a E af, satisfies all 
conditions of the theorem 8. 

Theorem 9. Let <p be an n-convolution operator and 'Vx E Dn 3a', a" E af 
Vx', x" E Dn: <p(xx' + (1- x)x") :5: a' · x'<p(x)+a" · x"(1- <p(x)). Then 
<p: M3 ~ M3. 

Proof. It is required to prove that <p(g) E M3 if g E M3, i.e. for any B E A 
we can find a probability measure P such as <p(g) :5: P and <p(g(B)) = P(B). 
Show how to choose this measure P. Since g E M3 then for any B E 2( there 
exists P E M0: g :5: P and g(B) = P(B). Let 0 < g(B) < 1 and denote 
x = P(B), x' = P(A n B)/P(B), x" = (P(A U B)- P(B))/(1- P(B)). 
Then 

<p(g(A)) :5: <p(P(A)) = <p(P(A n B) + P(A U B)- P(B)) = 

<p(xx' + (1 - x)x") :5: a' · x'c,o(x) + o/' · x" (1 - <p(x)) ::::;; 

a' · P'(A)<p(P(B)) + a" · P"(A)(1- <p(P(B)) = P(A), 

where P'(A) = P(A n B)/P(B), P"(A) = (P(A U B)- P(B))/(1- P(B)) 
are probability measures and a' <p(P(B) )+a" (1- <p(P(B)) Eaf. Therefore P 
is also probability measure. 0 

Theorem 10. Let <p be an n-convolution operator then <p : M4 ~ M4 if 
and only if <p E H2. 

Proof. Necessity. Let <p: M4 ~ M4 but the theorem is not fulfilled, i.e. for 
some x, Llx, Lly such that x, Llx, Lly ;?: 0 and x + Llx + Lly :5: 1 we have 

Then we can choose a probability measure P E M0 as follows: P(AnB) = 
x, P(A) = x + Llx, P(B) = x + Lly, and because of additivity P we have 
P(A U B) = x + Llx + Lly. Check the required condition: 

<p(P(A)) + <p(P(B)) :5: <p(P(A U B)) + <p(P(A n B)), 
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or 
<p(x + ..dx) + <p(x + ..dy) ~ <p(x + ..dx + ..dy) + <p(x). 

But last inequality contradicts with our supposition. 
Sufficiency. If <p E H2 then <p : M4 ----> M4 (see theorems 1a) and 2). 0 

Theorem 11. Let <p be an n-convolution operator, then <p : Mf: ----> M5 if 
and only if <p E Hoo. 

Proof. Necessity. Let <p : Mf: ----> M5 but the theorem is not fulfilled, i.e. for 
some x, ..dx1, ... , Llxn 2: 0, x + L1x1 + ... + Llxn ~ 1 we have ..dn<p(x, ..dx1, ... , 
Llxn) < 0. Then we can choose a probability measure P E M0 as follows: 
P(A) = x, P(Ak) = Llxk, where A, A1, ... , An is a system of mutually exclu
sive sets. Check the required condition: 

2: (-1)k-IBI<p (p (Au U Ai)) 2:0, 
B\;;{l, ... ,n} iEB 

or 

I) -1)n-k 2: <p (X+ 2::=l ..dxim) 
k=O {i1 , ... ,ik}\;;{l, ... ,n} 

= Lln<p(x, L1x1, ... , Llxn) 2: 0. 

But last inequality contradicts with our supposition. 
Sufficiency. If <p E Hoo then <p: Mf:----> M5 (see theorems 1b) and 2). 0 

5 Conclusions 

In a view of convolution Operators and presented results we can get another 
understanding of fuzzy measure theory. Actually, if we shall consider intro
duced convolution operators <p(x), x E Rn on the vertices of a binary cube 
(i.e. x = (x 1 ,x2 , ... ,xn), Xi E {0, 1}), then this operator obviously is fuzzy 
measure, in addition, if this operator maps lower probabilities to the similar 
dass of fuzzy measures then the pointed measure <p will be a lower proba
bility. The same property refers to all considered families of fuzzy measures. 
From this fact we can put a question. How to construct convolution operators 
from fuzzy measures, keeping desirable properties? In this case we obviously 
know the values of the function only in the vertices of a binary cube and it 
is necessary to extend the range of definition to the whole cube. To do this, 
we can use different integrals [6,11,12] upon fuzzy measure; perhaps, it is 
required to apply another technique. 

There are many problems how to interpret convolution operators in the 
framework of the probabilistic approach. For instance, how to combine inde
pendent or correlated imprecise random variables [13,14] keeping required 
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accuracy? Here we have to extend the notion of convolution operator to the 
following context. For example we must also consider 2-convolution cp(x, y) 
as a function, which transfers two fuzzy spaces (X1, 2!1, g1), (X2, 2!2, g2) to 
the fuzzy space (X1 x X2, 2!1 x 2!2, g) according to a rule: g(A) = cp(gl (A1), 
g1(AI)), A = A1 x A2, A1 E 2!1, A2 E 2!2. 
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Abstract. The standard set of Bell-type inequalities is satisfied by the extension of 
probabilities to fuzzy events based on the axiomatic definition of scalar cardinality 
of a fuzzy set, even though the lattice defined by the intersection, union and negation 
of fuzzy sets in the sense of Zadeh is not a boolean algebra. 

1 Introduction 

Fuzzy probability theory allows to consider non-sharp, fuzzy random events 
like "The number will be much more than 26" or "The winner will be young". 
This kind of events can be described by the theory of fuzzy sets [9], where a 
fuzzy subset A of a universe X can be identified with a membership function 
/-LA : X ----> [0, 1], and in this paperweshall understand a fuzzy probability 
as an extension of a measure of probability defined on subsets of X to these 
fuzzy events. 

If a classical Kolmogorov probability space (X, B(X), P) can be defined, 
where B(X) is a a-algebra of subsets of X, P is a traditional probability 
measure over B(X) and the elements of B(X) are the P-measurable sets, 
then we can consider as fuzzy random events those fuzzy subsets of X whose 
membership functions are P-measurable, i.e., those fuzzy subsets A of X 
such that J-L-;;,I (ß) is a P-measurable set for every Borel set ß <;;; [0, 1]. The 
probability measure of such a (measurable) fuzzy random event Ais defined 
in [10] as 

m(A) = L J-LA(x) dP(x), 

where fx stands for the Lebesgue-Stieljes integral. 
If A is finite crisp subset of X and B(X) is the whole a-algebra of parts 

of X, then m(A) = LxEA P(x). Therefore, if P(x) = p for every x E A, then 
m(A) = piAI. If Ais finite fuzzy subset of X, i.e., if Supp(A) = {x E X I 
J-LA(x) > 0} isafinite crisp subset of X, then m(A) = LxESupp(A) f-LA (x)P(x), 
and if P(x) = p for every x E Supp(A), then m(A) = p LxESupp(A) J-LA(x). 
The value LxESupp(A) J-LA(x) is defined by Zadeh and other authors [2,10,7] 

* This work has been partially supported by the Spanish DGES, grants BFM2000-
1113-C02-01 and BFM2000-1114. 
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as the cardinality of the fuzzy subset A, but we can find several definitions 
of cardinality of a finite fuzzy subset in the literature [2,7,8]. 

Cardinalities for fuzzy sets are a generalization of classical cardinality 
theory for crisp sets. They are defined with the aim of being used in areas 
such as modeHing the meaning of imprecise quantifiers, probabilities of fuzzy 
events, analysis of grey images, or in algebraic and topological structures on 
fuzzy sets. Among the different ways of defining the concept of cardinality of 
a finite fuzzy set that can be found in the literature on this subject, the scalar 
cardinality, which associates a natural or real quantity to each finite fuzzy set, 
is a relevant one. Recently, an axiomatic approach to scalar cardinalities of 
finite fuzzy sets has been presented by M. Wygralak [6]. This approach pro
vides an infinite family of possible scalar cardinalities including all standard 
ones like the sigma count of a fuzzy set, the cardinality of its core or its sup
port and also the cardinality of its a-level set; see Section 2 below. Namely, 
these are cardinalities of the form sc,(A) = I:xESupp(A) f(JLA(x)), where 
f : [0, 1] --t [0, 1] is a nondecreasing function with f(O) = 0 and /(1) = 1 

Therefore, if we define a generalization of a probability measure 

m,(A) = L f(JLA(x)) dP(x) 

for those fuzzy events A such that the function f o f.LA is P-measurable, we 
have, for finite fuzzy sets and if B(X) is the whole a-algebra of the parts of 
X, that 

L f(JLA(x))P(x). 
xESupp(A) 

Moreover, if P(x) = p for every x E A, then 

m,(A) = p L f(JLA(x)) = p · sc,(A), 
xESupp(A) 

which is a result that also generalizes the crisp case. 
Bell's inequalities have been used in mathematical physics as a way to 

check whether a situation in quantum probability calculus, i.e., a measure 
of probability defined over an orthomodular orthocomplemented lattice or 
poset, allows a description in terms of the classical probability calculus of 
Kolmogorov or not [1,6,4,5]. Thus, according to the original idea of Bell, the 
first approach to his inequalities was a physical one, but there exists also a 
mathematical way of looking at these inequalities according to which their 
violation means first of all that the considered situation does not allow a 
description in terms of Kolmogorov probability calculus. This mathematical 
way of looking at Bell-type inequalities allows to apply them in any situation 
in which numerical data may be interpreted as probabilities, even if this situ
ation does not concern quantum physics or even physics at all. In particular, 
J. Pykacz and B. d'Hooghe studied in [5] the satisfaction of these inequalities 
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in several models of probability of fuzzy events, namely for Zadeh's definition 
of probability measure in a theory of fuzzy sets using Frank's t-norms and 
t-conorms, and they showed that the most popular model of fuzzy probability 
calculus based on the original Zadeh operations [9] cannot be distinguished 
from Kolmogorov's model by any one of Bell's inequalities. 

In this paper we investigate theseBell-type inequalities for the definition 
of generalized "scalar" probability measure m1 given above. 

2 Scalar cardinalities of finite fuzzy sets 

Recall that, with the following operations, the dass of fuzzy subsets of the 
universe X is a distributive complemented lattice: 

f..tAuB(x) = max{J.tA(x), f..tB(x)} = f..tA(x) V f..tB(x), 
f..tAnB(x) = min{J.tA(x), f..tB(x)} = f..tA(x) A f..tB(x), 

f..tÄ(x) = 1- f..tA(x) 

Definition 1. ([7]) Let FFS(X) be the dass of finite fuzzy subsets of a uni
verse X. A function sc : FFS(X) ----) [0, +oo] is called a scalar cardinality if 
the following postulates are satisfied: 

1. For every a, b E [0, 1] and x EX, if a ~ b, then sc(afx) ~ sc(b/x), where 
afx E FFS(X) is defined by afx(x) = a and afx(z) = 0 for every z # x. 

2. For every finite family {AhEJ of elements ofFFS(X) suchthat AinAi' = 
T whenever i # i' (where T is the constant 0 fuzzy set), it happens that 
sc(UiEJ Ai) = l:iEJ sc(Ai)· 

3. If Ais a finite crisp set, then sc(A) = ISupp(A)I. 

Proposition 1. ([7]) A function sc : FFS(X) ----) [0, +oo] is a scalar cardi
nality if and only if there exists a non-decreasing function f : [0, 1] ----) [0, 1] 
with f(O) = 0 and f(l) = 1, such that 

sc(A) = L f(J.tA(x)). 
xESupp(A) 

We have, among others, the following examples of scalar cardinalities: 

• If j(t) = t for every t E [0, 1], then sc,(A) = l:xESupp(A) f..tA(x). 
• If j(t) = 1 for every t > 0, then sc,(A) = ISupp(A)I. 
• If f(t) = 1 for every t 2: a and f(t) = 0 for every t < a, then sc,(A) = 

IAal, where Aa = {x E XIJ.tA(x) 2: a}. 
• If f(t) = tP, p E Q, for every t E [0, 1], then sc,(A) = l:xESupp(A)(f..tA(x)P). 
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3 The Bell-Type inequalities 

Let m be a measure defined over a lattice (or simply a poset) (L, ::;:, 1\, V,-, 0, 1) 
with m(l) = 1, and let {Pl,Plsh::;;l,s::s;;n ~ (0, 1] be a collection of numbers 
suchthat there exists a collection { elh<l<n of elements of L with m(el) = Pl 
and m( e1 1\ e8 ) = Pls for every l, s. If m -is-a probability measure in the sense 
of Kolmogorov, as well as in some other cases, the following inequalities must 
be satisfied (see (1,5,6]): for every i,j, k, t 

0 :S: Pi +Pi - Pii :S: 1 

0 :S: Pi - Pii -Pik +Pik 

0 :S: Pi -Pik - Pii +Pik 

0 :S: Pk -Pik -Pik +Pik 

Pi+ Pi+ Pk- Pii- Pik+ Pik :S: 1 

-1 :S: Pik + Pir + Pir -Pik -Pi -Pr :S: 0 

-1 :S: Pik + Pir + Pir -Pik -Pi -Pr :S: 0 

-1 :S: Pir +Pik+ Pik- Pir- Pi- Pk :S: 0 

-1 :S: Pir +Pik+ Pik- Pir- Pi- Pk :S: 0. 

4 Main results 

(1) 
(2) 

(3) 
(4) 

(5) 

(6) 

(7) 
(8) 
(9) 

Let FFS(X) be the lattice of fuzzy subsets of X. If a classical Kolmogorov 
probability space (X, B(X), P) is defined, where B(X) is the u-algebra of 
P-measurable subsets of X and P is a traditional probability measure over 
B(X), i.e. P(X) = 1 and if Bin Bi' = T whenever i =f i', then P(UiEJ Ai) = 
LiEJ P(A), then we can define a generalization of a probability measure 

mt(A) = i f(!-LA(x)) dP(x) 

for those fuzzy events A such that the function f o /-LA is P-measurable, where 
fx denotes, here and in the sequel, the Lebesgue-Stieljes integral (3,5]. 

Proposition 2. The inequalities of Bell are satisfied for every set of values 
{Pl, Pls h::s;;l,s::s;;n ~ (0, 1] for which there exists a collection {Al h::s;;l::s;;n of fuzzy 
subsets of X such that mt(Al) = Pl and mt(Al n As) = Pls for every l, s, if 
and only if for every u, v, w, t E /((0, 1]) we have that: 

O:S:u+v-ul\v:S:1 

o::;u-ul\v-ul\w+vl\w 

o::;v-vl\w-ul\v+ul\w 

o::;w-ul\w-vl\w+ul\v 

u+v+w-ul\v-ul\w+vl\w:S:1 

(10) 

(11) 

(12) 

(13) 

(14) 
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-1~uAw+uAt+vAt-vAw-u-t~O 

-1~vAw+vAt+uAt-uAw-v-t~O 

-1 ~ u At+ u Aw + v Aw- v At- u- w ~ 0 

-1 ~ v At+ v A w + u Aw- u At- v- W ~ 0 

(15) 

(16) 
(17) 

(18) 

(Notice that inequalities (10) to (18) correspond to Bell's inequalities for 
u, v, w, t and their binary minimums.) 

Proof. Assurne that inequalities (10) ... (18) are satisfied for any set ofvalues 
{u, v, w, t} ~ f([O, 1]), and let {Cs}sEJ be a finite family of fuzzy sets whose 
membership mappings, which we will represent by Cs instead J.tc. for the sake 
of simplicity, satisfy that f o Cs is P-measurable for every s E J. Then we 
have that the values f(Ci(x)), f(Cj(x)), f(Ck(x)), f(Ct(x)) satisfy inequali
ties (10)-(18) for every x E X and for every i, j, k, t. And since f is nonde
creasing, for any pair ofvalues p, q E [0, 1] we have that f(pAq) = f(p)Af(q). 
Therefore, if we take the values f(Ci(x)), f(Cj(x)), f(Ck(x)), f(Ct(x)) and, 
instead of their binary minimums, the values f(Ci(x) A Cj(x)), f(Ci(x) A 
Ck(x)), .. . , then the corresponding inequalities are obtained. Let us denote 
these inequalities by 

where every Dh is a linear function with coefficients in { -1, 0, 1} and all 
eh, e~ can be understood as constant functions taking values in { -1, 0, 1}. 

The functions eh, c'h, Dh, for l = 1, ... , 9 are P-measurable and Lebesgue
integrable, because they are either constant functions or additions and sub
tractions of P-measurable and Lebesgue-integrable functions. Moreover, for 
every pair G, G' ofthem, if G(x) ~ G'(x) for every x EX, then fx G dP(x) ~ 
fx G' dP(x). 

Therefore, we have that 

fx eh dP(x) ~ .(x Dh(f(Ci(x)), ... , f(Ct(x)), f(Ci(x) A Cj(x)), .. . ) dP(x) 
~ Jx e~ dP(x), 

from where we deduce that 

eh fx dP(x) ~ Dh(Jx f(Ci(x)) dP(x), ... , fx f(Ci(x) A Cj(x)) dP(x), .. . ) 
~ e~ fx dP(x), 

and, finally, 

for every h = 1, ... , 9, which are Bell's inequalities (1)-(9). 
Conversely, if there exists a collection { ub u 2 , u3 , u4 } ~ f([O, 1]) that 

violates inequality (ho), for some 10 ~ ho ~ 18, we can take a collection 
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offuzzy sets CI, c2, c3, c4 suchthat f(Ci(x)) = Ui for every XE X and for 
every i = 1, ... , 4, and then 

m!(Ci) = L f(Ci(x)) dP(x) = L ui dP(x) = ui L dP(x) = Ui. 

Therefore, the values mJ(Ci), i = 1, ... , 4, violate the inequality (h0 ). 

Corollary 1. Let m 1 be the measure over the fuzzy events 

m1(A) = L f(J.LA(x)) dP(x), 

where f is a nondecreasing function f : [0, 1] -t [0, 1] with f(O) = 0 and 
/(1) = 1. Then, Bell's inequalities are satisfied for every collection of numbers 
{Pl, Pls h::;l,s::=;n ~ [0, 1] such that there exists a collection {Al h::;l::;n of fuzzy 
subsets of X with mJ(At) = Pl and mJ(Al n A.) = Pls for every l, s. 

Proof By Proposition 2, we only need to prove that inequalities (10) to 
(18) are satisfied by any set of values { u, v, w, t} ~ f([O, 1]). But it is an 
Straightforward consequence of the fact, proved in [4], that Bell's inequalities 
hold for any { u, v, w, t} ~ [0, 1]. 
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Abstract. In this paper we recall the definition of a generalized inequality index 
of a real-valued random variable, and present some new useful properties in which 
we analyze how this index varies in terms of the variable variation. This will serve 
us in a future to state set-valued inequality indices for certain random sets. 

1 The f-inequality index 

The inequality index associated with a positive random variable is commonly 
intended to be a measure of its relative dispersion. The measurement of in
equality is a topic that has received attention from diverse fields, such as Eco
nomics, Industry and Social Sciences. Our study concentrates on the family 
of f-inequality indices (see for instance [1,3]) (based on Csiszar's generalized 
directed divergence between two probability distributions [5]), and we are 
primarily concerned on finding some properties of these indices that will help 
us to approximate their value when we lack of an accurate knowledge of the 
random variable whose inequality we are studying. 

Definition 1. Let (.r.?, A, P) be a probability space, let ~ : .r.? -----+ JR+ be a 
random variable and let f : (0, +oo) -----+ lR be a (strictly) convex function 
suchthat f(1) = 0, its f-inequality index is defined by 

whenever this expectation exists. 

Besides generalizing the additively decomposable inequality indices ( defined 
for a E lR as Ja(~) = !Je.(~) with !a(x) = a(~:_l) if a (/. {0, 1}, fo(x) = 
-log(x) and fi(x) = xlog(x), see for example [2]), we can mention that 
this family fulfills the standard desirable properties for inequality indices and 
some additional ones (see for instance [4,8]). Thus 

• IJ(~) 2:: 0, and for f strictly convex !J(~) = 0 iff ~ is degenerated. 
• IJ(k~) = !J(~) for all k > 0. 

* The research in this paper has been partially supported by MCYT Grant DGE-
99-PB98-1534. Its financial support is gratefully acknowledged 
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• Schur-convexity. 
• Meets Pigou-Dalton Principle of Transfers. 
• Meets Lorenz Criterium. 
• Grouping effects. 

In addition to these properties, some other ones are now presented. These 
new properties concern mainly to the bounding of the Euclidean distance 
between the f-inequality indices of two positive random variables in terms of 
the appropriate distance between them. 

2 More properties on the f-inequality index 

First, one can prove that whenever we add a positive constant to a random 
variable, its inequality decreases (i.e., positive constant translations applied 
to variable values entail a decreasing in inequality). 

Lemma 1. Given e a positive random variable, k > 0 and f: (0, +oo) ---+IR 
satisfying the conditions stated on Definition 1, monotonic and such that 
I 1 ( e) exists, then 

Proof: Let us suppose that f is monotone increasing. As the domain of f, 
domf = (0, +oo) is non-empty and f takes on finite values over all its domain, 
then f has left- and right-hand derivatives (see for instance [10]), let us 
take the left-hand derivative at x = 1, denoted by /~(1). We define g(x) = 
f~ (1) ( x- 1), whose graph is a straight line intersecting the graph of f at the 
point of abscissa 1 and suchthat g(x) :::; f(x) in the whole of the domain of 
f. We know 

We can compute the last integral in two regions: first on (0, E(e)J and 
then on [E(e), +oo). 

As f is increasing and xjE(e) < (x + k)/(E(e) + k) at the left of E(e), 
then 

1 ( ( X ) ( X+ k )) f - - f dFe(x) < 0, 
{z:z<E(e)} E(e) E(e) + k -

we also get a non-positive result if we substitute f for the new function g, 
also increasing. For values lower than x = 1 the slope of g is greater or equal 
than the one of f, because this last one is convex, then in absolute value this 
number is greater or equal for g, that is, 
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With the other member of the sum it happens the other way round; it is 
positive, and in absolute value greater than when we substitute f and write 
g, because for values greater than x = 1 the slope of g is lower than the one 
of f. Therefore both are greater than for g, and we have 

I1 (~)- I1 (~ + k) ~ j (g(E~~))- g(E~~T: k) )dFe(x) 

1 j k(x- E(~)) 
= f_(1) E(~)(E(~) + k) dFe(x) = 0. 

It is clear that if f were a decreasing function the proof would follow the 
same structure. D 

Proposition 1. For any f-inequality index If, any positive mndom variable 
~such that It(~) exists and any k > 0, we have It(~) ~ It(~ + k). 

Proof: If f were monotonic we would have proved this in the previous Lemma; 
otherwise based on the function f that determines the f-inequality index, we 
define a new function g sharing its fundamental properties, but monotonic. If 
f is convex, but not monotonic, it would reach a minimum for some c E JR+. 
If c :=::; 1, we define 

{ f(c) if x :=::; c 
g(x) = f(x) if x > c. 

If c > 1, then we define g equal to f on the left-hand of point c and equal 
to f(c) on its right-hand. 

The new function g is clearly monotonic and convex. And also, if c < 1 
(resp. c > 1) (!- g)(x) = 0, for x > c (resp. x < c) and f- g decreasing if 
x < c (resp. increasing if x > c) and convex, and then f- gisalso monotonic 
and convex, so we can apply the previous result It-g(~) ~ It-g(~ + k). Due 
to the linearity of the expectation functional and to the possibility of defining 

both I1 and I 9 , we have I1_9 (~) = E( U:;(W)) = I1 (~)- I9 (~). Joining the 

last two results we get that It(~)- I9 (~) ~ It(~ + k)- I9 (~ + k); we can 
rewrite this and apply the previous proposition on the inequality defined by 
g to get 

D 
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There is a well-known result on the classical concept of the Lorenz order 
( see for instance [9]) that states that two positive random variables e' 'Tl are 
ordered according to the Lorenz ordere ~Lorenz 'Tl if and only if Eh(E?~j) ~ 
Eh(Efry)) for every convex function h. Now e + k ~Lorenz e for every k > 0 
can be obtained as a corollary from Proposition 1. 

3 Setting bounds to the f -inequality 

By finding a bound to the distance between two realizations of a general 
convex function, we can also set bounds to the distance between the inequality 
indices of two different random variables. Note that every convex function is 
continuous and has both, left and right-hand derivatives on all the points of 
its domain. 

Lemma 2. Given f convex, and given x, h E IR, f(x)- f(x+h) ~ f!t-(x)( -h). 

Proof. 
If h = 0 it clearly holds. 
If h > 0 let's see f' (x) < f(x+h)-f(x) 

' + - h ' 

!' (x) = lim f(x + t)- f(x) = lim /({1- *)x + ·fi(x + h))- f(x) 
+ t!O t t!O t 

for t < h, by convexity, we have: 

!' (x) < lim {1- *)f(x) + *f(x + h)- f(x) = f(x + h)- f(x) 
+ - t!O t h 

and from there f(x)- f(x + h) ~ J+.(x)( -h). 
If h < 0 we can show J!._(x);::::: f(x+hz-f(x), from where f(x)- f(x+h) ~ 

J!._(x)(-h) ~ J+.(x)(-h). This last step is true due to the convexity of J, 
thanks to which the right-hand derivative of f at some given point is always 
bigger or equal than the left-hand derivative. 0 

Using the latter result, it is easy to get the next two theorems. 

Theorem 1. Given a positive random variable e and k > 0, if It(e) exists, 
we have that 

Proof" Just by making a small computation with the normalized random 
variables we get: 

e e + k e- E{e) 
E{e) - E{e) + k = k E(e)(E(e) + k) 
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and as f is convex we can apply the previous Lemma and the Cauchy
Schwartz's inequality. 

k~ (, ( e )2
) ~ E(e)(E(e) + k) E f+ E(e) . 0 

Theorem 2. Let e, rJ E LP for some p '?. 1. Jf max {I!.+ (Ete)) I. I!~ (E(17)) I} 
E Lq for q suchthat ~ + ~ = 1, we have that 

II,(e)- I,(rJ)I 

~ II max {I!~ (:~~~~111~~ (Ef.iy) l}llq (lle- rJih llrJIIP + lle- rJIIpllrJIII)· 

Proo f: Let us define ( = e - rJ. As ( LP, +, ·) is a vector space on the body of 
the real numbers, ( E LP. 

Now, we have that 

e rJ eE(ry)- ryE(e) eE(ry)- ryE(C + rJ) 
= E(e) - E(ry) E(e)E(ry) E(e)E(ry) 

(e- ry)E(ry)- ryE(() (E(ry)- ryE(() 
E(e)E(ry) E(e)E(ry) 

In accordance with Lemma 2 for every w E [} 

1(e(w)) -!(ry(w)) < (((w)E(ry)-ry(w)E(())!.' (e(w)) 
E(e) E(ry) - E(e)E(ry) + E(e) . 

By exchanging the roles played by e and ry, we get 

rJ e ryE(()- (E(ry) 
E(ry) - E(e) = E(e)E(ry) 

whence for every w E [} 

!(ry(w)) -!(e(w)) < (ry(w)E(()-((w)E(ry))!.' (ry(w)) 
E(ry) E(e) - E(e)E(ry) + E(ry) ' 

and hence 



IJ (t)-I ()I< E(I7JE(()-(E(7J)Imax{IJH"Efu)I,I!HE@-)I}) 
f "" f 7J - E(e)E(7J) 

EI(IE(7Jmax {I!H"Efu) I, I!+(E@-)1}) 
~--------~E=(e~)E~(~7J)----~~ 

E(7J)E(I(I max {IJH"Efu) I, I!+ (E@-) I}) 
+ E(e)E(7J) . 

Now, by Hölder's inequality 

li (e) _ 1 ( )I< EI(III7JIIPII max {I!+("Efu) 1. I!H"Efu) l}llq 
f f 7J - E(e)E(7J) 

E(7J)II<:IIPII max {I!H"Efu) I, iJHE@-) l}llq 
+ E(e)E(7J) 

with * + ~ = 1 ~ p, q ~ oo. Consequently, 

IIJ(e)- IJ(7J)I 
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~ II max{lf.t(*~~~~:~.t(Efuy)l}llq (lle -7JIIlii77IIPII + lle -7JIIPII7JIIl)· o 

Finally, we are going to formalize the fact that when the available in
formation on a random variable corresponds to data grouped in intervals, 
the maximal inequality is achieved when its realizations are concentrated on 
the boundary of the intervals, and the minimal inequality is achieved for a 
random variable concentrating all of its mass on one point for each interval. 

Lemma 3. Given h a convex function and being e a random variable with 
bounded support, supp(e) ~ [a, b], then 

E(h(e)) ~ h(a) b- E(e) + h(b) E(e)- a. 
b-a b-a 

We will give a proof of this Lemma simpler than the one by [6]. 

Proof: We define g(x) = h(a)~=~ + h(b)~=:. due to the convexity of h it 
is clear that for x E [a, b], h(x) ~ g(x), and then E(h(e)) ~ E(g(e)) = 
h(a) b-E(e) + h(b) E<e}-a. D 

b-a b-a 
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Proposition 2. Given a random variable e with finite Support and assuming 
that the probabilities of e lying on each one of the sets of a partition of its 
support (Pi= P(e E (ai-l,ai]), i = 1, ... ,n) are know to us, then 

The previous extreme values are reachable, because f is convex, therefore 
continuous and then the functions involving linear combinations of f are also 
continuous and are maximized on a compact set. 

4 Conclusions 

The properties on the last section bounding the distance between inequality 
indices will be used in the future to define inequality indices of set-valued 
random events. 
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Abstract. The notion of probability measure of intuitionistic fuzzy events is in
vestigated and basic properties of that concept are examined. 

1 Introduction 

Probability theory provides very powerful tools for dealing with uncertainty. 
However, in classical theory all random events should be precisely defined. 
Unfortunately this assumption appears too rigid in many reallife problems. 
Very often people deal with imprecisely defined notions, like: "high income", 
"cloudy sky", "low temperature", etc. For the traditional probability theory 
such expressions are ill defined and they are beyond the scope of that theory. 

To handle situations like described above Zadeh [9] introduced the con
cept of a fuzzy set. In a conventional fuzzy set a membership function assigns 
to each element of the universe of discourse a number from the unit inter
val to indicate the degree of belongingness to the set under consideration. 
The degree of nonbelongingness is just automatically the complement to 1 
of the membership degree. However, in real life the linguistic negation not 
always identifies with logical negation. This situation is very common in nat
ural language processing, computing with words, etc. Therefore Atanassov 
[1] suggested a generalization of the classical fuzzy set, called an intuitionis
tic fuzzy set, which is characterized by two functions expressing the degree 
of belongingness and the degree of nonbelongingness, respectively. This idea, 
which is a natural generalization of the classical fuzzy set, seems to be useful 
in modeling many reallife situations, like negotiation processes, etc. (see [3], 
[5], [6]). 

Zadeh [10] was the first who defined a fuzzy event and suggested how 
to compute probabilities of such events. Gerstenkorn and Ma:nko [4] and 
Szmidt and Kacprzyk ([7], [8]) discussed how to define the probability of 
an intuitionistic fuzzy event in a finite universe of discourse. In this paper 
we give a more general definition and we examine basic properties of the 
probability of intuitionistic fuzzy events. Our approach is consistent with 
Zadeh's approach when considered intuitionistic fuzzy events become fuzzy 
events. 
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2 Intuitionistic fuzzy sets 

Let X denote a universe of discourse. Then a fuzzy set A in X is defined as 
a set of ordered pairs, i.e. 

A = { (x, ILA(x)) : x EX}, (1) 

where /LA :X---+ [0, 1] is the membership function of A and ILA(x) is the grade 
of belongingness of x to A. Thus automatically the grade of nonbelongingness 
of x to Ais equal to 1 -ttA(x). An intuitionistic fuzzy set A in X is given 
by an ordered triple 

A = {(x,ttA(x),vA(x)): x EX}, (2) 

where /LA, VA: X---+ [0, 1] suchthat 

0 ~ /LA(x) + VA(x) ~ 1 'VxEX. (3) 

Foreach x the numbers ILA(x) and VA(x) represent the degree of membership 
and degree of nonmembership of the element x E X to A C X, respectively. 
It is easily seen that a {(x,ttA(x), 1-ttA(x)): x EX} is equivalent to (1), 
i.e. each fuzzy set is a particular case of the intuitionistic fuzzy set. For each 
element x E X we can compute, so called, the intuitionistic fuzzy index 
(hesitation margin) of x in A defined as follows 

1TA(x) = 1-ttA(x)- VA(x), (4) 

which measures the degree of hesitation of whether x belongs to A. 
In his papers [1], [2] Atanassov defined basic operations on intuitionistic 

fuzzy sets corresponding to classical and algebraic t-norms and s-norms, 
respectively. For intuitionistic fuzzy sets A, B we have 

AU B = { (x, ILA(x) V ILB(x), VA(x) !\ vB(x)) : x EX}, (5) 

AnB = {(x,ttA(x) 1\ttB(x),vA(x) VvB(x)): x EX}, (6) 

A E9 B = {(x,ttA(x) + ILB(x) -ttA(x)ttB(x), vA(x)vB(x)): x EX}, (7) 

A · B = { (x, ttA(x)ttB(x), vA(x) + vB(x)- vA(x)vB(x)) : x EX}, (8) 

The complement of an intuitionistic fuzzy set A is an intuitionistic fuzzy set 
Ac suchthat 

Ac= {(x,vA(x),ttA(x)): x EX}. (9) 

Two intuitionistic fuzzy sets A and B are equal if and only if their membership 
and nonmembership function are equal, i.e. 

A = B {::} (ttA(x) = ttB(x) and vA(x) = vB(x) Vx EX), (10) 
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while 

AC B {::} (J.LA(x):::; J.Ln(x) and VA(x) 2:: vn(x) \lx EX). (11) 

We say that intuitionistic fuzzy sets A and B are disjoint if their inter
section is empty. Therefore, we get different definitions according to different 
t-norms, e.g. 

A and B are disjoint {::} A n B = 0 
A and B are disjoint {::} A · B = 0. 

It is easily seen that definitions (12) and (13) are equivalent. 

3 Intuitionistic fuzzy events 

(12) 

(13) 

The basic concept of probability theory is a probability space (X, A, P), 
where X is a sample space, A is a a- field of subsets of X and P is a real
valued function which assigns to every event A in A its probability P(A). 
Zadeh [10] extended the notions of an event and its probability to fuzzy 
context. Further on, we shall assume for simplicity, that X is a set in nn, 
A is the smallest Borel a-field on X and P is a probability distribution 
on (X, A). Then, according to Zadeh's definition, a fuzzy event in X is a 
fuzzy set A in X whose membership function /LAis Borel measurable and the 
probability of such fuzzy event is given by 

P(A) = J J.LA(x)dP. (14) 

X 

The existence ofthat Lebesgue-Stielties integral is assured by the assumption 
that J.LA is Borel measurable. In his paper Zadeh also showed some properties 
of the probabilities defined on fuzzy events. 

With reference to Zadeh's paper Szmidt and Kacprzyk ([7], [8]) proposed 
the definition of intuitionistic fuzzy event and its probability. By an intuition
istic fuzzy event A they mean an intuitionistic fuzzy subset of the universe 
of discourse whose membership function J.LA and hesitation margin 7rA are 
Borel measurable. Then they defined the notion of the probability of an in
tuitionistic fuzzy set. However, they considered finite universe of discourse 
only. Below we present a more general definition formulated in the spirit of 
the definition given by Szmidt and Kacprzyk. 

Definition Let A denote an intuitionistic fuzzy event in X whose membership 
function J.LA and nonmembership function v A are Borel measurable, where 
X is a set in nn, and let P denote a probability measure over X. Then 
the probability of the intuitionistic fuzzy event A is a number p(A) from the 
interval 

P(A) = [pmin(A),Pmax(A)], (15) 
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where 

Pmin(A) = J f.l-A(x)dP, (16) 
X 

Pma.x(A) = J (tJ-A(x) + 7r'A(x))dP = 1- J vA(x)dP. (17) 
X X 

Pmin(A) gives "sure" probability that the event A will occur while Pma.x(A) 
gives the highest possible probability that the event A will occur. It is achieved 
only if the hesitation margin function support occurrence of the event A. The 
difference between the maximal a~d minimal probabilities, i.e. Pma.x(A) -
Pmin ( A), refl.ects the unsureness of occurrence of the intuitionistic fuzzy event 
Ä. Therefore, if Ais a classical fuzzy set, then (15) obviously reduces to (14), 
i.e. to the probability of a fuzzy set in the sense of Zadeh's definition. We will 
denote the family of intuitionistic fuzzy events in the universe of discourse X 
by IFE(X). 

Since probabilities of intuitionistic fuzzy events are described by inter
vals let us recall well known formulae for arithmetic addition, subtraction, 
multiplication and division of closed intervals. In particular, assuming that 
h = [a, b] and I2 = [c, d], we get 

[a, b] + [c, dJ = [a + c, b + dJ , (18) 
[a, b] - [c, dJ = [a- d, b- c], (19) 
[a,b] o [c,dJ = [min{ac,ad,bc,bd},max{ac,ad,bc,bd}], (20) 

[a,b]/[c,dJ = [min{ajc,ajd,b/c,b/d},max{a/c,a/d,b/c,b/d}], (21) 

provided that c =f 0 and d =f 0 in (21). This way we may also consider Opera
tions between interval and a real number >. E R treating >. as a degenerated 
interval, i.e. [>., >.]. 

We say that two intervals are equal if 

[a,b] = [c,dJ {::} (a = c and b = d) (22) 

while 
[a, b] ~ [c, dJ {::} (a ~ c and b ~ d). (23) 

A sequence ofintervals h, I2, ... suchthat In= [an, bnJ, n = 1, 2, ... tends 
to interval I = [a, b] if the interval borders tend to a and b, respectively, i.e. 

lim In =I{::} ( lim an = a and lim bn = b). (24) 
n--+oo n--+oo n-+oo 

In the sequel we also use a following notation: 0 = [0, 0] and I= [1, 1]. 
Last of all we have to mention that Gerstenkorn and Manko [4] were the 

first who considered the concept of a probability of intuitionistic fuzzy events. 
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One can ea.sily see that their definition of the probability of intuitionistic fuzzy 
subset A of a finite universe of discourse, is a real number that coincide with 
the average HPmin(A) + Pmax(A)), where Pmin(A) and Pmax(A) are given by 
(16) and (17), respectively, and P is a counting mea.sure. 

4 Properties 

In this section we briefly examine all basic properties of the probability of 
intuitionistic fuzzy events. We are interested especially in their comparison 
with the properties of the cla.ssical crisp events and fuzzy events. Let X denote 
a set in Rn and let P be a probability mea.sure over X. Then we have 

Proposition 1. The following relationsarevalid for each A E IFE(X): 

P(A) ;:::0 (25) 

P(X) =I (26) 

P(0) =0 (27) 

if AcE then P(A) ~ P(B) (28) 

P(A) ~I (29) 

Pmin(A) + Pmax(N) = 1 (30) 

Pmax(A) + Pmin(Ac) = 1 (31) 

1 E P(Ac) + P(A). (32) 

Proof: 
We see at once that Pmin(A) = fx J.LA(x)dP;::: 0 hence (25) holds. Similarly, 
Pmin(X) = J J.tx(x)dP = J 1dP = 1 and (26) holds. Since Pmax(0) = 1-

X X 
J v0(x)dP = 1- J 1dP = 0 which gives (27). 
X X 

By (11) J.LA(x) ~ J.tn(x) and VA(x) ;::: vn(x) for all x E X. There-
fore Pmin(A) = J f.LA(x)dP ~ J J.tn(x)dP = Pmin(B) and Pmax(A) = 1-

X X 
J VA(x)dP ~ 1 - J vn(x)dP = Pmax(B), hence P(A) ~ P(B) and (28) is 
X X 
proved. Since A ~X, (28) and (26) shows that P(A) ~ P(X) = 1 and (29) 
holds. 

By definition (9) of the compliment Ac of A we have 

Pmin(A) + Pmax(Ac) = J J.LA(x)dP + J (1- J.LA(x))dP = 1 

X X 

Pmax(A) + Pmin(Ac) = J (1- VA(x))dP + J VA(x)dP = 1 

X X 
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which proves (30) and (31). Moreover, by (3) and (4) 

P(Ac) + P(A) = lPmin(A),Pmax(A)] + lPmin(Ac),Pmax(Ac)] 

= lPmin(A) + Pmin(Ac), Pmax(A) + Pmax(Ac)] 

~ [1- j ~A(x)dP, 1+ j ~A(x)dP]3 1 (33) 

and (32) holds. D 

Remark: 
Properties (25)-(29) correspond to those known from the classical probability 
theory, namely: nonnegativity, norming, zero probability of the impossible 
event, monotonicity. However, (33) shows us that if fx 7rA(x)dP > 0 then 

(34) 

while both for fuzzy events and for crisp events the complementation property 
P(A) + P(Ac) = 1 holds. 

Proposition 2. The following equalities hold for all A, BE IFE(X): 

P(A U B) + P(A n B) = P(A) + P(B) 

P(A EB B) + P(A · B) = P(A) + P(B). 

(35) 

(36) 

The prooffollows immediately from (5)-(8). From (12) and (13) we obtain 

Corollary 1. If A,B E IFE(X) are disjoint then 

P(A U B) = P(A) + P(B) 

P(A EB B) = P(A) + P(B). 

(37) 
(38) 

In this paper we consider two definitions of the union of intuitionistic 
fuzzy sets and two definitions of the intersection. Below we show the relation 
between corresponding probabilities. 

Proposition 3. The following inequalities hold for all A, BE IFE(X): 

Proof: 

P(AUB):::; P(AEBB) 

P(A n B) 2': P(A · B). 

(39) 

(40) 

We first recall that a V b :::; a + b- ab and a 1\ b 2': ab for any a, b E [0, 1]. Hence 
we get fLA(x) V fLB(x) S fLA(x) + fLB(x)- fLA(X)fLB(x) and VA(x) 1\ Vß(X) 2': 
vA(x)vB(x) Vx EX which means by (5) and (7) that fLAuB(x) :::; fLAffiB(x) 
Vx EX and therefore by (11) AUE~ AEBB. Now according to (28) we have 
P(A U B) :::; P(A EB B). 

Similarly, fLA(x) 1\ fLB(x) 2': fLA(x)fLB(x) and VA(x) V vB(x) :::; VA(x) + 
VB(x)- VA(x)vB(x) Vx E X which means by (6) and (8) that fLAnB(x) 2': 
fLA·B(x) Vx EX and therefore by (11) An B ~ A · B. Hence according to 
(28) we get P(A n B) 2': P(A · B) which completes the proof. 0 
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Proposition 4. Let A1, o 0 o, An E IFE(X)o Then following equalities hold 

n n 

P( U Ak) = 2:) -1)k-l 
k=l k=l 

n n 

P(ffiAk) = 2:)-1)k-l 
k=l k=l 

Proof: 
Let us first prove (41)0 It is easy to checkthat 

From (35) it follows that ( 41) holds for n = 20 Assuming ( 41) holds for n, we 

will prove it for n + 1 

n+l n 

P( U Ak) = P( U Ak U An+do 
k=l k=l 

By (35) we have 

n+l n n 

Pmin( U Ak) = Pmin( U Ak) + Pmin(An+l)- Pmin( U Ak n An+!) 
k=l k=l k=l 

= J (fJA 1 V o o o V fJAn )dP + J /JAn+l dP - J ( (fJA 1 V o o o V fJAn) 1\ fJAn+l )dP 

X X X 

= J (fJA 1 V o o o V /JAn V /JAn+l)dP 

X 

and in a similar way we get 

n+l 

Pmax( u Ak) = 1- J (v A 1 1\ o o o 1\ V An 1\ V An+l )dP. 
k=l X 

Hence 

which is the desired conclusiono 
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Now let us turn to (42). It follows easily that 

- ... + (-I)"-' ~A, · ... · ~A.) dP, I -j VA, · ... · VA,.dP l 
From (36) it follows that ( 42) holds for n = 2. Assuming ( 42) holds for n, 

we will prove it for n + 1 

n+l n 
P(Efj Ak) = P(Efj Ak EB An+ I). 

k=l k=l 

By (36) we have 

n+l n n 
Pmin(Efj Ak) = Pmin(Efj Ak) + Pmin(An+l)- Pmin(Efj Ak ·An+ I) 

k=l k=l 

- ... + ( -l)n-l f1A 1 • ••• • flAn) dP + J /lAn+l dP 

X 

k=l 

and similarly we get 

n+l 

Pmax(EfjAk) = 1- j VA 1 • • • • • VAn · VAn+ldP. 

k=l X 

Hence 
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- ... + ( -l)"!'A, · ... · f'An · f'A.+,) dP, 1-f VA, · ... ·VA.· VA • ., dP l 
n+l 

= P(ffiAk) 
k=l 

which completes the proof. D 
According to the above proposition we get immediately finite additivity 

and subadditivity. 

Corollary 2. If A1, ... , An E I F E(X) are pairwise disjoint intuitionistic 
fuzzy events then: 

P(A1 U ... U An)= P(A1) + P(A2) + ... + P(An) (43) 

P(A1 Ee ... Ee An)= P(A1) + P(A2) + ... + P(An)· (44) 

Corollary 3. If At, . .. , An, .. . E I F E(X) then 

P(A1 U ... U An):::; P(A1) + P(A2) + ... + P(An) (45) 

P(A1 Ee ... Ee An) :::; P(A1) + P(A2) + ... + P(An)· (46) 

Next proposition shows that the probability of intuitionistic fuzzy events 
is continuous from above and from below. 

Proposition5. LetA1, ... ,An, ... E IFE(X) such thatAn ~ An+l and 
00 

A = U An E IFE(X). Then 
n=l 

lim P(An) = P(A), 
n-+oo 

(47) 

00 

while for At, ... , An, .. . E I F E(X) such that An 2 An+l and A = n An E 
n=l 

IFE(X) we have 
lim P(An) = P(A). 

n-+oo 
(48) 

Proof: 
Let An {(X,J.l.An(x),liAn(x)): XE X}, A = {(X,J.l.A(x),liA(x)): XE X} 

00 

and A = U An where J.l.A (x) = sup J.l.An (x) and ZIA (x) = inf liAn (x) 'v'x EX. 
n=l n n 

Since IJ.l.An(x)l:::; 1 and lvAn(x)l:::; 1 'v'x EX then by the Lebesgue theorem 
on the dominated convergence we get 

Pmin(An) = J J.l.An(x)dP ~ J J.l.A(x)dP = Pmin(A) 
X X 

Pmax(An) = 1- J V An (x)dP ~ 1- J VA(x)dP = Pmax(A) 
X X 
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and thus P(An)----> P(A) which proves (47). The prooffor (48) is similar. 0 

Now we show the countable additivity of the probability measure for 
intuitionistic fuzzy events. 

00 

Proposition 6. IfAl, ... ,An,··· E IFE(X) arepairwisedisjointand U Ai, 
i=l 

00 

E9 Ai E IFE(X) then 
i=l 

00 00 

(49) 
i=l i=l 
00 00 

P(ffiAi) = LP(Ai)· (50) 
i=l i=l 

Proof: 
Since our intuitionistic fuzzy events are disjoint, (37) shows that 

oo n oo 
P(U Ai)= P(U Ai)+ P( u Ai)· 

i=l i=l i=n+l 

From (43) we conclude that 

oo n n 

LP(Ai) = lim LP(A) = lim P(U Ai) 
n----+oo n---+oo 

i=l i=l i=l 

= nl_!.~ [P(iQ Ai) + ( -1 )P(i=Ql Ai) l 
00 00 00 00 

=P(UAi)+nl_!.~(-I)P( U Ai)=P(UAi)+(-I)nl_!.~P( U Ai) 
i=l i=n+l i=l i=n+l 

00 00 

Since U Ai --7 0 as n --7 oo, then by ( 48)) limn->oo P( U Ai) = 0. Hence 
i=n+l i=n+l 

00 00 

2:= P(Ai) = P( U Ai)· The similar proof works for (50). 0 
i=l i=l 

Therefore, we get at once subadditivity: 

Corollary 4. If A1, ... , An, ... E IFE(X) then 

00 00 

P( u Ai) :::; L P(Ai) (51) 
i=l i=l 
00 00 

P(ffiAi):::; LP(Ai)· (52) 
i=l i=l 
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5 Conclusions 

In the paper we try to handle two types of uncertainty: randomness - de
scribed by the probability theory, and imprecision - expressed here by intu
itionistic fuzzy set theory. Both sources of uncertainty play a central role in 
decision making. We have investigated the fundamental notion of that ap
proach- the probability of intuitionistic fuzzy event. We have examined basic 
properties of the probability of an intuitionistic fuzzy events. As it was shown, 
many properties are equivalent to those known from the classical probability 
theory of crisp events or fuzzy events. However, there are also some dissim
ilarities. This is due to the fact that the probability of intuitionistic fuzzy 
event is described by an interval, contrary to the classical probability theory 
and to fuzzy set theory where it is given by a single real number. 
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Abstract. A random set semantics for imprecise concepts is introduced. It is then 
demonstrated how label descriptions of data sets can be learnt in this framework. 
These descriptions take the form of linguistic prototypes representing amalgams of 
elements. The potential of this approach for classification and query evaluation is 
then investigated. 

1 Introduction 

The area of automated learning from data is becoming increasingly important 
in an age of almost continuous data collection. From data we must be able to 
learn models which are flexible enough to facilitate a wide range of queries 
and which allow for insight into the underlying nature of the system under 
consideration. A principal requirement of such models is that they should be 
transparent and in order to achieve such clarity, ideally the representation 
framework should be high-level and capture certain aspects of natural lan
guage. In this paper we shall focus on modelling the imprecision associated 
with adjective labels that describe a quantity or the value of a measurement. 
Typical examples of this type of label occur in expressions of the form 'the 
diastolic blood pressure is high' or 'The sodium concentration is quite low'. 
Specifically, we aim to provide label descriptions of attributes values for sets 
of similar elements contained in a database. In a sense such descriptions can 
be viewed as imprecise prototype definitions. These prototypes can then be 
used for dustering as weil as classification and prediction tasks. In the sequel 
we introduce a random set based calculus [4] for attribute labels with a clear 
underlying semantics. 

2 Label Semantics 

For an attribute (or variable) X into a domain of discourse n we identify a 
finite set of words LA with which to label the values of x. Then for a specific 
value a E Dan individual I identifies a subset of LA, denoted 'D~ to stand for 
the description of a given by I, as the set ofwords with which it is appropriate 
to label a. Within this framework then, an expression such as 'the diastolic 
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blood pressure is high', as asserted by I, is interpreted to mean high E V[P 
where bp denotes the value of the variable blood pressure. If we allow I to 
vary across a population of individuals V then we naturally obtain a random 
set Vx from V into the power set of LA where Vx(I) = Vfn. A probability 
distribution ( or mass assignment) associated with this random set can be 
defined and is dependent on the prior distribution over the population V. We 
can view the random set Vx as a description of the variable x in terms of the 
labels in LA. 

Definition 1. (Value Description) For x E [l the label description of x is a 
random set from V into the power set of LA, denoted Vx, with associated 
distribution mv.,, given by 

VS ~LA mv.,(S) = Pr({I E V: v;, = S}) 

Another high level measure associated with mv., is the following quan
tification of the degree of appropriateness of a particular word L E LA as a 
label of x. 

Definition 2. (Appropriateness Degrees) 

Vx E il, VL E LA f..LL(x) = L mv.,(S) 
S~LA:LES 

Now clearly f..LL is a function from [l into [0, 1) and therefore can techni
cally be viewed as a fuzzy set. However, weshall use the term 'appropriateness 
degree' partly because it more accurately reflects the underlying semantics 
and partly to highlight the quite distinct calculus for these functions that 
will be introduced in the sequel. We now make the additional assumption 
that value descriptions are consonant random sets (see [2)). In the current 
context consonance simply requires the restriction that individuals in V differ 
regarding what labels are appropriate for a value only in terms of generality 
or specificity. Certainly, given that the meaning of the labels in LA must 
be sufficiently invariant across V to allow for effective communication then 
some strong restriction on Vx should be expected. The consonance restriction 
could be justified by the idea that all individuals share a common ordering 
on the appropriateness of labels for a value and that the composition of Vfn is 
consistent with this ordering for each I. The consonance assumption means 
that mv., can be completely determined from the values of f-Ldx) for L E LA 
as follows [2): If {f..LL(x) : L E LA}= {Yb ... , Yn} ordered suchthat Yi > Yi+l 
for i = 1, ... , n- 1 then for Si= {L E LA: f..LL(x) ~ Yi}, 

mv.,(Si)=yi-Yi+l fori=1, ... ,n-1 

mv.,(Sn) = Yn and mv.,(0) = 1- Yl 

This has considerable practical advantages since we no Ionger need to 
have any knowledge of the underlying population of individuals V in order 
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to determine mv,.. Rather, for reasoning with Iabel semantics in practice we 
need only define appropriateness degrees /LL for L E LA corresponding to the 
imprecise definition of each Iabel. 

For more generallinguistic reasoning a mechanism is required for evaluat
ing compound Iabel expressions. For example, we may wish to know whether 
or not expressionssuch as medium 1\ low, medium V low and -,high can be 
applied to a value x E n. In the context of this assertion-based framework 
we interpret the main logical connectives in the following manner: L 1 1\ L2 

means that both L1 and L2 are appropriate Iabels, L1 V L2 means that either 
L1 or L2 are appropriate Iabels and --,L means that L is not an appropriate 
Iabel. More generally, if we consider Iabel expressions formed from LA by 
recursive application of the connectives then an expression 0 identifies a set 
of possible Iabel sets A( 0) as follows: 

Definition 3. Possible Label Sets 

• ForLE LA A(L) = {S ~LA: L ES} 

• For Iabel expressions 0 and cp A(O 1\ cp) = A(O) n A(cp) 

• For Iabel expressions 0 and cp A(O V cp) = A(O) U A(cp) 

• For Iabel expression 0 A( --,0) = A( 0) 

The notion of appropriateness measure given above can now be extended 
so that it applies to compound Iabel expressions. The intuitive idea here is 
that J.Le(x) quantifies the degree to which expression 0 is appropriate as a 
description of x. 

Definition 4. (Compound Appropriateness Degrees) For 0 a Iabel expres
sion and X E [} the appropriateness of 0 to X is given by: 

J.Le(x) = L mv,.(S) 
SE>-(9) 

3 Label Descriptions of Data Sets 

Suppose we have a database DB of N elements, associated with each of 
which are n measurements X1, ... ,xn so that DB = {(x1 (i), ... ,xn(i)): i = 
1, ... ,n} where Xj(i) denotes the value of Xj for object i. Further, suppose 
that we select a set of Iabels LAj for each attribute Xj for j = 1, ... , n where 
each Iabel is defined by an appropriateness measure. The Iabel description of 
DB is now defined tobe a vector of mass assignments as follows: 
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Definition 5. (Label Description of DB) The Iabel description of DB is a 
vector C(DB) = (m1, ... , mn) where 

1 N 

vs ~LA mj(S) = N L mvx;(i) (S) 
i=l 

Given a Iabel description of DB we now evaluate a joint mass assignment 
Oll 2LA1 X ... X 2LAn SO that: 

n 

VSj E 2LA; ,j = 1, ... , n mDB(Sl. ... , Sn)= I1 mj(Sj) 
j=l 

Clearly, we are making an independence assumption here and in some 
cases this may not be appropriate. In order to overcome this problern one 
approach is to partition DB into a number of disjoint sets P1, ... , Pc, per
haps according to some standard dustering algorithm, where the elements 
contained in each partition set are assumed tobe sufficiently similar to allow 
an independence assumption. We can then learn Iabel descriptions C(Pk) for 
k = 1, ... , c and combine them to form an overall mass assignment for DB 
as follows: Let C(Pk) = (ml,k, ... , mn,k) then 

VSj E 2LA; ,j = 1, ... , n mDB(Sl. ... , Sn)= t I~ I IT mj,k(Sj) 
k=l j=l 

Given a joint mass assignment on DB and tuple of Iabel expressions (} = 
(fh, ... , Bn) where ()j is an expressions based on Iabels LAj, we can now use 
Iabels semantic to evaluate the appropriateness of (} for describing DB in the 
following way. 

Jte(DB) = L 

For many types of data analysis it is useful to be able to estimate the 
distribution on underlying variables given the information contained in DB. 
In the current context our knowledge of DB is represented by the mass as
signment mvB and hence we need to be able to evaluate a distribution on 
the base variables x1, ... , Xn conditional on mDB· For simplicity, we now 
assume that all variables are continuous with domains of discourse compris
ing of bounded closed intervals of the real line. Furthermore, we assume a 
prior joint distribution p(x1, ... , Xn) for the base variables. In the case that 
p is unknown we will assume it to be the uniform distribution. Furthermore, 
to simplify the following definition we will at least assume that x 1, ... , Xn 
are a priori independent so that p(x1, ... ,xn) = TI7=1pj{Xj), Pi being the 
marginal prior on Xj. The following definition is based on a Bayesian argu
ment the details of which are given in [3]. 
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Definition 6. (Conditional Density given a Mass Assignment) Let x be a 
variable into il with prior distribution p(x), LA be a set of Iabels for x and 
m be a posterior mass assignment for the set of appropriate Iabels of x (i.e. 
'Dx) inferred from some database DB. Then the posterior distribution of x 
conditional on m is given by: 

Vx Eil p(xim) = p(x) L m(~) mv.,(S) 
S~LApm 

where pm is the prior mass assignment generated by the prior distribution p 
according to 

pm(S) = l mv., (S)p(x) 

This definition is motivated by the following argument based on the the
orem of total probability: 

p(xim) = L p(xi'Dx = S)Pr(Vx = S) = L p(xi'Dx = S)m(S) 
SeLA SeLA 

Also 
p(xi'Dx = S) = Pr(Vx = Slx)p(x) = mv.,(S)p(x) 

Pr(Vx = S) pm(S) 

Making the relevant substitutions and then simplifying gives the expres
sion from definition 6. This definition is then extended to the case where the 
posterior knowledge consists of a set of prototype descriptions of DB. 

Definition 7. (Conditional Densities from Prototype Descriptions) For mvn 
generated from Iabel descriptions C(Pk), k = 1, ... , c 

4 Label Models and Linguistic Queries 

To illustrate the potential of this framework weshall briefly describe how it 
can be applied to dassification problems. In principle, however, the approach 
can also be applied to prediction and duster analysis. Suppose then that 
the objects of DB can be categorised as belanging to one of the dasses 
C1, ... , Ct and let DBj denote the subset of DB containing only the elements 
with dass Ci. We can now determine mvnj on the basis of some partition 
and evaluate p( xlmvnj) as described above. If we now take p( xlmvnj) as 
an approximation for p(xiCi) then from Bayes theorem we have Pr(Cilx) <X 

p(xlmvni)IDBil· Given this estimate foreachdass probability, dassification 
can be then carried out in the normal way. In the limit case when the partition 
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of DBj has only one set (i.e. DBj) then this method corresponds to a version 
of the well known Naive Bayes algorithm [5]. 

Also, in the context of dassification problems we extend the vector nota
tion for linguistic queries as follows: 

This represents the question: Do elements of dass Cj satisfy 0 (i.e. x1 is B1 

and x2 is B2 and ... and Xn is Bn)? The support for this query is given by 
Pr(OICi) = f.le(DBj)· 

(fh, .. · , Bn) 

This represents the question: Do elements of DB satisfy 0? The support for 
this query is given by Pr(O) = Jle(DB) = I::~=l Pr(DBk)Jle(DBk)· 

This represents the question: Do elements satisfying 0 belong to dass Cj? 
The support for this query is given by 

p (C·IO) = Jle(DBj)Pr(DBj) 
r J Jle(DB) 

Example 1. The Naive Bayes version of the above algorithm was applied to 
the UCI repository problern on glass categorisation. The problern has 6 dasses 
and 9 continuous attributes. 5 labels were define for attributes 1-2 and 4-7. 
Attribute 3 was allocated 4 labels and attributes 8 and 9 were not used as 
their variance across DB was too low for effective labelling. For all attributes 
the labels were defined by trapezoidal appropriateness degrees positioned 
according to a simple percentile method (see figure 1). The database of 214 
elements was randomly split into a test and training set of 107 elements each 
and a dassification accuracy of 78.5% on the training set and 72.9% on the 
testsetwas obtained. This is comparable with other approaches; for example 
a feedforward Neural Network with architecture 9-6-6 gives 72% on a smaller 
test set where the network was trained on 50% of the data, validated on 25% 
and tested on 25%. The density function for attribute 1 generated from the 
label description of dass 1 according to definition 6 is shown in figure 2. 

Now suppose for the attributes with five labels that these correspond to 
domain specific versions of very low(vl), low(l), medium(m), high(h) and 
very high (vh) (see figure 1). Consider the following queries: 

Query 1 
What is the probability that float processed building window glass ( class 1) 

has a medium to low or high refractive index ( att. 1) and a very low or low 
sodium concentration ( att. 2)? 

To answer this query we note that .C(DB1) = (m1,1, ... , mn,l) where 
m 1,1 = { vl} : 0.01373, { l, vl} : 0.04342, { l} : 0.02804, { l, m} : 0.37391, 
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Fig. 1. Non uniform appropriateness degrees for, from left to right, verysmall, 
small, medium, large and verylarge for attribute 1 generated using a percentile 
algorithm. 

Fig. 2. Density function for attribute 1 conditional on dass 1 generated from the 
mass assignment for attribute 1 in the label description of dass 1. 

{m} : 0.12208, {m, h} : 0.08424, {h} : 0.10059, {h, vh} : 0.17233, {vh} 
0.06167. 

In this case the vector representation of the query is given by 

where T denotes a tautology, 81 := (mediuml\low)Vhigh and 82 := very lowV 
low. 

For this query we have that 

n 

L L ·· · L IJ mi,l(Si) 



Now from the training database we have 

L m1,1(St) 
SEA{Ih) 
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= m1,1( {l, m}) + m1,1( {m, h}) + m1,1( {h}) + m1,1 ( {h, vh}) = 0. 73107 

Similarly, L:seA(I12 } m2(S) = 0.92923 so that J.Lo(DBt) = 0.73107x0.92923 = 
0.67933 this being the required probability. 

Query 2 
What is the probability that a glass fmgment has a medium to low or high 

refractive index (att. 1) and a very low or low sodium concentration (att. 2}? 
This query has vector representation 

and the required probability is given by J.Lo(DB). To evaluate this we note 
that for classes C1. ... , C6 the probabilities of each dass satisfying 8 are 
given by 

J.Lo(DBl) = 0.67933, 

J.Lo(DB4) = 0.42108, 

J.Lo(DB2) = 0.18429, 

J.Lo(DBs) = 0, 

J.Lo(DB3) = 0.09036, 

J.Lo(DB6) = 0.02173. 

Also the number of data elements in DB1, ... , DB6 are respectively 35, 38, 8, 
7, 4 and 15. From this we can evaluate: 

J.Lo (DB) = 1~7 (0.0.67933(35) + 0.18429(38) + 0.09036(8) + 0.42108(7) 

+ 0.02173(15)) = 3\~~60 = 0.32501. 

Query 3 
What is the probability that a glass fragment with a medium to low or high 

refractive index (att. 1} and a very low or low sodium concentmtion (att. 2) 
is a fragment of float processed building window glass (class 1}? 

For this query the vector representation is 

C1: (fh,B2, T, ... , T) 

and the required probability Pr( C1IO) is given by: 

Pr(CIIO) = J.Lo(DB1 )Pr(DBt) = 0.67933-Mr = 0.6837 
J.Lo (DB) 0.32501 

Example 2. In this problern a figure eight shape (see figure 4) was gener
ated according to the parametric equation x = 2-0·5 (sin2t- sint), y = 
2-0·5 (sin2t+sint) where t E [0,211']. Points in [-1.6,1.6]2 are classified as 
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legal if they lie within the figure and illegal if they lie outside. The train
ing database consisted of a regular grid of points on [ -1.6, 1.6]2. Clearly, a 
Naive Bayes independence assumption is inappropriate for this problern and 
willlead to significant decomposition error. Instead, c-means [1], was used to 
partition both the legal and illegal sub-databases into four. A joint mass as
signment and joint distribution (figure 3) were then generated for each dass, 
as described in section 3 and based on six labels for each variable. A classifi
cation accuracy of 95.4% on the training set and 95.8% on a denser test set 
of 2116 elementswas obtained (see figure 4). This compares with an accuracy 
for the Naive Bayes model of 85% on the training set and 85.1% on the test 
set. 

Fig. 3. Density function for legal dass generated from the label model consisting 
of four legal prototypes 

.. 

Fig. 4. Scatter plot showing true positives, false negative and false positive points 
for the figure eight test set 



125 

5 Conclusions 

A framework for evaluating label descriptions of a database has been intro
duced. This involves a new random set based semantics for imprecise con
cepts. The potential of this approach has been demonstrated by its applica
tion to classification problems and to the evaluation of linguistic queries. 
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Abstract. We investigate the probabilistic information given by a random set 
when it represents the imprecise observation of a random variable. We compare the 
information given by the distributions of the selectors with that provided by the 
upper and lower probabilities induced by the random set. In particular, we model 
the knowledge on both the probability of an event and the probability distribution 
of the original random variable. Some characterizations and examples are given for 
the case of a finite final space, and the main difficulties for the infinite case are 
commented. 

The theory of random sets has been successfully applied in many differ
ent contexts. It has been used in connection with fuzzy set theory ([4]), as a 
tool for dealing with imprecise information ([3,9]), but also in the context of 
stochastic geometry ([8,10]). Formally, a random set is a multi-valued map
ping satisfying a certain measurability condition. Different conditions have 
been defined ([7]). Most of them depend on the notion of upper and lower 
inverse. 

Definition 1. Consider a probabilistic space (il, A, P), a measurable space 
(X, A') and a multi-valued mapping r: il ~ P(X). Given A E A', the upper 
inverse of A by Fis F*(A) = A* = {w E il: F(w) n A # 0}, and the lower 
inverse is given by F*(A) = A* ={wEil: F(w) # 0, F(w) ~ A}. 

Definition 2. A multi-valued mapping r: il ~ P(X) is said tobe strongly 
measurable when A * E A VA E A'. 

Other conditions, such as the measurability, the weak-measurability or 
the C-measurability, only require the upper inverse of closed (resp. open, 
compact) sets to belong to A. Our choice of the strong measurability is due 
to our interpretation of a random set: we will regard ([9]) r as an imprecise 
observation of a random variable Uo, in the sense that U0 (w) E F(w) Vw. 
Then, we have A* C U01 (A) CA* VA E A'. That is, the upper and lower 
inverse of a set A are respectively a superset and a subset of the anti-irnage 
of A by the random variable U0 • 

Dempster defined the upper and lower probabilities induced by r in the 
following form: 



127 

Definition 3. [3] Let r : Q ---t P(X) be a strongly measurable multi-valued 
mapping, and let A E A'. Then, the upper probability of A is given by P* ( A) = 

;f~:~, and the lower probability is given by P* (A) = ;f~:~. 

If r is the imprecise Observation of Uo, it must be r(w) =I= 0 Vw (for 
Uo(w) E F(w)), and hence P*(A) = P(A*), P*(A) = P(A*) VA E A'. We 
deduce that P*(A) and P*(A) are an upper and a lower bound of Pu0 (A). 
The strong measurability of r is necessary in order for P*, P* to be defined. 
Note that A* = [(Ac)*]c, whence if r is strongly measurable, A* E A VA E 
A'. Moreover, P*(A) = 1- P*(Ac) VA E A'. This shows that the studies 
concerning the upper and the lower probabilitywill be dual of each other. 

As we have said, we will regard a random set r as the result of the 
imprecise observation of a random variable U0 , in the sense that, given an 
element w in the initial space, we only know that U0 (w) belongs to the set 
r(w). Therefore, all we know about U0 isthat it belongs to the dass 

S(r) := {U : Q ---t X r.v. suchthat U(w) E r(w) Vw }, 

and the probability measure induced by U0 will belong to the dass 

P(F) :={Pu: U E S(r)}. 

The elements of S(r) are called selectors of the random set r. Note that 
because of the relationship A* ~ u-1 (A) ~ A*, valid for any U E S(r), it 
is P*(A) :::; Pu(A) :::; P*(A) VU E S(r), VA E A'. That is, if we define the 
family 

M(P*) := {Q probability: Q(A):::; P*(A) VA}, 

it is P(r) ~ M(P*). Moreover, because of the duality between the up
per and lower probability, it will be Q(A) :::; P* (A)VA {::} Q(A) 2:: P* (A)VA. 
There are several studies in the Iiterature concerning convex sets of probabil
ities dominated by a Choquet capacity ([1,13,15]). However, studies for non
convex sets of probabilities are much more rare. Because of this fact, many 
authors model the information given by r about Pu0 with the set M(P*), 
instead of working with P(r), which is the most precise set of probabilities 
we can consider. As, moreover, convex sets provide some advantages respect 
to non-convex sets from an operational point of view, it will be preferable to 
work with M(P*) when no significant information is lost. Our aim in this 
paper is to make a thorough study of the relationships between the dasses 
M(P*) and P(r), determining which of them is more appropriate to work 
with in different situations. 

We are first going to consider the case of a finite referential X. In that case, 
the measurability conditions introduced above are equivalent. We will show 
through different examples that P(r) is not convex in general. Nevertheless, 
the replacement of P(r) by M(P*) will not cause any problern in most 
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cases: if our goal is to obtain upper and lower bounds for some parameter 
of the distribution Pu0 , f(Pu0 ), the substitution of P(T) will not alter our 
information when f satisfies the condition 

{f(Q) I Q E Conv(C)} ~ Conv({f(Q) I Q E C}). (1) 

for any dass C of probability distributions, where Conv(A) denotes the 
convex hull of A. This is for instance the case for any linear operator, such 
as the mean, but also for operators like the median or the variance. However, 
condition (1) does not always hold, and this means an important loss of 
information in the case of parameters like the entropy or the modal value, as 
we show next: 

Example 1. Consider the set fl = {1, 2, 3} with the uniform distribution, and 
the multi-valued mapping r : fl --) P( {1, 2}) given by r(w) = {1, 2} Vw. r 
is trivially strongly measurable, because for any non-empty A E P( {1, 2} ), it 
is A* = rl. 

Then, P(T) = {(0, 1), (1/3, 2/3), (2/3, 1/3), (1, 0)}, whereas it is P*(A) = 
1 VA E P( {1, 2} ), and hence M(P*) is given by {(a, 1- a) : a E [0, 1]}. 

Now, consider f the Shannon entropy on the probability distributions on 
{1, 2}: it is given by f((a, 1- a)) = -[alog2 a + (1- a) log2 (1- a)]. Then, 
f(Pu0 ) will belong to the set f(P(r)) = {0, /(1/3, 2/3)} = {0, 0.92}. On the 
other hand, f(M(P*)) = [0, 1]. Therefore, our estimation is more imprecise 
when we work with the dass M(P*).+ 

Example 2. Take fl = {1, 2}, and a probability P on P(fl) given by P( {1}) = 
0.4, P( {2}) = 0.6. Consider X = JR., and the multi-valued mapping T(1) = 
lR. \ {1, 3}, T(2) = {1, 3}. It is dearly strongly measurable. 

Now, P(T) := {0.48", + 0.68y : x E lR. \ {1, 3}, y E {1, 3} }, where 8", is the 
probability distribution given by 8",(A) = 1 if and only if x E A; on the other 
hand, M(P*) := { Q probability : Q( {1, 3}) = 0.6}. Then, P(r) ~ M(P*): a 
probability Q satisfying Q( {1}) = Q( {3}) = 0.3 belongs to M(P*) \ P(r). 

We can see that the modal point of the distribution Pu0 can only be 1 
or 3; however, if we consider the set of distributions given by M(P*), any 
other point x of lR. can be the modal point: take for instance the distribution 
Q given by Q( { x}) = 0.4, Q( {1}) = Q( {3}) = 0.3. Thus, we are losing some 
essential information with this bigger set of probabilities.+ 

The reader can find other relevant examples in [2]. This serves as a mo
tivation for a study of the relationship between both sets: it is dear that 
working with the upper probability is much easier in practice than with the 
set of distributions of the selectors; one advantage is for instance that the 
convex set M(P*) is characterised by its finite number of extreme points, 
which are in correspondence with the permutations on S1x1, as will later 
show. Nevertheless, the use of the results on M(P*) is only justified when we 
have the equality between both sets or when no relevant information is lost, 
as we argued for equation 1. 
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Let us define the dass 

P(T)(A) := {Q(A): Q E P(T)}. 

It represents the information provided by r on the probability of a set A. 
The convexity of this dass and its relationship with the upper probability is 
characterized through the following theorem: 

Theorem 1. Let (il, A, P) be a probabilistic space, (X, P(X)) be a finite 
space, with !XI = n, and r: n---+ P(X) a random set. 

1. P*(A) = maxP(T)(A),P*(A) = minP(T)(A) for any A ~X. 
2. P(T)(A) = [P.(A), P*(A)] {::} A* \ A. is not an atom. 
3. Conv(P(r)) = M(P*), and P(r) = M(P*) iff P(r) is convex. 

Proof: 

1. Take A = {x1, ... , xm} C X; then, we can denote without lass of gen-
erality X = {x1, ... , Xm, Xm+l• ... , Xn}· Let us prove for instance that 
maxP(T)(A) = P*(A). Define U: il---+ X by 

n 

U := Xlf{x 1 }• + L Xif{x;}*\{x 1 , ... ,x;_l}• 
i=2 

(i.e., U(w) = Xiifand only if w belongs to {xi}* \ {xl. ... , Xi-1}*). We 
deduce from the strong measurability of r that U is measurable, and from 
its definition we have U(w) E T(w) \fw. Moreover, it is u-1(A) = A*, 
whence Pu(A) = P*(A). 
We can show similarly that P*(A) = minP(T)(A) VA. 

2. From the previous point, we can consider U1, U2 E S(T) s.t. U!1(A) = 
A*, Ui1(A) = A*. We deduce that P(T)(A) = [P.(A), P*(A)] if and only 
if P(r)(A) is convex. 
(=?) Consider a E (0, 1), and let us find some BE A,B CA*\ A. with 
P(B) = aP(A* \A*); take x = P.(A) +aP(A* \A.) E [P.(A), P*(A)] = 
P(r)(A). Then, 3U E S(r) s.t. x = Pu(A) = P(U-1(A)). Now, take 
B = u-1(A) \ A •. It is B c A* \ A*, and P(B) = Pu(A)- P*(A) = 
aP(A* \ A*). 
( ~) Conversely, let x E [P*(A), P*(A)]; then, ::Ja E (0, 1] s.t. x = P.(A)+ 
aP(A* \A*). As A* \A* is not an atom, there exists B CA* \A., BE A 
s.t. P(B) = aP(A*\A*). Define U = U1IB+U2IBc· Then, U is a selector 
of r, because U1. U2 E S(T), and Pu(A) = P(U-1(A)) = P(U!1(A) n 
B) + P(U2- 1(A) n Be)= P(B) + Pu2 (A) = x. 

3. As M(P*), P(T) belang to a finite-dimensional space, M(P*) is the con
vex hull of its dass of extreme points. These extreme points ((1,3,12]) are 
related to the permutations of lXI elements, in the following way: 
Take 1r = ( i 1 , ... , in) E sn, and consider the probability distribution P 1r 
satisfying P1r (U1=1 { xi;}) = P* (U1=1 { xi;}) \fk = 1, ... , n. Then, P1r is an 
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extreme point of M ( P*), and all the extreme points of M ( P*) are of this 
type. 
The result follows immediately if we show that these extreme points be
long to P(F). Fix 1r = (it, ... , in) E sn, and define 

n 

u1r := Xili{x· }· + ""Xi.I{x· }*\{x· x· }·· "1 ~ 3 "i "1 , ... , "j-1 

j=2 

Then, it is U1r(w) E r(w) Vw, and we deduce from the strong measurabil
ity of F that U1r is a random variable. Moreover, it is U;1(Uj=dxi1 }) = 

uj=dxi1 }* Vk, whence Pu"= P1r .• 

Consider now the dass of probability distributions 

Ll(F) := {Q probability: Q(A) E P(r)(A) VA E A'}. 

It is the dass of distributions determined by the sets P(F)(A). When 
P(F) = Ll(F), the probabilistic information of the random set will be de
termined by the information on the sets of A'. Hence, it is interesting to see 
whether this equality holds or not, from an operational point of view. It is 
also of interest to see when Ll(r) coincides with M(P*). In this sense, we 
have proven the following: 

Theorem 2. Let (.r.?, A, P) be a probabilistic space, (X, P(X)) be a finite 
space, and r: n---+ P(X) a random set. The following Statements hold: 

1. P(r) c Ll(r) c M(P*). 
2. The equality P(F) = Ll(r) is implied by the equality P(II or) = Ll(II or) 

for every projection II: X ---+ {1, 2, 3}. 
3. If (.r.?, A, P) is non-atomic, then P(r) = M(P*) holds. 

Proof: 

1. It is dear that any Q E P(r) satisfies Q(A) E P(F)(A) VA, whence 
P(r) c Ll(r). On the other hand, from theorem 1 it is P(r)(A) ~ 
[P*(A), P*(A)] VA and consequently Ll(r) c M(P*). 

2. (sketch ofproof:) The result follows applying induction on IXI.If lXI = 3, 
it is trivial. For lXI = n, we consider (p1, ... ,pn) E Ll(F), and we decom
pose it through certain projections into (Pl +p2, ... ,pn), (Pb ... ,Pn-1 + 
Pn) E Ll(II1 o F), Ll(II2 o F), respectively. Applying the hypothesis of 
induction, there are U1 E S(II1 o F), U2 E S(II2 o r) inducing these prob
abilities. Combining these selections in a proper way, we get a selector 
U E S(r) inducing the distribution (Pl, ... ,pn)· 

3. From theorem 1, if (.r.?, A, P) is non-atomic, then A* \ A* is not an atom 
for every A, whence Ll(r) = M(P*). It can also be checked that under 
the non-atomicity of (.r.?, A, P), the hypothesis of the previous point is 
satisfied. Hence, P(r) = M(P*).• 
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Remark 1. Let us give a few examples concerning this theorem: 

• The converse of (3) is not true: Consider for instance the probabilistic 
space (N, P(N), P), with P( { n}) = 2~, the finite space X = {1, 2}, and 
take r :N-t P(X) given by T(n) =X Vn. Then, it is P(r) = M(P*) = 
{ (a, 1- a) : a E (0, 1]}. However, the initial probabilistic space is atomic. 

• Let us show that the equality P(T) = M(P*) is not implied by any of 
the equalities P(r) = Ll(r) and L1(r) = M(P*) separately: 
Consider (N, P(N), P) as in the previous example, and take X= {1, 2, 3}. 
Define r : n -t P(X) by T(n) =X for all n. Then, P(T)(A) = (0, 1] for 
all A, whence Ll(r) = M(P*) = {(x1, x2, x3) : Xt, x2, x3 ~ 0, x1 + x2 + 
x3 = 1}. However, P(T) is given by figure 1 (we represent the P(T) on 
black over the simplex x + y + z = 1 of all probabilities on X). 

z 

Fig. 1. The dass P(r) 

Conversely, consider the random set from example 1. We can easily see 
that it satisfies P(r) = L1(r), and we saw there that it is P(r) s;; 
M(P*).+ 

Theorem 2 characterizes the behaviour of a random set in the case where 
X is finite. As we have showed, the non-atomicity of ( n, A, P) is sufficient for 
the equality P(r) = M(P*), but it is not necessary. It holds for instance when 
there exists a random variable U : (n, A, P) -t ((0, 1], ß) with absolutely 
continuous distribution. 

In the case of an infinite referential, a number of technical complications 
arise. Concerning the extreme points of M(P*), we cannot extend trivially 
the result for the finite case. Nevertheless, in (11] some studies are carried out 
for the case where X is a separable metric space, and for the more general 
situation where P* only needs to be 2-alternating. We must remark nonethe
less that M(P*) is not in general the convex hull of its extreme points, and 
these do not belong necessarily to P(r). 

Although the result on the convexity of P(r)(A) can be extended for 
theinfinite case, the bounds P*(A), P.(A) arenot necessarily attained. This 
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problern is related to the existence of selectors of a random set. Although in 
the finite case this existence is trivial, it is not the same in general (see a 
review on the subject on [14]). Also, the result on the equality between P(r) 
and Ll(T) cannot be immediately extended totheinfinite case. 

On the other hand, when we provide the final set with a certain topological 
structure, we get some additional results in the infinite case. For instance, 
we have proven that, when a compact-valued random set on a Polish space 
is considered, and the initial probability space is non-atomic, the equality 
M(P*) = P(T) holds if and only if the set P(r) is closed with respect to the 
weak topology. This is related to other sturlies on the subject, such as those 
on [5,6]. In the near future, weintend to complete the work we have outlined 
here with results for the general case where the final space is not necessarily 
finite. 
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Abstract. The idea to built probability theory on the families of fuzzy sets belongs 
to the first ideas of the fuzzy sets theory (see [18]). In the paper we consider the 
Lukasiewicz connectives ([2,7,15,16]) in the corresponding family of fuzzy sets as 
a base of the probability. First we present some typical methods of the theory on 
multivalued logics. Then we mention recent development of the theory. 

1 Probability on fuzzy sets 

For simplicity we shall consider the family :F of all S-measurable functions 
f : {} --+ (0, 1], where S is a a-algebra of subsets of a non-empty set n. Of 
course,the set :F would be considered tagether with two binary operations 
EB,0, where 

f EB g = min(f + g, 1), 

f 0 g = max(f + g- 1, 0), 

one unary operation ...,, where 

...,, = 1-/, 

and two fixed elements 
1.a,O.a. 

The natural algebraic generalization of the notion is an MV-algebra (see 
(2,15,16]), what is an algebraic system (M, EB, 0, ...,, 1, 0) satisfying some ax
ioms. MV-algebras plays a similar role in multivalued logics as Boolean alge
bras in two valued logics. 

Kolmogorov's probability model is based on Boolean algebras. It works 
with two basic notions: probability P : S --+ (0,1] and random variable (S
measurable map) € : {} --+ R. Inspiring by quantum logics ((3]) we consider 
states instead of probabilities and observables instead of random variables. 

State is a function m : :F --+ (0,1] satisfying the following conditions: 
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(i) m(1n) = 1; 
(ii) if j8g =On, (i.e. f+g:::;; 1), then m(f)+m(g) = m(!EFJg)(= m(f+g)); 
(iii) if fn /' /, then m(fn) /' m(f). 

Denote by B(R) the family of all Borel subsets of R. An observable is a 
mapping x: B(R) ~ :F suchthat 

(i) x(R) = 1n; 
(ii) if A, B E B(R), An B = 0, then x(A) 8 x(B) = On and x(A U B) = 

x(A) EfJ x(B)(= x(A) + x(B)); 
(iii) if An E B(R), An /' A, then x(An) /' x(A). 

If m : :F ~ [0,1] is a state, and x : B(R) ~ :Fis an observable, then the 
composite map mx = m o x : B(R) ~ :F is a probability measure. It plays 
the same role as the probability distribution p{ of a random variable e in 
the Kolmogorovian theory. Therefore we define the mean value E(x) of an 
observable x by the formula 

L tdmx(t) 

and we say that x is integrable, if the integral exists. 

2 Joint observable 

If T = (e, 'TJ) : {} ~ R2 is a random vector then the mapping A f-+ r-1 (A) is 
a morphism from B(R2 ) toS suchthat 

Motivated by this example we define the notion of the joint observable. 

Definition 1. If x, y : B (R) ~ :F are two observables, then its joint observ
able is a mapping h : B (R2 ) ~ :F satisfying the following conditions: 

(i) h(R2 ) = 1n; 
(ii) if An B = 0, then h(A U B) = h(A) + h(B); 
(iii) if An /' A, then h(An) /' h(A); 
(iv) h(C x D) = x(C) · y(D) for any C, D E B(R). 

If a map h : B (R2 ) ~ :F satisfies only (i), (ii) and (iii), then it is called the 
2-dimensional observable. 

The following theorem has been proved in [9] (see also [15,16]). 

Theorem 1. The joint observable exists for any observables x, y : B(R) ~ 
:F. 
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Proof: 
Fix w E {} and for any A E B(R) put JLw(A) = x(A)(w), vw(A) = y(A)(w). 
Then JLw, llw are probability measures on B(R), hence their product Aw = 
/Lw x llw is a probability measure on B(R2 ). Define h(A)(w) = Aw(A). It is 
not difficult to see that h is actually a mapping from ß(R2 ) to :Fand that h 
has all properties of the joint observable. 0 

By using the joint observable, some arithmetical operations with observ
ables can be introduced. Let us motivate again by a random vector T = (.;, 1J). 
If we define g: R2 ---+ R by g(u, v) = u + v, then 

Therefore the sum x + y of observables x, y can be defined by the formula 

(x + y)(A) = h(g-1(A)), 

where g(u, v) = u + v, and h is the joint observable of x, y. Generally, if h is 
the joint observable of x 11 x2 , ... , Xn, and g : Rn ---+ R is a Borel measurable 
function, then we define the observable 

by the formula 

E.g. 

where 
1 n 

g(ul, ... , Un) =-L Ui. 
n i=l 

Everybody knows the importance of the arithmetic means for probability 
theory. The question arises what to do in a general MV-algebra M. Namely, 
how to substitute the product sign in the formula h(C x D) = x(C) · y(D). 
We see at least two ways. 

The first one was completely realised in [16]. We say that two observ
ables x, y are independent, if there exists such 2-dimensional observable h : 
B(R2 ) ---+ M such that 

m(h(C x D)) = m(x(C)).m(y(D)) 

for any C, D E B(R). This is the same as the characterization ofindependency 
in the boolean case: two random variables .; , 'fJ are independent if and only if 
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The second possibility is to define the product axiornatically. It was sug
gestes first in [12] (see [15] for a cornplete explanation). Recall only that the 
notion of an MV-algebra with product has been introduced independently in 
[11] with respect to sorne questions of rnultivalued logics. 

3 Local representation 

There exists nice probability theory an Boolean algebras due to Kolrnogorov. 
Evidently, there is no possibility to represent MV-algebras by Boolean al
gebras. Of course, to a given sequence of observables can be constructed a 
Boolean probability space corresponding to this sequence. 

Theorem 2. Let (xn) be a sequence of observables from B(R) to :F. Then 
there exists a probability space (X, 0', P) and a sequence (~n) of random 
variables with the following property. lf g is a Borel measurable function 
g : Rn ---+ R, y = g(x1, ... , Xn), and T] = g(6, ... , ~n), then y and T] have the 
same probability distribution, i. e. P11 = my. 

Proof: 
Put X= RN and consider the 0'-algebra 0' generated by the farnily C of all 
cylinders. Put Pn = m o h : B(Rn) ---+ :F, where h is the joint observable of 
x1, ... , Xn. By the Kolrnogorov consistency theorern there exists exactly one 
rneasure P: 0'---+ [0, 1] suchthat P{7!'; 1(D)) = Pn(D) whenever D E B(Rn). 
Wehave obtained a probability space (X, 0'1 P). 

Let ~n be the n-th coordinate of RN, i.e. ~n((ui)~1 ) = Ui.Then TJ = go7l'n 1 

where 7l'n is the projection frorn RN to the first n coordinates. We obtain 

P11 (A) = P(ry- 1(A)) = P(71';1(g-1 (A))) = Pn(g-1(A)) = 
= m(h(g-1 (A))) = m(y(A)) = my(A). 

This finishes the proof. D 

The second crucial problern for probability theory is the problern of con
vergences. Analogously with the boolean case we say that a sequence (Yn) of 
observables converges in distribution to a function F : R---+ [0, 1], if for each 
t ER 

limn__,00m(yn((-oo, t)) = F(t). 

It converges in rneasure m to 0, if for each c > 0, c E R 

Theorem 3. Let 9n : Rn ---+ R(n = 1, 2, ... ) be Borel measurable functions, 
(xn) and (~n) given as in Theorem 2, Yn = Yn(Xt, ... , Xn), TJn = 9n(6, ... , ~n)· 
Then 

{i) (Yn) converges to F if and only if so does ('TJn); 
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( ii) (Yn) converges in measure m to 0 if and only if ( 'f/n) converges in measure 
P to 0. 

A little more eomplieated is the situation with respeet to almost every
where convergence.For MV-algebras of fuzzy sets (tribes) it was deseribed in 
[16], for general MV-algebras in [13]. Recall only that in the ease only one im
plieation holds: from the a.e. eonvergenee of (7Jn) follows the a.e. eonvergenee 
of (Yn)· Of eourse, it suffiees for our purposes, beeause from the known re
sults for boolean ease (applied to the sequenee (7Jn)) follow the eorresponding 
results for the MV-algebra ease (applied to the sequence (Yn)· 

Herewe list some achieved results ([16,15,5,6,10,17]): weak and strong 
laws of large numbers, eentral limit theorem, martingale eonvergenee the
orem, individual ergodie theorem, Kolmogorov - Sinai entropy convergenee 
theorem. 

References 

1. Ban. A.:Ergodic transformations, Soft Computing 5 (2001), 327- 222. 
2. Cignoli, R., D'Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many

valued reasoning, Kluwer, Dordrecht 2000. 
3. Dvureeenskij, A., Pulmannova, S.: New Trenda in Quantum Structures. 

Kluwer, Dordrecht 2000. 
4. Jakubfk, J.: On the product MV-algebras. Czech. Math. J. (to appear). 
5. Jureckova, M.: On the conditional expectation on probability MV-algebras with 

product. Soft Computing 5 (2001), 381 - 385. 
6. Jureckova, M.: A note on the individual ergodie theorem on product MV

algebras. Internat. J. Theor. Physics 39 (2000), 753- 760. 
7. Klement, E.P., Mesiar, R., Pap. E.: Triangular Norms, Kluwer, Dordrecht 2000. 
8. Malicky, P., Riecan, B.: On the entropy of dynamical systems. In: Proc. Conf. 

Ergodie theory and Related Topics II (H. Michel ed.), Teubner, Leipzig 1986, 
135- 138. 

9. Mesiar, R., Riecan, B.: On the joint observable in some quantum structures. 
Tatra Mt. Math. Publ. 9 (1993), 183- 190. 

10. Petrovicova, J.: On the entropy of dynamical systems. Fuzzy Setsandsystems 
121 (2001), 347- 351. 

11. Montagna, F.: An algebraic approach to propositional fuzzy logic. J. of Logic, 
Language and Information 9 (2000), 91 - 124. 

12. Riecan, B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16 (1999), 
143- 149. 

13. Riecan, B.: Almost everywhere convergence in probability MV-algebras with 
product. Soft Computing 5 (2001), 396- 399. 

14. Riecan, B.: Free products ofprobability MV-algebras. Atti Sem. Mat. Fis. Univ. 
Modena 50 (2002), 173- 186. 

15. Riecan, B., Mundici, D.: Probability on MV-algebras. In: Handbook on Measure 
theory (E. Pap ed.), North Holland, Amsterdam 2002. 

16. Riecan, B., Neubrunn, T.: Integral, Measure, and Ordering, Kluwer, Dordrecht 
1997. 



139 

17. Vrabelova, M.: On the conditional probability in product MV-algebras. Soft 
Computing 4 (2000), 58 - 61. 

18. Zadeh, L.: Probability measures for fuzzy events. J.Math. Anal. App. 23 (1968), 
421- 427. 



Reversing the Order of Integration in Iterated 
Expectations of Compact Convex Random 
Sets 

Luis J. Rodriguez-Mufiiz, Miguel L6pez-Diaz, and Maria Angeles Gil 

Universidad de Oviedo, Departamento de Estadfstica e 1.0. y D.M., Facultad de 
Ciencias, c/ Calvo Sotelo s/n, 33007 Oviedo (Asturias), Spain 

Abstract. In this paper we state some results about the differentiability under 
the integral sign of compact convex random sets in the special case of working with 
probability distributions depending on a family of parameters. As a consequence of 
this fact we obtain some results regarding the exchange of iterated expectacions of 
compact convex random sets. 

1 Introduction 

The purpose of this paper is to obtain a result which allows us to reverse 
two iterated integrals of the random set in those frameworks we are dealing 
with random sets depending on a parameter, and the involved probability 
distributionsarealso depending on a familiy of parameteres (sometimes called 
conditional pro babilities). The originality of the present wor k arises in the 
fact that we will not use a Fubini's theorem to get the reversing result. We 
will obtain a result that will be useful in the case of mappings that are not 
product measurable. 

Thus, our problern is the following: suppose a compact convex random set 
depending on a real valued parameter. So, we can think of it as a mapping 
defined on a product space. We want to obtain sufficient conditions to reverse 
the order of two iterated integrals: one is the expected value of the random 
set, for a fixed value of the parameter, and the other one is the integral over 
the values of the parameter itself, for a fixed value of the sample. Since we 
are working with compact convex subsets of lR, this expected values will be 
calculate by the Kudo-Aumann integral (see Kudo, 1954 and Aumann, 1965). 

In order to get our goal, we will have to state and prove some interme
diate and supporting results, regarding the measurability of a certain class 
of integrals, and the Hukuhara derivability under the integral sign of a com
pact convex random set when working with conditional probabilities. We will 
also use some supporting results about the similar problern without condi
tional probabilities. Some of this results and their proofs can be found in 
Rodriguez-Mufiiz and L6pez-Diaz (2002). 
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2 Preliminaries 

We will denote by Kc the dass of non-empty compact convex subsets of 
R. On this dass we can define the well-known Hausdorff distance, ds (see, 
for instance, Hiai and Umegaki, 1977). Kc can be endowed by a semilinear 
structure by means of Minkowski's addition and the product by a scalar. 

Given a probability space ( n, A, P), a ( compact convex) random set is a 
mapping X: n- Kc suchthat it is AIB(Kc)-measurable, where B(Kc) is the 
Borel a-field generated by Hausdorff distance on Kc. A random set is said to 
be integrably bounded if there exists h E L1(P) suchthat ds(X(w), {0}) :5 
h(w) a.s. [P]. 

For an integrably bounded random set X we can define its expected value 
by means of Kudö-Aumann integral, that is, EX= {Ef: f E L1(P), f(w) E 
X(w) a.s. [P]}, where Ef is the Lebesgue integral of the random variable 

f. We will also denote EX by L X(w) dP(w), and if n = [a, b] c R then 

EX= lb X(w) dP(w). 

Previous definitions hold in the case of using measures instead of proba
bilites (see Hiai and Umegaki, 1977). 

3 Supporting results 

In this section we will state some preliminary results. The first one regards 
the Radon-Nikodym derivative and the expected value of the random set. 

Proposition 1. Let ([a, b], B[a,b]• m1) be a a-finite measure space, being B[a,b] 

the Borela-fieldon [a, b] and let F: [a, b] --+ Kc be an integrably bounded ran
dom set with respect to m1. Let m2 be anothera-finite measure on ([a, b], B[a,bJ) 

such that m 1 is absolutely continuous with respect to m 2 . Let ddm1 denote a 
m2 

Radon-Nikodym derivative of m1 with respect to m2. Then: 

1b 1b dm 
F(s) dm1(s) = F(s) · -d 1 (s) dm2(s). 

a a m2 

The following result extends First Fundamental Calculus Theorem in the 
case of random sets with respect to conditioned probabilites. 

Proposition 2. Let F : [a, b] --+ Kc be a continuous mapping at [a, b] and 
let ([a, b], B[a,b]• P) be a probability space such that P is absolutely continuous 
with respect to Lebesgue measeure on [a, b] -denoted by m- and there exists 

a continuous Radon-Nikodym derivative, ~~. If we define 

G(t) = lt F(s) dP(s), 
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then it holds: 

i} G(t) is Hukuhara derivable for all t E (a, b), 

ii} G'(t) = F(t) · ~~ (t) for all t E (a, b). 

Now, we state a result regarding differentiability under the integral sign, 
which will be used in the proof of the main result: 

Proposition 3. Let (J?, A, P) be a probability space with n ~ Rk and [a, b] c 
R. For a given w E n, let Pw be a probability on ([a, b], B[a,bJ) such that 

d h d N:kd d ddP,mw./'f Pw «:: m an t ere exists a continuous Ra on- i o ym erivative, 

X : n X [a, b] ~ Kc satisfies that: 

i} for every t E (a, b], Xt : n ~ Kc, given by Xt(w) = X(w, t), is a random 
set, 

ii} for every w E n, Xw : (a, b] ~ Kc, given by Xw(t) = X(w, t), is an inte
grably bounded random set with respect to Pw and, moreover, for almost 
every w E J? [P] it is continuous at [a, b], 

iii} there exists h E L 1 (P) such that 

IIX(w, t) ·: (t)ll ~ h(w) a.s. [P] 

for every t E [a, b] and the mapping 

dPw 
w t--t X(w, t) · dm (t) 

is continuous at w, a.e. (m], 

then 

t E [a, b] t--t l (1t X(w, s) dPw(s)) dP(w) 

is Hukuhara derivable at (a, b) and: 

! l (1t X(w, s) dPw(s)) dP(w) = l X(w, t) ·: (t) dP(w) 

for every t E (a, b). 

The next result regards continuity of the expected values. 

Proposition 4. Let (J?, Bn, P) be a probability space with n ~ Rk. Let 
T = [a, b] C R and to E T. For every t E T, let us consider Pt a probability 
on (n, Bn) suchthat Pt «:: P and there exists a Radon-Nikodym derivative, 

~~ . If y : n X T ~ Kc satisfies that: 
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i) for every t E T, yt : il --> Kc is an integrably bounded random set with 
respect to Pt, 

ii) for almost every w E n [P], t f---t Y(w, t) · ~~ (w) is continuous, 

iii) there exists h E L 1 ( P) such that 

dPt 
IIY(w, t) · dP (w)ll::; h(w) a.s. [P] 

for every t E N n T, being N a neighbourhood of t0 , 

then 

t f---t l Y(w, t) dPt(w) 

is continuous at to. 

4 Main results 

Once we have explained all the basics for the paper, now we state the main 
result regarding the reversein the order of integration of two iterated integrals 
of random sets. Since our main interest is to apply this result to Statistical 
Decision Theory we have checked that the imposed conditions are not as 
constraining as they could appear at the first look, moreover, they usually 
hold in the majority of the decision problems. 

Theorem 1. Let (il, Bn, P) be a probability space with il s;;; lR.k. Let us 
consider T = [a, b] C 1R and the inheritated measurable space (T, Br, m). For 
every t E T, let Pt be a probability on (il, Bn) such that Pt « P and there 

exists a continuous Radon-Nikodym derivative, ~~. 
For every w E il, let Pw be probability on (T, Br) such that Pw « m and 

there exists a continuous Radon-Nikodym derivative, ~~, 
Let us consider the mapping X : n X T ---; Kc such that 

i) for every t E T, Xt : il --> Kc is an integrably bounded random set with 
respect to Pt, 

ii) for every w E il, Xw : T--> Kc is an integrably bounded random set with 
respect to Pw and, for almost every wEil [P] it is continuous at T, 

iii) there exists h E L 1 ( P) such that 

dPw 
IIX(w, t) · dm (t)il ::; h(w) a.s. [P] 

for every t E T and 
dPw 

w f---t X(w, t) · dm (t) 

is continuous at w, a.e. [m], 



144 

iv) t 1-+ X(w, t) · ~~ is continuous at T, a.s. [P], 

v) there exists h1 E L1 (P) such that: 

dPt 
IIX(w, t) · dP (w) II ::; h1 (w) c.s. [P], 

for every t E T. 

Let m' be a probability on (T, Br) such that m' «: m and there exists a 
dm' 

continuous Radon-Nikodym derivative dm . lf the following equation holds 

for every t E T: 

dPw (t) = dPt (w) . dm' (t) a.s. [P], 
dm dP dm 

then 

l (1t X(w, s) dPw(s)) dP(w) = 1t (l X(w, s) dP.(w)) dm'(s) 

for every t E T. 

Theorem 1 can be easily generalized in the following sense 

Proposition 5. Under conditions in Theorem 1, if T is a nonbounded in
terval and there exists g E L 1 (P) such that 

liiX(w, s)lldPw(s) ::; g(w) a.s. [P], 

then it holds 

l (l X(w,s)dPw(s)) dP(w) = l (l X(w,s)dP.(w)) dm'(s). 

5 Concluding remarks 

The results in this paper guarantee the exchange in the order of integration 
under quite general conditions and without using Fubini's Theorem, more
over, we do not use product measure spaces. 

Our main purpose is to apply these results to the analysis of the Statistical 
Decision Theory with imprecise utilities, which can be set-valued as well as 
fuzzy set-valued. 
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Abstract. In order to generalise Walley's theory of lower previsions, which are 
real-valued maps on bounded random variables, to arbitrary random variables, we 
introduce extended lower previsions as extended real-valued maps on arbitrary, not 
necessarily bounded, random variables. We suggest and motivate conditions for 
avoiding sure loss, coherence and linearity, we construct a natural extension, and 
we suggest a way to generalise some of the more advanced topological results from 
the existing theory of lower previsions. 

1 Introduction 

Walley's theory of lower previsions [8] unifies many of the imprecise probabil
ity models in the literature, and from a foundational point of view it seems to 
be the most satisfactory one. The theory has three important components: (i) 
assessment of a lower prevision in order to represent the available knowledge 
about a system; (ii) rationality criteria, called avoiding sure loss and coher
ence, which are used to identify conflicts in the assessments and to determine 
whether they are consistent; and (iii) a reasoningjinference method, called 
natural extension, which teils us how to draw conclusions from, and make 
decisions based on, the assessments. 

A technical problern is that lower previsions are only defined on bounded 
random variables, whereas in many applications unbounded random variables 
abound. In particular, the following classes of problems would benefit from 
a generalisation of the theory of lower previsions: (i) optimisation using an 
imprecise cost criterion, with an unbounded (e.g., quadratic) cost (Cheve 
and Congar [1], De Cooman and Troffaes [6]); and (ii) the estimation of un
bounded quantities that depend on parameters that arenot well known (such 
as time to failure in reliability theory, Utkin [7]). A number of such general
isations can be found in the literature. Crisma, Gigante and Millossovich [2] 
have introduced linear previsions for arbitrary real-valued random variables, 
and these linear previsions may also assume the values +oo and -oo. Trof
faes and De Cooman [5] have constructed an extension for coherent lower 
previsions defined on bounded random variables to a larger set of random 
variables, using a limit procedure. But this extension does not assume the 
values ±oo, and moreover, the domain of this extension is never the space of 
all random variables. Since the work of Crisma, Gigante and Millossovich [2] 
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indicates that the domain of linear previsions can be extended to all random 
variables by including ±oo in the range of the prevision, it is now a natural 
question whether something similar can also be achieved for coherent lower 
previsions. In this paper, we show that this is indeed possible. 

The paper is organised as follows. In Section 2 we define so-called extended 
lower previsions and discuss the types of assessment that give rise to them. 
Section 3 deals with conditions for avoiding sure loss, coherence, and linearity. 
We show that all the classical properties of lower previsions are retained with 
only minor modifications. In Section 4 we construct a natural extension for 
extended lower previsions, and we use it to define a semi-norm on a special 
subspace of random variables. Finally, we generalise a topological result from 
the existing theory of lower previsions that allows us to associate coherent 
extended lower previsions with sets of dominating extended linear previsions. 

Due to limitations of space, we have preferred to stress the underlying 
ideas rather than to present detailed proofs. Readers interested in the exact 
details of mathematical reasoning are referred to [4]. 

2 Assessment through Extended Lower Previsions 

2.1 Preliminaries 

The set of extended real numbers RU { -oo, +oo} will be denoted by R*. The 
operations + and · are defined on R* as usual, keeping in mind that 0 · ( ±oo) = 
0. Any expression that cannot be reduced to -oo + oo or +oo + ( -oo) will be 
called well defined. "{ a w.d.; B(a) }" means "{ a; a well defined, B(a) }", where 
a denotes an extended real expression and B ( a) denotes a Boolean expression 
that may depend on a. 

The set of possible states will be denoted by il; one usually thinks of the 
elements of Q as possible outcomes of an experiment. A mndom variable is 
a real-valued map on il. The set of random variables on Q is denoted by 
::R(il). A bounded random variable is called a gamble, and the set of gambles 
is denoted by /:., ( il). We stress that random variables only assume values in 
R. The values of a random variable represent amounts of utility expressed in 
units of some linear utility scale. 

2.2 Definition and Interpretation 

A random variable X can be interpreted as an uncertain reward; if w E Q 
turns out to be the true state then the agent receives the amount X(w), 
expressed in units of some linear utility: we say that the agent receives X. 
For any s E R, we say that the agent buys X for price s if the agent receives 
X- s. We say that X is desimble if the agent is disposed to receive X. 

The information the agent has about the outcome of the experiment leads 
him to accept or reject transactions whose reward or loss depends on this 
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outcome. An extended lower prevision models his uncertainty by looking at 
a specific type of transactions: buying random variables. In particular, the 
agent may consider the set Cx of all prices he is disposed to buy X for. If 
the agent has a disposition to buy X for price s, then he also should have 
a disposition to buy X for any price less than s. Hence, Cx should take the 
form of a down-set, which can be characterised almost uniquely by a single 
extended real number: its supremum. 1 The extended lower prevision of X is 
then defined as the supremum in R* of this set: P(X) = supCx. 

Definition 1. An extended lower prevision P on Jl is a (partial) extended 
real-valued map on ~(Jl). The domain of this map is denoted by domP. 

Thus, dom P is the set of random variables for which the agent assesses 
supremum buying prices: the agent is willing to buy X for any price strictly 
less than P(X). For example, the map inf[·]: ~(Jl) -+ R*; X f--+ inf[X] is 
an extended lower prevision: if X is bounded from below then the agent is 
willing to pay any price strictly less than the lowest possible reward inf[X]; 
otherwise the agent is not willing to buy X for any price. We call this map 
the vacuous extended lower prevision. 

The conjugate upper prevision P of P is defined on - dom P by P(X) = 
- P(-X) for all X E - dom P, and it can be given the interpretation of an 
infimum selling price. 

3 Rationality Criteria for Extended Lower Previsions 

The following is a Straightforward generalisation of the axioms of rationality 
introduced by Walley [8]. 

Axiom 1 (Axioms of Rationality). Let X and Y be random variables. 
Any agent whose dispositions conform to the following axioms is called ratio
nal: if sup[X] < 0 then X is not desirable, if inf[X] > 0 then X is desirable, 
if X is desirable and Y ;:::: X then Y is desirable, and finally, if X and Y are 
desirable then X + Y and ..\X are desirable for any ..\ > 0. 

From now on we only consider rational agents. The following lemma tells us 
how to draw particular conclusions from assessments made by such agents. 
These will help us to motivate criteria for avoiding sure loss and coherence. 

Lemma 1. Let P be an extended lower prevision, representing the assess
ments of a rational agent. Let n E N, Ai ;:::: 0, Xi E dom P for every i E 
{1, ... , n} and assume that a := 2::~=1 ..\iP(Xi) is well defined. If a = -oo 
then, for at least one i E { 1, . . . , n}, there is no price the agent is willing to 
buy Xi for. In all other cases, the agent is willing to buy 2:~= 1 ..\iXi for any 
price s < a. 

1 The only information that is lost is whether fx is open or closed (unless the lower 
prevision is infinite). For simplicity, we therefore always assume that fx is open. 
Hence, this model may be a little more conservative than the "true" model. 
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3.1 Avoiding Sure Loss 

For convenience, weshall write (n; >.i ~ 0; Xi; P) if we mean "n E N, >.i ~ 0, 
Xi E domP for every i E {1, ... ,n}" and (n;>.i ~ O;Xi;P)wd to mean 
"n E N, Ai ~ 0, Xi E dom P for every i E {1, ... , n} and E~=l >.iP(Xi) well 
defined". Note that if in such cases n = 0, then E~=l >.iXi and 2:~1 >.iP(Xi) 
are zero by definition. 

Definition 2. Let P be an extended lower prevision. If 

(1) 

for every (n; Ai ~ 0; Xi; P)wd, then we say that P avoids sure loss. 

Note that our definition coincides with that given by Walley (8] for his lower 
previsions (in our terminology these are real-valued extended lower previsions 
defined on sets of gambles). Its motivation is similar to the one given by 
Walley. Observe what happens if it is not satisfied: assume that there are 
(n; Ai ~ 0; Xi; P)wd suchthat 

a := ~>.iP(Xi) > sup [~.xixi] =: 'Y· 

Note that this can only hold if a =f=. -oo and 'Y E R. It implies that we may 
choose aß ER suchthat a > ß > 'Y ~ E~=l >.iXi, which means that if the 
agent buys E~=l >.iXi for a price ß, he incurs a sure loss of at least ß- 'Y· 
But by Lemma 1, the rational agent is willing to buy E~=l >.iXi for ß < a 
(recall that a =f=. -oo). 

In contradistinction to the special case considered by Walley, it does not 
suffi.ce in our more general case to consider only integer combinations. As the 
following counterexample shows, the condition 

(2) 

for every n E N and Xi E dom P, i E { 1, ... , n} is not equivalent to avoid
ing sure loss for extended lower previsions in general, but it is equivalent 
for (real-valued extended) lower previsions on gambles (see Walley (8, Sec
tion 2.4.4(a)]). 

Example 1. Let D = R, and let the identity map on R be denoted by I. 
Consider the extended lower prevision P with domain {J, -1rl}, defined by 
P(I) = 1 and P( -1rl) = 2. Since n- m1r =f=. 0 for every n, m E N not both 
zero, we find that supxER [ni(x)- m1rl(x)] = +oo for every n, m E N not 
both zero. Consequently, we have that condition (2), i.e., sup [nl- m1rl] ~ 
n+2m, holds for every n, m E N not both zero. If n and m are both zero then 
the inequality holds trivially. But P does not avoid sure loss: take >.1 = 1r 
and >.2 = 1, then sup [>.1!- A21rl] = 0 < >.1 + 2>.2. 
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Many properties of extended lower previsions that avoid sure loss can be 
generalised from results proven by Walley [8, Section 2.4.7], by adding the 
requirement that both sides must be well defined for every {in)equality. To 
give but one example, it can be shown that P{2::~=1 AiXi) :::; 2::~=1 AiP(Xi) 
whenever the right hand side is well defined. 

3.2 Coherence 

For convenience, we shall write {n; Ai ;::: 0; Xi; PKvd to mean "n E N, Ai ;::: 
0, X E dom P for every i E {0, ... , n} and 2::~=1 AiP(Xi) - AoP(X) well 
defined". As before, if in such a case n = 0, then 2::~= 1 AiXi and 2::~=1 AiP(Xi) 
are zero by definition. 

Definition 3. Let P be an extended lower prevision. If 

{3) 

for every (n; Ai ;::: 0; Xi; P)~d• then we say that Pis coherent. 

Obviously coherence implies avoiding sure loss. Walley's [8] definition of co
herence for lower previsions is a special case of ours; and its motivation is 
similar. Observe what happens if the condition is not satisfied: assume that 
there are (n; Ai ;::: 0; Xi; P)~d suchthat 

We may assume that Ao f= 0 ( we have already given a motivation for the case 
that Ao = 0 in the previous section), and consequently 

Note that this can only hold if ß E R and a f= -oo. Defining a 1 .-
2::~=1 ~P(Xi), we have that a1- ß > P(Xo). Observe that also 

{4) 

Since a = a1- P(Xo) is well defined and a f= -oo, it suffices to consider the 
following cases: 

(a) P(Xo) ER. The rational agent is disposed to buy the right hand side of 
{4) for any price strictly less than P(X0 ). But, we may also infer from 
the other assessments P(X1), ... , P(Xn) and Lemma 1 that he is willing 
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to buy the left hand side of ( 4) for any price strictly less than o:1 - ß. 
Consequently, he is disposed to buy the right hand side of ( 4) for any 
price strictly less than 0:1- ß. Butthis price 0:1- ß is strictly !arger than 
the supremum price P(Xo) he has specified for X0 , which points to an 
inconsistency in the assessments. 

(b) P(Xo) = -oo. Since there is no price the rational agent is disposed to buy 
the right hand side of (4) for, there is also no price he is disposed to buy 
the left hand side of (4) for. But from o:1 > -oo and Lemma 1 we know 
that the agent is willing to buy 2::~= 1 ~Xi for any price strictly smaller 
than o:1 , which again points to a contradiction in the assessments. 

If dom P is a linear space, then there is a simpler condition. 

Proposition 1. Let P be an extended lower prevision and assume that dom P 
is a linear space. Then P is coherent iff the following statements hold for ev
ery X, Y E domP and every A;:::: 0. 

{1} P(X) 2:: inf[X). 
(2} P(AX) = AP(X). 
(3} P(X + Y) 2:: P(X) + P( Y) whenever the right hand side is well defined. 

The properties of coherence listed in Walley [8, Section 2.6.1) generalise in 
the same way as the properties of avoiding sure loss. The most important 
ones are summarised in the following theorem. 

Theorem 1. Let P be a coherent extended lower prevision. Let X and Y 
be random variables. Let f-L be a constant random variable. Let A be a posi
tive, real number. Let Xa. be a net of random variables. Then the following 
statements hold whenever every term and every operation is well defined. 

(i) inf[X) :::; P(X) :::; P(X) :::; sup[X) 
(ii} X:::; Y + f-L ===> P(X):::; P(Y) + f-L and P(X):::; P(Y) + f-L 

(iii} P(X)+P(Y):::; P(X+Y):::; P(X)+P(Y):::; P(X+Y):::; P(X)+P(Y) 
(iv) P(AX) = AP(X), P(AX) = AP(X) 
(v) IP(X)- P(Y)I:::; P(IX- Yl), iP(X)- P(Y)i:::; P(IX- Yl) 

(vi) P(IXa. -XI) --+ 0 ===> P(Xa.) --+ P(X) and P(Xa.) --+ P(X) 

3.3 Linearity 

For convenience we write (n; Ai E R; Xi; P)wd if we mean "n E N, Ai E R, 
Xi E dom P for every i E {1, ... , n} and 2::~=1 AiP(Xi) weil defined". 

Definition 4. Let P be an extended lower prevision. If we have that 

(5) 

for every (n; Ai ER; Xi; P)wd then we say that Pis linear. 
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This definition is equivalent to Definition 3.1 of Crisma, Gigante and Mil
lossovich [2]. Obviously any linear extended lower prevision is coherent. For 
any linear extended lower prevision P it holds that P(X) = P(X) whenever 
both X and -X are in the domain of P. This establishes that the conjugate 
upper prevision of a linear extended lower previsions coincides with the ex
tended lower prevision, if its domain is symmetric ( dom P = - dom P, this 
is the case when dom P is a linear space, for example). Therefore, if an ex
tended lower prevision P is linear and has a symmetric domain, we call it an 
extended linear prevision and denote it by P. It can then be interpreted both 
as a lower and as an upper prevision. 

If dom P is a linear space, then there is a simpler condition for linearity. 
This result has been proven by Crisma, Gigante and Millossovich [2, Theo
rem 3.2]. 

Proposition 2. Let P be an extended lower prevision and assume that dom P 
is a linear space. Then P is linear iff the following statements hold for every 
X, Y E domP and every >.ER. 

(1) P(X) 2 inf[X]. 
(2) P(>.X) = >.P(X). 
(3) P(X + Y) = P(X) + P( Y) whenever the right hand side is well defined. 

In the case of a (real-valued extended) lower prevision on gambles we may 
drop condition (2) of Proposition 2 (see also [8]). We have not studied in 
detail whether this condition may be dropped in the more general case as 
weil. 

An extended lower prevision Q is said to dominate an extended lower 
prevision P if dom Q ;:2 dom P and Q 2 P point-wise on dom P. For any 
extended lower prevision P, if there is an linear extended lower prevision that 
dominates P, then P avoids sure loss. A partial converse of this statement 
will be given in Theorem 2. 

4 Natural Extension 

4.1 Definition and Properties 

Definition 5. Let P be an extended lower prevision. The natural extension 
of P, XE. : :R( D) ----> R*, is defined by 

XE.(Z) = (n;-X,~~~X,;.E_) {inf [z- ~>.ixi] + ~AiP(Xi) w.d.} 

= . su~ .. {f.L+ t>-iP(Xi) w.d.;f.L E R,Z 2 f.L+ L.n >.ixi}. 
(n,-X,;::::o,X".E_) i=l •=1 

The natural extension of Pis defined by Xp(Z) =-XE.( -Z). 
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If P is a real-valued extended lower prevision, then the natural extension of 
Pis also given by (where Gg_(Xi) denotes Xi- P(Xi)) 

It coincides with Walley's [8] notion of natural extension in the special case 
that P is a (real-valued extended) lower prevision on gambles. 

The following examples show that, even when Pis real-valued, Xg_ can as
sume the values ±oo. This explains why we prefer to include ±oo in the range 
of extended lower previsions when considering unbounded random variables. 

Example 2. Let P be any coherent, real-valued, extended lower prevision on 
.C(il). Then it is easily checked that Xg_ assumes the value -oo at any random 
variable X that is not bounded from below. 

Example 3. Let n = [0, +oo) and define the increasing sequence of random 
variables (gambles) Xn by Xn(x) = x if x < n, and Xn(x) = n otherwise. 
Define P on {Xn;n E N} by P(Xn) = n. Use the fact that Gp(Xn)(x) = 0 
when x 2: n to show that Pis coherent. Now let Y be the identity map on 
[0, +oo ). This random variable is bounded from below but not from above. 
We find that 

Xg_( Y) = sup { inf [ Y- ~Ai Gg_(Xi) l ; (n; Ai 2: 0; Xi; P)} 

2: sup inf[Y- Gg_(Xn)] = supN = +oo, 
nEN 

whence Xp(Y) = +oo. 

One can easily show that P avoids sure loss iff X g_ is a coherent extended 
lower prevision. A tedious proof shows that all the well-known properties of 
natural extension for (real-valued extended) lower previsions on gambles (see 
[8, Section 3.1.2]) generalise as well. 

Proposition 3. Assume that P avoids sure lass. Then the following state
ments hold. 

{i) X p dominates P. 
{ii} x; = P on domP iff Pis coherent. 

{iii} x; is the smallest coherent extended lower prevision on ~(il) that dom
inates P on dom P. 

(iv) If P is coherent then Xp is the smallest coherent extension of P to 
~(n). -
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4.2 A Semi-Normed Linear Lattice 

Definition 6. Let P be an extended lower prevision. The P-norm is a map 
ll·ll.t: : ::R( il) ---+ R* defined by 

IIZII.t: = Xp(IZI). (6) 

It should be noted that the terminology P-"norm" (actually, P-"semi-norm") 
is justified if and only if P avoids sure loss: if P incurs sure loss then 11·11 P 

assumes negative values (e.g., it assumes -oo at the zero gamble). -

Proposition 4. Let P and Q be extended lower previsions that avoid sure 
loss. Assurne that Q dominates P. Then the following statements hold for 
every X, Y E ::R( il)-;-and every .X E R. 

{i} 0::; IIXIIQ::; IIXII.t:::; sup(IXIJ. 

{ii} II.XXIIP ~I.XIIIXIIp· 
{iii} IIX + Yll.t:::; IIXIG_ + II Yll.t:· 

Definition 7. Let P be an extended lower prevision that avoids sure loss. 
A random variable is said to be P-norm-finite, if it belongs to the set 

J:.,E. = {Z E ::R(il); IIZII.t: < +oo}, (7) 

which is called the P-space. If P incurs sure loss, then we define J:.,E. = 0. 

Proposition 5. Let P and Q be extended lower previsions that avoid sure 
loss, suchthat Q dominates P. Then J:.,(il) ~ J:.,E. ~ J:.,Q and (J:.,E., ll-llp) is a 
semi-normed linear lattice. - -

For a (real-valued extended) lower prevision P on gambles, where dom P ~ 
J:.,(il), it turnsout that J:.,E. = J:.,(il). We alsopointout that J:.,E. and ll·llp gen
eralise notions previously introduced in the Iiterature for so-called preVlsible 
random variables (Troffaes and de Cooman (5]): for a coherent (real-valued 
extended) lower prevision P on gambles, the set !:.,:p(il) of P-previsible ran
dom variables is included in l:.,px, where px is the extension of p to the set 
Vp(il) of P-previsible random-variables. Moreover, the P-norm introduced 
inl5J coincides with the px_norm on !:.,:p(il). 

In what follows, weshall assume thät J:.,p 2 domP. Then M(P) denotes 
the set of linear extended lower previsions on J:.,p that dominate P. It is an 
important observation that M (P) only containi"i-eal-valued extended linear 
previsions; indeed, IQ(X)I ::; Q(IXI) ::; Xp(IXI) < +oo for every XE J:.,E.· 
We can easily show that M ( P) is a subset of the topological dual J:., p of the 
semi-normed linear space J:.,E.· If we equip J:.,j, with the weak* topöiögy (of 
point-wise convergence), then M ( P) is compaCt with respect to this topology. 

The proof of the following theorem relies on the topological structure of 
J:.,E. and the Hahn-Banach Separation theorem. 
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Theorem 2 (Lower Envelope Theorem). Let P be an extended lower 
prevision and assume that /:.., p 2 dom P. Then P avoids sure loss, and there 
is a ( real-valued) extended lin"""iar prevision on dom P that dominates P. More
over, Xp(X) = min{P(X); PE M(P)} for all X in /:.,p. Consequently, Pis 
coherent iff P(X) = min{P(X); PE M(P)} for all X in domP. 
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A Hierarchical U ncertainty Model under 
Essentially Incomplete Information 

Lev V. Utkin 

Munich University, Institute of Statistics, Ludwigstr. 33, 80539, Munich Germany 

Abstract. A hierarchical uncertainty model for combining the different judge
ments is studied in the paper. The model is general enough for many applications. 
The presented approach for dealing with such model allows us to combine the avail
able heterogeneaus information in the following ways: computing new probability 
bounds for some predefined interval of previsions, computing an "average" interval 
offirst-order previsions, and updating the second-order probabilities after observing 
new event. 

1 Introduction 

There are judgements taking into account a degree of belief to assessments, 
for example, "Mean time to failure of a component is between 3 and 5 hours 
with the probability greater than 0.95". They can be operated by the second
order uncertainty models ( hierarchical uncertainty models) on which much 
attention have been focused due to their quite commonality. De Cooman et 
al. [10,1,3] proposed that fuzzy probabilities can be interpreted as a special 
type of hierarchical uncertainty model. Gardenfors and Sahlin [2] introduced 
the notion of an "epistemic reliability" function for modelling the second
order probabilities. Nau [7] described beliefs by lower and upper probabilities 
qualified by numerical confidence weights and studied their properties. The 
study of some tasks related to the homogeneaus second-order previsions has 
been illustrated by Kozine and Utkin in [5]. 

In this paper, we study a hierarchical uncertainty model for combining 
the different evidences where the second-order probabilities can be regarded 
as confidence weights and the first-order uncertainty is modelled by the lower 
and upper previsions of different continuous gambles [9,11,12]. This model is 
more general for many applications than the model considered in [5]. The 
presented approach for dealing with such model allows us to combine the 
available heterogeneaus information in the following ways: computing new 
probability bounds (weights) for some predefined interval, computing an "av
erage" interval of first-order previsions, and updating the second-order prob
abilities (weights) after observing new event. This approach is self-adaptated 
to special situations. An experts does not need to think about a type of an 
averaging operator. The natural extension is automatically doing that. 
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2 Preliminary Definitions 

Suppose there is a continuous random variable x defined on the sample 
space Q and information about this variable is represented as a set of m 
interval-valued expectations of functions h (x), ... , lm(x). Denote these lower 
and upper expectations f!.i = M Ii and ai = M Ii, i = 1, ... , m. In terms of 
the theory of imprecise probabilities the corresponding functions li(x) and 
interval-valued expectations M Ii and M Ii, i = 1, ... , m, ·are called gambles 
and lower and upper previsions, respectively. The previsions M Ii and M Ii 
can be regarded as the bounds for an unknown precise prevision M Ii which 
is called a linear prevision. For computing new previsions Mg and M.9 of 
a gamble g(x) from the available information, the natural extension can be 
used in the following form: 

M.9 = inf { g(x)p(x)dx, Mg= sup { g(x)p(x)dx, 
P ln P ln (1) 

subject to 

l p(x)dx = 1, p(x);::: 0, f!.i:::; l li(x)p(x)dx:::; ai, i:::; m. (2) 

Here the infimum and supremum are taken over the set P of all possible 
probability density functions {p(x)} satisfying conditions (2). 

Problems (1)-(2) are linear and the dual optimization problems can be 
written as [4,6,9,12]: 

subject to ci, di E R+, Co E R, i = 1, ... , n, and co + L:;Z:,1 (ci - di) li(x) ;::: 
g(x) for all x E Q. 

Naturalextension is a general mathematical procedure for calculating new 
previsions from initial judgements. It produces a coherent overall model from 
a certain collection of imprecise probability judgements and may be seen as 
the basic constructive step in interval-valued statistical reasoning. 

3 The Problem Statement 

Suppose that we have a set of weighted expert judgements related to some 
measures of the system behaviour M Ii, i = 1, ... , m, i.e. there are lower and 
upper previsions f!.i, ai. Suppose that each of m experts is characterized by 
a subjective probability 'Yi or interval of probabilities ['Y., ;yi], i = 1, ... , m. 

-· Generally, the judgements can be written as follows: 

(4) 
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Here the set ü~.i• ai} contains the first-order previsions, the set tri' ::Yi} con
tains the second-order probabilities and Mli(x) =IR+ li(x)p(x)dx. Our aim 
is to produce new judgement which can be regarded as a combination of 
available judgements. In other words, the following tasks should be solved: 

1. Computing the probability bounds ['Y, ::Y] lor some new interval A = [!!, a] 
ol new linear previsions Mg(x). -

2. Computing an "average" interval [a*, a*] ol new previsions Mg(x). 
3. Updating probabilities b., ::Yi] after observing an event B . ...... 

In order to give the reader the essence of the subject analyzed and make 
all the formulas more readable, we will mainly consider the natural extension 
only for the upper bound. Furthermore, throughout the paper the obvious 
constraints for densities p to optimization problems such that p(x) ~ 0, 
IR+ p(x)dx = 1 will not be written. 

4 Computing the Probability Bounds (Task 1) 

Suppose that the set of linear previsions M Ii, i = 1, ... , m, Mg is an outcome 
set. Then we have the set of lower 'Y. and upper 'Yi probabilities of events Ai = _, 
{!!i ::; M Ii ( x) ::; ai}. In this case the linear previsions M Ii ( x) and Mg can 
be regarded as continuous random variables denoted Zi and z having desities 
'lj;i and 'lj.;, respectively. At that the variable z is some function of variables 
z17 .•. , Zm whose implicit form is unknown. If all gambles are identical, i.e. 
for all i there holds li(x) = g(x), then Zi = z for all i and the stated tasks 
are reduced [5] to (1)-(3). However, the main problern is the difference of all 
gambles Ii and g. By regarding the linear previsions as random variables, we 
can not define a functional relationship between them except some simplest 
special cases. At the same time, we can not regard the corresponding variables 
as independent different ones because they are joined through the common 
density p. Therefore, the following approach is proposed. 

Let J be a set of indices and J ~ N = {1, 2, ... , m }. Denote the following 
sets of constraints: 

AJ = { A, i E J} = {!!i ::; M Ii ::; ai, i E J} , 
Ao = {A} = {g::; Mg::; a}, AJ. ={Ai, i E J}. 

(5) 

Note that probabilities of events Ai, i E J, can be represented as previsions 
of gambles being the indicator functions 
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Suppose that lli(zlo ... , Zm) is a joint density of random variables z1, ... , Zm. 
Then the upper probability ;:y = MfA(Mg) = MIA(z) can be obtained from 
the following optimization problem: 

"i = sup { JA(z)lli(zl, ... , Zm)dzl · · · dzm, 
n lw+ 

subject to 1i ~ fw;:. JA. (z)lli(z1, ... , Zm)dzl · · · dzm ~ 'Yi, i ~ m. 

Here R is the set of all possible joint densities {lli(z1, ... , Zm)}; IA.(z) is 
the indicator function such that I A. ( z) = 1 if z E Ai and I A. ( z) = 0 if z tf. Ai. 
The corresponding dual optimization problern is of the form: 

(6) 

subject to Ci, di E R+, Co ER, i = 1, ... , m, 

m 

co + L (ci- di) IA. (zi) 2:: JA (z). (7) 
i=l 

Constraints (7) can be rewritten as 

Here P is the set of all probability density functions {p(x)}. Let us con
sider constraints to the above problern in detail. In order to compute the 
indicator functions, it is necessary to substitute the different functions p 
from P and calculate corresponding integrals. Obviously, this task can not 
be practically solved. Therefore, we propose another way to do it. Let Pi be 
a set of densities p satisfying the i-th constraint gi ~ M Ii ~ ai and Po be a 
set of densities p satisfying the constraint g ~ Mg ~ a. We call the set AJ 
consistent if there is at least one density p satisfying all constraints whose 
indices belong to J, i.e. niEJ Pi =F 0. Let c be a set of all consistent sets AJ. 
Now we can see that if the set AJ U A7vv is consistent, then JA. (M Ii) = 1 
if i E J and IA. (Mii) = 0 if i E N\J. This implies that 

Moreover, if the set A7v-v U AJ U Ao is consistent, then there holds eo + 
LiEJ (ci- di) 2:: 1, otherwise Co+ LiEJ (ci- di) 2:: 0. In other words, if the 
set A 7v-v U AJ is consistent, then there exists at least one density p such that 
all linear previsions M Ii, i E J, are in intervals [gi, ai] and their indicator 
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functions equal to 1, alllinear previsions M/j, j E N\J, do not belong to 
intervals [gj, "iij] and their indicator functions equal to 0. If the extended set 
AJvvUAJUAo is consistent, then there exists at least one density p satisfying 
the additional constraint Ao. It should be noted that the union of two events 
in (5) means that for consistency of AJ- U AJ at least one of these events 
has to give the consistency of AJ- U AJ. So, to simplify constraints (7) it is 
necessary to look over all consistent sets AJvv U AJ. Then constraints (7) 
can be rewritten V J ~ N as follows: 

(8) 

If AJvv U AJ is inconsistent, then the inequality Co+ I:iEJ (ci- di) ;::: 0(1) 
is excluded from the list of all constraints. 

Now the question arises: how to determine the consistency of sets AJvv U 

AJ or AJvv U AJ U Ao. Condition niEJ Pi =f 0 is valid if an optimization 
problern with constraints AJ has any solution. At that the objective func
tion can be arbitrary. In other words, it is necessary to solve the following 
optimization problem: 

inf (sup) r cp(x)p(x)dx, 
p p jR+ 

subject to !li ::::; JR+ fi(x)p(x)dx::::; ai, i E J. Here cp is any function. It can 
be seen that the above problern can be regarded as the natural extension of 
first-order previsions {g,_i, ai, i E J} Oll one of previsions Mcp or Mcp. Since 
the consistency of constraints does not depend on the function cp, then it 
should be chosen as simpler as possible. The similar reasoning can be made 
for lower previsions. In this case 

(9) 

subject to ci, diE R+, Co ER, i E J, \:IJ ~ N 

(10) 

So, we write a general algorithm for computing 'Y and 7f: 
Step 1. By considering all possible binary vectors (yl, ... , Ym), Yi E {0, 1 }, 

the sets AJvv U AJ of constraints are formed, where i E J if Yi = 1 and 

i E N\J if Yi = 0. 
Step 2. Choosing a set AJvv U AJ from the list obtained at Step 1. 
Step 3. If AJvv U AJ E C, then (8) is used for computing ;y and (10) is 

used for computing 1· If AJvv U AJ rf. C, then go to Step 2. 
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Step 4. From systems of constraints obtained at Step 3 and objective 
functions (6), (9), the probabilities 'Y and 'Y are computed as solutions to 
corresponding optimization problems. -

5 Computing an" Average" Interval (Task 2) 

The second task of computing an "average" interval [a., a*] = [MMg, M Mg] 
of the linear prevision Mg can be solved as follows. Let us rewrite problern 
(6)-(7) as 

(11) 

subject to e;,, diE R+, Co ER, i = 1, ... ,m, Vp E P 

m 

Co+ L (ci- di) !Ai (Mii) 2:: Mg, (12) 
i=l 

Denote M(k) Ii = JR+ li(x)p(k)(x)dx, k = 1, 2. Let p(l) and p(2) be some 

densities satisfying constraints Al\rvUAJ and M(2lg 2:: M(llg. Then the con

straint Co + LiEJ (Ci - di) !Ai (M(l) Ii) 2:: M(l) g follows from the constraint 
co + LiEJ ( ci - di) !Ai (M(2) Ii) 2:: M(2) g and can be removed. This implies 
that (12) is equivalent to 

Co+ L (ci- di) IAi(Mii) 2:: supMg. 
iEJ 'RJ 

Here the supremum is taken over the set 'RJ of all possible density functions 
{p(x)} satisfying the set of consistent constraints Al\rv U AJ. Hence the 

supremum of Mg is replaced by the upper prevision M J g und er consistent 
constraints Al\rv U AJ. As a result, we obtain constraints 

Co+ L (ci- di) 2:: sup r g(x)p(x)dx, VJ ~ N. (13) 
iEJ 'RJ jR+ 

In the same way the lower value a* can be computed. 

6 Updating Second-Order Probabilities (Task 3) 

Suppose that there is the set of expert judgements ( 4) and we observe an event 
B(x) = If.!!.,b](x), for example, "failure occurs between 10 and 12 hours". Now 
we can update beliefs 'Y. and 'Yi after observing the event B, i.e. construct -· posterior lower and upper probabilities '!1. and 'fik from the prior lower and 
upper previsions 'lk and 'Yk and statistical data B suchthat 

Pr Ü~k ~ M(fklB) ~ ak} E ['!1., 'fik]· 
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The linear prevision M(fkiB) can be represented as follows [6,8]: 

MfkB JR fk(x)B(x)p(x)dx 
M(fkiB) = Pr(B) = JR+ B(x)p(x)dx 

After observing the event B, we obtain new previsions M(fkiB) and M(fkiB). 
This implies that the probability that the linear prevision M(fkiB) is in the 
previous interval ~k• ak] is updated and its bounds are '!1. and 'fik· Then 
the natural extension for computing the posterior upper probability 'fik = 
MIAk(M(fkiB) is of the form: 

(14) 

subject to Ci, diE R+, co ER, i = 1, ... ,m, Vp E P 

m 

co + L (ci- di) IA; (M Ii) ~JA (M(fkiB)). (15) 
i=l 

Here Pisaset of all possible density functions {p(x)}. The following solution 
is similar to task 1. 
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Abstract. One of the advantages of imprecise probabilities is the possibility to 
carry out computations over the set of all possible probability distributions that, 
in turn, leads to rather imprecise results. To reduce the imprecision, it is proposed 
to use additional qualitative information about kurtosis, skewness, variance, and 
unimodality. It is shown how this information can be involved into the natural 
extension, which is the main tool for dealing with imprecise data in the framework 
of imprecise probabilities. Numerical examples illustrate the proposed approach. 

1 Introduction 

For combining and processing the partial information about some system 
of random variables and to make maximal use of the available information 
without additional assumptions about probability distributions or indepen
dency of random variables, the theory of imprecise probabilities (also called 
the theory of lower previsions [6], the theory of interval statistical models [3], 
the theory of the interval probabilities [7,8]) may be successfully applied. A 
general framework for the theory is provided by upper and lower previsions. 
They can model a very wide variety of kinds of uncertainty, partial infor
mation, and ignorance. The rules used in this theory are based on a general 
procedure called natural extension and can be applied to various measures. 
In fact, the natural extension is a linear optimization problern for comput
ing new interval-valued previsions from the available set of lower and upper 
previsions. It has been shown by P. Walley and G. de Cooman that the pos
sibility measures and belief functions can be regarded as special cases of the 
imprecise probabilities. 

When applying the natural extension, it is declared that the lower and up
per previsions are sought over the set of all possible probability distributions, 
i.e. the widest dass, which is really appealing. It should be noted that, on 
the one hand, this is one of the advantages of imprecise probabilities because 
some additional and often unjustified assumptions about a type of probabil
ity distributions are avoided and the risk of obtaining the incorrect results is 
reduced. From the other hand, the natural extension results in many appli
cations too imprecise intervals of computed characteristics that restricts the 
wide usage of the imprecise probabilities. One of the ways for reducing the 
obtained imprecision is to use the additional qualitative information about 
the probability distributions which may be very often available and is related 
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to special applications. For example, it is known that the most distributions 
considered in reliability analysis are unimodal and it is difficult to expect 
that a lifetime distribution is multimodaL We may know that, for example, 
the variance of a random variable is less than the expectation squared (in
formation about the variance) or the left tail of a possible distribution is 
heavier than its right tail (negative values for the skewness). Sometimes, it is 
known that a random variable has typically a "flat" density function, which 
is rather constant near zero, and very small for larger values of the variable 
(negative kurtosis). How to take into account this additional information and 
incorporate it into the natural extension? 

The problern here is that such characteristics as the variance, skewness, 
kurtosis can not be represented as previsions because they can not be re
garded as expectations of some functions. The same can be said about uni
modality. Therefore, the paper presents the methods for involving the above 
peculiarities of probability distributions into imprecise calculations. At that, 
for involving the unimodality, it is shown how to use Khintchine's condition 
in the natural extension. By using the information about the variance, kurto
sis, skewness, the natural extension becomes a parametric linear optimization 
problem. The various numerical examples illustrate the impact of additional 
information on results of imprecise calculations. 

2 Kurtosis, Skewness and Variance 

Kurtosis is a measure of whether the data are peaked or flat relative to a 
normal distribution. That is, data sets with a high kurtosis tend to have a 
distinct peak near the mean, decline rather rapidly, and have heavy tails. 
Data sets with low kurtosis tend to have a flat top near the mean rather 
than a sharp peak. The kurtosis of X E n is classically defined by kurt( X) = 

E{x4}-3 (E{x2 } ) 2 • Obviously, kurt(x) can not be represented as a prevision, 

because it contains the "non-linear" term ( E { x2 }) 2 • This implies that it is 
necessary to find a way in order to avoid this non-linearity. 

Suppose that there is an additional judgement kurt(x) ;:::: 0. Then for 
computing new previsions of a gamble g on the basis the available information 
in the form of lower gi and upper ai previsions of the gamble cpi, i = 1, ... , n, 
the natural extension can be written as the following optimization problems: 

M(g) = min { g(x)p(x)dx, M(g) = max { g(x)p(x)dx, (1) 
P ln P ln 

subject to 

L p(x)dx = 1, f!i ~ l cpi(x)p(x)dx ~ ai, i ~ n, kurt(x) ;:::: 0. (2) 

Here the minimum and maximum are taken over the set P of all possible 
probability density functions {p(x)} satisfying conditions (2). 
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The last constraint can be rewritten as follows: 

Now we have the non-linear optimization problem. However, it can be reduced 
to a parametric linear programming problem. Denote fn x2p(x)dx = h. Then 
the constraint kurt(x) ~ 0 can be represented as two constraints 

Here h is the parameter in the parametric linear programming problem. Fi
nally, we obtain 

M(g) = min { g(x)p(x)dx, M(g) = max { g(x)p(x)dx, 
P,h ln P,h Jn 

subject to 

l p(x)dx = 1, p(x) ~ 0, !!i :=::; l 'Pi(x)p(x)dx :=::; äi, i :=::; n, 

l (x2 - h)p(x)dx = 0, l (x4 - 3h2)p(x)dx ~ 0. 

The dual optimization problern for computing the lower prevision is of 
the form: 

n 

c + L(ci- di)'Pi(xi) + (v1- w1)x2 + (v2- w2)x4 :=::; g(x). 
i=l 

So, the task of computing the lower and upper previsions of the function 
g is reduced to the solution of a number of linear optimization problems with 
different values of the parameter h whose results are lower and upper previ
sions depending on h, i.e. M h (g) and M h (g). The final result is determined 
as follows: M(g) = minh M h(g), M(g) = maxh M h(g). 

Skewness is a measure of the lack of symmetry. The skewness for a normal 
distribution is zero, and any symmetric data should have a skewness near 
zero. Negative values for the skewness indicate data that are skewed left and 
positive values for the skewness indicate data that are skewed right. 
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The skewness of x is defined to be 

k E{(x- E(x))3} 
s ew(x) = [E{(x- E(x))2}]3/2. 

Suppose the additional judgement is skew(x) ~ 0. It can be rewritten as 
E(x3 )- 3E(x2 )E(x) + 2(E(x))3 ~ 0. Denote In xp(x)dx = h. By using the 
same reasoning, the constraint skew(x) ~ 0 can be written as two constraints 

l xp(x)dx = h, l x3 p(x)dx- 3h l x 2 p(x)dx + 2h3 ~ 0. 

There are judgements concerning the variance of a random variable, for ex
ample, the variance is less than the expectation squared. The variance of x is 
defined tobe var(x) = E{ x2}- (E{ x} )2 . Suppose that there is the additional 

judgement var(x) ~ (E{x})2 . Hence In x 2 p(x)dx-2 Un xp(x)dx) 2 ~ 0. De
note In xp(x)dx = h. Then there hold In xp(x)dx = h and In x 2 p(x)dx-
2h2 ~ 0. 

The following computations with the information about skewness and 
variance are similar. 

Example 1. Suppose that the available information is represented as follows: 
lower and upper probabilities of failure before 4 hours are 0.6 and 0.7, lower 
and upper probabilities of failure after 5 hours are 0.1 and 0.2. By using the 
information about kurtosis, we obtain bounds for the probability of failure 
before 6 hours: 0.7 and 0.9. By using the information about skewness, we ob
tain bounds: 0.6 and 1. Without this additional information bounds for the 
same probability are 0.6 and 1. Now suppose that the mean time to failure 
is between 5 and 6 hours (additional information). By using the information 
about kurtosis, we obtain bounds: 0. 75 and 0.9. By using the information 
about skewness, we obtain bounds: 0.8 and 0.9. Without the additional in
formation bounds for the same probability are 0. 75 and 1. 

It can be seen from Example 1 that the information about kurtosis and 
skewness may reduce the intervals of probabilities. At the same time, there 
are cases when the additional qualitative information does not change the 
available imprecision. 

3 Unimodal Distributions 

Let us consider another type of the additional qualitative information when it 
is known that the distribution of the considered random variable is unimodaL 
A univariate distribution is said to be unimodal with mode r if its cumula
tive probability distribution function is convex on the interval ( -oo, r) and 
concave on the interval (r, +oo). Denote the set of allunimodal distributions 
or densities U. Then the minimum and maximum in the natural extension 
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must be taken over the set U. According to [2,1], the probability distribution 
F belong to U if it can be represented as F(t) = J; G(tjx)dx (Khintchine's 
condition). Here G is an arbitrary distribution function. Denote the corre
sponding densities as p(t) = dF(t)jdt, w(t) = dG(t)jdt. Then 

p(t) = df; G(tjx)dx = {1 ~w(tjx)dx. 
dt }0 x 

(3) 

It should be noted that Khintchine's condition allows us to restriet the set 
of possible distributions by unimodal ones having the mode value at point 0. 
Here we consider a more general case when r is a possible mode value, r ~ 0 
and a ~ r ~ b. Then (3) can be rewritten as Pr(t) = J; ~w((t- r)/x)dx. 
Suppose that il = [a, b], a ~ 0 ~ b. After substituting Pr into optimization 
problern (1)-(2), for example, into the objective function, we obtain 

1
b+r 1b 11 1 M(g) = g(t)pr(t)dt = g(t + r) -w(tjx)dxdt. 

a+r a 0 X 

Hence we obtain the objective function with the density w(z) and new gam
bles 

9r(z) = z-1 1b g(t + r) [Iro,bJ(t)I[t,bJ(z)- I[a,oj(t)I[a,tJ(z)] dt, 

which can be written in another form: 

- ( ) _ -1 {- t g(t + r)dt, z < 0 9r z - z r~ . 
Jo g(t+r)dt, z ~ 0 

Finally, we have the following optimization problern with variables w(z) EU: 

M(g) = min { 9r(z)w(z)dz, M(g) = max { 9r(z)w(z)dz, (4) u ln u ln 
subject to 

L w(z)dz = 1, w(z) ~ 0, Qi ~ L <Pri(z)w(z)dz ~ ai, i ~ n, (5) 

where 

- ·( ) _ -1 {- t 'Pi(t + r)dt, z < 0 'Pn z - z r~ ( ) . 
Jo 'Pi t + r dt, z ~ 0 

Consider the most useful gambles. If g(z) = z\ k = 1, 2, ... , then 

_ (z + r)k+1 - rk+1 

9r(z) = z(k + 1) 



169 

lf g(z) = I[c,dJ(z), 0::::; c::::; d, then 

Or(z) = z-1 (min(d, max(c, z + r))- rnax(c, rnin(d, r))]. 

It should be noted that the obtained linear optirnization problern is para
rnetric with the parameter r. So, the problern of involving the unirnodality 
condition in the natural extension is reduced to sorne changes of gambles in 
the objective function andin constraints. 

Example 2. Consider data frorn Example 1. By using the inforrnation about 
unirnodality, we obtain bounds for the probability of failure before 6 hours: 
0.8 and 1. At that the value of r corresponding to the lower bound is 4 and 
the value of r corresponding to the upper bound is 5. 

Acknowledgements 

The work was supported by the Alexander von Hurnboldt Foundation (Ger
rnany). I arn very grateful to Dr. !gor Kozine (Risoe National Laboratory, 
Denrnark) for his very valuable rernarks and cornments. 

References 

1. Feiler W. (1971) An Introduction to Probability Theory and its Applications, 
volume 2, 2nd edition, Wiley, New York 

2. Khintchine A.Y. (1938) On unimodal distributions. Izv. Nauchno-Isled. Inst. 
Mat. Mech. 2:1-7 

3. Kuznetsov V. P. (1991) Interval Statistical Models. Moscow, Radio and Com
munication, in Russian 

4. Shapiro A., Kleywegt A. (2000) Robust analysis of stochastic problems. Tech
nical report, School of lndustrial and Systems Engineering, Georgia Institute of 
Technology 

5. Utkin L.V., Kozine 1.0. (2001) Different faces of the natural extension. In: 
de Comman G., Fine T.L., Seidenfeld T. (Eds.) lmprecise Probabilities and 
Their Applications. Proc. of the 2nd Int. Symposium ISIPTA'01, Ithaca, USA, 
Shaker Publishing, 316-323 

6. Walley P. (1991) Statistical Reasoning with lmprecise Probabilities. London, 
Chapman and Hall 

7. Weichselberger K. (2000) The theory of interval-probability as a unifying concept 
for uncertainty. International Journal of Approximate Reasoning 24:149-170 

8. Weichselberger K. (2001) Elementare Grundbegriffe einer allgemeineren 
Wahrscheinlichkeitsrechnung, Volume I Intervallwahrscheinlichkeit als um
fassendes Konzept. Heidelberg, Physica 



Approximation of Belief Functions by 
Minimizing Euclidean Distances 

Thomas Weiler and Ulrich Bodenhafer 

Software Competence Center Hagenberg 
A-4232 Hagenberg, Austria 
e-mail: { thomas. weiler, ulrich. bodenhofer }@scch.at 

Abstract. This paper addresses the approximation of belief functions by mini
mizing the Euclidean distance to a given belief function in the set of probability 
functions. The special case of Dempster-Shafer belief functions is considered in 
particular detail. It turnsout that, in this case, an explicit solution by means of a 
projective transformation can be given. Furthermore, we also consider more general 
concepts of belief. We state that the approximation by means of minimizing the Eu
clidean distance, unlike other methods that are restricted to Dempster-Shafer belief, 
works as weil. However, the projective transformation formula cannot necessarily 
be applied in these more general settings. 

Key words: belief functions, Dempster-Shafer theory, evidence reasoning, 
probability theory, theory of evidence, uncertain reasoning. 

1 Introduction 

The relation between belief and probability plays an important role in the 
theory of uncertain reasoning and its applications. Belief, e.g. as in Dempster
Shafer theory, can be viewed as an extension of probability. An advantage of 
more general concepts of belief is that they relate to incomplete information. 
Probability theory, however, provides a well-established decision making the
ory [1,2]. In ordertobe able to apply probabilistic decision principles also in 
the presence of more general concepts of belief, therefore, different ways to 
transform belief functions into probability functions have been developed. So 
far, Dempster-Shafer belief functions have been studied most extensively in 
this context [5-9]. 

This paper is concerned with the problern how a given belief function 
can be approximated by minimizing the Euclidean distance in the set of 
probability functions, i.e. we consider the following minimization problem. 

Optimization Problem (OP) Fora given belief function D: SL---+ [0, 1] 
minimize the objective function 

L (D(iJ)- P(7J))2 
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with respect to a probability function P : SL --> [0, 1], where SL denotes 
the Lindenbaum algebra (i.e. the Boolean algebra of well-formed formulae, 
where two formulae are considered as equal if all their evaluations coincide) 
of a finite propositionallanguage L with n propositional variables p 1 , ... , Pn. 

In this paper, we first consider (OP) in relation with Dempster-Shafer 
belief functions. We show that (OP) can be solved explicitly by means of 
a projection transformation. Finally, we discuss more general concepts of 
belief. However, we demonstrate that the projective transformation does not 
necessarily give the correct result if we go beyond Dempster-Shafer belief 
functions. 

2 Belief Functions 

Definition 1. On the Lindenbaum algebra SL, we define the following or
dering: For all 7J, 1jj E SL, 

7J ~ 1jj if and only if 7J f= 1jj. 

A formula a E SL is called an atom of SL if and only if for each propositional 
sentence 7J E SL either a ~ 7J or a ~ ,7J holds. 

Note that atoms uniquely correspond to conjunctions of the form 

where the brackets indicate that each propositional variable may be prefixed 
with a negation or not. Therefore, J = 2n different atoms exist for a language 
L with n propositional variables. 

Definition 2. A mapping V: SL--> {0, 1} is called a valuation if and only 
if there exists an atom a E At such that for all 7J E SL, 

V (7J) = { 1 for 7J 2: a 
0 otherwise 

where At stands for the set of atoms of SL. Moreover, we denote the valuation 
induced by an atom a with V-a. 

As easy to see, a valuation is a function that assigns a truth value to 
each formula in SL with the particular property that the truth values as
signed to the propositional variables uniquely determine the truth value of 
any compound formula. 

Definition 3. A mapping P : SL--> [0, 1] is called a probability function if 
and only if there exists a mapping mp :At--> [0, 1] satisfying 
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(Pl) EaEAt mp(a) = 1, 

(P2) P(Ö) = EaEAt mp(a) · Va(Ö) for all 0 E SL. 

In order to treat Dempster-Shafer belief functions in a similar way, we 
generalize the concept of valuations. 

Definition 4. A mapping V' : SL ---+ {0, 1} is called an information function 
if and only ifthere exists a 0 E SL\{0} suchthat for all1f E SL, 

V'(-) = { 1 for 1f?. 0 
1/J 0 otherwise 

where 0 denotes the equivalence dass of contradictions and v.; stands for the 

information function which is generated by 0. 

The crucial difference between a valuation and an information function 
is that an information function does not need to be generated by an atom. 
Information functions are closely related to the simple support functions de
fined by Shafer [10]. By using information functions, we are able to extend 
the definition of probability to Dempster-Shafer belief. 

Definition 5. A mapping D: SL---+ [0, 1] is called a Dempster-Shafer belief 
function if and only if there exists a mapping mv : SL\{0} ---+ [0, 1] which 
satisfies 

(DSl) Eo>o mv(B) = 1, 

(DS2) D(B) = E~>o mv("1f) · V~(B) for all 0 E SL. 

Dempster-Shafer belief functions are, therefore, convex combinations of 
information functions ( equivalent definitions can be found in the literature[3]). 
Now let us come to the most general case. 

Definition 6. An arbitrary mapping Bel : SL ---+ [0, 1] is called a generat 
belief function. We denote the set of allgeneralbelief functions (with respect 
to a given finite propositional language) with G B. 

In the following section, we define a vector space structure on the above 
set of belief functions. In this vector space, the optimization problern (OP) 
turns out to be equivalent to projecting a vector into a subspace, at least if 
we restriet to Dempster-Shafer belief functions. 

3 The Vector Space of Belief Functions 

Definition 7. The vector space of functions from SL to lR is defined as 

B = (B, EB, e, 0, o, II.JI, (., .)) 
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where Bis the set of all functions frorn SL to R.. For all7J E SL, Beh, Bel2 E 
B and .A ER., the Operations EB, e and 0 are defined by 

(Beh E!1Bel2)(7J) = Beh(7i) +Bel2(0) 

(Beh 8 Beb)(7J) = Beh(7i)- Bel2(0) 

(.A 0 Beh)(7J) = .A · Beh(7i) 

0 denotes the zero function 0(71) = 0. The inner product is defined by 

(Belt,Bel2) = L Beh(7i) · Bel2(0). 
OESL 

The norrn is uniquely given by the inner product in the usual way: 

IIBeld = J (Beh, Beh). 

The precise interpretation of probability and Dernpster-Shafer belief func
tions in B becornes clear by recalling the definitions of the convex and affine 
hull. 

Definition 8. Let V be a vector space and {V1 , ... , Vi} be a set of vectors 
in V. Then 

I 

C(Vi, ... , Vi) = {(m1 0 Vi) EB· · · El1 (m18 Vi) I mt, ... ,m1 2::0 and L:mi = 1} 
i=l 

is called the convex hull of {V1 , ... , Vi} and 

I 

A(V1, ... , Vi) = {(m1 0 Vi) EB· · · El1 (m1 0 Vi) I L mi = 1} 
i=l 

defines the affine hull of {V1, ... , Vi}. 

Frorn the definitions above, we see that the set of probability functions 
is obviously the convex hull of all valuations, and that the set of Dernpster
Shafer belief functions is the convex hull of all inforrnation functions. The 
optirnization problern (OP) forrnulated in the framework of B is equivalently 
given as: for a given belief function D E GB, rninirnize the objective function 
IlD 8 Pli with respect to 

PE C(Vc.u· .. , Vc.J). 

We proceed in the following way: we define an operator P* on the set 
of Dernpster-Shafer belief functions and show that Pjj(D) E A(Vc.1 , ••• , Vc.J) 
and, rnoreover, that Pjj(D) solves the rnodified optirnization problern given 
next. 
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Simplified Optimization Problem {SOP) For a given belief function 
D E GB, minimize the objective function IlD e Pli with respect to 

PE A(Vc.1 , ••• , Vc.J). 

The advantage of considering A(Vc.1 , ••• , Vc.J) instead of C(Vc.1 , •• • , Vc.J) 
is that every affine hull is an affine subspace. Minimizing IlD e Pli in a 
subspace of B means that we look for the projection of D onto the subspace. 
A projection has the property of the projection vector standing perpendicular 
on the given subspace, i.e. the inner product of the projection vector and any 
vector of the subspace is zero [11]. The same holds true for affine subspaces 
if we consider that linear subspace which is parallel to the affine subspace. 

Finally, we show that even Pjj(D) E C(Vc.p· .. , Vc.J) holds, which proves 
that Pjj(D) indeed solves (OP). 

4 The Transformation Formula for Dempster-Shafer 
Belief Functions 

Assurne throughout this section that D E GB is a Dempster-Shafer belief 
function with 

D = LmD(B) ·Vif. 
0>0 

Definition 9. The formula 

Pjj(D) = L mp;,(D)(a) · Va 
aEAt 

defines the projective transformation of D : SL ~ [0, 1], such that for all 
aE At, 

where 80 = {a E At I a :$ 0}, i.e. the set of atoms from which B can be 
inferred. Consequently, 1801 denotes the cardinality of this set. 

It can be shown that Pjj(D) maps D into A(Vc.p· .. , Vc.J). 

Lemma 1. Pjj(D) E A(Vc.p· .. , Vc.J). 

In order to prove that Pjj(D) solves (SOP) it is to show that the projection 
is perpendicular onto the plane of probability functions. 
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Lemma 2. Wa, 8 Va 1 , PJJ(D) 8 D) = 0 holds for all i E {2, ... , J}. 

By applying basic functional analysis it follows the required result [11]. 

Theorem 1. PJJ(D) solves (SOP). 

An alternative way to prove Theorem 1 can be based on using Lagrange 
multipliers [9]. In order to show that PJJ(D) solves (OP), it remains to be 
proved that PJJ(D) is indeed contained in C(Vap· .. , VaJ), i.e. that allbelief 
values are positive. 

Theorem 2. PJJ(D) E C(Vap ... , VaJ and, therefore, solves the optimiza
tion problern (OP). 

5 Generalized Projective Transformation 

Alternatively to a relative frequency interpretation, it is popular to de
fine a belief function by an expert's subjective opinion that an event might 
take place [3]. The motivation for this is that it is often not possible to get 
hold of some appropriate data to construct a belief function. Nevertheless, in 
more complex situations, it would be very hypothetical to assume that belief 
of a human being exactly matches a Dempster-Shafer belief function or a 
probability function. Even if an expert intends to represent her /his belief in 
terms of probability, in mostnon-trivial cases it would be far beyond her/his 
mental capacity to meet precisely all requirements. Nevertheless, probability 
functions have the advantage that they can be applied to a rational decision 
making process. 

In fact, it has been shown by using the so-called Dutch book argument 
that when applying belief functions different to probability, a rational de
cision making process can lead to completely irrational decisions [12]. The 
Dutch-Book argument works when the decision maker incorrectly assumes 
that her /his belief is similar to probability and uses a decision making princi
ple ( e.g. maximizing expected value) that has been developed for probabilistic 
belief. The special case of the Dutch book argument applied to Dempster
Shafer belief is also discussed in the Iiterature [13]. 

In order to address a more intuitive concept of belief and decision making, 
our intention is as follows. We continue with the optimization problems (OP) 
and (SOP) admitting arbitrary belief functions Bel E GB. Forthis purpose, 
we proceed analogously to Section 4. 

Definition 10. For Bel E GB, the formula 

P(m(Bel) = L mp0B(Bel)(a) · Va 
aEAt 
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defines the projective transformation of Bel, where, for all a E At, 

mp08(Bel)(a) = 2J+1n_2 (J ~ Bel(B)--~ l%1 Bel(iJ) + 2J-2) . 

O~ä OESL 

Analogously to Lemma I, it can be shown that P(m(Bel) is a member 
of the affine hull of valuations and, analogously to Theorem I, we can prove 
that P(jB(Bel) solves (SOP). 

Lemma 3. P(jB(Bel) E A(Väu· .. , V"'J. 

Next, it is to show that P(jB(Bel) solves the (SOP). As previously men
tioned, the (SOP) is meant to be re-defined in such a way that the Dempster
Shafer belief functions D : SL --+ [0, I] is replaced by a belief function 
Bel : SL--+ [0, I] E GB. 

Theorem 3. P(jB(Bel) solves (BOP). 

Essentially, the projection function defined for general belief functions is 
exactly an extension of the projection functions for Dempster-Shafer belief. 
This is due to the fact that both are unique solutions of the (SOP). 

Corollary 1. Let D: SL--+ [0, I] be a Dempster-Shafer belief function then 
Pjj(D) = P(jB(D). 

Unfortunately, as the following example demonstrates, it turnsout that 
the generalized projective transformation P(jB (Bel) does not necessarily solve 
the optimization task (OP). 

Example 1. Fora two-variable propositionallanguage L = {p1,p2 }, let Bel: 
SL--+ [0, I] be given by 

Bel(B) = { 0 for 7J ~. a 1 
I otherw1se, 

where a1 = Pl 1\ P2· For this belief function the projective transformation 
returns a negative value for a1. 

6 Concluding Remarks 

In this paper, we explicitly found the probability function which minimizes 
the Euclidean distance to a given Dempster-Shafer belief function. This re
sult was accomplished by re-formulating the optimization problern within the 
framework of the linear space of functions from SL to IR and using methods 
from linear algebra. But it is not obvious how a geometric motivated trans
formation method for Dempster-Shafer belief can be justified. 

The geometrical interpretation of distance seems to be more natural when 
the concept of belief is extended. For such a more general belief function, we 
solved the simplified optimization problern (SOP). However, it turned out 
the projective transformation does not always work in such settings. 
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Abstract. Cardinality, one of the most basic characteristics of a fuzzy set, is a 
notion having many applications. One of them is elementary probability theory of 
imprecise events. Fuzzy and nonfuzzy approaches to probabilities of events like "a 
ball drawn at random from an urn containing balls of various sizes is !arge" do 
require an appropriate notion of the cardinality of a fuzzy set, e.g. of the fuzzy set 
of !arge balls in an urn. Contemporary fuzzy set cardinality theory offers a variety 
of options, including the use of triangular norms. This paper presents their overview 
encompassing scalar approaches as well as approaches in which cardinalities of fuzzy 
sets are themselves fuzzy sets of usual cardinals. 

1 Introduction 

Dealing with the notion of the cardinality of a fuzzy set has strong motivations. 
Indeed, cardinality belongs to the most fundamental mathematical characteristics 
of a fuzzy set. Besides this theoretical motivation, one should mention multiple 
applications, e.g. to computing with words, communication with data bases, mod
eling the meaning of imprecise quantifiers and, last but not least, to ( elementary) 
probability theory of imprecise events (see [1], [9-11]). In each case, we mean the 
problern of satisfactory answers to queries of the form "How many x's are p?" or, 
say, "Are there more x's which are p than x's which are q?"; p, q - generally impre
cise properties. They are cardinal queries, i.e. queries about cardinalities of fuzzy 
sets or comparisons of such cardinalities. In particular, the question of probabilities 
of events like "a ball drawn at random from an urn containing balls of various sizes 
is !arge" leads to the question what is the cardinality of the fuzzy set of !arge balls 
(see e.g. [9-11]). This paper presents an overview of constructive approaches to car
dinalities of fuzzy sets with triangular norm-based Operations. Our attention will 
be focused on finite fuzzy sets, i.e. on fuzzy sets with finite supports, which play 
the central role from the viewpoint of applications. From now on, if not emphasized 
otherwise, the phrase "fuzzy set" will mean "finite fuzzy set". The family of all 
(finite) fuzzy sets in a universe M will be denoted by FFS. FCS symbolizes the 
family of all finite crisp sets in M. 

There are two main general approaches to the cardinality lAI of a fuzzy set 
A E FFS: 

(a) lAI = a convex fuzzy set in N = {0, 1, 2, ... }, 
(b) lAI = a singlenonnegative integer or real number. 
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The "fuzzy" approach in (a), offering the fuzzy pereeption of eardinality, gives us the 
most eomplete and adequate eardinal information about A at the priee of relatively 
high eomplexity. Variants ofthat approaeh for fuzzy sets with the standard min 
and max operations are diseussed in [1,10]. In Seetion 2 and Subseetion 3.2 of this 
paper, we like to present a few eardinality eoneepts oriented to fuzzy sets with 
triangular norms (see [7,8]). 

The approaeh (b) is sealar, nonfuzzy. The sealar opties of eardinality is simple 
and eonvenient in every respeet and, therefore, it is favoured by many praetitioners 
despite of its disadvantages. A review of basie sealar eardinalities and referenees to 
them ean be found e.g. in [1]. In Seetion 3, we present a general axiomatie approaeh 
to sealar eardinalities ([4-6,8]). 

Let us reeall some notions and faets from the theory of triangular norms which 
will be useful in the main part of this paper. Details and further referenees are 
given in [2,3]. 

A binary operation t: [0, 1] X [0, 1]---+ [0, 1] is ealled a triangular norm (t-norm) 
if t is eommutative, associative, nondeereasing in the first and, henee, in each ar
gument, and has 1 as neutral element. If B : [0, 1] x [0, 1] ---+ [0, 1] does satisfy 
the eonditions of eommutativity, associativity and nondeereasingness, but has 0 as 
neutral element, it is said tobe a triangular conorm (t-conorm). Triangular norms 
together with triangular eonorms will be ealled triangular operations (t-operations). 
If aB b = 1 - (1- a) t (1 - b) for eaeh a and b, we say that B and t are associated, 
and we write B = t•. Simplest instanees of a t-norm and the associated t-eonorm 
are II = min and V= max. 

We say that a eontinuous t-norm t (t-eonorm s, respeetively) is Archimedean if 
a t a < a (aB a > a, respeetively) for eaeh a E (0, 1). An Arehirneclean t-operation is 
ealled strict if it is a strictly inereasing funetion on (0, 1) x (0, 1). Strietly inereasing 
and, thus, striet t-norms do not have zero divisors (a, b > 0 => a t b > 0). Nonstriet 
Arehirneclean t-norms do have. The following examples of t-norms will be useful in 
the further diseussion: 

ata b =ab, 
atLb=OV(a+b-1), 
aty,p b = OV [1- ((1- a)P + (1- b)P) 11P], p > O, 
ats,p b = [OV (aP +bP -1)]1/P, p > 0, 
a tF,>. b =log>. ( 1 + (>.a-!)(~b- 1)) , 1 ;j: ..\ > 0, 
a t b - 0 V a±b-1±>.ab ..\ > -1 W,>. - 1±>. ' . 

( algebraic t-norm) 
( Lukasiewicz t-norm) 

( Yager t-norms) 
(Schweizer t-norms) 

(Frank t-norms) 

( Weber t-norms) 

The t-eonorms associated with these t-norms will be denoted and ealled in a 
similar way, e.g. BL = t[, (Lukasiewicz t-conorm) and Bs,p = ts,p (Schweizer t
conorm). Exeeptional Iimit properties of Frank t-operations allow to put tF,o = 
II, tF,1 = ta, tF,oo = tL, BF,D = V, BF,1 = Ba and BF,oo = BL. The extended 
families (tF,>.)>.e[O,ooJ and (BF,>.)>.e[o,oo] are ealled Frank families of t-operations. 
Arehirneclean t-operations do have a useful eharacterization given by Ling. 

Theorem 1. {a) t is an Archimedean t-norm iff there exists a strictly decreasing 
and continuous function g: [0, 1] ---+ [0, oo] suchthat g(1) = 0 and a t b = g-1(g(O)II 
(g(a) + g(b))) for each a, b E [0, 1]. Moreover, t is strict iff g(O) = oo. 
(b) B is an Archimedean t-conorm iff there exists a strictly increasing and continuous 
function h: [0, 1] ---+ [0, oo] suchthat h(O) = 0 and aB b = h-1 (h(1) II (h(a) + h(b))) 
for each a, b E [0, 1]. B is strict iff h(1) = oo. 
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The function g in the thesis (a) is called a generator oft; h from (b) is said tobe 
a generator of s. One says that g (h, respectively) is normed if g(O) = 1 (h(l) = 1, 
respectively). 

Each nonincreasing function 11 : [0, 1] --+ [0, 1] with 11(0) = 1 and 11(!) = 0 will be 
called a negation. The negation 11. suchthat 11.(a) = 0 for a > 0 is thus the smallest 
possible negation, whereas 11* with 11*(a) = 1 for a < 1 is the largest possible one. 
Strictly decreasing and continuous negations are called strict negations. Involutive 
strict negations (11(11(a)) = a) are said to be strong. A typical example of a strong 
negation is the Lukasiewicz negation IIL with IIL(a) = 1- a. Each t-norm t and 
t-conorm B do generate negations llt and lla defined as 

llt(a)=V{cE[O,l]:atc=O}, lla(a)=/\{cE[O,l]:asc=l}. 

These negations are strong whenever t and s are Arehirneclean and nonstrict. More
over, the binary Operations t 0 and 8°, respectively, suchthat a t 0 b = 11t(11t(a) t llt(b)) 
and a B0 b = 11a(11a(a) s lla(b)) are then a nonstrict Arehirneclean t-conorm and a 
nonstrict Arehirneclean t-norm, respectively. t and t 0 are called complementary t
operations. Instances of pairs of complementary t-operations are (ts,p, BY,p) and 
(tY,p, Bs,p)· 

Triangular Operations and negations are suitable tools for defining Operations 
on arbitrary fuzzy sets. We shall use the sum A Ua B of A and B induced by 
a t-conorm s with (Au. B)(x) = A(x) s B(x), the intersection A nt B and the 
cartesian product AxtB induced by at-normt with (AntB)(x) = A(x) t B(x) and 
(AXt B)(x,y) = A(x) t B(y), and the complement A" of A induced by a negation 
II with A"(x) = II(A(x)). u = Uv, n = nA, X = XA ' and I = " with II = IIL are 
the standard Operations. Inclusions and equalities of fuzzy sets will be understood 
in the standard way via pointwise ~ and =, no matter which t-operations are used. 
The t-cut set and the sharp t-cut set of A, respectively, will be denoted by At and 
At, respectively. So, At= {x E M: A(x) ~ t} and At= {x E M: A(x) > t}. 

2 Cardinalities of fuzzy sets as fuzzy sets of 
nonnegative integers 

We like to present three groups of approaches in which the cardinality of a fuzzy set 
is a fuzzy set of nonnegative integers (of finite cardinals, in other words). Through
out, A E FFS, n = isupp(A)I and m = icore(A)I. Let [A]k = V{t: IAtl ~ k} for 
k E N. [A]k with 0 < k ~ n is the kth element in the nonincreasingly ordered se
quence of allpositive values A(x), including their possible repetitions. So, [A]k = 1 
if k ~ m, and [A]k = 0 for k > n. 

2.1 Generalized FGCounts 

Fora t-norm t, let FGCountt: FFS--+ [0, IF'' be defined as follows (see [7,8]): 

FGCountt(A)(k) = [Ah t [A]2 t ... t [A]k. 

FGCountA(A) becomes the well-known FGCount(A) with FGCount(A)(k) = 
[A]k ([10]). FGCountt(A) is its appropriate generalization to fuzzy sets with t
norms. In the language of many-valued sentential calculus, FGCountt(A)(k) is the 
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truth degree of the sentenee saying that A eontains (at least) i elements for eaeh 
i ::=; k; the quantifieation "for eaeh" is here interpreted via t. If A E FCS, then 
FGCountt(A) = 1{o,1 , ... ,n}· Our further diseussion of generalized FGCounts will 
be restrieted to the ease of an Arehirneclean t, including t = 1\. Let 

e(A) = V {k E N : [Ah t [A]2 t ... t [A]k > 0}. 

The equipoteney relation "'t guaranteeing that FGCountt(A) = FGCountt(B) iff 
A "'t B is of the form 

A "'t B <=> e(A) = e(B) & \:lk :::; e(A) : [A]k = [B]k. 

If t is striet or t = 1\, this eollapses to 

A "'t B <=> \:lk E N : [A]k = [B]k 

<=> \:lt E (0, 1] : IAtl = IBtl 
<=> \:lt E [0, 1) : IAtl = IBtl, 

i.e. the dependenee on t vanishes. A partial ordering of generalized FGCounts and 
basie arithmetical operations on them are defined in the classical manner: 

FGCountt(A) :::; FGCountt(B) <=> 3B* c B : A "'t B*, 

FGCountt(A) + FGCountt(B) = FGCountt(A U B) whenever An B = 10, 

FGCountt(A) · FGCountt(B) = FGCountt(A x B). 

The relation ::=; eollapses to C only ift = 1\. The addition + ean be equivalently real
ized via the triangular norm-based extension principle (P+Q)(k) = V{P(i)tQ(j): 
i+j = k}. For the multiplieation, this ean be done only if 1\ is used as t-norm. Let a, 
ß and 8 denote generalized FGCounts of fuzzy sets; as previously, t is Arehirneclean 
or equal to /\. Then 

a(ß + 1) = aß+ 01, 
( a ::=; ß & 1 ::=; 8) =? ( a + 1 ::=; ß + 8 & 01 ::=; ß8), 

a < 1 ~ 3ß : a + ß = 'Y· 

( distributivity) 
( monotonicity) 

( lack of compensation) 

The failure of the eompensation property is one of the most important differenees 
between the arithmetic of ordinary eardinals and the arithmetie of generalized FG
Counts. The valuation property FGCountt(A) +FGCountt(B) = FGCountt(Ant 
B) + FGCountt(A Ua B) is generally satisfied iff t = 1\ and s = V. Some further 
classieal properties are lost if one uses nonstriet Arehirneclean t-norms. Instanees 
are the cancellation laws 

which hold true only if t is striet or equal to /\. 
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2.2 Generalized FLCounts 

Let 

FLCountt,v(A)(k) = v([A]k+l) t v([A]k+2) t o o o t v([A]n) 

with at-normt and a negation Vo This time FLCountt,v(A)(k) is a degree to which 
A contains at most i elements for each i 2: ko FLCountt,v(A)(k) = 1 if k 2: no 
Putting t = 1\ and v = VL, FLCountt,v(A) collapses to the classical FLCount(A) 
from [10]0 

2.3 Generalized FECounts 

FECountt,v(A)(k) = (Ah t 0 0 0 t [A]k t v([A]k+l) t o o o t v([A]n) 

defines the generalized FECount of A E FFS, the intersection of its generalized 
FGCount and generalized FLCount induced by to It is always convexo In particular, 
t = 1\ and v = VL do Iead to the usual FECount of A ((10])0 Putting t = 1\ and v = 
v*, FGCountt,v(A) becomes the cardinality of A due to Dubois ([l])o Inequalities 
between and arithmetical Operations on generalized FECounts can be introduced in 
the classical way used for generalized FGCountso However, a restriction to strict t
norms, including t = 1\, is then requiredo A detailed study of generalized FGCounts, 
FLCounts and FECounts is placed in (7,8]0 

3 Scalar cardinalities of fuzzy sets 

3.1 Generalized sigma counts 

Definition 1. A function u : F F S ---> (0, oo) is called a scalar cardinality if the 
following axioms are satisfied for each a,b E (0, 1], x,y E M and A, BE FFS: 

(Al) u(l/x) = 1, 
(A2) a:::; b::::} u(ajx) :::; u(b/y), 
(A3) An B = l0 '* u(A U B) = u(A) + u(B)o 

If the postulates (Al)-(A3) are satisfied by a function u, one says that u(A) is a 
scalar cardinality of Ao The following properties are simple consequences of the 
axioms: 

u(A) = !supp(A)I if A E FCS, 
u(A) :::; u(B) if A c B, 
!core(A)I :::; u(A) :::; !supp(A)Io 

( coincidence) 
( monotonicity) 
( boundedness) 

Theorem 2. u : F F S ---> (0, oo) is a scalar cardinality iff there exists a nonde
creasing function f: (0, 1]---> (0, 1] with f(O) = 0 and f(l) = 1 such that 

u(A) = L f(A(x)) for each Ao 
zEsupp(A) 
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So, the sealar eardinalities from Definition 1 ean be eallecl generalized sigma counts 
beeause they are in essenee natural generalizations of the well-known eoneept of the 
sigma eount SCA = Ezesupp(A) A(x) of A. Eaeh funetion f satisfying the eonclitions 
of Theorem 2 is saicl to be a cardinality pattern as it cloes express our unclerstancling 
of the ( sealar) earclinality of a singleton. Let us present a few basie examples of 
earclinality patterns ancl the resulting sealar earclinalities of a fuzzy set A E FFS. 
(i} ft.t(a) = (1 if a ~ t, eise 0} with t E (0, 1]. Then u(A) = IAtl· ft.1 is the smallest 
possible earclinality pattern, ancl it leacls to the smallest sealar eardinality core(A) 
of A. 
(ii} h,t(a) = (1 if a > t, eise 0} with t E [0, 1}. Now u(A) = IAtl. The largest 
possible eardinality pattern h,o generates the largest sealar eardinality isupp(A)I. 
IAtl ancl IAtl are integer sealar earclinalities whieh, without any preassumptions, 
ean be appliecl to infinite fuzzy sets. In the next examples, sealar earclinalities are 
generally noninteger numbers. 
(iii} fa.p(a) = aP with p > 0. Then u(A) = Ezesupp(A)(A(x))P, i.e. u(A) = SCA for 
p= 1. 
(iv} !4,p(a) = (2P-1aP if a ~ 0.5, eise 1- 2P-1(1- a)P) with p > 0. So, !4,2 is the 
classieal eontrast enhaneement funetion ancl u(A) = SCA for p = 1. 
(v} By clefinition, normecl generators of nonstriet Arehirneclean t-eonorms are eardi
nality patterns, e.g. the funetion Js,>.(a) = ln(1+.Xa)jln(1+.X) as normecl generator 
of (tw,>.) 0 • 

Theorem 3. (a) The valuation property 

VA, BE FFS: u(A nt B) + u(A u. B) = u(A) + u(B) 

holds true for a t-norm t, a t-conorm 8, and a scalar cardinality u based on a 
cardinality pattern f iff f, t and 8 are such that 

\Ia, b E [0, 1] : f(a t b) + f(a 8 b) = f(a) + f(b). 

(b) The cartesian product rule 

VA, BE FFS: u(A Xt B) = u(A) · u(B) 

is satisfied iff 

\fa,b E [0, 1]: f(a t b) = f(a) · f(b). 

(c) Assurne M is finite. The complementarity rule 

VA E FFS: u(A) +u(A") = IMI 

is fulfilled iff 

\Ia E [0, 1] : f(a) + f(v(a)) = 1. 

The following are thus examples of triples (!, t, 8) satisfying the valuation property: 
(a) (!, 1\, V} with any earclinality pattern j, 
(b) (id,tp,>.,8F,>.) with .XE [0, oo], 
( e) ( h, 8°, 8), where 8 is a nonstriet Arehirneclean t-eonorm with normecl generator 
h, e.g. (fa,p, ts,p, 8Y,p) with p > 0 ancl (fs,>., tw,>., (tw,>.t) with .X > -1. 
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By Theorem 3(b), 
(d) if t = 1\, then the cartesian product rule holds true iff f = /I.t or f = h,t, 
(e) if t is strict with a generator g, then f = e-9 and t do satisfy the cartesian 
product rule (e.g. f = id and t = ta), 
(f) if t = ta, the criterion in Theorem 3(b) collapses to the Cauchy functional 
equation whose unique continuous solutions are the cardinality patterns f = fa,p 
with p > 0. 

Finally, Theorem 3(c) leads to the following examples of pairs (f,v) satisfying 
the complementarity rule: 
(g) if v = VL, then the complementarity rule holds true whenever (0.5, 0.5) is the 
symmetry point of the diagram of f (e.g. /4,p), 
(h) if 8 is a nonstrict Arehirneclean t-conorm with normed generator h, then (h, v.) 
fulfils the complementarity rule; an example is h = fs,p and v.(a) = (1- aP) 11P for 
8 = 8Y,p· 

A unique nontrivial quadruple (!, t, 8, v) leading to the simultaneaus fulfilment 
of the valuation property and the cartesian product and complementarity rules 
seems tobe (id,ta,8a,VL)· 

3.2 Triangular norm-based generalized sigma counts 

There exists an obvious connection between the sigma count and the FGCount of 
A, namely BCA = l::~=l FGCount(A)(k). So, BCA can be viewed as a "summary" 
of FGCount(A). This suggests three other possible variants of a generalization of 
SCA: 

n n 

SCA,t = L[Ah t [A]2 t ... t [A]k, SCA,/,t = L f([Ah t [A]2 t ... t [A]k), 
k=l k=l 

n 

SCA,t.f = L f([A]l) t f([A]2) t ... t f([A]k) 
k=l 

with a cardinality pattern f. Conversely, the concept of the FGCount can be gen
eralized in the following three ways: 

FGCountt(A)(k) = f([A]k), 

FGCountt,t(A)(k) = f([A]l t [A]2 t ... t [A]k), 

FGCountt,t(A)(k) = f([A]l) t !([A]2) t ... t f([A]k)· 

References 

1. Dubois, D., Prade, H., Fuzzy cardinality and the modeling of imprecise quan
tification, Fuzzy Setsand Systems 16 (1985) 199-230. 

2. Gottwald, S., A Treatise on Many-Valued Logics, Research Sturlies Press, Bai
dock, Hertfordshire 2001. 



185 

3. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms, Kluwer, Dor<lrecht 
Boston London 2000. 

4. Wygralak, M., Triangular Operations, negations, and scalar cardinality of a fuzzy 
set, in: Zadeh, L. A., Kacprzyk, J. (Eds.), Computing with Words in Informa
tion/Intelligent Systems, Vol. 1 - Foundations, Physica-Verlag, Heidelberg New 
York (1999) 326-341. 

5. Wygralak, M., An axiomatic approach to scalar cardinalities of fuzzy sets, Fuzzy 
Sets and Systems 110 (2000) 175-179. 

6. Wygralak, M., A generalizing look at sigma counts of fuzzy sets, in: Bouchon
Meunier, B., Yager, R. R., Zadeh, L. A. (Eds.), Uncertainty in Intelligent and 
Information Systems, World Scientific, Singapore New Jersey London New York 
(2000) 34-45. 

7. Wygralak, M., Fuzzy sets with triangular norms and their cardinality theory, 
Fuzzy Setsand Systems 124 (2001) 1-24. 

8. Wygralak, M., Cardinalities of Fuzzy Sets (book in preparation). 
9. Zadeh, L. A., Fuzzy probabilities and their role in decision analysis, in: Proc. 

IFAC Symp. on Theory and Applications of Digital Control, New Dehli (1982) 
15-23. 

10. Zadeh, L. A., A computational approach to fuzzy quantifiers in natural lan
guages, Comput. and Math. with Appl. 9 (1983) 149-184. 

11. Zadeh, L. A., From computing with numbers to computing with words- From 
manipulation of measurements to manipulation of perceptions, IEEE Trans. on 
Circuits and Systems - I: Fundamental Theory and Appl. 45 (1999) 105-119. 



Soft Methods in Statistics: 

Fuzzy Stochastic Models 



Probabilistic Reasoning in 
Fuzzy Rule-Based Systems 

Jan van den Berg, Uzay Kaymak, and Willem-Max van den Bergh 

Faculty of Economics, Erasmus University Rotterdam 
Room H9-19, P. 0. Box 1738, 3000 DR, Rotterdam, the Netherlands 
jvandenberg@few .eur .nl, u.kaymak@ieee.org, vandenbergh@few .eur .nl 

Abstract. We concentrate on Takagi-Sugeno (TS) probabilistic fuzzy systems 
where interpretability of fuzzy systems is combined with the statistical proper
ties of probabilistic systems. After having sketched the general architecture of TS 
probabilistic fuzzy systems, we present an appropriate mathematical framework 
and introduce two probabilistic fuzzy reasoning schemes which have a different in
terpretation but, eventually, yield the same input-output mapping. We illustrate 
our theoretical considerations by presenting some simulation results concerning a 
financial time series analysis. 
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1 Introduction 

Fuzzy systems (FSs) are widely applied in fields like classification, decision 
support, process simulation, and control [1,2]. Original applications of FSs 
have concentrated on their design from expert knowledge [3]. In the past 
decade, however, data-driven techniques for designing FSs have gained much 
attention, partly due to the availability of large amounts of data from mod
ern sensory, measurement and computer systems. One important advantage 
of fuzzy inference systems is their linguistic interpretability (when designed 
appropriately), whereby the results from the data-driven approach can be 
combined with or compared to the knowledge available from experts. Vari
ous methods have been developed to design fuzzy inference systems that are 
interpretable (transparent) and numerically sufficiently accurate [4]. 

The focus for the design of transparent FSs has been on the identification 
of rules that describe system behavior and of membership functions that rep
resent the linguistic values used in the fuzzy rules. Hence, the focus has been 
on the modeHing of linguistic vagueness of classes without clear boundaries. 
However, another type of uncertainty, namely probabilistic uncertainty, is of
ten also present. Design of FSs has dealt with this type of uncertainty only 
implicitly, and the statistical properties of the available data have often been 
neglected. Conversely, statistical learning techniques exploit the statistical 
properties of the data [5], but they ignore the fuzziness and the linguistic 
vagueness. The emphasis is then on the numerical accuracy for learning, but 
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the transparency of the systern is not considered explicitly. Since fuzziness 
and probability rnodel different types of uncertainty, a paradigrn for cornbin
ing both types uncertainty can provide "the best of the two worlds". In this 
paper, we argue that probabilistic fuzzy systems (PFSs) aresuch a paradigrn, 
leading to a generalization of deterrninistic rule-based fuzzy systerns. PFSs 
cornbine interpretability of fuzzy systerns with the statistical properties of 
probabilistic systerns. 

For the scope of this paper, we concentrate on zero-order Takagi-Sugeno 
FSs. The core of rnost FSs is a juzzy rule-base consisting of a set of IF-THEN 
rules, tagether with a fuzzy injerence mechanism for reasoning. Rules in a 
zero-order TS fuzzy systern have the general form 

Rule Rq: If x1 is Aql and ... and XM is AqM 

then y = Yq, q = 1, 2, ... , Q. (1) 

Here, x = (x1 , x2 , ... , XM) EX is an M-dirnensional input vector, each Aqi 
is an antecedent linguistic value defined by a fuzzy rnernbership function 
Jlqi(xi), y is consequent rule variable having the crisp output value Yq· Note 
that sorne Jlqi(xi) rnay be (and in practice will be) the sarne for different q. 
In short, we write (1) as 

Rule Rq: If x is Aq then y = Yq, q = 1, 2, ... , Q. (2) 

Using the standard TS reasoning rnechanisrn, the value of consequent variable 
y is calculated as a weighted surn of rule contributions yq according to 

Q ""Q A' 
"' 6q=l qYq 

Y = L...J ßqYq = ""Q A' , 
q=l Dq=l q 

(3) 

where the weight ßq = A~/l:~=l A~ with A~ being the degree of activation 
of the q-th rule, which can be defined by 

M 

A~(x) = ITJlqi(xi) = Jlq(x). (4) 
i=l 

It is clear that the above-rnentioned TS zero-order FSs irnplernent a deterrnin
istic rnapping X ---> Y based on a deterrninistic fuzzy reasoning rnechanisrn. 
The goal of this paper is to generalize this type of TS systerns to zero-order 
TS PFSs having a probabilistic fuzzy rule base and having a probabilistic 
fuzzy reasoning rnechanisrn. 

The rest of this paper is structured as follows. In section 2, we intro
duce the general architecture of zero-order TS PFSs and present sorne key 
results frorn a rnathernatical frarnework for calculating probabilities on fuzzy 
events. In section 3, we generalize the deterrninistic reasoning rnechanisrn (3) 
to two probabilistic fuzzy reasoning procedures and present the sirnilarities 
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and differences between them. In section 4, we present some simulation re
sults concerning a GARCH-type of time series and we finalize this paper by 
summarizing what we have achieved so far. 

2 Architecture 

For our probabilistic fuzzy framework, we generalize the set of deterministic 
fuzzy rules (2) to a set of probabilistic fuzzy rules 

Rule Rq: If x is Aq then 

}!_ = Yql with Pr(yiiAq) and 

}!_ = Yq2 with Pr(y2IAq) and ... and 

J!.. = YqN with Pr(yNiAq)· (5) 

Our interpretation is as follows. Given the occurrence of the antecedent 'fuzzy 
event' [6] Aq, the value of the stochastic consequent variable y equals one of 
the values Yql, Yq2, ... , YqN· The selection of this consequent value is done 
proportionally to the conditional probabilities Pr(YqliAq), ... , Pr(YqNIAq), 
with Vj: Pr(yq11Aq) = Pr(y = YqJix is Aq)· 

For the scope of this paper, we will use fuzzy rules (5) where the conse
quent values YqJ are the same for all rules or, mathematically expressed, we 
assume that 

Vj, q, q': YqJ = Yq'J = YJ· (6) 

In addition to the probabilistic fuzzy rules (5), we need a probabilistic 
fuzzy inference mechanism. Before introducing two probabilistic fuzzy infer
ence schemes however, we first present some key results, to be used below, 
from an appropriate mathematical (probabilistic fuzzy) framework. Such a 
framework, actually an elaboration of the probability theory on fuzzy sets 
as introduced by [7], was introduced in [6]. Using mathematical statistics, 
probabilities on fuzzy events can be assessed. For example, given a set of S 
samples x 8 , (s = 1, ... , S) in a 'well-defined' [6] sample space X with fuzzy 
events A1, A2, .. , Ac, ... , then 

(7) 

where !Ac derrotes the relative frequency and !Ac the absolute frequency of 
the fuzzy sample values ftAc (x8 ) for fuzzy dass Ac. In addition, conditional 
probabilities on fuzzy sets can be assessed according to 

Pr(AciAb) = Pr(Ac n Ab) ~ I:x. ILAb(xs)ftAc(xs). (S) 
Pr(Ab) I:x. ftAb(xs) 

Below, we will meet expressions like Pr(y1 IAq) describing the probability of a 
crisp event }!_ = y1, given the occurrence of fuzzy event Aq· Having a training 
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set of data pairs (x8 , y8 ), s = 1, ... , S, such a conditional probability can be 
calculated by means of an adapted version of (8): 

with Xi(Y) defined as 

{ = 1 if y = Yi 
Xi(Y) = 0 if y-/= Yi· 

3 Probabilistic fuzzy reasoning 

3.1 Probabilistic fuzzy reasoning I 

(9) 

(10) 

Using this scheme, we start to estimate conditional probabilities Pr(yj Jx) 
for arbitrary x and next calculate the regression hyperplane y on x. Inspired 
by (3), we may estimate the conditional probabilities Pr(yjJx) as of a weighted 
sum of conditional probabilities Pr(yjJAq) according to 

(11) 

with c/Jq = P,q(x)/'E.~=l P,q(x). However, in this way we do not take the proba
bility density f(x) into account, i.e., the fact that certain values ofx are more 
frequent than other ones. We can repair this omission by generalizing (11) to 

(12) 

with c/Jq = Pr(Aq)P,q(x)/I:~=l Pr(Aq)P,q(x). The regressionhyperplane of y 
on X defined [5] as the location of the mathematical expectations E(yJx), 
can now be calculated according to 

N 

y = E(JLJx) = LYi Pr(yjJx). (13) 
j=l 

3.2 Probabilistic fuzzy reasoning II 

Here, we start calculating the expectations E(JLJAq), q = 1, 2, ... , Q, accord
ing to 

N 

E(JLJAq) = LYi Pr(yjJAq)· (14) 
j=l 
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Inspired by (3), we may now estimate y (as function of x) by the weighted 
sum of these expectations1 : 

_ ~ ~ E( lA ) _ 2:~= 1 /-lq(x)E(yiAq) 
y- L'+'q y q - Q ' 

q=1 - Lq=1 /-lq(x) 
(15) 

with c/Jq = /-lq(x)/2:~= 1 /-lq(x). Again however, we do not take the probabil
ity density f(x) into account in this way. We can repair this omission by 
generalizing (15) to 

_ ~ ~ E( lA ) _ 2:~= 1 Pr(Aq)/-lq(x)E(yiAq) 
y- L'+'q y q - Q ' 

q=1 - Lq=1 Pr(Aq)/-lq(x) 
(16) 

with cpq = Pr(Aq)/-lq(x)/2:~= 1 Pr(Aq)/-lq(x). 

Theorem 1. Equations ( 13) and ( 16) describe the same hyperplane. 

Proof. The proof is straightforward. Substitution of (12) in (13) yields an 
expression that is also found by substitution of (14) in (16). 

4 Simulation 

We introduce an artificially constructed GARCH time series training set and 
show how zero-order TS PFSs can be used to obtain a nice intuitive descrip
tion of the underlying data generating process. 

4.1 Experimental setting: GARCH modeHing 

GARCH (Generalized Auto Regressive Conditional Hetero-skedasticity) mod
els [8] are often used in financialliterature to describe the volatility behavior 
of asset return series. Being able to infer something about the volatility of 
tomorrow from the volatility as per today has important implications for the 
valuation of many financial contracts, more particularly contingent claims. 
Typically the value of such contract depends on the probability that the 
price, !i_, of some underlying asset attains a pre-specified Ievel. We define 
the asset return y,( t) at time t as the instantaneous relative price change: 
Vt: y,(t) =In (fi.(t)/fi.(t- 1)). Then sz.(t) is the volatility of the return y,(t), 
i.e. the standard deviation over a given previous period. This local volatility 
sz.(t) is assumed to move around the constant global volatility 0'. 

The GARCH process used in the simulation is defined as follows: 

1. Each return y,(t) is drawn from a normal distribution with a constant 
mean f-l and with a standard deviation equal to the local volatility sz.(t- 1): 
y,(t) ~ N(f-l&(t- 1)). 

1 This step can be considered as an interpolation step. 
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2. Each period the local volatility estimate is updated according to !l?(t) = 
''(?f2 + aJJ?(t) + ß!l?(t- 1). 

3. The parameter values used are in line with those found empirically in 
stock return series: 7f = 0.03, 1 = 0.02, a = 0.2 and ß = 0.78. Theseries 
is initiated with cr0 = ä'. 

In figure 1 we show simulation results for 1000 consecutive samples. The 
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Fig. 1. (left) Return path (right) Price path from a simulated GARCH process 

return series in the left graph exhibit volatility clusters that are typical for 
the process. The right graph shows the price development that, starting with 
80 = 100, is calculated from the instantaneous return as S(t) = S(t -1) eu(t). 

4.2 Simulation results 

In the left panel of figure 2 we have scattered the antecedent space with 
values :g(t - 1) on the x-axis agairrst the consequent space with :g(t) on the 
y-axis. In the probabilistic fuzzy rule base, we consider 3 antecedent linguis-

-0.05 0.05 0.1 

Fig. 2. (left) Scatter of y,_(t-1) agairrst y,_(t), (right) memberships value for y,_(t-1) 

tic values Aq, defined by a fuzzy membership functions 1-LA.(u),q = 1,2,3, 
(see the right panel of figure 2) . The corresponding linguistic values "Low" 
resp. "Average", "High" describe return values in linguistic terms. Using 
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equation (7), we have estimated the corresponding probabilities yielding 
Pr(_y,(t- 1) is "Low") = 0.0594, Pr(_y,(t- 1) is "Average") = 0.8722, and 
Pr(_y,(t- 1) is "High")= 0.0684. 

We examine 5 crisp consequent prototype values u1 = -0.050, u2 = 
-0.025, u3 = 0.000, u4 = 0.025, u5 = 0.050, describing future returns. These 
values are named "very low" resp. "low", "average", "high", "very high". 
Each return value from the time series is classified according to the nearest 
prototype value using the Euclidian norm. By simply counting all u-values 
and determining the relative score, we can make an estimate of the ( uncon
ditional) probability distribution of Pr( Uj) = Pr(_y,(t) = Uj ), j = 1, 2, ... , 5. 
The results of these calculations are shown in the (emphasized) row of ta
ble 1 Iabelied 'All'. Using equation (9), we can also calculate Pr(uJIAq),j = 
1, 2, 3, 4, 5; q = 1, 2, 3. It concerns probabilities like "the probability that the 
future return is high given that the current return is Low". All these condi
tional probabilities are also summarized in table 1. Analyzing these results, 

Future return very low low average high very high Prob 
(-0.05) (-0.025) (0) (0.025) (0.05) 

Current return 
All 0.0550 0.2265 0.4435 0.2140 0.0610 1.0000 
Low 0.1271 0.2084 0.2954 0.2302 0.1390 0.0594 
Average 0.0437 0.2293 0.4666 0.2136 0.0468 0.8722 
High 0.1374 0.2077 0.2808 0.2063 0.1679 0.0684 

Table 1. Unconditional and conditional probabilities Pr( u1 ) and Pr( u1 IAq) 

it becomes clear that for both low and high current returns, the probability 
for very high and very low future returns is higher than the overall probabil
ity. To a lesser content this is also true for high and low future returns. We 
may also attach linguistic values to the magnitude of the difference between 
the conditional probability and the overall probability, for example: More 
than 5 percent is "much higher" or "much lower" and more than 2 percent 
is "higher" or "lower". The above results can thus be summarized as: 

If current return is Low or High, then the probability of a high or 
low juture return is higher and the probability of a very high or 
very low future return is much higher. 

This Iooks like a pretty good intuitive description of the GARCH process 
used in the simulation. 

Finally, we show two additional results. First, we have plotted the regres
sion line of u( t) on u( t -1) ( estimated according to equation ( 13)) in the right 
panel of figure 3. As expected for this problem, we found that u(t) ~ 0. In 
the left panel of the same figure, we show the difference between the condi
tional probabilities Pr( Uj iu(t- 1)) and the unconditional probability Pr( Uj ), 

for j = 1, 2, 3, 4, 5. If current returns are Average, we observe that all con-
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Fig. 3. (left) Pr(uilu(t- 1))- Pr(uj), (right) regression line of u(t) on u(t- 1) 

ditional probabilities are almost equal to the unconditional one. However, if 
current returns are Low or High, we observe differences in the probability 
distribution of the future returns u(t): average future returns are less domi
nating here while lower and higher future returns are more probable. 

5 Conclusions 

In this paper we have introduced two probabilistic fuzzy reasoning schemes. 
Using the first scheme as introduced in section 3.1, we can estimate a stochas
tic mapping X-> Y conform equation (12). This is illustrated in section 4.2. 
If desired, the stochastic fuzzy mapping can be made deterministic using a 
regression approach (equation (13)). Wehave shown in section 3.2 that the 
resulting deterministic mapping can also be found using another probabilistic 
fuzzy reasoning scheme. Besides averaging, we apply interpolation here. 
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Abstract. All classical sampling plans were constructed for exact data. However, 
sometimes we are not able to obtain such data but we deal with imprecise or even 
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1 Introduction 

Acceptance sampling is a major field of statistical quality control. Its main 
goal is to assess whether goods ( or services) are fulfilling certain requirements 
that relate to their fitness of use. If during the inspection the produced items 
are only classified into two disjoint categories - either "good" or "bad" -
then we have, so called, acceptance sampling by attributes. However, if the 
characteristic of interest is a continuous variable, like weight, length, diam
eter, life time, etc., then we deal with acceptance sampling by variables (or 
acceptance control for measurements). 

The statistical tools of acceptance sampling are called sampling plans 
and are equivalent to some statistical tests. Classical acceptance sampling 
plans have been studied by many researchers. They are thoroughly elabo
rated e.g. in Schilling (1982). Despite of the fact that both statisticians and 
practitioners have been considered sampling plans for many years, all the 
time new questions arrises (see Grzegorzewski and Hryniewicz, 2000). For 
example, before designing a sampling plan a producer and consumer have to 
specify statistical requirements of the plan concerning their risks and quality 
levels. Since various economic and technological factors must be taken into 
account while defining these parameters it makes difficult for producers and 
consumers to uniquely specify these factors and it happens sometimes that 
a desired plan requires needlessly large samples if their standpoints are too 
rigid. Therefore, torelax this rigidity, single sampling plans by attributes with 
relaxed requirements were discussed by Ohta and Ichihashi (1988), Kanagawa 
and Ohta (1990), Tamaki, Kanagawa and Ohta (1991) and Grzegorzewski 
(1998, 2001b). Grzegorzewski (2000b, 2002) also considered sampling plans 
by variables with fuzzy requirements. 
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All classical sampling plans were constructed for exact data. However, 
sometimes we are not able to obtain exact numerical data but we deal with 
imprecise or even linguistic data. To use classical tools in such situations we 
should compress these vague observations to exact data, but by doing this we 
often loose too much information. Thus it seems reasonable to use fuzzy sets 
for modelling vague or linguistic data and then to design sampling plans for 
these fuzzy data. Sampling plans by attributes for vague data were considered 
by Hryniewicz (1992, 1994). In the present paper we propose a method for 
designing acceptance sampling plans by variables for imprecise data. 

2 Sampling plans by variables 

Let X denote a quality characteristic under study of a product item (length, 
diameter, weight, pressure strength, etc.). An item is called nonconforming 
if the measurement x of X lies below a certain lower specification Iimit LSL 
or above an upper specification Iimit USL or if it lies outside a tolerance 
interval, i.e. a specified closed interval [LSL, USL]. Which of these cases is 
appropriate depends on the specific situation. In practice we generally assume 
that Xis normally distributed, i.e. X"' N(m, a 2). 

To perform a single sampling plan by variables one draws a random sam
ple of n items X1. ... , Xn from the Iot of size N, takes measurements X 1 = 
x1 , ... , Xn = Xn and compute the realization of a test statistic T(XI. ... , Xn)· 
If T(xi. ... , xn) falls in a specified acceptance region then the whole Iot is 
accepted, otherwise, it is rejected. From the mathematical point of view, 
applying a single-sampling plan by variables is equivalent to performing a 
hypothesis test for the location, especially for the mean. It is seen easily that 
a sampling plan with a given lower specification Iimit is equivalent to the 
hypotheses testing problern 

H : m 2:: mo against K : m < m 0 , (1) 

a sampling plan with a given upper specification Iimit is equivalent to 

H : m :5 mo against K : m > mo, (2) 

while the sampling plan with a double specification Iimits is equivalent to the 
hypotheses testing problern 

H : m = mo against K : m =f. mo. (3) 

However, a specific feature of these sampling plans is that the particular 
parameter mo is not explicitly specified. 

The test statistic and corresponding acceptance and rejection regions can 
be specified in many ways. Under our assumptions the most natural test 
statistic is the sample mean T(XI. ... ,Xn) = X = 1. I:~=l Xi. Since Ob
servations are normally distributed, i.e. Xi "' N(m, a~), the sample mean 
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is also normally distributed and EX n = m. In real quality control we have 
a sampling without replacement and then Var(X) = ~ ~=~· However, in 
practice, the sample size is very small compared to the Iot size (say, N ::; 0.1) 
and we can assume that the approximate distribution of the sample mean is 

X "' N ( m, : 2
). 

A large realization of X is interpreted as evidence of a large process mean 
m. Therefore in the case of plan with a lower specification Iimit we will find 
that the fraction nonconforming in the Iot is small and, consequently, we will 
accept the Iot. Thus we have a following decision criteria for a sampling plan 
with the lower specification Iimit LSL 

if X 2:: LSL + ku 
if X< LSL+ku 

then accept the Iot 
then reject the Iot, 

where k > 0 is called the acceptance factor. 

(4) 

Similarly, the decision criteria for a sampling plan with the upper speci
fication Iimit USL are as follows 

if X::; USL- ku 
if X> USL- ku 

then accept the Iot 
then reject the Iot. 

while for a sampling plan with the double specification Iimits we have 

if LSL + k'u::; X::; USL- k'u 
if X<LSL+k'u or X>USL-k'u 

then accept the Iot 
then reject the Iot. 

(5) 

(6) 

If the true population variance u2 is unknown one has to use sample 
data to estimate it and then to substitute u in (4)-(6) by a sample standard 

deviation a = S =V n.:_l E~1 (Xi- X)2 • 

It is seen that an acceptance sampling plan by variables is completely 
described by an ordered pair (n, k), i.e. by the number of items one has draw 
from the Iot and the acceptance factor. 

It should be mentioned that acceptance sampling does not reduce to 
single-sampling only. There are also double-sampling plans, sequential-samp
ling plans, variables sampling schemes and other techniques. For more details 
we refer the reader to Montgomery (1991), Mittag and Rinne (1993), Schilling 
(1982), etc. However, further on by a sampling plan (or a plan, for short) we 
will understand a single acceptance sampling plan by variables. 

The common way to determine a sampling plan is to specify four numbers: 
the quality Ievels- the acceptable quality Ievel (AQL) and rejectable quality 
Ievel (RQL), where AQL < RQL, with corresponding risks- the producer's 
risk (8) and consumer's risk (ß), where ß < 1-8. Let us now briefl.y discuss 
the interpretation of the parameters used in the plan determination. Suppose 
the quality Ievel is measured by the fraction nonconforming in the Iot. Then 
the acceptable quality level (AQL) represents the poorest Ievel of quality for 
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the producer's process that the consumer would consider tobe acceptable as 
a process average (compare ISO 2859). The consumer often tries to design 
the sampling plan so that it gives a high probability 1-8 of acceptance at the 
AQL. Thus the probability of rejecting the lot having good quality is equal 
to 8 and is called the producer's risk. It is worth noting that the AQL is a 
property of the producer's process and is not a property of the sampling plan. 
It is also not a target value for the producer's process but it is just a simple 
standard against which to judge the lots. However the consumer also needs 
the protection against lots of poor quality. Thus he establishes the poorest 
level of quality that he is willing to accept, called the rejectable quality level 
(RQL). The probability of accepting the lot having such poor quality is called 
the consumer's risk ß. Note that RQL is also not a property of the plan but 
a level of quality specified by the consumer to protect himself. 

Now the plan parameters n and k are the solutions of 

{ P( acceptance I AQL) = 1-8 
P( acceptance I RQL) = ß. (7) 

Usually (7) cannot be realized since the sample size n must be integer valued 
and a desired plan does not exist. Therefore instead of (7) we express the 
requirements in the following way 

{ P( acceptance I AQL) ~ 1-8 
P( acceptance I RQL):::;; ß, 

which ensures that we are on the safe side. 

(8) 

It can be shown that for one-sided sampling plans, i.e. plans with given 
either lower specification limit LSL or upper specification limit U SL, with 
known variance a 2 , we have 

( 
ul-ß + u1-6 ) 2 

n = U1-AQL - U1-RQL ' 
(9) 

k _ U!-ß U1-AQL + U!-6 U!-RQL 
- ' U!-ß + U!-6 

(10) 

where u'Y denotes the quantile of order 'Y from the standard normal distribu
tion. Of course, the sample size n is always rounded to the next bigger integer. 
Since (8) could have many solutions, our optimal sampling plan is one with 
the smallest sample size among all plans satisfying (8). If the variance a 2 is 
unknown, we first compute k form (10) and then we get 

n= (1+ k2) ( U!-ß+U!-6 )2 
2 U1-AQL - U1-RQL 

(11) 

Direct formulas for n and k for plans with known or unknown process variance 
can be found in Montgomery (1991), Mittag and Rinne (1993), Schilling 
(1982), etc. 
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Further on, without loss of generality, we restriet our considerations to 
single specification limit problern since the construction of plans for given 
double specification limits is approached in the same way as for plans single 
specification limits. 

3 Vague data 

It may happen that a sample used for making decision on the lot consists 
of observations that are not necessarily crisp but may be vague as weil. In 
order to describe the vagueness of data we use the notion of a fuzzy number, 
introduced by Dubois and Prade (1978). We say that a fuzzy subset A of 
the real line R, with the membership function f..LA : R ~ [0, 1], is a fuzzy 
number if and only if A is normal (i.e. there exists an element xo such that 
f..LA(xo) = 1), Ais fuzzy convex (i.e. f..LA(.Axl + (1- .A)x2) ;;::: f..LA(xl) I\ f..LA(x2), 
Vx1, x2 ER, V.A E [0, 1]), f..LA is upper semicontinuous and suppA is bounded. 

A useful notion for dealing with a fuzzy number is a set of its a-cuts. 
The a-cut of a fuzzy number A is a nonfuzzy set defined as 

Aa = {x ER: f..LA(x);;::: a}. (12) 

A family {Aa : a E (0, 1]} is a set representation of the fuzzy number A. 
According to the definition of a fuzzy number it is easily seen that every 
a-cut of a fuzzy number is a closed interval. Hence we have Aa = [A~, A~], 
where 

A~ = inf{x ER: f..LA(x);;::: a}, 
A~ = sup{x ER: f..LA(x);;::: a}. 

Aspace of all fuzzy numbers will be denoted by :FN(R). 

(13) 

A notion of fuzzy random variable was introduced by Kwakernaak (1978, 
1979). Other definitions offuzzy random variables are due to Kruse (1982) or 
to Puri and Ralescu (1986). Our definition is similar to those of Kwakernaak 
and Kruse. Suppose that a random experiment is described as usual by a 
probability space (n, A, P), where n is a set of all possible Outcomes of the 
experiment, Ais a a-algebra of subsets of n (the set of all possible events) 
and Pisaprobability measure. Then mapping X: n ~ :FN(R) is called a 
fuzzy random variable if it satisfies the following properties: 
(a) {Xa(w) : a E [0, 1]} is a set representation of X(w) for all w E n, 
(b) for each a E [0, 1] both X[:= X[:(w) = inf Xa(w) and X~= X~(w) = 
supXa(w), are usual real-valued random variables on (n,A, P). 

Thus a fuzzy random variable X is considered as a perception of an un
known usual random variable V : n ~ R, called an original of X (if only 
vague data are available, it is of course impossible to show which of the possi
ble originals is the true one). Similarly n-dimensional fuzzy random sample 
X1, ... , Xn may be treated as a fuzzy perception of the usual random sam
ple V1, ... , Vn (where Vi, ... , Vn are independent and identically distributed 
crisp random variables). For more information we refer the reader to Kruse 
and Meyer (1987). 
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4 Sampling plans for fuzzy data 

Now without loss of generality we will consider a sampling plan with given 
lower specification limit LSL in situation with known variance a 2 • As it was 
mentioned above, such a plan is equivalent to the well-known test for the 
one-sided hypothesis testing problern H : m :2: m 0 against K : m < m 0 . If 
the true mean mo were known, we have a following test cP : nn ----+ {0, 1} 

{
0, 

c/Y(Xl, ... , Xn) = 1, 
if X :2: mo - ul-8/2 Jn, 
if X < mo - Ut-8/2 Jn· (14) 

However, since instead of m 0 we have only the lower specification limit LSL, 
we get a following test c/J' : nn ----+ {0, 1} 

if X :2: LSL + ka, 
if X < LSL + ka, 

(15) 

which agrees with (4). It is obvious that we can rewrite (15) in a slightly 
different way 

if LSL :::; X - ka, 
if LSL > X - ka, 

which would be our starting point for the forthcoming generalization. 

(16) 

Now suppose our data are no Ionger crisp but they arerather vague and 
they are described by fuzzy numbers. Let X 1 , ... , Xn denote a fuzzy random 
sample. Grzegorzewski (2000a) has shown how to construct a statistical test 
for such data. 

Let F({O, 1}) denote a family of fuzzy subsets of {0, 1}. In our case of 
the one-sided hypothesis testing problern discussed above we get a fuzzy test 
r.p: (FN(R)t----+ F({O, 1}) with the following a-cuts 

where 

if mo E (IIa \ (•II)a), 
if mo E ((•II)o: \ IIa), 
if m 0 E (IIa n (·II)a), 
if mo rf_ (IIa U ( •Il)a), 

Ila = ( -oo, ~ t(Xi)~ + Ut-8 :rn l , 
(17) 

(18) 

and where (Xi)~ stands for the upper bound of the a-cut corresponding to 
Xi. After simple calculations we get 

{ 
1/0 + 0/1, if mo E Ilo:=l, 

r.p(Xt, ... , Xn) = 0/0 + 1/1, if mo rf_ IIa=O, 
J.III(mo)/0 + (1- J.III(mo))/1, otherwise. 

(19) 
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In situation with crisp data we accept hypothesis H if the test statistic 
belongs to the acceptance region and reject H otherwise. In a fuzzy situation a 
fuzzy test leads to fuzzy decisions. We may get 1/0+0/1 which indicates that 
we should accept H, or 0/0+1/1 which means that H should be rejected, but 
we may also get 1-Lo/0+(1-!-Lo)/1, where 1-lo E (0, 1), which can be interpreted 
as a degree of conviction that we should accept (!-Lo) or reject (1 - 1-lo) the 
hypothesis H, respectively. 

Now, utilizing the equivalence between test ifJ (14) and ifl' (16) one get a 
fuzzy test cp' equivalent to cp 

where 

if LSL E (Llc. \ (•Ll)c.), 
if LSL E ((•Ll)c. \ Llc.), 
if LSL E (Llc. n (•Ll)c.), 
if LSL ~ (Llc. U ( -.Ll)c.), 

And again, after some calculations, we get 

{ 

1/0 + 0/1, if LSL ::::; ~ E (Xi)~=l - ka, 

cp'(XI. · · · 'Xn) = 0/0 + 1/1 if LSL >.! ~(X)u - ka 
' n LJ • c.=O ' i=l 

1-Lo/0 + (1- !-Lo)/1, otherwise, 

(20) 

(21) 

(22) 
where 1-lo is given by the inverse function of the upper bound of a-cut of the 
fuzzy number (21), i.e. 1-lo = ((Ll')~(LSL))- 1 • 

Since ifl' (16) is actually a single sampling plan by variables for crisp data, 
therefore cp' (22) is a sampling plan by variables for fuzzy data. And this 
sampling plan for fuzzy data is itself also fuzzy. It is no Ionger univocal as the 
plan (4) for crisp data, which often leads to acceptance or rejection ofthe lot. 
Now, in particular, cp' = 1/0 + 0/1 indicates that the lot under study should 
be accepted, while cp' = 0/0 + 1/1 means that given lot should be rejected. 
However, output of the form cp' = 1-Lo/0 + (1- !-Lo)/1, where 1-Lo E (0, 1), 
corresponds to more ambiguous situation that cannot be interpreted strictly 
as acceptance or rejection. In such a case we get only a suggestion of the 
type: "rather accept" or "rather reject", depending on whether 1-lo is close to 
1 or close to 0, respectively. Moreover, 1-lo and (1- 1-lo) might be interpreted 
as a degree of conviction that we should accept or reject the lot, respectively. 

In the same manner we can obtain a sampling plan with a given lower 
specification limit LSL in situation when the true variance a2 is unknown. 
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The corresponding plan is equivalent to the following test 

{ 
1/0 + 0/1, if LSL ~ ~ f: (Xi)~=1 - kS;{=1 , 

<p" (X 1> · · · 'Xn) = 0/0 + 1/1 if LSL > .l i~(X.)u - kSu 
' n LJ • a=O a=O' i=1 

J-to/0 + (1- J-to)/1, otherwise, 
(23) 

where J-to is given by the inverse function of the upper bound of a-cut of the 
fuzzy number ..1" given by 

(24) 

and where S;{ = V n~ 1 I:~=1 ((Xi)~ - (X)~)2 is the upper bound of a-cut 

of the sample standard deviation (see Höppner (1994), Höppner and Wolf 
(1995) ). Hence J-to = ( (..1")~ (LSL) )-1. 

Similarly, a plan with a given upper specification limit USL and known 
variance o-2 is given by 

{ 
1/0 + 0/1, if USL ~ ~ f: (Xi)~= 1 + ko-, 

'P"'(Xl> · · · 'Xn) = 0/0 + 1/1, if USL < ~ :~ (Xi)~=o + ko-, 

J-to/0 + (1- J-to)/1, otherwise, 
(25) 

where J-to is given by the inverse function of the upper bound of a-cut of the 
fuzzy number ..1"' given by 

(26) 

i.e. J-to = ((Ll"')~(USL))- 1 . If o-2 is unknown than the desired plan is given 
by 

{ 
1/0 + 0/1, if USL ~ ~ f: (Xi)~=1 + kS;{=1 , 

<p"" (X1 ' ... 'Xn) = 0/0 + 1/1 if U SL < .l i~(X.)L + kSu 
' n LJ • a=O a=O' i=1 

J-to/0 + (1- J-to)/1, otherwise, 
(27) 

where J-to is given by the inverse function of the upper bound of a-cut of the 
fuzzy number Ll"' given by 

(28) 
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i.e. 11-o = ((Ll"")~(USL))- 1 • 
Plans with double specifi.cation limits are "mixtures" ofthe corresponding 

plans with lower and upper limits, i.e. (22) and (25) or (23) and (27). 

5 Conclusions 

In the present paper we have proposed a method for designing single accep
tance sampling plans by variables for fuzzy data. Theseplansare well defined 
since if all the data are crisp they reduce to classical plans by variables. As it 
was shown, in the presence of vague data sampling plans do not necessarily 
lead to univocal decisions: to accept or to reject a given lot. In general, a user 
obtains a coefficient which might be interpreted as a degree of conviction that 
he should accept or reject the lot, respectively. Thus our fuzzy sampling plan 
leads to fuzzy decisions. Of course, if a crisp conclusion is required, a defuzzi
fi.cation method have tobe used (the problern of defuzzification offuzzy tests 
was considered by Grzegorzewski, 2001a). 

As it was mentioned above, acceptance sampling doesn't reduce to single
sampling only. However, our method for designing sampling plans may be 
also applied for determining more complicated acceptance sampling plans by 
variables. 
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Possibilistic Approach to the Bayes Statistical 
Decisions 

Olgierd Hryniewicz 
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Abstract. In the paper we consider the problern of Bayes verification of statis
tical hypotheses. We consider different cases where statistical data, assumed Ioss 
functions and considered hypotheses may be described vaguely. The formulae for 
the calculation of expected fuzzy risks are given. The tools of the possibility theory 
such as Possibility of Dominance (PD) and Necessity of Strict Dominance (NSD) 
indices are proposed for final decision making. 

1 Introduction 

Testing statistical hypotheses is one of the most important parts of statistical 
inference. On the other hand it can be regarded as a part of the decision the
ory. In the decision theory we assume that decisions ( actions belanging to a 
certain action space) should depend upon a certain state which is uncontrol
lable and unknown for a decision maker. We usually assume that unknown 
states are generated by random mechanisms. However, all we could know 
about these mechanism is their description in terms of the probability distri
butionPothat belongs to a family of distributions P ={Po:() E 8} indexed 
by a parameter () (one or multidimensional). In such a case a state space is 
often understood as equivalent to the parameter space e. If we knew the 
true value of () we would be able to take a correct decision. The choice of an 
appropriate decision depends upon a value of a certain utility function that 
has to be defined on the product of the action space and the state space. 
If we had known the unknown state we would have been able to choose the 
most preferred action looking for the action with the highest value of the 
assigned utility. In practice, we define the expected reward ( or the loss) as
sociated with the given action for the given state () E 8, and then we define 
the utility u E U that 'measures' the preference the decision maker assigns 
to that reward (loss). 

In the Bayesian setting of the decision theory we assume that there exists 
the prior information about the true state, and that this information is ex
pressed in terms of the probability distribution 1r ( 0) defined on the parameter 
space 8. By doing this we identify each action with probability distribution 
on a set of possible utilities U. According to the Bayesian decisions paradigm 
we choose the action with the highest value of the expected utility, where 
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expectation is calculated with respect to the probability distribution defined 
onU. 

When a decision rnaker has an opportunity to observe a randorn variable 
(or a randorn vector) X that is related to the state 0, such an observation 
provides hirn with additional inforrnation which rnay be helpful in rnaking 
proper decisions. In such a case the decision problern is called the statistical 
decision problern. Cornprehensive presentation of the Bayesian decision the
ory is presented in a classical textbook of Raiffa and Schleifer [21], and the 
Bayesian approach to statistical decision problerns rnay be found in DeGroot 
[6]. 

In the statistical decision theory we deal with rnany quantities which rnay 
be vague and irnprecise. First, our observation rnay be irnprecise, described 
in linguistic terrns. In such a case we deal with irnprecise (fuzzy) statistical 
data. Many books and papers have been written on the generalization of 
classical statistical rnethods for the analysis of fuzzy data. Classical problerns 
of statistical decisions have been discussed, e.g., in the paper of Grzegorzewski 
and Hryniewicz [15]. First results presenting the Bayesian decision analysis for 
irnprecise data were given in papers by Casals, Gil and Gil [3], [4], and Gil [11]. 
In these papers the authors described fuzzy observations using the notion of 
the fuzzy inforrnation systern by Zadeh [26] and Tanaka, Okuda and Asai [22]. 
Other approach has been proposed by Viertl [24]. Further results concerning 
the decisions based on fuzzy statistical inforrnation have been published by 
Casals [2] and Gil and Lopez-Diaz [12]. Irnprecise inforrnation about the 
pararneters of the prior distribution have been considered in Hryniewicz [16] 
and Frühwirth-Schnatter [10]. In the statistical decision theory we rnay also 
face practical problerns when verified hypotheses are irnprecise. This problern 
was considered by Delgado, Verdegay and Vila [7] and Casals [2]. Finally, the 
loss function ( or the utility function) rnay be expressed in a fuzzy way as in 
[12]. Recent results on Bayes fuzzy hypotheses testing have been presented 
by Taheri and Behboodian [23] who proposed another approach using the 
posterior odds ratio as the criterion for decision rnaking. 

The crucial problern of the fuzzy approach to the Bayes statistical deci
sion analysis is to cornpare fuzzy risks related to considered decisions. This 
problern arises frorn the fact that fuzzy nurnbers that describe fuzzy risks are 
not naturally ordered. Thus, the decisions depend upon the rnethod used for 
such an ordering. In this paper we propose to use the Necessity of Strict Dorn
inance Index introduced by Dubois and Prade [9]. We clairn that in specific 
situations this approach is preferable to the others. 

The paper is organized in four sections. In the second section we present 
rnethods for the calculation of fuzzy risks in the presence of fuzzy data, fuzzy 
prior inforrnation and fuzzy statistical hypotheses. This result rnay be easily 
extended to the case of the fuzzy utility function. The section describes the 
results obtained by different authors together with sorne generalizations. In 
the third section we propose a possibilistic rnethod for choosing the opti-
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mal decision. Finally, in the fourth section we present the discussion of the 
proposed solution and the areas requiring further investigations. 

2 Calculation of the Bayes risks 

2.1 Bayes risk in crisp environment 

In the Bayesian approach to statistical decisions we take into consideration 
potential losses and rewards associated with each considered decision. Let 
0 E 8 be a parameter describing an element of the state space, and 8 E Ll be 
a decision ( action) from a space of possible ( admissible) decisions. U sually we 
define a loss function L (0, 8) which assigns a certain loss (or reward) to the 
decision 8 if the true state is described by 0. In a more general setting, when 
we face losses (rewards) of a different character we introduce a more general 
notion of utility u E U which describes a decision maker's level of preference 
for the decision 8 if the true state, is described by 0. 

Assurne now that the decision maker knows the conditional probability 
density function f(xiO) = f (x1, x2, ... , xniO) describing the observed values 
of a random sample (X1,X2, ... ,Xn)· Moreover, we assume that the decision 
maker has some prior information about possible values of 0. This informa
tion, according to the Bayes decision theory is represented by the prior prob
ability distribution 1r (0). This information is merged with the information 
contained in the prior probability distribution 1r (0). The updated informa
tion about the true state is calculated using the Bayes theorem, and expressed 
in the form of the posterior probability distribution 

f (xiO) 1r (0) 
g (Oix) = f f (xiO) d1r (0)' (1) 

e 

where x = (x1, x2, ... , Xn)· Furtheranalysis is performed in exactly the same 
way with the posterior probability distribution g (Oix) replacing the prior 
probability distribution 1r ( 0). 

Let 8 (x) = 8 (x1, x2, ... , Xn) be a decision function which is used for choos
ing an appropriate decision for given sample values X1, x2 , ... , Xn· The risk 
function, interpreted as an expected loss incurred by the decision 8, is calcu
lated as 

p(8) = J J L(0,8(xbx2, ... ,xn))f(xbx2,···•xnl0)7r(O)dxd0. (2) 
ex 

Let Ll be the space of possible decision functions. Function 8* that fulfils 
the following condition 
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p ( 8*) = inf p ( 8) 
8E.d 

(3) 

we call the Bayes decision function, and the corresponding risk p (8*) we call 
the Bayes risk. Statistical decisions with the risk equal to the Bayes risk are 
called optimal. In this paper we restriet ourselves to a particular problern 
of the Bayes decisions, namely to the Bayes test of statistical hypothesis 
Ho : 0 E 8o against the alternative H1 : 0 E 8 1 , where 8 0 and 8 0 are 
the subsets of the state space 8 such that 8 0 n 8 1 = 0 . Let us define two 
functions: 

and 

Ho (O) = { 1, 0 E 8o 
0, 0 E 81 

H1 (O) = { 0, 0 E 8o 
1, 0 E 81 

N ow, let us define loss functions: 

L (0, ao) = a (0) [1- Ho (0)] 

that describes the loss related to the acceptance of H 0 , and 

L (0, a1) = b (0) (1- H1 (0)] 

(4) 

(5) 

(6) 

(7) 

that describes the loss related to the acceptance of H1 . Functions a (0) and 
b ( 0) are two arbitrary nonnegative functions. In such a case we may consider 
only two risks: the risk of accepting H1 when Ho is true given by 

R1 = J L (0, a1) g (Oix) dO. (8) 

e1 

and the risk of accepting Ho when H1 is true given by 

Ro = j L (0, ao) g (Oix) dO. (9) 

eo 
In general, we have to calculate the risk Rh, h = 0,1 given by 

Rh= J L(O,ah)g(Oix)dO (10) 

eh 

In the following subsections we present methods for the computation of 
such a risk in different cases representing situations when different parts of 
the decision model are described in an imprecise way. 
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Let us consider situation when available statistical data are vague and are 
described by fuzzy random variables. The notion of a fuzzy random variable 
has been defined by many authors. First definition of the fuzzy random vari
able has been proposed by Kwakernaak [19] and described in details in Kruse 
[17] and Kruse and Meyer [18]. According to this definition the fuzzy random 
variable X may be considered as a fuzzy ( vague) perception of an unknown 
usual random variable X : [2 -> R, called an original of X. Puri and Ralescu 
[20] gave another definition of the fuzzy random variable that has been used 
in the context of Bayes decision problems by some authors, e.g. by Gil and 
Lopez-Diaz [12]. In this paper we assume that all fuzzy sets are normal, and 
in such a case both definitions of the fuzzy variable are equivalent (see Zhong 
and Zhou [27]). Therefore, all the presented results do not depend upon the 
assumed definition. 

In the presence of fuzzy statistical data the posterior distribution of the 
state variable e can be obtained by the application of Zadeh's extension prin
ciple to (1). Let xf = ((xi)L, (xi)u), i = 1, ... , n be the a-cuts of the fuzzy 
Observations XI, x2, ... , Xn. Following Frühwirth-Schnatter [10] we denote by 
C (xl, the a-cut of the fuzzy sample which is equal to the Cartesian prod
uct of the a-cuts xf, i = 1, ... ,n. The fuzzy posterior distribution g(Bix) is, 
according to [25], given by a-contours 

g~ (B) = min 
f (xiB) 1r ( B) 

(11) 
xEC(;z)a n (x) 

g~ (B) = maE 
f (xiB) 1r (B) 

(12) 
xEC(xt n(x) 

where n (x) is a normalizing constant equal to the denominator of the right 
hand side of (1). Now, we can compute the fuzzy risks Rh, h = 0, 1 using the 
general methodology for integrating fuzzy functions presented in [8]. 

( - ) (- L - u) Let us denote by C Rh <> = R~' , R~' the a-cut of the fuzzy risk 

Rh· The lower and upper bounds are calculated from the following formulae: 

and 

R~,L = j L (B, ah) g~ (Bix) dB 

th 

R~,u = J L (B, ah) g~ (Bix) dB. 

th 

(13) 

(14) 

Thus, we can calculate the membership functions of Ro and R1, respectively. 
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Frühwirth-Schnatter [10] proposed a further generalization of the fuzzy 
risk model by allowing some imprecision in the description of prior informa
tion. Probability density function 1r ( 0) that describes the prior knowledge 
about the values of the state variable 0 is usually specified as a certain func
tion 1r (0, ry) of a vector of known parameters "'· It seems to be reasonable, 
however, to assume a vague description of 'TJ by the fuzzy vector rj. 

Let us denote the fuzzy prior distribution by 1T ( 0) = 1r ( 0, rj), and the a-cut 
of the fuzzy vector rj by C (rj)"'. In the presence of vagueness in the description 
of prior information and statistical data the a-contours of the fuzzy posterior 
probability density are given by (see Frühwirth-Schnatter [10]) 

g~ (O) = min f (xiO) 1r (0) 
(x,7JEC(x)"'xc(;j)J n (x, TJ) 

(15) 

g~ (O) = max f (xiO) 1r (0) 
(x,7JEC(x)"'xc(;j)J n (x, TJ) 

(16) 

where n (x, ry) is a normalizing constant. Calculations of (15) and (16) are 
significantly simplified in the case of conjugate priors that depend monotoni
cally both on x and "'· Having these a-contours we can compute the integrals 
(13) and (14), and hence calculate the membership functions of Ro and Rt, 
respectively. 

Further generalization may be achieved by assumi~ a vague character 
of losses L (0, ah)· Let us assume that the fuzziness of L (0, ah) is expressed 
entirely through fuzzy values of its parameters with the exception of 0. In 
such a case we may calculate the a-contours of L (0, ah). Let us denote these 
contours by L~ (0, ah) and L~ (0, ah), respectively. Then we can calculate the 
a-cuts of the fuzzy risks iiL,h , h = 0, 1 using the following formulae: 

ii~:~ = J L~ (0, ah) g~ (Oix) dO (17) 

eh 

and 

ii~X = J L~ (0, ah) g~ (Oix) dO. (18) 

eh 

This enables us to calculate the membership function of Ro and R1, respec
tively. 

2.3 Bayes risk for crisp data and fuzzy hypotheses 

In this subsection we present a method fo!:_ the computation of fuzzy ris~s 
related to the test of the fuzzy hypothesis Ho against a fuzzy alternative H1 
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when all the remaining information (i.e. statistical data, prior information, 
and loss functions) are crisp. 

Let fih : () E eh , h = 1, 2 be a fuzzy statistical hypothesis, where eh 
is a fuzzy set described by its membership function f.Lfh (B). To simplify the 
problern let us assume that the fuzzy set eh may be presented in a form of 

a fuzzy interval ( eL,h, eu,h), where fuzzy Sets eL,h and eu,h have a-cuts 

[aa,L aa,U] d [aa,L aa,U] h th t aa,L < aa,L d aa,U < aa,U o L,h, o L,h an ou,h, ou,h suc a o L,h _ ou,h an o L,h _ ou,h . 

Denote the membership functions of eL,h and eu,h as f.LL,h (B) and f.LU,h (B), 
respectively. Using the notation of [8] we may write the membership function 
of the fuzzy risk Rh as 

sup min (f.LL,h (u), f.LL,h (w)) (19) 
w 

u,w:z= J L(9,ah)g(Oix)d9 

The membership function f.LJih (z) may be also determined in a different way. 

Let us notice that for a given a-cuts [ 8~;~, 8~:~] and [ 8~;~, 8~;~] we 
have 

(20) 

Hence, the membership function of Rh is equal to 1 for Rh = f.l-=.1 (1), and 
Rh 

then decreases to 0 for Rh= f.L=.1 (0). 
Rh 

2.4 Bayes risk for fuzzy data and fuzzy hypotheses 

Finally, let us consider the most general case when we deal with fuzzy statis
tical data, fuzzy prior information, fuz~ loss function, and fuzzy statistical 
hypotheses. In this case the fuzzy risk Rh is given as an integral over a fuzzy 
set eh from a fuzzy function 'Y (B) =La (B, ah) Ya (Bix)' i.e. 

Rh= j La (B, ah) 9a (Bix) dB. 

eh 
(21) 

According to Dubois and Prade [8] it is very difficult to find the membership 
function of a fuzzy number which is calculated as an integral over a fuzzy set 
from a general fuzzy function. Therefore, we propose to evaluate the fuzzy 
risk Rh using the following formulae: 
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e"'·u U,h 

Ra,L _ 
h - J L~ (8, ah) g~ (8lx) d8 (22) 

e"'·L L,h 

and 

e"'·u U,h 

Ra,U _ 
h - J L~ (8, ah) g~ (8lx) d8 (23) 

e"'·L L,h 

This result seems to be a reasonable upper approximation to the fuzzy risk 
function Rh in this very general case. 

3 A possibilistic approach in decision making 

In the classical ( crisp) Bayes verification of statistical hypotheses the problern 
of decision making is of a secondary importance. If we are able to calculate 
risks Ro and R 1 according to (9) and (8), respectively, we choose the action 
which is related to the smaller risk. Thus, we accept Ho against H1 if Ro < Rt, 
and vice versa. When the respective risks are fuzzy there exists a real problern 
with taking an appropriate decision, as there is no natural ordering of fuzzy 
numbers that describe fuzzy risks. Thus, there is a need to use methods which 
allow us to order the computed fuzzy risks. 

When fuzzy statistical data is descri bed using the notion of the fuzzy infor
mation system (see [4]) the considered probability measures are weighted with 
the membership functions. Such an approach provides the decision maker 
with crisp evaluation of expected risks. A similar method of weighting has 
been proposed by Taheri and Behboodian [23] in the problern of testing fuzzy 
hypotheses for crisp data. The problern of defuzzification of fuzzy risks has 
been considered in the paper by Gil and Lopez-Diaz [12]. They used a very 
interesting method of ranking fuzzy numbers introduced by Campos and 
Gonzalez [1]. This particular method seems to be especially useful in deci
sion making as it allows the decision maker to take into account his/hers 
personal attitude ( optimistic, pessimistic or neutral). 

In our paper we deal with a relatively simple problern of comparing two 
fuzzy numbers. Instead of applying any of the defuzzification methods we 
propose a possibilistic approach introduced by Dubois and Prade [9]. To 
compare both fuzzy risks Ro and R1 we propose to use the concept of the 
Necessity of Strict Dominance Index (NSD) and Possibility of Dominance 
Index (PD). 

The Possibility of Dominance Index (PD) is defined for two fuzzy sets A 
and B as 
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PD=Poss(A'c_B)= sup min{J.tA(x),J.tB(y)}, (24) 
x,y;x?_y 

where /-LA (x) and /-LB (y) are the membership functions of A and B, respec
tively. PD is the measure for a possibility that the set A is not dominated 
by the set B. 

The Necessity of Strict Dominancelndex (N SD) is used for the compar
ison of two fuzzy sets A and B and is defined as 

NSD = Ness (A >- B) = 1- sup min {!-LA (x), /-LB (y)} = 
x,y;x~y (25) 

= 1 - Pass (B ~ A) . 

NSD represents a necessity that the set A dom~ates _!he set B. 
Calculation of both indices for the relation R 1 >- R0 allows the decision 

maker to evaluate his/hers decision. If NSD > 0 there exists a strong indica
tion that the acceptance of Ho (or Ho) is preferred over the acceptance of H 1 

( or H I), and vice versa. The relation N S D ( R 1 >- R0 ) > 0 is equivalent to 

the relation ( R}) L > ( R~) u. It means that for the most plausible values of 

both risks, i.e. for the values with the associated membership function equal 
to one, the risk of accepting H 1 (or HI) is greater than that of accepting Ho 
(or H0 ). If NSD (.R1 >- Ro) = 1, then there is no doubt that Ho (or Ho) 

should be accepted instead of H 1 ( or H I). The relation PD ( R 1 >- R0 ) > 0 

is equivalent to the relation ( R~) u > ( .Rg) L. It means that for the least 

plausible values of both risks, i.e. for the values with the associated member
ship function equal to zero, the risk of accepting H 1 (or HI) may be greater 
than that of accepting Ho (or H0 ). 

4 Discussion and conclusions 

The proposed method for the Bayes statistical hypotheses testing in a fuzzy 
environment differs from other approaches presented by different authors 
mainly because of the used criterion for making decisions. We believe that 
there exist at least two advantages of the proposed approach. First, we can 
assess the impact of vagueness (in statistical data, evaluation of losses or 
utilities, and stating hypotheses) on our decisions. In contrast to the crisp case 
the decisions are made basing on the analysis of vague information. Therefore, 
as the result of the analysis quite different solutions may be proposed with 
associated levels of possibility. We can find an interpretation of the computed 
possibility and necessity indices in the framework of the recently rapidly 
developing theory of preference relations. Let J.t (x, y) be a measure of the 
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preference of x over y. The preference relation is complete (see (5] for further 
references) when 

fL(x,y) + fL(y,x) ~ 1 Vx,y. (26) 

For a complete set of preference relations the measure of the indifference 
between the alternatives x and y is defined (see [5]) as 

fLI(x, y) = fL (x, y) + fL (y, x) - 1, (27) 

the measure that the alternative x is better than y is defined as 

/LB (x, y) = fL (x, y)- /LI (x, y), (28) 

and the measure that the alternative x is worse than y is given by 

/Lw (x, y) = fL (y, x)- /LI (x, y). (29) 

Suppose that the PD index is used as the measure of preference of x over 
y. Then, it is easy to show that 

/LI (x,y) =PD- NSD, (30) 

/LB (x,y) = NSD, (31) 

/LW (x,y) = 1- PD. (32) 

Thus, the knowledge of the indices PD and NSD is sufficient for the com
plete description of preference relations for two alternatives: to choose the 
hypothesis Ho or to choose the alternative hypothesis H1 • We believe that 
the measure of indifference given by (30) is especially useful for a decision 
maker. Its value shows how both hypotheses are indistinguishable in the light 
of available information. 

There is also another advantage, in our opinion, of the proposed approach. 
It is related to the problern which is very rarely considered in the Iiterature 
on decision making. When we use subjective assessments there is always a 
possibility that these assessments are interrelated or interconnected. In all 
mathematical derivations we have tacitly assumed that all considered fuzzy 
sets are not interconnected. However, it could not be always the case. The 
interconnections may change the values of respective membership functions. 
We believe, however, that these changes are relevant only for low a-cuts. 
The N S D index proposed in this paper for the comparison of the considered 
hypotheses seems to be robust against possible interconnections of fuzzy sets 
describing subjectively assessed data. 

The results presented in this paper together with the procedures sug
gested by many other authors provide decision makers with a wide range of 
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supporting tools. There exists, however, the need for further investigations. 
The most difficult problern - in our opinion - is related to interconnections 
of fuzzy sets. When we use subjective opinions, vague perceptions and lin
guistic assessments there is always a possibility that the fuzzy sets used for 
their description are interconnected. The formal descriptions of these inter
connections seems to be an extremely difficult task. Thus, we need methods 
that arerobust to these unknown interdependencies. Another possible area 
of investigations is related to the fundamental problern of the applicability 
of expected values in decision making. It seems to be quite possible that in 
presence of significant vagueness we should use methods from the possibility 
theory. 

In most papers an the decision making in the fuzzy environment it is 
assumed that the recommended decisions ( actions) are crisp. In real problems 
decision makers ask experts for their advises. When suggested decisions are 
not obvious the advisors give their opinions in a more or less vague way. This 
vagueness of opinions reflects the vagueness of the decision problern itself. A 
user-friendly computer decision support system should communicate with a 
decision maker using a language which is understandable to him. In the paper 
of Grzegorzewski and Hryniewicz [14) simple way is proposed of presenting 
the conclusions of fuzzy statistical tests in a natural language. We believe 
that the problems of this type should be also investigated in the future. 
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Abstract. Comparing empirical distributions is one of the fundamental tasks in 
data analysis. We start with a survey of existing statistical approaches to this 
problem. The current numeric methods are shown to suffer from several 
limitations, including restrictive assumptions about the underlying distributions 
and non-use of available domain knowledge. These limitations can be partially 
overcome via the time-consuming visual examination of frequency histograms by 
a human expert. In this paper, we present a fuzzy-based method for automating 
the process of comparing frequency histograms. Our approach builds upon a 
novel concept of automated perceptions, introduced in our previous work. We use 
the evolving approach of type-2 fuzzy logic for representing the domain 
knowledge of human experts. The proposed method provides an automated 
interpretation of the differences between histogram plots, based on a cognitive 
model of human perception. The perception-based approach to comparison of 
frequency histograms is demonstrated on several samples of real-world data. 

Keywords: fuzzy logic, soft computing, comparing distributions, data 
visualization. 

1 Introduction 

According to the famous saying "a picture is worth a thousand words", most 
people find it easier to draw conclusions from graphically presented data than 
from numeric results of statistical analysis. A frequency histogram (see 
Mendenhall et al., 1993) is known as a powerful tool of data visualization. The 
procedure for constructing a frequency histogram is Straightforward and it can be 
implemented by a single pass over data, without using any computerized tools. 
By observing a histogram, users can see at a glance, what are the most frequent 
and the most rare intervals of the attribute in question. Moreover, we can 
compare pairs of histograms, if they are defined on the same range of values. Our 
visual conclusion may be that the two distributions are identical or one of them is 
shifted to the right ( or to the left) of the other by a small, a moderate or a large 
magnitude. The problems of comparing two or more distributions include 
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marketing surveys, analysis of engineering experiments, choosing study programs 
for students, etc. 

However, the visualization methods, even supported by the state-of-the-art 
computer graphics, suffer from a number of serious limitations. First, this is a 
truly subjective approach: the same data may be represented in different, 
sometimes misleading, ways, and people may come to different conclusions even 
from looking at the same presentations of data. The second Iimitation of the 
visual data analysis is its poor scalability. Due to the data explosion, we are 
facing in the last decade, hundreds of frequency distributions (each related to a 
different attribute) can be extracted from an average modern database. Manual 
examination of the resulting multi-dimensional multi-color charts is an extremely 
time-consuming task even for the most experienced statisticians. Consequently, 
there is a strong need of automated tools for distribution analysis. 

Over years, several statistical methods for comparing distributions have been 
developed. If the data samples are normally distributed, we can compare their 
mean values by using the t-test (see Minium et al., 1999). The magnitude of the 
difference between the means ( called the effect size) can be measured in the 
number of pooled standard deviations. The t test assumption of the Normal 
distribution is justified by the Central Limit Theorem. The main problern with 
calculating the means of data samples is their sensitivity to outliers: one 
erroneous value (higher or lower than the others by the order of magnitude) may 
cause a significant bias in the result. Of course, this problern is easily overcome 
by the visual analysis: the frequency histogram is an excellent tool for detecting 
and ignoring outliers. 

Several non-parametric methods exist for comparing pairs of distributions (see 
Hajek et al., 1999). These include the signed-rank (Wilcoxon) test, the median 
test, and the Kolmogorov-Smirnov test. The non-parametric tests use minimal 
assumptions about the generat shape of the underlying distributions and their 
purpose is to detect a shift in one distribution with respect to the other, when the 
distribution densities are identical. To perform the comparison, we need to form 
a pooled sample of Observations from the two distributions and sort the 
Observations by their value, which makes the computational complexity highly 
dependent on the total number of cases. There is no way to utilize existing 
knowledge of domain experts in the non-parametric methods. 
All parametric and non-parametric tests mentioned above have a binary ("crisp") 
outcome: the null hypothesis stating that distributions are identical is either 
rejected, or not. Given a pre-specified significance level (e.g., 1% or 5%), the 
null hypothesis is rejected only if the test statistic exceeds the corresponding 
threshold value. The distance between the actual value of the statistic and the 
threshold value has no importance for the test outcome. Consequently, statistical 
tests cannot be used directly for measuring the extent of the shift between 
distributions. 

The gap between the limitations of "crisp" statistical methods and the "soft" 
nature of graphical representation, appealing to the human intuition, may be 
bridged by using the principles of fuzzy logic (see Klir and Yuan, 1995). Human 
observations (e.g, "the values of the second distribution tend tobe slightly higher 
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than the values of the first one") are usually expressed in qualitative, linguistic 
terms. Fuzzy logic suggests a mathematical model of linguistic concepts, defined 
on observed data, by associating a membership function with each linguistic 
variable. Thus, one can calculate the membership grade of any difference 
between sample means in the fuzzy set "slightly higher". The form of a 
membership function (the "linguistic context") is determined by the existing prior 
knowledge about the phenomenon in question. As demonstrated by Pedrycz 
(1998), the linguistic context is a powerful tool of data filtering, which can be 
used for eliminating meaningless (though statistically significant) results. In 
(Pedrycz, 1996), the fuzzy logic approach is applied to discovering multiple 
functional dependencies between input and output variables, a task, which IS 

much easier for a human eye than for numeric statistical techniques. 
A specific dass of linguistic variables, called "linguistic quantifiers", is 

described by Yager (1996). The linguistic quantifiers express compatibility of 
proportions, calculated from the raw data, with terms like "most", "few", etc. 
The concept of linguistic quantifiers seems to be particularly useful for 
distributions comparison, which is based on comparing pairs of individual 
proportions. Moreover, the user is usually more interested in discovering 
linguistic rules (like "engineers are more likely to be credible customers" or 
"students who are excellent in math, are expected to have higher grades in CS") 
rather than being presented with numbers and significance levels. 

In this paper, we are presenting a novel approach to automating the 
comparison between frequency distributions by using the Fuzzy Set theory. In 
Section 2, we describe the cognitive process of comparing frequency histograms. 
Section 3 presents the fuzzy logic model of applying this process to frequency 
data. A practical example, based on real-world manufacturing data, is shown in 
Section 4. Potential directions for integrating the perception-based approach with 
other statistical tasks are briefly discussed in Section 5. 

2 The Cognitive Process of Comparing Distributions 

As indicated by (Minium et al., 1999), the key characteristics of a frequency 
histogram include centrat tendency, variability, and shape. For humans, the 
easiest way of comparing empirical distributions is by observing the distribution 
histograms. The cognitive process of comparing the central tendency of two 
different histograms can be summarized as follows: 
• Step 1 - If in most intervals there is no significant difference between the 

proportions conclude that there is no shift in the attribute values. 
Otherwise, go to step No. 2. 

• Step 2 - Find an imaginary threshold point between the intervals, such 
that below the threshold, most proportions of the first histogram are 
significantly higher (lower) than the proportions of the second one and 
vice versa. This means that the values of the first histogram are shifted to 
the left (right) with respect to the second histogram. 
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• Step 3 - Make the final conclusion about a positive or a negative shift in 
the central tendency of the target distribution, based upon the apparent 
shift in the histogram, the sample size, and the personal expertise (if 
available ). 

The cognitive process, discussed above, is not based on any statistical 
assumptions about the behavior of the underlying distributions. Still, as indicated 
by us in (Last and Kandel, 1999), the human perception is very efficient when 
dealing with the uncertainty of visual representations. The human conclusions 
tend to bear some amount of vagueness and are much easier to be described by 
words (e.g., "most", "significantly", etc.), rather than by some strict mathematical 
terms. Thus, the histograms comparison can be seen as a particular case of 
Approximate (or Fuzzy) Reasoning (see Kandel et al., 1996). Consequently, we 
are using the Fuzzy Logic approach to model this data analysis process. 

3 Comparing Distributions by the Fuzzy Logic Approach 

The fuzzy procedure of comparing histograms includes the following steps: 
• Determine the primary membership function of the difference between 

individual proportions. 
• Determine the secondary membership function of the above primary 

membership function based on the number of available observations. 
• Evaluate the fuzzy shift between distributions (excluding and including 

the use of domain knowledge). In this paper, we Iimit our discussion to 
the comparison process without any use of domain knowledge. 

3.1 Evaluating the Fuzzy Difference between Proportions 

We assume here that the linguistic variable proportion change (denoted by d) can 
take the following two linguistic values: bigger and smaller, each being a fuzzy 
set. Of course, our language contains much more terms for describing a change, 
like equal, nearly equal, much bigger, etc. However, these two values prove to 
be sufficient for our purpose of detecting trends in distributions rather than 
analyzing changes in individual proportions. Since the proportion change is the 
difference between two proportians ( each varying between 0 and 1 ), it can take 
any value in the range [-1, 1]. The membership function J.lB associated with the 
fuzzy set bigger should have the following properties: 
• Being close to zero, when d is close to -1. 
• Being low for d = 0. 
• Being close to 1, when d is close to 1. 
On the other hand, the membership function J.ls (smaller) should satisfy the 
opposite properties (e.g., being close to 1, when d is close to -1). 



In our model, the following membership functions will be used for f.Ls and f.Ls: 
1 

Jls(d) =-ßd ,d E [ -1, 1], ß ~ 0 
1+ e 

flB(d)= 1-ßd'dE{-1,1j,ß~0 
l+e 

Where 

223 

d - the difference between measured proportians (relative frequencies) of the 
same target value in compared distributions. 
ß - the shape factor, which can change the shape of the membership function 
from a horizontal line (ß = 0) to the step function (ß~oo ). lt is associated with 
the sample size, used for calculating the proportions. 
A similar, non-parametric form of membership functions for "bigger" and 
"smaller" is used by Wang (1997) for defining gradual rules. The following 
Iemmas can be easily derived from the above definitions of membership 
functions: 

Lemma 1. When the compared proportians are equal (d = 0), the membership 
functions of "bigger" and "smaller" are equal to each other and can be calculated 
by: 

1 
flB=J.ls=--

1 +eß 

Lemma 2. The membership function of "not smaller" (1 - f.Ls) is equal to the 
membership function of "bigger" (f.ls) and the membership function of "not 
bigger" (1 - f.ls) is equal to the membership function of "smaller" (f.ls). 

3.2 Determining the Form of the Membership Function 

The actual membership grade of a given proportion change d depends on the 
value of the ß coefficient. In other words, the membership grade itself is 
uncertain given d. This type of second-order uncertainty in determining 
membership grades is represented by the Type-2 Logic System (Karnik and 
Mendel, 1998), where primary memberships are the domain-elements of a 
membership grade and secondary memberships are membership grades of 
primary memberships. 

The effect of the sample size on the membership grade is quite intuitive: the 
more examples we have the higher is our confidence in the value of a statistical 
estimate. The extreme case is having no examples at all, implying that both 
membership functions are constant in d and equal (there is no information about 
the difference between proportions). These variations in the form of the 
secondary membership function can be represented by the shape factor ß. Thus, 
we define the factor ß to be proportional to the number of examples. Since each 
compared distribution may be based on a different number of examples, we use 
the minimum between the two sample sizes for estimating ß. The linear 
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coefficient relating the number of examples to the shape factor ß is denoted by as 
y. Consequently, the expression for calculating ß is: 
ß = rn min 

Where nmin is the minimum number of examples in one of the two compared 
distributions. 
Furthermore, the expressions for the secondary membership of d as a function of 
n become: 

1 
J.ls(d)= d ,de [ -1, l].y~O 

1 + eYnmin 

J.lB(d)= 1 d,dE{-l,l},y~O 
1 + e -ynmin 

Still, there is a question of how the linear coefficient y can be deterrnined. As 
indicated by Karnik and Mendel (1998), we would need an infinite number of 
approximations to completely represent uncertainty, which, of course, is not 
practical. Therefore, in this study we have chosen the crisp value of y = 0.2 to 
represent our subjective perception of sample size in comparison of histograms. 

3.3 Calculating the Fuzzy Shift between Distributions 

After calculating the membership grades of each proportion change in the 
"smaller" and the "bigger" fuzzy sets, we can evaluate the shift between the 
compared distributions. The following situations are possible: 
• There is a negative (positive) shift. The values of the second distribution 

tend tobe lower (higher) than the values of the first one. This means that 
there is a threshold point between a pair of histogram intervals. All the 
proportians below the threshold point are bigger ( smaller) in the second 
distribution than in the first one. Above the threshold point we have an 
opposite situation: the proportians of the second distribution are smaller 
(bigger) than the proportians ofthe first one. 

• There is no shift. The distributions have the same central tendency 
(though they still may differ in their variability and shape). No threshold 
point can be found for either a negative shift or a positive shift. 

According to the above definition of the threshold point, the number of candidate 
thresholds is D - 1, where D is the number of intervals in the histogram of the 
attribute in question. Each threshold T E D separates between the intervals i = 
1, ... , T and i= T+1, ... , D. We calculate the net shift for a candidate threshold T 
by the following expression: 

T D 

NS(T)= L[J.L8 (d;)-J.LB(d;)]+ L[J.lB(d;)-J.Ls (d;)] 
i=l i=T+I 

Where d; is the proportion change for the interval No. i. 
Both sum terms of the above expression will be positive if there is a positive shift 
in the distribution and negative in the opposite case. When there is no shift, both 
terms will be close to zero. It can be easily shown that the value of the net shift 
NS (T) over the range of D intervals varies between -D (the lowest possible value) 
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and D (the highest possible value). We use the maximal and the minimal values 
of NS (T) to normalize the detected shifts, disregarding the nurober of distribution 
intervals. 

W e find the threshold r* providing the maximal absolute value of the net shift 
by r* = arg maxr INS (T)I and then normalize the net shift NS (T*) w. r. t. the 
nurober of distribution intervals by NS Norm = NS (T*) I D. The calculated net 
shifts NS* may be used to sort the effects in the descending order of distribution 
shifts (from the highest positive to the lowest negative). With traditional 
statistical methods, the histogram pairs can only be categorized as "identical" or 
"different". 

4 Case Study: Yield Analysis 

We have applied the fuzzy approach to comparing histograms of yield 
distribution for several families of semiconductor products. The "yield", defined 
as the proportion of good microchips obtained from a silicon wafer, is the most 
important performance indicator in semiconductor industry. Today, the analysis 
of yield data is based mainly on manual inspection of yield histograms by 
engineers who monitor the manufacturing process. 

The normalized net shift NS norm for six histogram-pairs is shown in the left 
part of Table 1. All histograms are based on nine intervals of equal width. The 
nurober of observations in a histogram varies between 200 and 800 batches. 
The lowest negative shift (-0.660) has been obtained for the variable Toll_2. 
The variable CurO_l has the highest positive shift (0.426). The histogram shifts 
in other variables are closer to zero, but their absolute values are !arge enough to 
suggest that the detected shift in central tendency is not random. This conclusion 
can be further supported (or refuted) by the existing expert knowledge. 

Ta._ble I Summary of Results 

Attribute NS norm t-means rank-sum median K-S 

Size_C 0.383 0.0004 •• 0.0000 0.0000 •• 0.0000 

Tol0_1 0.216 0.0882 0.0000 0.0000 •• 0.0000 

Tol1_2 -0.660 0.0000 •• 0.2802 0.0802 0.0001 

Size_F -0.541 0.0001 •• 0.0000 0.0000 •• 0.0000 

Cur0_1 0.426 0.0012 •• 0.0018 0.4312 0.0000 

Cur1 2 -0.404 0.0352 . 0.0008 0.0235 • 0.0000 
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W e have compared the results of the perception-based approach to several 
statistical tests, which include t-means (based on Minium et al., 1999) and three 
non-parametric tests, namely the median test, Wilcoxon rank-sum test, and the 
Kolmogorov-Smirnov test (all described by Hajek et al., 1999). Foreach test, we 
show the p-value, which is the probability of obtaining the same or more deviant 
result of the test statistic under the assumption that the samples were drawn from 
identical distributions. One and two asterisks denote the 5% and the 1% 
significance Ievels respectively. 

The statistical tests do not appear to be completely consistent with each other. 
Thus, the effect of TolO_l is not recognized by t-means, while rank-sum and 
median have not detected any difference for Toll_2. Generally, we can say that 
the Kolmogorov-Smirnov (K-S) test is most consistent with the fuzzy approach, 
since it has detected a significant shift for all attributes. However, as we have 
indicated above, K-S and other statistical tests are "crisp": they do not provide 
any "soft" information about the extent of shift between distributions. In the case 
of yield analysis, this information is critical for planning the efforts to increase 
the throughput of the manufacturing process. 

5 Conclusions 

In this paper, we have developed a novel, fuzzy-logic method of comparing 
frequency distributions. The method provides an automated interpretation of 
histogram plots, which is based on a general model of human perception and 
available domain knowledge. The perception-based results are shown to be more 
consistent and informative than the results of statistical tests. The proposed 
approach to histogram analysis can be enhanced by associating more linguistic 
terms with the difference between proportians (e.g., "much bigger", "slightly 
smaller", etc.). The soft computing methodology can be extended to other 
graphical forms of data analysis and integrated with several methods of data 
mining (e.g., feature selection and association rules). 
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Test of One-Sided Hypotheses on the 
Expected Value of a Fuzzy Random Variable* 
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Dpto. de Estadistica, 1.0. y D.M., Universidad de Oviedo, 33071 Oviedo, Spain 

Abstract. In this paper we present a procedure to test one-sided haypotheses 
about the population expected value of a fuzzy random variable. This procedure is 
based on a parameterized ranking function making the hypotheses being equivalent 
to classical ones for the population mean of a real-valued random variable. 

1 Introduction 

In previous papers (Montenegro et al., 2001, 2002) we have analyzed the 
problern oftesting "two-sided" hypotheses on the population (fuzzy) expected 
value of a fuzzy randorn variable. The techniques to test such a type of 
hypotheses have been based on an operational generalized rnetric on the 
space of fuzzy nurnbers with cornpact support. 

However, these techniques cannot be applied to test one-sided hypotheses 
on this expected value. In fact, one-sided hypotheses do not rnake a well
defined sense in case of fuzzy randorn variables since to rank fuzzy nurnbers 
we have to specify an ordering/preordering arnong thern. 

For this purpose we can consider a suitable ranking function (like the 
pararneterized one introduced by Garnpos and Gonzalez, 1989). L6pez-D1az 
and Gil (1998) have proved this function is easy to cornpute, and when it 
is applied to the expected value of a fuzzy randorn variable, we obtain the 
classical expected value of a real-valued randorn variable. On the basis of the 
last result, we can reduce the problern of testing one-sided hypotheses on the 
population rnean of a fuzzy randorn variable to the problern of testing the 
rnean of a real-valued randorn variable. 

In this paper we first present sorne possible procedures to test the one
sided hypotheses on the population rnean of a fuzzy randorn variable. We 
illustrate later one of these procedures with an example. Finally, we will 
rnake sorne rernarks to cornpare the approach in this paper with the one in 
previous ones (Montenegro et al., 2001, 2002). 

* The research in this paper has been partially supported by MCYT Grants 
DGE-PB98-1534 and BFM2001-3494. Their financial support is gratefully 
acknowledged. 
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2 Preliminaries 

Let Kc(IR) denote the dass of nonernpty cornpact intervals. Let :Fc(IR) be 
the space of fuzzy nurnbers with cornpact support, that is, :Fc(IR) = { A : 
IR --t [0, 1]1 Aa E Kc(IR)} for all a E [0, 1]}, where Aa = { x E IR I A(x) :?: a} 

for a E (0, 1] and Ao = cl{x ER I Ä(x) > 0}. 
Given a probability space (il, A, P), a rnapping X : il --t :Fc(IR) is said 

to be a fuzzy random variable (FRV for short) associated with this space 
in Puri and Ralescu's sense (1986) iff the a-level rnapping defined so that 
Xa(w) = (X(w))a for all w E il, is a randorn cornpact convex set whatever 
a E [0, 1] rnay be. 

A fuzzy randorn variable X: il --t :Fe( IR) is said tobe integrably bounded 
if, and only if, IIXoll E L1(il,A,P) (with IIXoiiO = sup.,EXo(·) lxl). The ex
pected value of an integrably bounded FRV Xis the fuzzy nurnber E(X) such 
that (E(X))a = Aurnann integral (1965) of Xa (and, becauseofthe convexity 

ofvalues of X, this is equivalent to say that (E(X)) a = [E(inf Xa), E(sup Xa)]) 
for all a E [0, 1]). 

In accordance with Carnpos and Gonzalez (1989), given A, B E :Fc(IR) 
and .\ E [0, 1], Ais said to be greater than or equal to B in the .\-average 
sense (and it is denoted by A !::A B) if, and only if, VA(A) :?: VA(B), where 
VA(A) = f[o,l] (.\sup Aa+(1-.\) inf Aa)da. In case A !::AB but not B !::A A, 

we will write A >-AB. 
The pararneterized ranking function VA leads to a reasonable ranking and 

it is quite convenient for cornputational purposes. In particular, when we deal 
with the expected value of a FRV, we obtain (see L6pez-Dfaz and Gil, 1998) 
that whenever E(X) exists we have that 

3 Stating the problern of testing one-sided hypotheses 
on the expected value of a FRV 

Given a randorn sarnple of n independent observations, Xt, ... , Xn, frorn X, 
the airn of this paper is testing (for a fixed subjective choice of the parameter 
.\) the null "one-sided" hypothesis Ho : E(X) !::A A versus the alternative 
"one-sided" hypothesis H 1 : A >-A E(X) for a given A E :Fc(IR). 

On the basis of the definition of the ranking relation and the result by 
L6pez-Dfaz and Gil, the preceding problern is equivalent to that of testing 
the one-sided hypothesis Ho : E(VA o X) :?: VA(A) versus the one-sided 

hypothesis H 1 : E(VA o X) < VA(A), which is a classical problern of testing 
on the rnean of the real-valued randorn variable VA o X based on the randorn 
sarnple VA 0 xl, ... , VA 0 Xn. 
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4 Solving the problern of testing one-sided hypotheses 
on the expected value of a FRV 

The problern above can be solved by using classical procedures. In this re
spect, we can find in the Classical Inference Iiterature different methods. 

The methods based on the normality of the involved FRVs are now ap
plicable. Thus, if X is a normal FRV with variance a 2 in Puri and Ralescu's 
sense (1985), that is Xa(w) = X(w)EB (E(X))a for all w E J2, a E [0, 1], where 
X is a real-valued random variable having normal distribution N(O, a 2), 

then V>.. o X is a real-valued random variable having normal distribution 
N(V>..(E(X)), a 2 ). Consequently, whatever the specified .X E [0, 1] and A E 
Fc(IR) maybe, we have that 

Theorem 1. Given a random sample of n independent observations, XI, ... , 
Xn, from a fuzzy random variable X having normal distribution with variance 
a 2 , totestat the significance level a E [0, 1] the null hypothesis Ho: E(X) C::>.. 
A against the alternative HI : A h. E(X), the hypothesis Ho should be 
rejected whenever 

v>.. o x- v>..(fi) 
--;==============:====== > tn-I,a, 
JL.~=I [v>.. 0 xi- v>.. 0 xr /n(n -1) 

where tn-I,a is the 100(1 - a) fractile of Student's t-distribution with n -
1 degrees of freedom, and v>.. o X denotes the sample fuzzy mean of the n 
associated real-valued random variables (i.e., v>.. 0 X= L~=I v>.. 0 Xi/n). 

However, the assumption of normality for X is not too realistic. Only a 
few practical situations could be properly modeled by this type of FRVs. 

In fact, real-life FRVs are commonly simple fuzzy random variables (that 
is, they take on a finite number of different values), whence the associated 
real-valued random variable V>.. o X will be also simple. 

To test the considered hypotheses for this type of variables we can make 
use, for instance, of asymptotic techniques. Thus, consider a probability space 
(J2, A, P). Let X be a fuzzy random variable associated with it, so that on 
n the fuzzy random variable takes Oll r different values, XI' . .. 'Xr· For each 
n E N, consider n independent fuzzy random variables having identical dis
tribution that X on J2. Let fn = (ft, ... , fr-I) E [0, 1r-I, with f1 =relative 
frequency of x1 ( l E { 1, ... , r - 1}) in the performance of the n fuzzy ran
dom variables. Let v>.. o X denote the sample fuzzy mean of the n associated 
real-valued random variables. Then, 

Theorem 2. Given a random sample ofn independent observations, Xt, ... , 
Xn, from a simple fuzzy random variable X, to test at the significance level 
a E [0, 1] the null hypothesis Ho : E(X) C::>.. A against the alternative 
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H 1 : A >-A E(X), the hypothesis Ho should be (asymptotically) rejected when

ever 2n [VA o X- VA(A)] > "fa, where 'Ya is the 100(1 - a) fractile of the 

linear combination of chi-square independentvariables "X1x~.1 + ... + "Xkxtk, 
with "X1, ... , "Xk (k ~ r - 1} being the nonnull eigenvalues of the matrix 

Bt s([vA 0 X- VA(A)])B, where s([vA 0 X- VA(A)]) is the Hessian 
matrix 

{)2 [vA o X- VA(A)] 
8fn18fnl 

82 [vA o x- vA(fi)] 
a fn(r-1)a fn1 

a2 [vA o x- vA(fi)] 
8fn18fn(r-1) 

a2 [vA o x- vA(A)] 
a !n(r-l)a !n(r-1) 

and B is an (r- 1) x (r- 1) matrixsuchthat BtB = (r{(fn)) - 1
, where 

(I{(fn)) - 1 is the inverse of the sample Fisherinformation matrix [fnz(Ozm-

fnm)lzm· 

5 Illustrative example 

The conclusions in Theorem 2 are now illustrated by means of a real-life 
example, in which data were supplied by members of the Departamento de 
Medio Ambiente of the Consejerfa de Agricultura in the Principado de As
turias in Spain. 

Example. 
Consider the population of days of a given year, and consider a random 

sample of 50 days in which visibility (variable X) has been observed. 
Variable X takes on the values PERFECT (x1), GOOD (x2 ), MEDIUM 

(x3), POOR (x4), and BAD (xs). Experts in the measurement ofthese values 
have described them in terms of the fuzzy sets (meaning fuzzy percentages) 
and based on 8- and II-curves, and triangular and trapezoidal fuzzy numbers, 
whose support is strictly contained in [0, 100) as follows (see Figure 1): 

x1 = Tra(90, 95, 100, 100), 
x2 = Tri(70, 90, 100), 

{ 
8(40, 50) in [40, 50) 

_ 1 in [50, 70) 
x3 = 1 - 8(70, 80) in [70, 80) 

0 otherwise, 
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{ 

8(20, 30) in (20, 30] 
_ 1 in (30, 40] 
x4 = 1 - S( 40, 50) in (40, 50] 

0 otherwise, 

x5 = S(O, 20). 

1 \ ••••• 0 

,'1 I \ I I PERFECT 
I I 

I I· 

\ I ( GOOD 
I 

f\ I 
I MEDIUM 

\ I I 
I 
I POOR 

\ I I -- =BAD 
I I 

I I 

20 40 60 80 100 

Fig. 1. Values of the variable visibility 

For the considered sample the observed fuzzy data have been collected in 
Table 1. 

absolute frequencies 4 21 12 8 2 

Table 1. Data of variable visibility from days in the sample 

To test the null hypothesis Ho : E(X) ~.5 fJ against the alternative H1 : 
fj >--. 5 E(X), where U) denotes the value RATHER GOOD ON THE AVER
AGE, which can be assumed tobe modeled by the II-curve II(60, 70, 80, 90), 
on the basis of Theorem 2 the hypotesis Ho should be rejected at the signif
icance level a = .05 (actually, the p-value of the test is given by .0399). 

6 Additional and concluding remarks 

An interesting open problern in connection with the study in this paper is 
that of discussing the effects of choosing the value of parameter .A on the 
power of tests in Theorems 1 and 2. 
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In this respect, we have developed a broad introductory analysis. In this 
way, it should be pointed out that although the test in Montenegro et al. 
(2001, 2002) cannot be applied to deal with one-sided hypotheses, the ideas 
in this paper can be used also to test two-sided hypotheses. For purposes of 
comparing these ideas with those in the previous papers, we have performed 
some simulation studies allowing us to conclude that for a proper choice of 
,\ (the choice depending on the shape of variable values), the power function 
of the asymptotic test by Montenegro et al. (2001, 2002) could be slightly 
improved by employing the test based on vx. 

In this way, 

Example I. Consider a FRV X taking on 5 different values in a popula
tion. Assurne these values are asymmetric triangular ones, whose centers and 
widths have been obtained by a randomization proccess, and the 5 values are 
equally likely. Let fJ the population expected value of X. 

10000 samples of size 300 have been simulated, and 20 different null hy
pothesis have been considered, namely, (i]: E(X) = fJi = fJ EB .02(i - 1) 
(i = 1, ... '20). 

Test 1 denotes the test in Montenegro et al. (2001, 2002) (with the metric 
using Lebesgue measure on [0, 1] for both, the o:-levels and the convex linear 
combinations). 

Test 2 involves the statistic in Theorem 2 applied to test the null hy
pothesis V0 .1 (E(X)) = V0 .1(Ui), Test 3 involves the same statistic applied to 
test the null hypothesis Vo.s(E(X)) = Vo.s(Ui), and Test 4 involves the same 
statistic applied to test the null hypothesis V0 .9 (E(X)) = V0 .9 (Ui)· 

The following table gathers the percentage of rejections at level o: = .05 
(i.e., when the real percentage of rejections for the null hypothesis being true 
equals 5%). 

Null hyp. [1] [2] [3) [4) [~) [e] [7) [s] [9) [10] [11] [12] [13) [14) [1~] [1e] [17) [1s] [19) [20] 
Test 1 5.2 6.6 9.2 13.2 18.6 26.2 33.5 44.7 53.3 62.7 71.6 78.7 85.0 89,7 93.1 96.4 97.6 98.6 99.3 99.6 
Test 2 5.2 6.3 8.9 12.8 17.7 25.3 32.1 43 51.4 60.8 69.6 77.0 83.6 88.7 92.7 95.7 97.1 98.2 99.2 99.5 
Test 3 5.2 6.6 9.2 13.2 18.6 26.2 33.6 44.7 53.3 62.7 71.6 78.7 85.0 89.8 93.1 96.4 97.6 98.5 99.3 99.6 
Test 4 5.3 6.8 9.2 13.3 19.1 27.1 34.5 45.7 53.9 63.5 72.5 79.3 85.3 90.3 93.3 96.7 97.7 98.6 99.4 99.6 

Example II. Consider a FRV Y taking on 10 different values in a population. 
Assurnethese values are S-, Z- and II-curves, which have been obtained by 
a randomization proccess, and the 10 values are equally likely. Let W the 
population expected value of Y. 

10000 samples of size 500 have been simulated, and 20 different null hy
pothesis have been considered, namely, [i]: E(Y) = Wi = WEB .01(i- 1) 
( i = 1' ... ' 20). 

Tests 1 to 4 have meanings similar to those in Example I. 
The following table gathers the percentage of rejections at level o: = .05 

(i.e., when the real percentage of rejections for the null hypothesis being true 
equals 5%). 
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Null hyp. [1) 
Test 1 5.5 
Test 2 5.1 
Test 3 4.8 
Test 4 5.0 

[2) 
5.8 
5.9 
6.5 
9.3 

[3) (4) [5) (e) (7) [s] (9) [10] [11] [12] [13) [14) (15) [1a] [17) [1s] [19) [20) 
7.9 12.0 17.7 25.3 35.4 47.2 58.7 70.0 80.1 88.4 93.6 97.0 98.8 99.5 99.9 100 100 100 
6.9 9.4 12.5 16.5 21.4 28.1 33.5 39.8 46.9 55.4 60.9 68.4 74.5 80.5 84.5 89.0 92.1 94.5 
10.5 17.3 26.2 37.2 50.4 62.9 73.3 82.8 89.3 94.2 96.9 99.4 99.8 99.9 100 100 100 100 
~2ü~®4~~%4~9~7~~~~~~~~~~~ 

On the basis of these simulations, we realise there are not general con
clusions to get. Thus, in Example I Tests 1 and 3 show a similar behavior, 
whereas Tests 2 and 4 are worse on the average. On the other hand, in Ex
ample II Test 4 is clearly the most powerful one. 

Figure 2 includes the graphical representation of the power function of 
Tests 1 (continuous line) and 3 in Example I, whereas Figure 3 includes the 
graphical representation of the power function of Tests 1 ( continuous line) 
and 4 in Example II. 

100 

i .-/ 
0' 

Fig. 2. Figure 2 

Fig. 3. Figure 3 

Anyway, it should be emphasized that Tests 2 to 3 could be valuable to 
test the null hypothesis E(X) = A in case of rejecting it, but in case of 
acceptance we know that E(X) "'>.Ais not equivalent to E(X) = A, whence 
the improvement in the power function would not mean a real advantage. 
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Abstract. Blackwell sufficiency is an accepted instrument for comparison of ran
dom experiments.In this paper we discuss, whether Blackwell sufficiency is a suitable 
instrument to characterize fuzziness and nonspecificity of experiments. The answer 
will be: Yes in special cases, no in general. 

1 Blackwell sufficiency 

Assurne that we want to perform a statistical experiment with the aim to 
obtain information on an unknown parameter 1J E 8. The following defini
tion says that the statistical experiment is represented by the corresponding 
probability space. 

Definition 1 A statistical experiment & w. r. t. 1J E 8 is defined by 
& := [il,A, {P(11)}.?Ee] ,where for any 1J E 8 [il,A,P(11)] is a probability 
space. 

Central for Blackwell sufficiency is the the notion of a Markov-kernel. 

Definition 2 Let [il1, A1] and [il2, A2 ] be two measurable spaces. A mapping 

h : {.?1 X A2 --+ R 

is called a Markov-kernel from [il17 A1] to [il2, A2], if: 

1) Vw E il1 : h(w, .) is a probability measure on [il2, A2] 

2) VA E A2 : h(., A) is a measurable function from il1 to R. 

Now we are able to define Blackwell- sufficiency. 

Definition 3 Let &1 = [ill> A1. {Pi11)}.?Ee] and &2 = [il2, A2, {PJ11>}.?Ee] be 
two experiments, then &1 is called B-sufficient (Blackwell sufficient) for &2 
(notation: &2 -<n &1), if there is VfJ E 8 a Markov-kernel h from [il17 A1] to 
[il2, A2] with 

VA E A2: PJ11>(A) = { h(w,A)dPi11>(w) 
ln1 
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An outcome from [ 2 can be generated by an outcome from EI and a further 
randomization according to the probability measure h(w, .). Since the kernel 
h does not depend on {) the performance of [ 2 does not add information 
about {) to what is contained in EI. In this connection we can say that E2 is 
notmoreinformative then EI· For more details see Blackwell (1] (2] and e.g. 
Torgersen (11]. 

Remark 1 (Discrete Case) A discrete finite experiment EI is Blackwell 
sufficient for another discrete finite experiment [ 2 if there exists a column 
stochastic matrix H so that the vector of probabilities pJ~'~) is computable 
from p}~'~) like: 

P.(l'i)- HP(I'i) 
2 - I 0 (1) 

2 Statistical experiments with vague outcomes 

Assurne that a certain product appears in k qualities, denoted by 1, 2, .. , k 
with unknown probabilities PI, .. ,pk of appearance. The quality control pro
cedure, however, diagnoses the true quality only with some vagueness, i.e. for 
a diagnosis Ai several qualities can be true with some possibility. Thus, we 
model this procedure by a statistical experiment with n possible outcomes 
AI, ... ,An which are modeled by fuzzy sets on the universe U = {1,2, .. ,k} 
with membership values 

i = 1, ... , n ; j = 1, ... , k. (2) 

Furthermore, let us assume that the membership values for fixed j sum up 
to one, i.e. 

n 

Lmij = 1 j = 1, ... ,k, (3) 
i=I 

which means that the A1. ... ,An constitute a fuzzy partition (in Ruspini's 
sense). Writing (2) in matrixform M = ((mi,j)) we have that M is a column 
stochastic ( n x k )-matrix. According to Zadeh (12] for the probability dis
tribution of this fuzzy experiment, we obtain with the unknown parameter 
{) = (pi, ... ,pk)T: 

k 

p(~'~)(Ai) = EmAJj) = LPjffiij 
j=I 

;i = 1, .. ,n. (4) 

Note that the p(~'~)(Ai) sum up to one (i.e. they build a probability distribu
tion) only if (3) is satisfied. On the other hand (3) is very restrictive and often 
not natural. Clearly, there are other approaches to probability in fuzzy envi
ronment, see e.g Puri & Ralescu (8], Kruse & Meyer (6], but our (restrictive) 
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type of fuzzy experiments is already enough for showing that B-sufficiency is 
not well suited for comparison. With p(.J) := (P<19l(Al), ... , p(.J)(An))T (4) 
can be written as 

p(.J) = M{) for all 1J. (5) 

Now, consider two fuzzy experiments &1 and &2 of the described type both for 
the same parameter {), but with differentM (M1 , M2 ) and as a consequence, 
different p(.J) (P1(.J), PJ19l). Let M 1 be (n1 x k) and M2 be (n2 x k). Note 
that from Remark 1 we have: 

&2 -<B &1 <=====? \f{) : PJ 19 ) = H Pi 19 ) with a column stochastic matrix H. 

Using (5) this is equivalent to 

(6) 

i.e. the problern of B-sufficiency for the considered type of fuzzy experiments 
reduces to an algebraic characterization: &2 -<B &1 iff there is a (n2 x n1)
column stochastic matrix H which maps the column stochastic matrix M 1 

into the column stochastic matrix M2 • Now, the question is whether state
ments of the following type are valid: 

(7) 

Let us recall the most commonly used notion of fuzziness (see e.g. Klir & 
Folger [5]). 

Definition 4 
Let A(1) and A(2) be fuzzy sets on {l, .. ,k}. A(1) is called sharper than A(2) 

(abbreviated: A(2) <s A(1)) iff\:lj E {1, .. , k}: 

[mA(2J (j) :::; 0, 5!\mACll (j) :::; mAC2J (j)] V[mAC2J (j) ~ 0, 5!\mACll (j) ~ mAC2J (j)] 

A fuzzy set is called maximally fuzzy if mA (j) = 0.5 for all j. 

In the special case n1 = n2 = k = 2 a result of type (7) can be found in Gil 
[4]. Note that the considered case can be interpreted as comparison of fuzzy 
Bernoulli experiments. An Bernoulli experiment &1 is sharper than &2 if for 
one of the two possible outcomes A~l), A~l), say for A~l) ; l = 1, 2; it holds 

A(2) < A(1) 
1 s 1 . 

With (3), the same relation holds between A~1 ) and A~2). Clearly, an experi
ment Ern is maximally fuzzy if for the associated Mrn it holds 

M _ (0.5 0.5) 
rn- 0.5 0.5 
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and an experiment E0 is called crisp ( or sharp) if 

Mo= G n or M~ = (~ ~). 
Since Mm = H M with H = Mm for any column stochastic matrix M we 
have for any fuzzy Bernoulli experiment E : Em -< 8 E (see (6)). Further, 
any column stochastic matrix M can be generatedvia (6) by M = H Mo with 
H = M and by M = H M~ with H = M M~ hence E -<B Eo. Thus it holds: 

Theorem 1 (Gil) 

Condition: ( ( !) ) ( ( !) ) l sgn m 11 - 0.5 = sgn m22 - 0.5 , = 1, 2 (8) 

1. Let be E a fuzzy Bernoulli experiment. Then it holds 

2. Let be E1, E2 two fuzzy Bernoulli experiments. lf (8) is satisfied then it 
holds: 

A~2 ) <s A~1 ) ===? E2 -<B E1. 

Thus, Theorem 1 2. presents a statement of the desired form (7). Note that 
Condition (8) means that only such (2 x 2)- matrices M 1 , M2 are comparable 
where both diagonal elements are either larger or smaller than 0.5. Especially 
(8) is fulfilled if A~l) gives main membership to quality 1 and A~l) to quality 
2; l = 1, 2 ; which is really the case in practical situations where the crisp 
case 

( 1 0) . . . (m1 (1) > 0.5 1- m2(2) ) 
Mo= 0 1 1s fuzz1fied mto M = 1 _ m 1 ( 1) m 2 (2) > 0.5 · 

Note that in Part 2 of Theorem 1 the opposite implication does not hold (see 
Example 2 in [7]). Note further that without (8) Part 2 of Theorem 1 is not 
true (see Example 3 in [7]). 
Now, let us turn towards non-Bernoulli cases with more than two qualities. 
Firstly, let us mention that there is no general definition which describes, 
whether a set of possible outcomes (A~1 ), ... , A~1() =: A1 is sharper than 
(A~2), ... , A~2}) =: A2, abbreviated by A2 <s A1. Let us restriet ourselves to 
n1 = n2 =: n. For A2 <s A1 at least should hold: 

Vi E {1,2, ... ,n}: (9) 

Exarnple 1 For example, in the case k = n = 3, characterized by 

M1 = (~ ~:~ ~) 
0 0.1 1 

(
1 0.1 0.1) 

and M2 = 0 0.8 0.1 
0 0.1 0.8 
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we are intuitively convinced that A2 <s A1 since all three rows of M 1 describe 
fuzzy outcomes which are sharper than the outcomes of M2 , i.e. it holds (7). 
Unfortunately, we cannot conclude E2 -<B E1 . A direct solution of (6) yields 

(
1 -0.0125 0.1) 

H = M2M!1 = 0 0.9875 0.1 
0 0.0250 0.8 

which is not a column stochastic matrix. Thus, we cannot prove in general 
a statement like (14) in the non-Bernoulli case. Thus, Blackwell sufficiency 
in general cannot be used to characterize different degrees of fuzziness in 
statistical experiments with vague data. 

3 Experiments evaluated by belief and plausibility 

Let us consider the case where the uncertainty on the universe U cannot be 
modeled by a probability distribution. This happens if the state of knowledge 
an the uncertainty behaviour does not allow to specify a probability distribu
tion. This situation is one of the starting points of Shafer's evidence theory 
(see Shafer [10]). Let us recall some notions from there. Let U = {1, 2, ... , k} 
be a finite universe. For example, U contains possible answers to the ques
tion under consideration. Let P be a probability measure on P(U), the power 
set of U. Assurne P(0) = 0. The set A C U is called a focal set w.r.t. P if 
P(A) > 0. P(A) can be interpreted as the probability that the true answer is 
in AC U, but not in any strict subset of A (see e.g. Shafer [10]). The set Fp of 
all focal sets w.r.t Pis called the body of evidence belanging toP. Now, Pis 
used to define for a given AC U the degree of belief Belp(A) = EBcA P(B) 
and the degree of plausibility Plp(A) = EBnA;t;0 P(B) that the true answer 
is contained in A. Clearly, for any P we have Belp(0) = Plp(0) = 0 and 
Belp(U) = Plp(U) = 1. There are two extreme bodies of evidence: the so
called dissonant case where all singletons of U are focal sets and the so-called 
vacuous case where U is the only focal set. A dissonant body of evidence gen
erates a probability distribution on U via: P( { i}) = Pi. The interpretation 
is that we have maximal knowledge on the variability behaviour on U (total 
evidence) and the uncertainty is totally due to randomness. In the general 
case we have some knowledge on U expressed by P which is not rich enough 
to generate a probability distribution on U, but we have 

VA c U: Belp(A) ~ Prob(A) ~ Plp(A). 

Note that Prob is a probability measure on U whereas P is a probability 
measure on P(U).The length of the interval [Belp(A), Plp(A)] is related with 
the so-called specificity of P (see e.g. Körner & Näther [9]). 

Definition 5 P1 is called to be more specific than P2 (abbr.: P2 -< P1) iff 
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Clearly, a dissonant P is the most specific one and a vacuous P is the least 
specific one. Now, the idea is, to consider a situation described by U and 
parametric p(iJ) as an experiment and to ask for relations between specificity 
and B-sufficiency. Especially we ask: Let be pfiJ), PJiJ) two distributions on 
P(U), with parameter fJ E 8. Is it true that 

VfJ E 8: (10) 

Let us start with the simplest case U = {1, 2}. Consider a parametric prob
ability distribution p(iJ) = (P(1'J)({l}),P(1'J)({2}),P(1'J)(U))T on P(U) ofthe 
following form: 

Note that we have left out in p(!'J) the value p(1'J)(0) = 0. Note further that 

P1,P2 model the deviation from the dissonant case pt) = (fJ1, {}2, o)T. The 
following belief and plausibility is associated with p(!'JJ: 

Belp(u) ( {1}) = (1- P1)fJ1 

Belp(u) ( {2}) = (1 - P2)fJ2 

Plp(U) ( {1}) = {}1 + P2{}2 

Plp(U) ( {2}) = {}2 + P1 {}1 

(12) 

It is easy to checkthat for the probability distribution p(fJ) = (fJ1, fJ2)T on 
U which is generated by PJiJ) we have 

(
1- P1 0 ) 

p(iJ) = Ap(fJ) with A = 0 1- P2 , 

P1 P2 

i.e. according to (1), a dissonant experiment t:d is B-sufficient for any exper
iment t: evaluated by p(iJ) from (11). Hence it holds: 

VfJ E 8 : p(iJ) -< PjiJ) 1\ t: -<B t:d. 

On the other hand, the vacuous P on P(U) is given by P = (0, 0, l)T and it 
is easy to checkthat for any p(iJ) from (11) we have 

P = ßp(iJ) with B = (~ ~ ~) , 
1 1 1 

i.e. any experiment t: from (11) is B-sufficient for the vacuous experiment 
t:v. Hence it holds 

VfJ E 8 : Pv -< p(iJ) 1\ t:v -<B t:. 
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Consider now two experiments [ 1 ,E2 characterized by P1 ('0) ( with deviations 
Pn, P21 from Pd19 )) and by PJ19l (with P12, P22)· Direct comparison by (12) 
gives: 

V'IJE e: (13) 

On the other hand, we have according to (I) 

[ 2 --< 8 [ 1 ~ PJ19l = H P}19l with column stochastic matrix H. 

Since P1(0) = A1Pd19 ), PJ19l = A2Pd19 ) this leads to 

E2 --<B E1 ~ A2 = H A1 with column stochastic matrix H. (14) 

Note that B-sufficiency here is characterized by the same algebraic relation 
as in section 2 (see (6)). Now, we can prove (10), i.e.: 

Theorem 2 Let be U = {1, 2}. \/'13 : 

Thus, in the special case U = {1, 2} the relation (10) is satisfied. Note that 
the opposite conclusion does not hold in general. 

Example 2 P} 19l = (o,~~2) ; pJ19l = ( ~: ~:~ ) 
0, 7'132 0, 5'131 + 0, 5'132 

It holds PJ19l = H P1(0) with column stochastic matrix H = (~ ~ i) i.e. 

2 0 7 
E2 --<B E1, but we have not PJ19l --< P}19l since P21 = 0, 7 i P22 = 0, 5 (see 
(13) ). 

Unfortunately, Theorem 2 does not hold for general U = {1, ... , k }. This can 
be seen already in the case U = {1, 2, 3} (see [7]). 
As a summary, we have the result that comparison of evidences by the cri
terion of nonspecificity cannot be explained by comparison of the associated 
probability distribution on P(U) using the criterion of B-sufficiency. Thus, 
also for this kind of fuzzy experiments B-sufficiency is not well suited for 
comparisons. 

4 Conclusion 

We ask in the first case whether more crisp experiments are Blackwell suffi
cient for less crisp experiments and in the second case whether more specific 
evidences are Blackwell sufficient for less specific evidences. We have seen 
that the answer is "Yes" only in the simplest cases: for fuzzy Bernoulli
experiments and for evidences on universes with two elements. For more 
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general experiments we easily have found counterexamples (see Example 1 
and [7]) . Therefore the result is that the notion of fuzziness and the notion 
of specificity in general do not agree with B-sufficiency. 
For both kinds of fuzzy experiments, characterization of B-sufficiency leads 
to the same algebraic equation: M2 = H M 1 in the case ( 6) and A2 = H A1 in 
the case (14). This equation is equivalent to two further criteria which come 
from information theory, especially from comparison of channel capacities 
(see[3]). Note that one of this criteria is constructive for stochastic matrices 
with two columns but not with more than two columns (see [7]). 
For more details and proofs of the theorems see Näther/Wünsche [7]. 
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Processes and its Application to Option 
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Abstract. An optimal stopping problern is discussed in a continuous-time process 
defined by fuzzy random variables. Fuzzy random variables are evaluated by both 
probabilistic expectation and fuzzy expectation defined by a possibility measure. 
An optimality equation and an optimal stopping time are given for the process. A 
numerical example is also given to apply it to a financial model. 

1 Introduction and notations 

Mathematical modeling of stochastic systems in decision-making has many 
applications to engineering, economics, etc., and in general, one of the con
ditions that stochastic modeling works successfully is stability of systems. 
When the model is applied in an uncertain environment, losses/errors occur 
between the models and the actual phenomena. For example, lasses from time 
lag is one of the most important elements in optimal stopping problems re
garding system. On selling and buying stocks in financial markets when stock 
prices change radically, lasses from time lag by Internet etc. might be more 
huge. This kind of lasses is not only a problern arising from probabilistic sense 
where something occurs or not, and it is diffi.cult to formulate them by only 
probabilistic theory(Klir and Yuan [3]). In this paper, probability is applied 
as the uncertainty such that something occurs or not with probability, and 
fuzziness is applied as the uncertainty such that we cannot specify the exact 
values because of a lack of knowledge regarding the present stock market. By 
introducing fuzziness to stochastic processes in decision-making, we consider 
a new model with uncertainty of both randomness and fuzziness, which is a 
reasonable and natural extension of the original stochastic processes. 

The optimal stopping problern for random variables has a long history 
and has been studied by many authors in probability theory. It has many 
applications in stochastic theory and its related fields, for example, financial 
engineering, management sciences and so on. This paper discusses the opti
mal stopping problern with randomness and fuzziness as uncertainty from the 
viewpoint of fuzzy expectation, taking account of human subjective judge
ment. In order to describe an optimal stopping model with fuzziness, we need 
to extend real-valued random variables in the classical probability theory to 
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'fuzzy random variables'. We formulate an optimal stopping model of stochas
tic processes with fuzziness, using fuzzy random variables. This paper derives 
an optimality equation for the 'fuzzy stochastic process' and gives a method 
to solve the stopping problern without loss of worthy information contained 
in uncertainty like randomness and fuzziness. 

In the next section, we formulate an optimal stopping model for a fuzzy 
stochastic process and we discuss its optimality condition. In the fuzzy stochas
tic process, the randomness and fuzziness are evaluated by both probabilistic 
expectation and 'fuzzy expectation' defined by a possibility measure from the 
viewpoint of Yoshida [10]. In Section 3, this papers shows that the optimal 
fuzzy reward is a unique solution of an optimality equation under a differ
entiability condition, by an approach of dynamic programming. In the last 
section, we consider a numerical example to apply the results to American 
put option in a financial model. 

Fuzzy random variables were first studied by Puri and Ralescu [5] and 
have been studied by many authors. It is known that the fuzzy random vari
able is one of the successful hybrid notions of randomness and fuzziness. In 
the rest of this section, we give some mathematical notations regarding fuzzy 
random variables. Let (D, M, P) be a probability space, where M is a a-field 
of D and P is a non-atomic probability measure. IR denotes the set of all real 
numbers, and let C(IR) be the set of all non-empty bounded closed intervals. 
A fuzzy number is denoted by its membership function a : IR f--+ [0, 1] which 
is normal, upper-semicontinuous, fuzzy convex and has a compact support. 
In this paper, we identify fuzzy numbers with its corresponding membership 
functions. R denotes the set of all fuzzy numbers. The a-cut of a fuzzy num
ber ii(E R) is given by aa := {x E IR I ii(x) ~ a} (a E (0, 1]) and ao := 
cl {X E IR I a( X) > 0}' where cl denotes the closure of an interval. We write 
the closed intervals as aa := [a~, atJ for a E [0, 1]. Hence we introduce a 
partial order ~' so called the fuzzy max order, on fuzzy numbers 7?([3]): Let 
ii, b E R be fuzzy numbers. Then ii ~ b means that a~ ~ b~ and at ~ bt 
for all a E [0, 1]. It is known that (R, ~) becomes a lattice ([10]). For fuzzy 
numbers a, b E 7?, we define the maximum a V b with respect to the fuzzy 
max order ~ by the fuzzy number whose a-cuts are 

(a V b)a = [max{ii~, 'b;;-}, max{at, 'bt}], a E [0, 1]. (1) 

A fuzzy-number-valued map X : n f--+ n is called a fuzzy random variable 
if the maps w f--+ X,; ( w) and w f--+ Xt ( w) are measurable for all a E [0, 1], 
where Xa(w) = [X,;(w),Xt(w)] := {x E IR I X(w)(x) ~ a}. Next we need 
to introduce expectations and conditional expectations of fuzzy random vari
ables in order to describe an optimal stopping model in the next section. A 
fuzzy random variable x is called integrably bounded if both w f--+ x,;(w) 
and w f--+ xt ( w) are integrable for all a E [0, 1]. Let X be an integrably 
bounded fuzzy random variable. The expectation E(X) of the fuzzy random 
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variable X is defined by a fuzzy number 

E(X)(x) := sup min{a, 1E(x)Jx)}, x E JR., 
aE[O,l] 

where E(X)a := [In x,;(w) dP(w), In X~(w) dP(w)] (a E [0, 1]). 

2 An optimal stopping model 

(2) 

In this section, we discuss a continuous-time stopping model of fuzzy stochas
tic process and derive its optimality conditions. Let { Xt}t>O be a family of 
integrably bounded fuzzy random variables such that E(s~Pt>o Xt0 ) < oo, 
where xt0 (w) is the right-end of the 0-cut of the fuzzy numb~r X~(w). We 
assume that the map t r---t Xt ( w) ( E R) is right continuous and has left hand 
limits on [0, oo) for almost all w E [2. {Mt }t;:::o is a family of nondecreasing 
sub-O"-fields of M which is right continuous, i.e. Mt = nr:r>t Mr for all 
t?: 0, and fuzzy random variables Xt are Mt-adapted, i.e. random variables 
x;:a and Xt,a (0 ::::; r ::::; t; a E [0, 1]) are Mrmeasurable. This paper call 
(Xt, Mt)t;;=:o a fuzzy stochastic process. A map T : [2 r---t [0, oo] is called a 
stopping time if {w E [2 I r(w) ::::; t} E Mt for all t?: 0. We can extend the 
stopping range to [O,oo] by considering limsupt---+ooXt,a(w) at timet= oo. 
However we can adopt finite horizons in real applications(see Section 4). 

Give a fuzzy goal by a fuzzy set 'P : lR. r---t [0, 1] which is a continuous and 
nondecreasing function with limx---+-oo cp(x) = 0 and limx---+oo cp(x) = 1. Then 
we note that the a-cut is 'Pa = [cp;;-, oo) for a E (0, 1). For a stopping time T, 

we define a fuzzy expectation of the fuzzy numbers E(Xr) by 

E(E(Xr)) := j E(Xr)(x) dF(x) = supmin{E(Xr)(x), cp(x)}, (3) 
~ xER 

where P is the possibility measure generated by the density 'P and f dF de
notes Sugeno integral ([7]). The fuzzy number E(Xr) means a fuzzy reward, 
and the fuzzy expectation (3) implies the degree of decision maker's satisfac
tion regarding fuzzy rewards E (X r). Then the fuzzy goal cp( x) means a kind 
of utility function for expected payoffs x in (3), and it represents a human 
subjective judgement from the idea of Bellman and Zadeh [1]. We define an 
optimal fuzzy reward V as follows: Consider 

V (4) 
r: stopping times 

where V means the supremum with respect to (1) induced from the fuzzy 
max order ~- From (1), we define 

va± := sup E(Xr )~ (5) 
r: stopping times 
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for a E (0, 1]. Then we have (Va-;-, v:,-] :::> (Va-, v:J if a' < a. Therefore, we 
can define a fuzzy number V E n by considering a left continuous version of 
(5)(see [4, Lemma 5]). This paper discusses the following optimal stopping 
problern with randomness and fuzziness, which is a fuzzy-number-valued ex
tension of continuous-time optimal stopping models in Shiryayev [6]. 

Problem S. Find a stopping time r* such that 

(6) 

Then, r* is called an optimal stopping time, and a real number x* is called an 
optimal expected payoff if it attains the supremum of the fuzzy expectation 
(3), i.e. 

E(V) = supmin{V(x), cp(x)} = min{V(x*), cp(x*)}. (7) 
xElR 

Next, to analyze the optimal fuzzy reward V, we introduce some notation. 
Let t ~ 0 and define 

± -± 
zt a := ess sup E(Xr a I Mt) 

' T: stopping times, T~t ' 
(8) 

for a E [0, 1], where X7 ,a(w) = [X;,0 (w),X.i,0 (w)] is the a-cut of the fuzzy 

number X 7 (w). Then we have that zj=a are right continuous with respect 

to t since Xj=a and Mt are right continuous with respect to t. Further we 
have [Z~0,(w'), Zt0 ,(w)] :::> [Zt;"a(w), zta(w)] if a' < a. Therefore, we can 

define fuzzy random variables Zt by considering a left continuous version of 
(8)(see [4, Lemma 5]). The fuzzy random variables Zt correspond to Snell's 
envelope in probability theory (Shiryayev [6]). Hence we obtain the following 
optimality characterization for the fuzzy stochastic process regarding the 
optimal fuzzy reward V by fuzzy random variables Zt. 

Theorem 1. For t ~ 0, the following {i) - {iii} hold: 

(i) For almost all w E !1, it holds that Zt(w) !:: Xt(w). Particularly it holds 
that V= E(Zo). 

(ii) For almost all w E !1, it holds that Zt(w)!:: E(ZsiMt)(w), s E [t, oo). 
(iii) Let a E (0, 1]. For almost all w E !1 satisfying Zj=0 (w) > Xj=0 (w), there 

exists c > 0 suchthat zta(w) = E(Z~aiMt)(w), ~ E [t, t + c). 
Finally, we discuss an optimality equation for the optimal fuzzy reward 

process { Zt}t~o by introducing differentials. Let L 2 ( [0, oo)) be the space 
of continuous functions u. : [0, oo) f---+ IR satisfying J0

00 (ut)2 dt < oo and 
limt-->oo Ut = 0. Let .C be the space of functions u. E L2 ([0, oo)) such that u. 
is differentiable on [0, oo) and dutfdt E L2 ([0, oo)). Then we write Aut := 
-dutfdt. Fort~ 0, we put abilinear form on .C x .C by (u., v.)t = ftoo U 8 V 8 ds 
for u., v. E .C. 
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Assumption A. It holds that z.±cJw) E C and x.±a(w) E C for almost all 
w E [2 and all a E (0, 1]. ' ' 

Suppose Assumption A holds. Then the following Theorem 2 holds regarding 
the optimality, using the definition: 

z± (w) - z± (w) 
Az- ± ( ) _ 1. t,a t+s,a 

taW-lm . 
' sLO s 

(9) 

Theorem 2 (Optimality equation). Let a E (0, 1]. The optimal reward 
process { Zt}t:;::o is a unique solution satisfying the following three inequalities 
(3.2) - (3.4): For all t ~ 0 and almost all w E D, 

3 The fuzzy expectation and the optimal stopping 

(10) 
(11) 

(12) 

In this section, we discuss the fuzzy expectation of the optimal fuzzy reward 
V, and we give an optimal stopping time for Problem S. Define a grade a* 
by 

(13) 

where 'Pa (r.p;;,oo) for a E (0,1), and the supremum of the empty set 
is understood to be 0. From the continuity of r.p and V, we can easily check 
r.p-;;_. ~ V<>~. The following theorem, which implies that a* is the optimal grade 
of the fuzzy expectation of the fuzzy rewards, is obtained by a modification 
of the proofs in (9, Theorems 3.1 and 3.2]. 

Theorem 3. It holds that 

a* = E(V) = sup E(E(Xr )). (14) 
T: stopping times 

Assumption B. The following (i) and (ii) hold: 

(i) The map t f--4 Xt(w) is continuous Oll (O,oo) for almost all wEn. 
( .. ) v+ v-+ 

11 a* = a* · 

Under Assumption B, we obtain the optimality of the following stopping 
timeT* by modifying the proof in (10, Theorem 4.1]. 

T*(w) := inf{t ~ 0 I zta• (w) = xta• (w)}, wEn, (15) 

where the infimum of the empty set is understood to be +oo. 
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Theorem 4. Suppose that Assumption B holds. lf r* is finite, then r* is 
an optimal stopping time for Problem S. Purther, if the function <p is strictly 
increasing within the grades taken on (0, 1), then r* is the shortest in the 
class of optimal stopping times. The optimal expected payoff is x* = <p-;_ •• 

4 Application to option pricing in financial engineering 

In this section, we consider American put option in a finance model where 
there is no arbitrage opportunities ([2]) to illustrate the results of the optimal 
stopping models in previous sections. Yoshida [11] has discussed European 
option models from the same viewpoint. Let !-L( 1-L E :IR) be the appreciation 
rate and a (a > 0) is the volatility. Let K (K > 0) be a strike price and let 
r (r > 0) be a discount factor. Let {Bth>o be a standard Brownian motion 
on (!?, M, P). {Mth>o denotes a family-of nondecreasing right-continuous 
complete sub-a-fields of M suchthat Mt generated by B 8 (0 ~ s ~ t). Let 
a stock price process {Sth;:::o satisfy the log-normal stochastic differential 
equation: So is a positive constant, and 

(16) 

There exists an equivalent probability measure Q such that ert St is a martin
gale under Q, by setting dQ/dP!Mt = exp (((r -1-L)/a)Bt- ~((r -!-L)/a)2t), 
t ~ 0([2]). Under Q, Wt := Bt- ((r -1-L)/a)t is a standard Brownian motion 
and it holds that dSt = rStdt + aStdWt. By Ito's formula, we have 

St =So exp ( (r- ~2 
)t + aWt). t ~ 0. (17) 

Let c be a constant satisfying 0 < c < 1 and give a stochastic process { at}t>o 
by at ( w) := cSt ( w) for t ~ 0, w E n. Hence we give a fuzzy stochastic proce-;s 
of the stock price process by the following fuzzy random variables {S\h>o: 

St(w)(x) := L((x- St(w))/at(w)) (18) 

for t ~ 0, w E !? and x E :IR, where L(x) := max{1 - !x!, 0} (x E :IR) is 
the triangle-type shape function. Hence, at(w) = cSt(w) is a half width of 
triangular fuzzy numbers St(w) and corresponds to fuzziness in the process. 
The fuzziness in processes increases as at ( w) becomes bigger. In this financial 
model, at(w) should be an increasing function of the stock price St(w) since 
it depends on volatility a and stock price St(w) ofthe process from (16). The 
a-cuts of (18) are 

- - -+ 
St,a(w) = [St;"01 (w), St,a(w)] = [St(w)- (1- a)at(w), St(w) + (1- a)at(w)]. 

(19) 
By using stopping times T, we consider a problern to maximize the expected 
value of the price process {Xth;:::o in American put option. Put the optimal 
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fuzzy reward, which is the optimal price of the American put option in this 
example, by 

V E(Xt I So= y) (20) 
-r: stopping times, -r~O 

for an initial stock price y (y > 0), where E(·) denotes expectation with 
respect to the equivalent martingale measure Q, and the fuzzy stochastic 
process {Xth~o is defined by 

- t -Xt(w) :=e-r (1{K}- St(w)) V 1{o} fort;:::: 0, w E D, (21) 

where V is given by (1), and 1{K} and 1{o} denote the crisp number K and 
zero respectively. Their a-cuts are 

Xt,a(w) = [max{e-rt(K- sta(w)),O},max{e-rt(K- St;"a(w)),O}]. (22) 

By putting b(a) := 1- (1- a)c (a E [0, 1]), we put 

~Y::"+ := supE(e-r(-r-t) max{K- b(a)Sn 0}1{-r<oo} ISt= y). (23) 
' T~O 

Then the right end of the a-cut (20) is VJ'•+ := ver::.+. Define a differential 
' operator 

12282 ß ß 
.C := 20" y ßy2 + ry ßy + ßt' (y, t) E JR+ X [0, oo). 

By taking expectations in {10) - (12) of Theorem 2, we get the following 
optimality equations (c.f. [2, Theorem 8.5.9]): 

~~::"+;:::: max{K- b(a)y,O}; 
.C(e-rt~~::"+) ~ 0 in the sense of Schwartz distributions; 
.C(e-rt~~::"+)(V(y, t)- max{K- b(a)y, 0}) = 0. 

In a similar proof to Elliot and Kopp [2, Theorem 8.3.1] regarding an Ameri
can put option model without expiration dates, we obtain a solution VJ'•+ = 
v;- y,+. 

O,a: • 

VY·+={K-b(a)y ify~s(a) () 
a (K- b(a)s(a))(yjs(a))-1' if y > s(a), 24 

where s(a) := K'Y/(b(a)(1+'Y)) = K'Y/((1-(1-a)c)(1+'Y)) and 'Y := 2rja2. 
The optimal stopping time for (5.8), which is called optimal exercise time, is 

Ta(w) := inf{t I St(w) ~ s(a)} = inf { t I (r- ~2 )t + aWt(w) =In ( s~))}. 
(25) 

Hence we put a fuzzy goal 

{ 1 - e-0 ·2"' x > 0 
cp(x) = 0, 'x < 0. (26) 
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Then we obtain the grade (13) of the fuzzy expectation of the optimal fuzzy 
reward VY by a* = E(VY) = sup{a E [0, 1]1 cp-;;_ ~ VJ'•+}, where cp-;;_ = 
-0.2-1 ln(1- a) for a E (0, 1). Assumption B is clearly fulfilled. Now put 
(}' = 0.25, r = 0.05, c = 0.1, y = 30 and K = 35. We can easily calculate 
that the grade of the fuzzy expectation of the optimal fuzzy reward is a* ~ 
0.805073, This grade means the degree of writer's's (seller's) satisfaction in 
pricing. The optimal expected payoff (7) is x* = cp-;;_. = -o.2-1 log(1- a*) ~ 
8.17566, which is the optimal expected price of the American put option. 
Then the optimal stopping time (15), which is the optimal exercise time for 
(20), is T*(w) = Ta•(w) = inf {t ~ 0 I -0.45t + Wt(w) = ln(s(a*)/10)} with 
s(a*) ~ 21.9667 (Fig. 1). 

ct 

1 

a,~ 

0.6 

0.4 

0.2 

~~~~--L-~~~~--~~---x 
5 6\ 1 7 

x x' 

Fig. 1. Optimal fuzzy reward VY ( x) and fuzzy goal cp( x). 
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Abstract. This paper proposes a new methodology for conJomt analysis by 
fuzzifying the rank or the rating data. The fuzzy conjoint model is solved as a 
fuzzy regression problern assuming the error term to be a random fuzzy variable. 
The paper investigates whether or not the proposed fuzzy conjoint model is 
superior to its non-fuzzy counterpart. A test of superiority is carried out on a real
life example. lt appears that the choice of the membership function is extremely 
critical for the superiority of the fuzzy model. The author conjectures that if the 
membership functions could be estimated directly from the respondents, the 
performance of the fuzzy model would definitely improve. 

Key words: Conjoint analysis, fuzzy data, fuzzy regression, marketing research, 
management. 

1 lntroduction 

Conjoint analysis also called "trade-off analysis" helps to fathom how people 
make complex decisions. The basic assumption underlying the technique is that 
complex decisions such as purchase decisions are based not on a single factor or 
criterion, but on several factors "considered jointly". This technique enables the 
researcher to get inside the head of the consumer and observe how decisions are 
made. 

Typically, in a conjoint study, the consumer is presented with a series of 
choice decisions about products or services. The method uncovers the consumer's 
"preference structure" from his overall rating or rankings of the 
products/services/ideas in a realistic manner. 

Conjoint analysis computes the relative importance of various product 
attributes indirectly by asking respondents to make choices similar to those they 
confront in the marketplace in the context of specified range of variation, and by 

. making trade-offs. Hence, to the extent real differences in importance exist, 
conjoint analysis more accurately captures those differences. 

The basic conjoint methodology uses two broad classes of statistical 
techniques, viz., (Fractional) Factarial Design and the Multiple Regression with 
Dummy variables or Monotone Analysis of V ariance (MONANOV A). The former 
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is used to design the "Stimuli" which are presented to the respondents for their 
rating or ranking, while the latter is used for estimating the respondent' s utility 
values for different levels of each factor. For the estimation of the utility values, 
Multiple Regression is used when the data are collected in the form of rating, 
while MONANOV A is used when the data are ordinal in the form of ranks, which 
are converted to continuous variables by some suitable monotonic transformation. 

The basic assumption in a conjoint study is that the respondents would be able 
to rate or rank the "stimuli" with sufficient accuracy. Typically, a labelled rating 
scale is used with labels such as "Most Preferred", "Moderately Preferred", 
"Preferred", "Not Very Much Preferred", and "Least Preferred". Sirnilarly, for 
rank ordering, the respondent is asked to give the highest rank to the "Most 
Preferred" stimulus, and lowest rank to the "Least Preferred" one. In both the 
cases it is evident that there is a great deal of ambiguity or vagueness in the way 
the data are collected. Further, in the depiction of the stimuli the attributes and 
sometimes their levels are described in linguistic terms that are intrinsically fuzzy. 
This is the prime motivation for using fuzzy set theory to model the rank or rating 
data collected in a conjoint study. 

The paper is divided into a number of sections. The following section 
discusses the conjoint models with crisp data. The next section briefly outlines the 
concepts of fuzzy sets and random fuzzy variables. Section 3 discusses one 
regression model with fuzzy data. A method for ranking of fuzzy numbers is 
outlined in section 4. Section 5 describes the steps for conducting the fuzzy 
conjoint analysis. The new fuzzy conjoint model is compared with its non-fuzzy 
counterpart with the help of a real-life example in section 6. The last section 
concludes with a summary and scope for future work. 

2 Conjoint model with crisp data 

Let 
p = number of attributes 

q i = number of levels of the ith attribute 

U = overall utility of a stimulus (an alternative) 

X·· = {1 ~f~- th leve·l~f the i- th attribute is present in the stimulus, 
I} l -1, ... , p, j -1, ... , qi 

0 otherwise 

Wii = the part-worth contribution or utility associated with the j-th level 

( j = 1, ... , qi) of the i-th attribute ( i = 1, ... , p ) 

The basic crisp conjoint model may be represented by the following equation: 

(1) 
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There are several procedures for estimating the basic model. The simplest and the 
one that is gaining popularity is the OLS regression with dummy variables, 
wherein the qi attribute Ievels are represented by qi - 1 dummy variables. If ratings 
are obtained, they are assumed to be interval-scaled and form the dependent 
variable. If the data are in the form of rankings (nonmetric}, they are converted to 
0 or 1 by making paired comparisons between stimuli. Other procedures that are 
suitable for nonmetric data include LINMAP, MONANOV A, and the LOGIT 
model. 

3 Fuzzy sets and fuzzy random variables 

3.1 Zadeh's fuzzy sets 

Definition: A fuzzy subset A e .r of Rd is defined by its membership function f.LA: 
Rd -7 [0, 1]. The number f.LA (x) is called the degree of membership of x e Rd 
betonging to the fuzzy set A. The subset of Rd 

[A]a={xe Rd:f.LA(x);;::a};ae (0, 1] (2) 

is called the a-level set (or a-cut) of A. The support of Ais denoted by [A]0 = 
Ua>O[A]a. 

The set of all normal compact convex fuzzy subsets of Rd is denoted by .red• 
i.e., any fuzzy set A e .r/ with membership function f.LA: Rd -7 [0, 1] satisfies 

i) Ais normal, i.e., [A]1 = {x e Rd: f.LA (x) = 1 }is non-empty, 
ii) for a e (0, 1], the <X-level sets of Aare convex and compact. 

Note that <X-level sets are nested, i.e., for 0 :5 a :5 ß :51, [A]~ ~ [A]a. Each 
sequence { [A]a}a>o of nested non-empty compact convex sets defines uniquely a 
fuzzy set A e .r/ with 

(3) 

3.2 LR-fuzzy numbers 

An important subset which can be shown to be a closed subspace of .rc is the class 
.rLR of LR-fuzzy numbers 

<m, [, r>LR = m - [AL+ rAR , (4) 

where AL andAR are fuzzy numbers with <X-cuts [ALla = [0, L <-n (a)] and [AR] a = 
[0, R <-1> (a}], for a e (0, 1]. Here L, R: R + -7 [0,1] are fixed left-continuous and 
non-increasing functions with L (0) = R (0) = 1, and L <-1> (<X)= sup{x e R: L (x);;:: 
a}, and R (-!) (a) = sup{x e R: R (x);;:: a}. The functions L an Rare called the left 
and right shape functions, m the modal point and l, r ;;:: 0 are respectively the left 
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and right spreads of the LR-fuzzy number. The a-level sets of an LR-fuzzy 
number A = <m, l, r>LR are given by 

[A] a = [m- lL <-1> (<X)+ rR <-1> (<X)], <XE (0, 1]. (5) 

lf l > 0 and r > 0, then the membership function of an LR-fuzzy number A is 

L(m~x) if x<m 

Jl A (x) = 1 if x = m ( 6) 

R( x~m) if x>m 

The advantage of LR-fuzzy numbers is that + and • can be defined by simple 
Operations with respect to the parameters m, l, r 

3.3 Triangular Fuzzy Number (TFN) 

if A.>O 
if A.<O 
if A.=O 

A triangular fuzzy number (TFN) is a specia1 case of LR-fuzzy number with 

L (x) = R (x) = max {0, 1 - x}. 

0 m-l m m+r 

(8) 

(9) 

lt is easily seen that the <X-level sets of triangular fuzzy number A = <mA, lA, 
rA>LR are given by 

[A]a = [mA- lA (1- <X), mA + rA (1- <X)], <XE (0, 1]. (10) 

The Steiner point of a convex set can be viewed as its "middle" point. Using 
this point some problems can be separated into a problern of location and a 
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problern of shape. This point is in general different from the modal point as well 
as the point of gravity. The Steiner point of a TFN is given by 

(11) 

The bestlinear estimate approach (discussed later) of fuzzy regressionproblern 
is based on the concept of Steiner points of fuzzy numbers. 

3.4 ~h-distance of LR-fuzzy numbers 

The 82-distance of two LR-fuzzy numbers A = <mA, lA, rA>LR and B = <m8 , 18 , 

rs>LR is defined as 

where 

8:?' (A, B )= (m A - m8 ) 2 + II AR II~ (rA - r8 ) 2 + II AL II~ (l A -l 8 ) 2 

+2(mA -m8 ~1 AR 11 1 (rA -r8 }-ll AL 11 1 (lA -18 )) 

I I 

(12) 

IIALII~=1f(c1 (a)Yda, IIALII 1 =1J(c1 (a)~a (13) 
0 0 

For triangular fuzzy number, it is easily seen that 

2 2 1 1 
IIARII 2 =11ALII 2 ="6 and IIARII1=IIALII1=4 (14) 

3.5 Random LR-fuzzy numbers 

Let m, land r be three real-valued random variables with P [l;;:: 0] = P [r;;:: 0] = 1. 
A random LR-fuzzy number is defined by X = <m, l, r>LR. By linearity of the 
expectation, the expectation E(X) of a random LR-fuzzy number Xis againan LR
fuzzy number 

E(X) = E(m)- AL E(l) +AR E(r) 
or (15) 

E(X) = < E(m), E (l), E(r)>LR· 

And using the 82-distance, the variance ofrandom LR-fuzzy number Xis given by 

Var(X)=Var(m)+ll AL II~ Var(t)+ll AR II~ Var(r) 

-211AL 11 1 Cov(m,l)+211AR 11 1 Cov(m,r) 
(16) 

For a random triangular fuzzy number X, the formula for variance reduces to 
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Var (X)= Var (m) + 1/6 [Var (l) + Var (r)] + Y2[Cov (m, r)- Cov (m, /)]. (17) 

4 Fuzzy regression 

A classicallinear crisp regression model is defined as 

(18) 

where Y, X 1 , •.. ,X m are all crisp and e- N (0, cr2). 

When Y1 , ... , Yn are fuzzy numbers but X Ii , .•. ,X mi for i = 1, ... , n are all crisp, 
several approaches have been considered. Ping-Teng and Lee considers a model 
with error term as well as the regression coefficients as fuzzy numbers. In the 
second approach (extended classical and least square), the error term is random, 
while the regression coefficients are fuzzy numbers (Körner). The third approach 
(best linear estimate) considers a model with regression coefficients as crisp 
numbers but the error term is a random fuzzy variable (Körner). Although the least 
square approach has some theoretical advantage over the best linear estimate 
approach, the latter is easier to implement and performs, in terms of coefficient of 
determination, as well as the former. Further, this approach is statistically 
comparable to crisp conjoint analysis. Hence it is decided to use the best linear 
estimate approach for fuzzy regression in this paper. A brief description of this 
method is given below. 

4.1 Best linear estimate approach 

In situations where Y1 , •.. , Yn are fuzzy numbers but X Ii , •.• ,X mi for i = 1, ... , n are 
all crisp, one way to model the regression problern is 

Y = a1X1 + .... + am Xm + ~. (19) 

where ~ is a random fuzzy variable with E( ~) = B E !fc. 

If we assume that each Yi is an LR-fuzzy number, i.e., Yi = <yi, 1;, r;>LRfor i = 
1, 2, ... , n and E(~) = B = <b, 18, r8>LR, it can be shown (Körner) that 

j=i -'-------------, i = 1, ... , n (20) 

n 

h =a-y- :Laixi-rsaAR +lbaA1 , ib =Lr8 =r (21) 
j=l 
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where er y, er Y;, er AR , er AL denote the Steiner points of the fuzzy numbers Yh Y, 

AR and AL respectively. f we further assume that each Y;, i = 1, ... , n and B are 
triangular fuzzy numbers then 

1 1 ( ) - 1 (- -) crA =crA =- andcr =y.+- r.-/. er =y+- r-l 
R L 4 ' Y; I 4 I I ' y 4 (22) 

5 Ranking of Fuzzy Numbers 

The final output of the above regression will be fuzzy numbers. W e need to 
convert them to crisp ranks so that they could be compared with the original ranks 
obtained in a conjoint study. There are several methods for ranking triangular 
fuzzy numbers. The weighted method (Chui and Park) is not tedious and require 
simple calculations. Under this method each number is first evaluated by using the 
expression: 

where Ei is the evaluation of the jth number, and W1i and W2i weights. Chui and 
Park note that "a common practice is to make W1i = 1 and W2 i = 0.3 if the 
parameter mi is important, otherwise W1i = W2i = 0.1". The ranking criterion for 
this method consists of arranging the Ei in a descending order. The number with 
the largest Ei is selected as the most preferred number. 

6 Conducting fuzzy conjoint analysis 

Stepl: The ranks obtained through a conjoint experiment are fuzzified. This is 
done by representing each rank by a TFN. As has been seen above, a TFN can be 
defined by three numbers, viz., the modal value and the left and right spreads. The 
modal value and the left and the right spreads are computed using an approach for 
conversion of ranks into numeric scores. 

This approach (Green et al, p. 299) assumes that true difference between 
adjacent objects ranked near the extremes tend to be larger than difference 
between objects falling near the middle in rank. Relative differences among 
ranked objects can be viewed as differences between Z values at the boundary 
points of N-1 equally likely intervals in the midrange of anormal distribution. The 
interval between each adjacent pair of ranks is defined as an interval 
corresponding to 100/N of cases in a normal distribution. Finally, 100/2N is 
arbitrarily set as the percentage of cases in a normal distribution to be cut below 
the value of the object ranked 1 and above the value of the object ranked N. 
Operationally, this amounts to converting rank j to <I>-1((j - 0.5)/N), where <I>(.) 
represents the left tail cumulative distribution function of the standard normal 
distribution. 
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Rankj is represented by a TFN Ai = <mj, lj, rj >LR, where 

mj = <P"1((j- 0.5)/N), mj- lj = c:p-l((j- k- 0.5)/N), 
mj + rj = <P"1((j + k- 0.5)/N),j = 1, ... , N. 

(24) 

The value of k can be varied between 0 and N to obtain different TFN representing 
rankj. These TFNs will have samemodal value but varying 1eft and right spreads. 
Whenever j - k is 1ess than 1, it is replaced by 1, and similar1y, when j + k is more 
than N, it is replaced by N. 

Step2: Steiner points are computed for each respondent for the fuzzified ranks 
for all the concepts using formula (11). 

Step3: For each respondent, OLS regression is applied with Steiner points as 
the dependent variable and the dummy variables of the crisp conjoint model as the 
predictor variables only for the concepts earmarked for model estimation. 

Remark 1: The above regression directly gives the estimates of ai. The estimate 
of b can be obtained by adding the last two terms to the estimate of the constant 
obtained from the regression. 

Remark 2: The estimates from the fuzzy regression model can be written as 

Yj = Iaixij+(h.l.r) =(Iaixij+h.l.r) (25) 
i=l LR i=l LR 

Note that the left and the right spreads are constant (eqn. 25) for all the estimated 
triangular fuzzy numbers. As these estimated TFNs will be ranked using the 
weighted method, the left and the right spreads will not affect their ranking. 
Further note that the last two terms in the estimate of b ( eqn. 21) can also be 
removed without affecting the ranking of the estimates of Yi· 

Step4: In view of the above remarks, the crisp predicted values obtained from 
the regression in step3 are directly ranked to obtain the estimated ranks. 

Step5: Kendall's tau, which measures the strength of association between two 
sets of rank data, is computed to test the goodness of fit of the estimated fuzzy 
conjoint model and also to compare it with the crisp conjoint model. Obviously, 
the higher the Kendall's tau coefficient, the better the model fit. 

7 A real-life example 

The study is concerned with one 
product category called "health drink" 
which is described by six attributes. 
The attributes and their Ievels are 
shown in Table 1. A total of 20 product 
concepts are generated using fractional 
factorial design, 16 of which are used 
for estimation of model parameters and 

Table 1· Attributes and their Ievels 
Attributes Levels 

Flavor Chocolate, Elaichi. Plain 

Euere:v Low, Medium, Hie:h 

Solubilitv Low,High 

Color White, Brown 

Nutrition Low, Medium, High 

Price/ke: 174,198,225,250 
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4 for cross validation. A sample of 50 respondents from the institute campus is 
asked to rank the 20 product concepts on the basis of their purchase intentions. 
The concepts are presented to them using the "Full profile approach". 

The parameters of the crisp conjoint model are estimated for each respondent 
using the CONJOINT procedure of SPSS. The procedure reconstructs the ranks of 
all the concepts used for the estimation as weil as for cross validation. The 
reconstructed ranks are compared with the original ranks using Kendall's tau. 
Respondent wise Kendall's tau values, Tau_con, for the crisp conjoint model are 
given in the second column of Table 2. 

Next the fuzzy conjoint analysis is carried out. Seven sets of TFN are used by 
varying the left and right spreads. This is done by varying the value of k in 
equations (24) between 0 and 6. 

The results of comparison of Kendall's tau between crisp and fuzzy conjoint 
model are shown in Table 2 where : * denotes fuzzy conjoint model performs 
better than crisp conjoint model (30 cases), ** fuzzy conjoint model is as good as 
crisp conjoint model (13 cases), *** fuzzy conjoint model is worse than crisp 
conjoint model (7 cases). Figures in bold indicate the maximum value of 
Kendall's tau obtained in fuzzy conjoint analysis. 

The corresponding Kendall's tau coefficients are given columns 3 to 9 of 
Table 2 (e.g., Tau3 refers to the Kendall's tau coefficient corresponding to TFN 
with k = 3). 

On the basis of Kendall's tau coefficient, it is observed from Table 2, that in 
30 out of 50 cases, fuzzy conjoint model gives better result, 13 cases are as good 
as the crisp conjoint model, while in the remaining 7 cases it is worse. In the cross 
validation sample, 66% cases have correct first choice for the fuzzy model as 
compared to 56% in the crisp model. 

8 Conclusion 

A new methodology for conjoint analysis by fuzzifying the rank or the rating 
data has been proposed in this paper. A step-by-step procedure for conducting 
fuzzy conjoint analysis is given. The fuzzy conjoint model is compared with its 
non-fuzzy counterpart through a real-life example. As for the estimation of model 
parameters, the fuzzy conjoint model performs better than the crisp conjoint model 
in 60% of the cases. It performs equally weH as crisp model in 26% of case, while 
it is worse in 14% of the cases. As expected, it is also observed that the 
performance of the fuzzy conjoint model is critically dependent on the choice of 
the membership functions or TFN for the fuzzified rank. Turksen and Willson use 
a methodology to estimate the individual respondent's membership function 
directly from the respondents in a similar study. They used the vector conjoint 
model rather the part-worth or utility model used in this paper. The author 
conjectures that if the membership functions could be directly elicited from the 
respondents and their approximations are used in the proposed fuzzy conjoint 
model, then its performance would be uniforrnly superior to that of the crisp 
model. The least square approach should also be explored for conducting fuzzy 
conjoint analysis to see if it gives better results or not. 
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T bl 2 C a e : fK dall' en ompansono b s tau etween cr1sp an df d I uzzv comomt mo e 

Res.No. Tau con TauO Tau1 Tau2 Tau3 Tau4 TauS Tau6 
1 0.867* 0.883 0.883 0.883 0.883 0.883 0.867 0.883 
2 0.85* 0.817 0.817 0.850 0.867 0.867 0.833 0.833 
3 0.95*** 0.917 0.917 0.917 0.933 0.933 0.933 0.917 
4 0.85** 0.800 0.800 0.833 0.850 0.833 0.800 0.833 
5 0.912* 0.933 0.933 0.917 0.917 0.883 0.883 0.933 
6 0.383* 0.417 0.400 0.383 0.383 0.367 0.383 0.383 
7 0.833** 0.833 0.833 0.833 0.833 0.817 0.817 0.833 
8 0.583** 0.583 0.550 0.533 0.533 0.533 0.533 0.517 
9 0.983** 0.983 0.983 0.983 0.983 0.983 0.983 0.983 

10 0.817* 0.900 0.883 0.883 0.850 0.883 0.867 0.850 
11 0.933** 0.933 0.933 0.933 0.933 0.933 0.933 0.933 
12 0.7* 0.733 0.717 0.717 0.717 0.700 0.683 0.717 
13 0.833* 0.833 0.817 0.833 0.833 0.867 0.867 0.833 
14 0.819* 0.833 0.800 0.783 0.783 0.783 0.783 0.817 
15 0.862* 0.833 0.850 0.850 0.850 0.867 0.833 0.833 
16 0.807* 0.817 0.817 0.800 0.783 0.783 0.817 0.767 
17 0.55* 0.567 0.550 0.567 0.567 0.583 0.567 0.567 
18 0.95* 0.950 0.950 0.933 0.933 0.933 0.967 0.950 
19 0.833* 0.850 0.850 0.850 0.850 0.833 0.833 0.850 
20 0.733* 0.767 0.767 0.750 0.733 0.733 0.750 0.750 
21 0.9* 0.883 0.900 0.883 0.883 0.900 0.917 0.900 
22 0.667* 0.650 0.683 0.683 0.650 0.617 0.617 0.633 
23 0.883** 0.850 0.833 0.833 0.850 0.850 0.867 0.883 
24 0.941 *** 0.917 0.917 0.917 0.900 0.917 0.917 0.917 
25 0.9* 0.917 0.917 0.917 0.900 0.900 0.900 0.900 
26 0.678* 0.667 0.683 0.667 0.683 0.700 0.667 0.667 
27 0.778* 0.717 0.717 0.717 0.750 0.783 0.750 0.783 
28 0.795* 0.817 0.800 0.817 0.800 0.817 0.817 0.783 
29 0.85** 0.817 0.850 0.850 0.850 0.833 0.850 0.850 
30 0.867* 0.867 0.850 0.850 0.867 0.883 0.883 0.867 
31 1*** 0.950 0.950 0.967 0.950 0.967 0.950 0.950 
32 0.9* 0.833 0.833 0.850 0.867 0.900 0.917 0.900 
33 0.817*** 0.767 0.767 0.783 0.767 0.767 0.783 0.783 
34 0.9** 0.900 0.867 0.850 0.867 0.850 0.850 0.867 
35 0.795*** 0.750 0.767 0.767 0.767 0.767 0.750 0.733 
36 0.517** 0.517 0.500 0.483 0.467 0.500 0.500 0.483 
37 0.833** 0.817 0.817 0.817 0.833 0.800 0.800 0.800 
38 0.86*** 0.800 0.817 0.817 0.833 0.800 0.800 0.783 
39 0.917* 0.933 0.933 0.933 0.933 0.950 0.917 0.917 
40 0.695* 0.700 0.650 0.650 0.633 0.650 0.667 0.667 
41 0.857* 0.850 0.867 0.850 0.867 0.850 0.833 0.833 
42 0.933* 0.967 0.967 0.967 0.983 0.983 0.950 0.950 
43 0.783** 0.767 0.767 0.783 0.767 0.783 0.783 0.783 
44 0.745* 0.750 0.750 0.767 0.767 0.767 0.767 0.767 
45 0.577* 0.567 0.567 0.567 0.583 0.583 0.600 0.600 
46 0.883** 0.867 0.867 0.867 0.867 0.883 0.867 0.850 
47 0.778* 0.767 0.783 0.783 0.783 0.783 0.767 0.733 
48 0.9* 0.883 0.883 0.900 0.933 0.917 0.917 0.917 
49 0.817** 0.817 0.817 0.817 0.817 0.817 0.817 0.817 
50 0.7*** 0.683 0.667 0.683 0.683 0.667 0.633 0.650 
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Abstract. The paper shows how the grade methods (correspondence-cluster anal
ysis and overrepresentation maps) can help in analysis of data, which consists of 
repeated mesurements for a set of objects. Their usefulness will be discussed on 
a real data example. The analyzed data describe how the Polish retail firms use 
capital sources and what are their economic conditions. 

1 Introduction 

This paper tries to call the reader's attention to some features characteristic 
of grade methods. On one hand, there is a strict formalism on which grade 
methods are based. Short review of basic ideas and formulas is given in the 
next section. 

On the other hand, this formalism can be applied to data which have a 
different meaning than the formalism assumes. The data, however, must fulfill 
the mathematical conditons. One may say that the formalism is applied very 
"softly". Also the results provided by the grade methods are expressed for
mally. Nevertheless, they can provide a description of relations (dependence 
structures) expressed very "roughly" (i.e. without definitions of equations or 
regression functions). For data which can not be precisely measured (i.e. so
cial and psychological sciences) strict formulation of complex, multivariate 
relations is often impossible and not always necessary. Very often practition
ers are satisfied given a general trend only, which can be very helpful in 
explanations of complex phenomenon. All these remarks will be illustrated 
by the results of the application of the grade methods to an analysis of real 
data concerning Polish retail trade firms and described in Sec. 3. 

2 Basic ideas of the grade correspondence-cluster 
analysis (GCCA) 

The basic notions of the grade correspondence analysis and the dustering 
method is based on it, were presented in several papers, e.g. (1], (2). Referring 
interested readers to them we recall now only a few ideas which are necessary 
for understanding this paper. 
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• The input data table, after appropriate normalization, must have the 
form of a bivariate probability table. Any two-dimensional table with non
negative values can be easily transformed into this form. The transformed 
table will be denoted by P = (Pi,j), i = 1, ... , m; j = 1, ... , k. Due to the 
universal form, data structures can be expressed in terms of stochastic 
dependence between marginal (row and column) variables, say X and Y, 
irrespective of the data table contents. 

• Instead of categorical variables X and Y, the pair of continuous variables 
(X*, Y*) defined on [0, 1] x [0, 1] is eonsidered. The density h of the new 
distribution is eonstant and equal to hij = Pij / (Pi•P•j) on any reetangle 

{(u, v): sf_1 < u ~ Sf and s;_1 <V~ SJ} 

where Sf = 2:;=1 Pl•, SJ = 2:1=1 P•l and Pi• = 2:~=1 Pil, P•j = 2:;:1 Plj 
for i = 1, ... , m; j = 1, ... , k. This density is called the randomized grade 
density of (X, Y). The joint distribution of (X*, Y*) is called the copula 
of (X, Y). Copulas are bivariate distributions on [0, 1] x [0, 1] with uniform 
marginals (literature on eopulas is enormaus- see eg. [4]). Evidently, X* 
and Y* are each uniform on [0, 1]. 

• Any ehange in permutations of rows and eolumns of the data table ( cate
gories of X and Y) affects values of Sf and SJ and consequently changes 
the eopula. 

• The overrepresentation map serves as a very eonvenient tool for visuali
sation of data structures. Every cell in the data table is represented by 
the respeetive reetangle in [0, 1] x [0, 1] and is marked by various shades 
of grey, which eorrespond to magnitudes of the randomized grade den
sity. The value range of the grade density is divided into several intervals 
(five are used in the paper). Eaeh eolour represents a partieular interval; 
the black corresponds to the highest values, the white - to the lowest. As 
grade density h measures deviation from independence of variables X and 
Y, dark colours indicate overrepresentation (h > 1), light colours show 
underrepresentation ( h < 1). Widths of rows ( columns) refl.ect respective 
marginal sums. 

• The randomized grade correlation eoefficient p*(X, Y) = cor(X*, Y*) 
measures dependenee between variables X and Y; for discrete variables 
it is equal to Schriever's extension of Spearman's rho (cf. [5]). Coeffi
cient p* may be expressed by various equivalent formulas. The one most 
convenient in eorrespondence and duster analysis is the following: 

p*(X, Y) = 611 
(u- C*(Y: X)(u))du = 611 

(u- C*(X: Y)(u))du, 

where C*(Y : X)(t) = 2 J0
1 r*(Y : X)(u)du is called the randomized 

grade correlation curve and r*(Y : X)(t) = E(Y* I X* = t) is the 
randomized grade regression function. 
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• The grade correspondence analysis (GCA) mronm1zes positive depen
dence between X and Y (measured by p*) in the set of all permutations 
of rows and columns of the data table (categories of X and Y). Let us 
note that due to the optimal permutations, there is no need to assume 
any particular form of this dependency. The important property of the 
GCA is that similar rows as well as columns are always placed close to 
one another. In this case, the values of the regression functions r* can 
serve as a similarity measure, because both regressions: r* (Y : X) and 
r*(X : Y) are nondecreasing for the optimal permutations ((2]). The 
overrepresentation map of the data table, which has optimally permuted 
rows and columns with strong dependency, shows tendency to group all 
dark rectangles along the diagonal of the unit square. 

• The grade duster analysis (GCCA) is based on optimal permutations 
provided by the GCA. Assuming that numbers of dusters are given, rows 
and/or columns of the data table (categories of X and/or Y) are opti
mally aggregated. The respective probabilities are the sums of component 
probabilities, and they form a new data table. In this case, optimal dus
tering means that p*(X, Y) is maximal in the set of these aggregations of 
rows and/or columns, which are adjacent in optimal permutations. The 
rows and columns may be aggregated either separately (i.e. we maximize 
p* for aggregated X and nonaggregated Y or for nonaggregated X and 
aggregated Y), or simultaneously. In this paper, only the first method is 
used. Details concerning the maximization procedure can be found in (1]. 

3 The use of capital sources by retail trade firms in 
Po land 

The data table analyzed here, came from the research of dr A. Mielczarek 
from the Institute of Horne Market and Consumption in 1999. The aim of 
this researchwas to detect: 

• which capital sources are preferable by what kind of firms, 
• what were the effects of the choices on the firms economic condition, 
• whether detected structures (relations) are stable in time. 

The questionaire which was used induded questions of two kinds. The first 
group characterized various forms of capital sources obtainable in Poland. 
The second group provided information about inner capital stuctures of the 
analyzed firms and their profitability. The list of all questions used in this 
analysis is induded in Tab. 1. For all analysed questions, the firms provided 
answers for three consecutive years: 1996-1998. Due to technical reasons (no 
missing data were admissible), the initial data table was restricted to those 
firms which provided a complete set of answers. In consequense, the sample 
used is composed of 66 firms (rows in the data table). 



269 

Table 1. Analyzed questions 

Nurober Description I Nurober Description 

Pl Generation of financial surplus P7 Bank credit 

P3 Profitability Ievel Pll Credit guaranty fund 

P4 Share of firro's own capital P12 Expansion of partner base 

P5 Share of long-terro obligations P15 Leasing 

P6 Share of retail obligations P19 Factoring 

4 Typology for pooled, three-year data 

The grade correspondence analysis (GCA) applied to the data descibed above, 
revealed its two specific properties. First, variables which correspond to the 
same question, however concerning different years, are usually placed one af
ter the other. The only exceptions were questions P12 and P19. This means 
that the similarity within years is much stronger than the similarity among 
particular questions (the effect is invariant from the years). 

The second observation is that two questions: P19 and P1 provide numer
ous exceptions from the monotonicity rule (there are many dark rectangles 
far away from the diagonal). It seems that these questions form outliers in 
this structure. The deletion of one of them from the data table increases the 
value of the maximal correlation coefficient p*. After removal of both, the 
maximal p* increases from the initial value 0.2233 to 0.2502. As the removal 
of significant variables diminishes dependence in the data table, this fact 
confirms that both of these questions are not strongly correlated with the 
revealed structure. Therefore, they are not taken into account in the further 
analysis. 

It is interesting that the optimal permutation of remaining columns (vari
ables) did not change, and was the following: P15(97), P15(98), P15(96), 
P7(98), P7(96), P7(97), P5(96), P5(97), P5(98), P6(97), P6(98), P6(96), 
P4(96), P4(97), P4(98), P12(96), P11(96), P11(97), P11(98), P12(97), P12(98), 
P3(98), P3(97), P3(96). The corresponding overrepresentation map is shown 
in Fig. 1. It dearly shows, that similar firms are placed dose to one another. 
To an optimally arranged data table, the grade duster analysis was applied. 
The horizontal lines in Fig. 1 mark the boudaries of particular dusters. In 
this case three was chosen as the number of dusters . 

The distribution of dark and light rectangles provides an easy interpre
tation of generated dasses. Comparative analysis of the average values of 
variables in the particular dusters (shown in Tab. 2) confirms this interpre
tation: 

• CLUSTER 1: In this duster firms are characterized by the greatest num
ber of leasing contracts (P15) and bank credits (P7), and the high share 
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Fig. 1. Overrepresentation map of the analyzed data table optimally arranged 

of obligations of both types (P5 and P6) . All these characteristics are 
linked with the lowest average profit (P3). 

• CLUSTER 3: Very low number of Ieasing contracts and bank credits; also 
very low share of obligation. However, the average profit is the highest. 

• CLUSTER 2: This duster is an intermediary Ievel between duster 1 and 
3. The numbers of Ieasing contracts and bank credits are lower than 
those in dass 1 and higher than those in dass 3. The same observation 
applies to the share Ievel of retail obligations and profitability. However, 
the long-term obligations are similar to those in dass 1. 

Let us note that the duster interpretation did not indude three questions: 
P4, Pll i P12. The reason is that their averages and distributions are very 
similar in all dasses. Moreover, the averages for questions P11 and P12 are 
very near to their maximal values. That means that they are almost constant. 
The maximal values denote in this case, that the respective capital sources 
were not used. In other words, credit guaranty funds and expansion of partner 
base are used very rarely by Polish firms. In consequence, all three questions 
were acknowledged as unsignificant in the generated typology. However, their 
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Table 2. Average values for the analyzed variables 

Questions Clusters All Questions Clusters All 

1 2 3 clust. 1 2 3 clust. 

P15(97) 1.65 0.78 0.00 0.85 P4(96) 2.26 2.04 1.65 2.00 

P15(98) 1.35 0.65 0.05 0.71 P4(97) 2.17 2.04 1.70 1.98 

P15(96) 1.39 0.74 0.10 0.77 P4(98) 1.96 2.00 1.70 1.89 

P7(98) 1.48 0.70 0.30 0.85 P12(96) 1.87 1.91 1.85 1.88 

P7(96) 1.39 0.61 0.40 0.82 P11(96) 1.96 2.00 2.00 1.98 

P7(97) 1.30 0.74 0.35 0.82 P11(97) 1.91 2.00 2.00 1.97 

P5(96) 2.43 2.09 1.15 1.92 P11(98) 1.91 2.00 2.00 1.97 

P5(97) 2.35 2.35 1.10 1.97 P12(97) 1.87 1.96 1.90 1.91 

P5(98) 2.39 2.39 1.10 2.00 P12(98) 1.83 1.91 1.90 1.88 

P6(97) 2.09 1.61 1.30 1.68 P3(98) 1.65 2.74 2.90 2.41 

P6(98) 2.13 1.70 1.30 1.73 P3(97) 1.87 2.65 3.20 2.55 

P6(96) 2.00 1.52 1.30 1.62 P3(96) 2.00 2.74 3.40 2.68 

behaviour should be interpreted with great care and verified in the future on 
a greater sample. 

Nevertheless, it should be noted that the quality of the presented typology 
is good, because the aggregation of the data table according to the duster 
analysis, diminishes the value of correlation coefficient only slightly - from 
0.2502 to 0.2215. That means, that the aggregation caused only a smallloss 
of information. 

5 Typologies for annual data 

The next step of the analysis was the application of the GCCA method to 
each of three data subtables. Every table contained data restricted to one year 
only. The optimal permutations of questions as weil as the maximal values 
of p* are shown in Tab. 3. The values of the correlation coefficients are very 
similar. The permutations for 1996 and 1997 are identical, the permutation 
for 1998 differs a little. Due to lack of space the respective tables of the average 
values for particular variables in each duster are not presented. However, the 
interpretation of particular typologies, which follows them, remains identical 
to the interpretation ofthat generated for the pooled, three-year data. (As 
before, three was chosen as the number of dusters.) Therefore, it may be 
said, that based on the interpretation, the typology provided by the GCCA 
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Table 3. Results of the GCCA for annual data tables 

Year Optimal permutations max p* 

1996 P15 P7 P5 P6 P4 Pll P12 P3 0.2540 

1997 P15 P7 P5 P6 P4 Pll P12 P3 0.2587 

1998 P7 P15 P5 P6 Pll P12 P4 P3 0.2620 

is stable in time, or in other words, there is the only one typology of firms, 
invariant from time. 

6 Relations between the generated typology and firms 
profitability 

Profitability level appeared to be one of the most important firm character
istics in the typology presented above. It occupies the extremal position in 
the optimal permutation of variables, what confirms its great discriminating 
power in firm discrimination. Although this role is constant in the analyzed 
years, that does not necessary mean, that firm profits are also stable. 

Once more, the GCCA method was applied, this time to the data table 
which induded only profit values (P3(96)-P3(98)). An interesting result is 
that the optimal permutation of variables is identical with the ordering of 
years. This suggests that some trend across time exists. This trend is de
scribed well by the result of duster analysis. Fig. 2 shows the overrepresen
tation map of the data table after optimal permutation with marked duster 
boundaries. The analysis of this map and the average profit in particular 
dusters leads to the following typology. 

• CLUSTER 1: It is formed by firms with gradual decreasing profits. More
over, this decrease is rather strong and the starting levels (in 1996) were 
comparatively high. 

• CLUSTER 2: Firms in this dass are characterised by differentiated prof
itability levels, which remain stable. 

• CLUSTER 3: It has opposite characteristics to duster 1. It indudes 
succesful firms with continually increasing profits. Moreover, these firms 
started from rather low levels. Unfortunately, this duster contains only 
seven firms. 

Now, let construct a new variable which describes firm memberships to par
ticular dusters for this typology. The similar variable is generated for ty
pology obtained for all questions. The maximal correlation p* between these 
variables is equal to 0.1867. However, the overrepresentation map of the re
spective contingency table is regular, without deviations from monotonicity. 
That means, that these typologies are correlated but dependence is not very 
strong. 
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Fig. 2. Overrepresentation map for profitability data table after GCCA 
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Abstract. The hydrocarbon reservoir data do not stem from a statistical designed 
experiment. Wells are drilled to pump oil and are sampled for data. In some cases the 
limits of the reservoir are not known beforehand from the geology. They have to be 
deterrnined from the well data as information becomes available. The uncertainty 
about geometry of the reservoir introduces a source of error. This justifies the 
use of stochastic approach, which generate a range of possible reservoir models, 
respecting the information that is available. Stochastic simulation is an algorithm 
that allow generatingmultiple realizations of a spatial process and conditioned to 
reproduce the sample values at their locations in space. Stochastic simulation can 
handle sparse, nongridded, and correlated data. This article presents an overview 
of petroleum reserves estimation methods and proposes a conditional simulation 
approach to assess the uncertainty of the reserves evaluation on a volcanic reservoir. 
Conditional Simulation seems to be a suitable tool for estimating the volume of 
hydrocarbon in place and to indicate local anomalies. 

1 Introduction 

The complexity of reservoir geometry and measurements uncertainty at the 
wells makes it difficult to perform error calculation of reserves evaluation. 
Stochastic simulation seems to be suitable tool for hydrocarbon reserves eval
uation. Spatial analysis of relevant parameters are provided in a simulation 
study of reserve estimation. Interpolation techniques can be used for reserves 
evaluation to calculate the volume of hidrocarbon in place, denoted by Q, is 
given by the integral (Delfiner, 1979) 

Top(x,y) 

Q = j j j So(x, y, z)rj;(x, y, z)dzdydx (1) 

X Y min (W L,Bot(x,y)) 

where W L = Water Level, Bot = Bottom, 4; = porosity, 80 = Oil Saturation, 
(x, y) = horizontal coordinates, z = depth. Numerical computation would 
require estimation of the hydrocarbon porosity 

rPh(x, y, z) = So(x, y, z)rj;(x, y, z) (2) 
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at the nodes of a 3-D grid limited by the reservoir boundaries. On account 
of the vertical heterogeneity of a reservoir, this would be a heavy task. A 
shortcut consists in reducing the problern to a 2-D by considering cumulated 
hydrocarbon porosities {jjh(x, y). Suppose 

[min [WL, Bot(x, y)]- Top(x, y)] x{jjh(x, y) = HcjJS0 (x, y) (3) 

where H = Thickness, (jjh = average hydrocarbon porosity, then 

Q = j j Hc/JSo(x,y)dxdy ~ LLHc/JSo(x,y) 
X y X y 

(4) 

It suffices to grid in 2-D the parameters H cjJS0 ( x, y) and sum over the grid 
points either by working on H cjJS0 ( x, y) directly or by gridding H, cjJ, S0 

independently and multiplying the grids. 
The first approach requires that measurements of H, cjJ, and So are avail

able for all wells. This is usually not the case and the second is preferred. 
The complexity of reservoir geometry and the fact that several parameters 
are involved makes it difficult to perform rigorous error estimations. 

When the boundaries of the reservoir are very imprecise then one must 
resort to the conditional simulation approach. Interpolation can provided the 
input grids for reservoir simulation models. The basic assumption in spa
tial model was to consider the phenomenon as a realization of a stochastic 
process. The smoothing effect of kriging will averaged out high and low val
ues. An integration of estimation and simulation is advocated to improve in 
estimation of recoverable reserves. The idea of simulation is to exhibit other 
possible realizations of the spatial process. Any interpolation methods gives 
a smoothed picture of reality, simulations display the same amount of spatial 
variability that can be expected from the actual phenomenon. 

In petroleum geology applications, kriging spatial interpolation has been 
used to predict porosity, thickness for reserves evaluation. Spatial interpola
tion can be too smooth to represent variations in porosity. Stochastic sim
ulation is becoming an important tool for uncertainty analysis in reserves 
evaluation. The basic idea of stochastic simulation is to generate realizations 
of the process { Z ( s) : s E D} that preserves the mean and covariance struc
ture. LetZ= (Z1, ... , Zn)' denote the values tobe simulated and let EZ = J.L 
and Var(Z) = E. Conditioning the simulation means forcing the simulated 
surface to pass through the data points. The conditional surface is obtained 
as 

Zcs(s) = Z(s) + ( Zs(s)- Zs(s)) (5) 

where Z(s) is the interpolated surface using data at locations s1 , ... , sn, 
Zs(s) is the simulated surface and Zs(s) is a interpolated version of the 
simulated process using Zs(s1 ), ... , Zs(sn)· Interpolator excact property of 
kriging implies that Zcs(si) = Z(si), i = 1, ... , n. 
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2 Sequential Gaussian Simulation 

Consider thejoint distribution of N random variables (RV's) Zi, i = 1, ... , N. 
The N RV's may represent the same attribute at the N nodes of a dense grid 
discretizing the field D. Consider the conditioning of these N RV's by a set 
of n data, symbolized by l(n). The corresponding N-variate ccdf is denoted: 

(6) 

Drawing an N -variate sample from the ccdf can be clone in N successive 
steps: 

- draw a value z~l) from the univariate ccdf of Z 1 given the original data (n). 
The value z~l) is considered as a conditioning datum for all subsequent 

drawings; (n + 1) = (n) uzl = z~1 >. 
- draw a value z~l) from the univariate ccdf of Z2 given the updated data set 

(n + 1), set (n + 2) = (n + 1) uz2 = z~l). 
- sequentially consider all N RV's Zi. 

The set { z~l) : i = 1, ... , N, l = 1, ... , L} represents a simulated joint 
realization of the N dependent RV's Zi. 

In sequential Gaussian simulation, each variable is simulated sequentially 
according to its normal ccdf. The conditioning data consist of all original 
data and all previously simulated values found within a neighborhood of 
the location being simulated. The conditional simulation of a Gaussian Z(s) 
proceeds as follows: 

1. Determine the univariate cdf Fz(z) representative of the entire study 
area. 

2. Using the cdf Fz(z), perform the normal score transform of z-data into 
a standard normal y-data 

3. Check for bivariate normality of the normal score y-data. 
4. If a multivariate Gaussian can be adopted for the y-variable, proceed 

with sequential simulation, 
• Define a random path that visits each node of the grid once. At each 

node s ,retain a specified number of neighboring conditioning data. 
• Use simple kriging (SK) with the normal score semivariogram model 

to determine the parameters of the ccdf of the Y(s) at location s. 
• Draw a simulated value yU) ( s) from that ccdf 
• Add the simulated value yU) ( s) to the data set 
• Preceed to the next node, and loop until all nodes are simulated. 

5. Backtransformed the simulated normal scores {yU>(s) : s E D} into the 
original variable {ß>(s) = p- 1 (s) : s E D}. If multiple realizations 
are desired { z(!) ( s) : s E D, l = 1, ... 1, L}, the previous algorithm is 
repeated L times. 
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3 Reserves Evaluation 

There are four techniques used for the calculation of reserves evaluation 
(Rani, Cheong, 1982). The selection depends on the number of control points, 
and geometry of the hydrocarbon accumulations. The minimum, most likely, 
and maximum of each of the basic reservoir parameters such as trap area, 
trap fill, oil trap fill, porosity, oil saturation are sampled using Monte Carlo 
simulation to obtain the in-place hydrocarbon. Normal, log normal, triangu
lar, uniform usually used as input to Monte Carlo simulation. The HcjJS0 is 
used when the reservoir in the development phase. Isoporosity, isopach and 
isohydrocarbon saturation maps are constructed, and these are then cross
contoured to obtain the H cjJS0 map. Porosity cjJ is the total available pore 
space between the rock grains which is occupied by oil, gas or water. Oil 
saturation 80 is the percentage of the pore space that is filled with oil. The 
trap area is the total prospect area that might contain oil or gas; the saddle 
between two structures. Part of the trap is filled with hydrocarbon and ex
pressed as a percentage of trap fill. The total hidrocarbon is the broken down 
to oil and gas percentages, and expressed as oil trap fill and gas trap fill. 
The net pay is the vertical thickness of reservoir rock that contains moveable 
hydrocarbon. 

The problern of reserves evaluation is different from classical statistical 
problem. The data obtained are not the result of a random sample. The 
measurements are made where it is economically feasible. The resulting mea
surements are not independent and identically distributed; the spatial corre
lation can be significant. Local anomalies are indicated on the countur plots 
by elliptic closed areas. The mapping of these closed areas on each contoured 
realization of the layer and the intersection of all these areas indicate the 
optimal location of a structural high. The number of intersecting closures 
and the variability of their location allows a ranking of favorable areas for 
drilling. Various attempts have been made in order to map potential oil traps. 
All methods focus in delineating structural anomalies favorable for oil accu
mulation. Kriging interpolation methods are able to detect local anomalies. 
Conditional simulation techniques are suitable to model small scale varia
tions of a spatial process and to indicate local anomalies by conditioning the 
simulated data to control points. It seems to be possible to localize and to 
estimate shapes and sizes of structural anomalies. Each realization of a re
gionalized variable defines areas of positive and negative closure. These areas 
may be random and disappear in the following simulation run or they may 
be stable in almost all simulation runs. 

The Jatibarang oil field is a fractured volcanic rock with 90 million n 3 

estimated recovarable reserves. The productive block covering an area of 5 
km x 5 km with 160 wells at 2000 m depth. The study area is divided into 
50 x 50 grids of 100 m x 100 m. The data used for the study have been 
extracted from internal drilling report. Wells were selected with porosity, 
thickness and oil saturation information (Fig. 1). Porosity is the available 
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pore space which is occupied by water, oil or gas. Oil saturation is the per
centage of the pore space that is filled with oil. Porosity and oil saturation 
are derived from core analysis. The hydrocarbon volume calculation meth
ods are based on nine reservoir parameters : trap area, trap fill , trap fill 
that is oil, geometric correction factor, thickness, formation volume factor, 
porosity, oil saturation, barreis per ac.ft. One sample Kolmogorov-Smirnov 
test of composite normality gives ks = 0.083, p- value = 0.16 for porosity, 
ks = 0.1179, p- value = 0.3 for thickness, and ks = 0.119, p- value = 0.28 
for oil saturation. All test concludes the acceptance of normal distribution 
for each reservoir parameter. 

Figure 4 displays the porosity x thickness x oil saturation distribution 
based on sequential Gaussian simulation on 50 x 50 grid of 150 m x 150 m. 
The plot gives some idea of distribution shape. The simulation result shows 
a similarity with the porosity-thickness-oil saturation plot (Fig. 2 and Fig. 
3). There appears to be a high porosity x thickness x oil saturation in the 
north part of the reservoir and low in the south part. It may be interesting to 
note that there exist a promising structure in the west-south part of the area 
with no drillhole in its neighbourhood. The question is to decide whether this 
structure is real or only a result of simulation. A restriction of the reservoir 
geometry would yield a better porosity-thickness-oil saturation visualizations 
and a more realistic reserves evaluation. 
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Fig. 2. Porosity-thickness saturation distribution 
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Fig. 4. Sequential Gaussian simulation of porosity-thickness saturation 

4 Summary 

The study reviews the methodology used in hydrocarbon resource assesment. 
WeHs are drilled to pump oil and are sampled for data. The reservoir data are 
not the result of a weil defined experimental design concepts, measurements 
are expensive and are made where it is technically feasible . The complex
ity of geologic structures and the geometry of the trap area are sources of 
uncertainty in potential reserves estimation. Sequential Gausian simulation 
seems to be a promising tool for estimating the resource assesment compared 
with Monte Carlo simulation techniques. A more detailed study on mapping 
potential oil traps is planned to obtain more quantitative results for volume 
estimates. The stochastic simulation techniques as used in reservoir charac
terization is relatively new, many of the statistical properties associated with 
this method have not been studied; spatial correlation sensitivity, comparison 
of simulation algorithms 

References 

1. Delfiner, P . (1979), Basic Introduction to Geostatistics, Ecole d 'Ete Fontainbleau 
CGMM. 

2. Deutsch, C . V, Journel, A. G. (1992), GSLIB: Geostatistical Software Library 
and User's Guide, Oxford University Press. 

3. Gotway, C. A. (1994), The Use of Conditional Simulation in Nuclear-Waste-Site 
Performance Assessment, Journal of the American Statistical Association, 36, 
129 - 141. 

4. Rani, A. M., Cheong, Y. C . (1982), In-Place Hydrocarbon Volume Calcula
tion Techniques, Proceeding of Monte Carlo Simulation and Related Subjects, 
Comittee for Co-ordination of Joint Prospecting for Mineral Resources in Asian 
Offshore Areas (CCOP). 



Improving the Quality of Association Rule 
Mining by Means of Rough Sets 

Daniel Delic, Hans-J. Lenz, and Mattis Neiling 

Free University of Berlin, Institute of Applied Computer Science, 
Garystr. 21, D-14195 Berlin, Germany 

Summary. We evaluate the rough set and the association rule method with re
spect to their performance and the quality of the produced rules. It is shown that 
despite their different approaches, both methods are based on the same principle 
and, consequently, must generate identical rules. However, they differ strongly with 
respect to performance. Subsequently an optimized association rule procedure is 
presented which unifies the advantages of both methods. 

1 Introduction 

Data mining methods are part of knowledge discovery from databases. Its 
objective is to extract nontrivial, beforehand unknown and potentially useful 
information. There exist several data mining procedures which differ in their 
methodology as weil as in their data types. 

In our work we focus on a comparison of the association rules with the 
rough sets. The association rule method was developed particularly for the 
analysis of large databases, whose attributes posses only Boolean values. The 
rough set method, however, investigates databases. Its attributes can posses 
several values with the constraint, that a predefined set of attributes must 
exist on which the generated rules are based on. In order to be able to make a 
fair comparison, both procedures should operate on the same data type. Our 
aim is to find out, which method is more efficient, and whether a combination 
of both methods improves the overall quality of unscrambled rules. 

2 Association Rules 

The association rule method was developed originally for the analysis of large 
databases of customer transactions. Each transaction consists of items pur
chased in a supermarket. In order to apply this method to data multi-value 
attributes, we defined the term item in a different way. 

2.1 Transforming Attributesinto Items 

An item combines the name (label) of an attribute with one of its possi
ble values. Each attribute has a finite set of values which is called domain. 
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Within a database each combination of attribute name and attribute value is 
distinguishable. Consequently, there exists a set A = { a 1 , a2, a3, ... , ap} with 
p E N items in a database. 

Example 1. To represent an attribute with binary domain we only need one 
item ai E {0, 1}. For example, for attribute 'spaghetti' with domain(spaghetti) 
= {bought, notbought} (i = 1) we set a 1 = 1 if spaghetti are bought (see Fig. 
1). 

Transformation: 

spaghettl_bought --> a1 
spaghetti_not bought --> a1 

Original relatlonal data with attributes 
TID andspaglletti 

Bitmap table with attributes 
TlliJand a1 

Fig. 1. Transformation of relational data into an efficient bitmap representation for 
attributes with binary domains. 

Example 2. For an attribute with no-binary domain, each attribute value 
corresponds to one item. For example, for attribute 'bloocLpressure' with 
domain(blood_ pressure) ={high, low, normal} (i = {1,2,3}) the following 
items result: a 1 = "bloocLpressure_high", a2 = "blood_pressure_ low" and 
a3 = "blood pressure normal" (see Fig. 2). 

Transformation: 
blood pressure_high --> a1 
blood pressure_/ow --> a2 
blood pressure_normal ··> a3 

Original relational data with attributes 
TID and blood pressure 

Bitmap table with attributes 
TJD, a1, a2 and a3 

Fig. 2. Transformation of relational data into an efficient bitmap representation for 
attributes with no-binary domains. 

Finally an association rule can be defined as follows: Given the subsets 
X c A and Y CA with XnY = 0, an association rule is an implication in the 
form X......, Y, with a confidence c (0:::; c::; 1) and a support s (0::; s :::; 1). 
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The confidence is a measure of how many tuples that contain X also contain 
Y. The support is the relative frequency of the set X U Y. 

2.2 Data Structure 'Bitmap' 

It is known from Database Theory that bitmaps are efficient data struc
tures (Jürgens/Lenz, 2001). Therefore the original relational schema has to 
be transformed into a bitmap table. The first column holds the primarykey at
tribute TID, each of the remaining columns contain a binary bitmap-attribute 
i.e. an item from the original data set (see Fig. 1 and 2). This structure is 
efficient, because the column-address of a bitmap-attribute doesn't change. 
Therefore it is possible to check very fast each tuple, by direct access for 
the appropriate column, whether the searched item is or is not available in 
the corresponding tuple of the original data set. If its present there is a '1', 
otherwise a '0' in the bitmap. 

2.3 Rules Derivation 

The procedure to generate association rules is based on the multi-pass-algo
rithm Apriori1 . The principle idea of this algorithm is to scan several times 
a database while searching for sets of items that occur in a sufficient large 
number. After each pass the number of items in those "large sets" is increased 
by one until all existing sets in the database are found. Subsequently the 
association rules are derived from these item sets. 

3 Rough Sets 

The rough set theory was introduced by Zdzislaw Pawlak 2 . It is a method for 
uneavering dependencies in data, which are recorded by relations. A detailed 
introduction to rough set theory can be found in Munakata (1998). 

3.1 Model 

The rough set method operates on data matrices, so called "information 
tables" (see Table 1). It contains data about the universe U of interest, con
dition attributes and decision attributes. The goal is to derive rules that give 
information how the decision attributes depend on the condition attributes. 

A prerequisite for rule generation is a partitioning of U in a finite num
ber of blocks, so called equivalence classes, of same attribute values by ap
plying an equivalence relation. For example, the equivalence relation Rt 
= { ( u, v) lu(blood pressure, temperature) = v(blood pressure, temperature)} 

1 See Agrawal/Srikant (1994). 
2 See Pawlak (1982). 
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Table 1. Information table. 

universe condition attributes decision attribute 
f)ei'S0/1 {l!ltl/Jf!J'(l[lll'e blood mvs:,;tn'e lleal'f/)rob/em 
Adams nomlal low no 
Bro•Ml normal low no 
Carter normal medium jes 
Ford high high .ies 
Oill high high no 
Be11ows medium medium ies 

leads to a partition of U into three equivalence classes U1 = {Adams, 
Brown},U2 = {Carter} and U3 = {Ford,Gill} (see Table 1). Given these 
classes, rules like e.g. "If temperature normal and blood pressure low then 
heart problern no." can be derived . Generally, no unique rule derivation is 
possible. For example, Ford and Gill have identical values of the condition 
attributes, but differ in their values of the decision attribute. In order to an
alyze such data, the concept of approximation spaces is used to determine 
the confidence of the derived rules. 

The quality of the extracted rules depends also strongly on the possibility 
of attribute reduction. Reducing the number of attributes in a dataset by 
removing the redundant ones is one of the main objectives of rough set theory 
and at the same time one of the main problems. Finding a minimal reduct is 
a NP-hard3 problem. Finding all reducts has exponential complexity4 . 

In our approach we try to reduce the computing time by applying the 
concept of reduct extraction directly to the produced rules, not to attributes. 
First, in order to generate strong rules, all rules which support and confidence 
values don't reach the given minimum threshold, are deleted. Second, the 
reducts are extracted. Suppose, there are two rules with same decision item 
and same confidence value, and their only difference is the set of condition 
items. The condition itemset of rule no 1 is a subset of the condition itemset 
of rule no 2. In this special case rule no 2 is redundant and can be deleted 
without having loss of information. 

3.2 Rough Set Based Rute-Generation with RS-Rules+ 

Besides the "classic" version of rule generation with a fixed decision attribute 
(cf. Table 1), our algorithm RS-Rules+ offers the possibility of varying the 
selected decision attributes of a table. Each attribute of the table will be in
cluded either as a decision or condition attribute. RS-Rules+ is explained on 
the basis of Table 2: The attributes of the original data set are {A }, {B} and 

3 See Rauszer (1991). 
4 See Skowron/Rauszer (1992). 
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{ C}. Each attribute has two non null values A = { a 1, a2}, B = { a3, a4} and 
C = { a5 , a6 }, so that there are six items (bitmap-attributes) for the resulting 
bitmap-table: { ar}, { a 2}, { a3}, { a4}, { as}, {aß}. In the first step all possible 
rules are constructed from all bitmap-attributes of the table. For example, 
for {A} __, {B} four item-related rules can be set up: {ar}--> {a3}, {ar}--> 
{ a4}, { a2} __, { a3} and { a 2} __, { a4}. All rules not fulfilling the minimum 
support and minimum confidence are deleted. The condition items from the 
remaining rules ( { a1} and { a4}), build pairwise the condition itemsets for the 
next run5 (i. e. {a1 , a4 } ). Again all possible rules are produced, their support 
and confidence is measured and the 'weak' ones are deleted. The set of the 
remaining rules ( ( { a1, a4} --> { a 5})) is compared with the set of produced 
rules in the previous run in order to remove the unnecessary ones. 

Suppose, { a1, a4} --> { a5} has the same confidence as { a4} --> { a5}. In 
this case { a1, a4} --> { a5} is dominant and will be deleted. Since there are 
no more rules left to extract from the itemsets of the next generation, the 
algorithm stops. 

In case that { a1 , a4 } __, { a5 } is necessary it is stored as a valid rule and its 
condition itemset is part of the basis for next generation condition itemsets. 
Since there is no other new rule left, no new condition itemset(s) can be setup 
and the algorithm stops. 

Table 2. Rule-Generation with RS-Rules+. 

1st run 2nd run 
New condition attribute- A = {a, , a2} 
sets B = {as, CL!} {a1, aJ 

C = {as. as} 
Possible Rules {a1} ~ {as} 

{a1} ~ {a4} 
{at} ~ {as} 
{at} ~ {ete} 
{a2} ~ {a;l} {a1,8.!} ~ {al} 
{a2}~ {a4} {a1,a4} ~ {a3} 
{a2}~ {as} {a1,a4} ~ {as} 
{a:?} ~ {ae} {a1.a4} ~ {ete} 
{as} ~ {as} 
{as} ~ {ae} 
{a4}~ {as} 
{84} ~ {ae} 

Rutes with minsupport {a,} ~ {as} 
{a1,a4} ~ {as} (valid rules) {a4} ~ {as} 

Condition attribute-sets 
{a,}, {a4} {a1.a4} with minsuooort 

5 The formation of condition itemsets is based on the same principle as the k
itemset construction in 2.3. 
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4 Comparison of the Procedures 

The transformation of the underlying data set into a bitmap-representation 
and the modification of the rough set rules induction scheme allow an ob
jective comparison of both methods. Three benchmark data sets have been 
selected, which differ in size and number of attributes6 : 

1. Car Evaluation Database: 1728 tuples, 25 Boolean attributes in the bit
map-table. 

2. Mushroom Database: 8416 tuples, 12 original attributes selected, 68 bool
ean attributes in the bitmap-table. 

3. Adult: 32561 tuples, 12 original attributes selected, 61 boolean attributes 
in the resulting bitmap-table. 

The computing times of the rough set algorithm for the benchmark data 
were between 2 minutes and 4 hours, those of the association rule algorithm 
between 40 seconds and 45 minutes 7 ( c.f. Table 3). Both proced ur es supplied 
similar results for all examined tables, except for few cases due to reducts 
of the rough set algorithm8 . However, not creating redundant rules does not 
lead to any principal difference of rule production. Hence we conclude that 
both procedures are equivalent with respect to the produced rules. 

Theorem. Let c, 8 E (0, 1] values for minimum confidence and minimum 
support. Then the algorithms Apriori and RS-Rule8+ induce identical rules 
from given data D w.r.t. c and 8 if the extraction of reducts by RS-Rule8+ 
does not take place. 

Proof. Let X --> Y be any rule derived with RS-Rule8+ and S the ap
proximation space for Y. S is spanned by all the items, which are involved in 
X. The restriction of S on the lefthand-side X of a rule selects from D exactly 
those records which inherit a condition itemset equal to X. For this set Dx 
of the extracted records 'fiJI 1 ~ 8 holds. Since only those rules are derived 
by RS-Rule8+, which fulfill the minconfidence c and the minsupport 8, both 
criterions are satisfied for the set D xuY C D x. Hence the Apriori-algorithm 
will induce this rule also. 

Conversely, let X--> Y be any rule derived with Apriori. Then DxuY the 
set of all records inheriting the large itemset X U Y fulfills the inequalities 
ID1~rl ~ 8 and 'l.z;~~l ~ c. Since all approximation spaces S are derived by 
RS-Rule8+, there exist a S', suchthat S' is an approximation space for Y, 
and hence the rule X --> Y is induced, too. D 

6 The benchmark data can be found in UCI Repository of Macbine Learning 
Databases and Domain Tbeories (URL: ftp.ics.uci.edu/pubjmachine learning
databases/Adult, jcar, /mushroom). 

7 Alltests were executed on a PC with an AMD K6-2/400 processor. 
8 A more detailed description can be found in Delic (2001). 



287 

5 Hybrid Association Rule Procerlure Apriori+ 

Since the generated sets of rules of both procedures are almost equivalent, the 
selection of the procedure depends on the role of reducts. The best solution 
would be an additional extension of the faster association rule method with 
functions of the rough set procedure, such as formation of reducts and the 
ability to refer to a fixed decision attribute if needed. This hybrid method 
was realized with our algorithm "Apriori+": The derived rules are examined 
on reducts, unnecessary rules are deleted. If there is a given fixed decision 
attribute, all itemsets without this attribute can be ignored for rule genera
tion. 

A further benchmark test confirmed the advantages of Apriori+: With 
all examined data sets the same rules (including reducts) as with RS-Rules+ 
have been extracted, whereby the necessary computing times corresponded 
to almost 100% to the Apriori association rule procedure (see Table 3). 

Table 3. Complexity (CPU time) grouped by database, parameters and the use 
of the decision attributes for the algorithms Apriori (Apr), Apriori+ (Apr+ )and 
RS-Rules+ (RS+). 

Database Car Evaluation Mushroom Adult 

vlinsupport 10% 35% 17% 

fll1inconfidence 75% 90% 94% 

ixed Decision 
Yes No Yes No Yes No ~ttribute 

vlethod RS+ Apr Apr RS+ Apr RS+ Apr Apr RS+ Apr RS+ Apr Apr RS+ Apr 
+ + + + + + 

!CPU Time 
rminl 

1,15 1,12 1,10 3,15 1,12 3,32 2.02 2 15 2,02 64 44 44 233 44 

From the examination of reducts on the rules and Theorem 1 follows 
directly: 

Corollary. Let c, s E (0, 1] values for minimum confidence and minimum 
support. Then both algorithms Apriori+ and RS-Rules+ induce identical 
rules from given data D w.r.t. c and s, if the extraction of reducts does take 
place. 

In this case, the same redundant rules are left out by both algorithms. 

6 Summary 

The association rule procedure, which was originally developed for processing 
attributes with Boolean domains, can be based upon bitmap tables in order 
to analyze attributes with multi-value domains. The Rough set procedure 
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originally was for generating rules with a fixed decision attribute. Evidently, 
the need of an a-priori-definition was removed. 

On the basis of different data sets we compared the quality of produced 
rules and the necessary computing times of the algorithms. It turned out, that 
the rules of RS-Rules+ and Apriori+ do not differ. The computing times were 
in favor of the association rule procedure. 

Even so, any final judgement should be stated carefully, since many fac
tors have a great impact. The needed time of computation e.g. depends also 
strongly on the implemented algorithms. lmprovements with the rough set 
algorithm could lead to reduction of computing time. Another factor is the 
methodology of the rule generation. It cannot be excluded that there exists 
another rough set based procedure which is more efficient for rule generation 
than the one introduced here. The investigation on these and other related 
questionswill be subject of further work. 
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Abstract. National Statistical Offices collect data from respondents and then pub
lishes them. To avoid disdosure, data is protected before the release. One of the 
existing masking methods is microaggregation. This method is based on obtaining 
a set of dusters ( dustering stage) and then aggregating the values of the elements 
in the duster (aggregation stage). In this work we propose the use of fuzzy c-means 
in the dustering stage. 

1 Introduction 

National Statistical Offices (NSO) collect data from respondents and then 
disseminate them. Due to legal restrictions, data has to be protected so that 
no disclosure of sensitive data is possible. This is, it should not be possible 
to link sensitive data from a particular respondent to this respondent. 

To avoid disclosure, data is masked before their release. Statistical Disdo
sure Control studies masking methods for applying some distortion to data in 
such a way that the data is still analytically valid. This is, the published data 
is valid for researchers and users because they can reach to similar conclusions 
than the ones inferred from the original data. 

At present, there exist a large set of micro-data protecting methods. For 
example, among the most widely used [4], we find the following ones: sam
pling, top and bottom coding, recoding, data swapping, microaggregation. 
See [2] and [8] for an extensive review of micro-data methods and [1] for a 
detailed analysis comparing information loss and disclosure risk for existing 
methods. 

This work is devoted to one of the methods for numerical micro-data 
protection: microaggregation. 

1.1 Microaggregation 

Given a datafile tobe protected, microaggregation consists on obtaining mi
croclusters of similar records ( at least k records have to be included in each 
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duster) and then publishing the averages of each duster instead of publishing 
the original data. According to this, the method is defined by the following 
two steps (see [3] for details): 

Step 1: Partition of the records into a set of disjoint groups so that the 
number of records in each group is at least k. 

Step 2: Foreach record, the value of each variable is replaced by the aggre
gation of the corresponding values of all records in the same group. 

Thus, this method consists on applying a dustering method to the original 
data and then returning for each record the prototype of the duster instead 
of returning the record itself. This method can be formalized as follows: 

1. Let X = { x1, x2, · · · , Xn} be a set of given data for n respondents for 
which p variables are observed. Thus, Xi is a p-dimensional vector Xi = 
(xi 1 , · · ·, Xip)· Let d(x, y) be a p-dimensional distance. Then, if we denote 
a partition of X into g groups by C = {Ct, · · ·, C 9 }, with ICil being the 
cardinality of groups Ci and xi being the average data vector of Ci, the 
optimal partition C for microaggregation is the one that minimizes: 

g 

2:: 2:: d(xj,xi) (1) 
i=l XjEG; 

while satisfying I Ci I ~ k for all Ci E C. 
2. Given an optimal solution C, Xj is replaced by xi if Xj belongs to group 

Ci. elements in Ci). 

Finding the optimal solution in Equation 1 is not an easy task. The fol
lowing difficulties are found: 

1. The size of all dusters has to be at least k and as similar to k as possi
ble. Clusters of less records are not allowed. This constraint, not usually 
considered in dustering, required the development of specific dustering 
methods. 

2. The problern of finding the best k-size partition of the domain is a NP 
problem. To have approximated solutions, heuristic approaches have been 
developed. 

3. Classical microaggregation techniques assign the same values to all records 
in a duster. This give dues to attackers, specially in the case of applying 
multivariate microaggregation to several groups of variables for the same 
records. 

In this work, we introduce the use of fuzzy c-means for microaggregation. 
We define an heuristic method based on fuzzy c-means to obtain partitions 
of at least size k. Then, for each record, the mean value of all variables is 
not necessarily taken from the same duster. Instead, using fuzzy membership 
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values, they can be taken from different dusters. An additional advantage of 
fuzzy c-means is the existence of efficient computational algorithms (as the 
one described [6]). 

The structure of this work is as follows. In Section 2, we review fuzzy 
c-means. Then, in Section 3 we detail our approach. The paper finishes with 
the condusions. 

2 Fuzzy c-means 

While dassical dustering methods partition the records of a given domain 
into a disjoint set of dusters, fuzzy dustering methods build a set of dusters 
in which elements can belong at the same time to several of them. When an 
element belongs to more than one duster their membership is partial. This is 
modeled considering membership degrees in the [0, 1] interval in such a way 
that 0 means no membership and 1 means full membership. In this case, it 
is commonly assumed that for a given element in the set, the summation of 
the membership of this element to all dusters is 1. Formally, this is defined 
as follows: 

Let X = { x 1 , · · · , Xn} be the set of elements ( records or respondents in 
our application), then a set of membership functions A = {Ab···, Ac} is a 
fuzzy partition of X into c dusters if and only if: 

c 

LAi(xk) = 1 for all Xk EX 
i=l 

Here, Ai(xk) is interpreted as the membership ofthe k-th element to the i-th 
set. 

Note that restricting Ai(xk) in {0, 1} this definition corresponds to a crisp 
partition. 

Among existing fuzzy dustering methods, a weil known one is Fuzzy c
means. This method is a generalization of the k-means dustering method. 
This latter method consists on finding the set of c dusters such that the 
following objective function is minimized: 

n c 

J(A, V)= LLAi(xk) ·llxk- viW 
k=li=l 

subject to the following constraints: Ai(xk) E {0, 1} and I:~=l Ai(xk) = 1 
for all Xk E X. Here, II · II corresponds to the Euclidean distance, and V= 
{ vih=l,-··,c are the centers of the dusters. 

Defining, 

c 

M = {(Ai(xk))IAi(xk) E {0, 1}, LA(xk) = 1 for all k} 
i=l 
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the problerntobe solved is to find A and V suchthat minAEMJ(A, V). 
For computing the fuzzy c-means, the constraints M are replaced by: 

c 

MJ = {(Ai(xk))IAi(xk) E [0, 1], LAi(xk) = 1 for all k} 
i=l 

However, solving the same problern with these new fuzzy constraints lead 
to the same crisp solution because the objective function is linear with respect 
to Ai(xk), and the optimization problern is solved using linear programing. 
Therefore, the optimal solution for Ai(xk) is found at an extremal point in 
the [0, 1] interval. Thus, it is a crisp value. 

To obtain a fuzzy solution, the following objective function was proposed 
(see e.g. [7] and its references for details): 

n c 

k=li=l 
Here, m is a real number m ?: 1 that influences the membership values. 

With m = 1, the solution is crisp and, then, the larger is m, the more fuzzy 
the dusters we obtain. 

To find A and V that minimize this objective function constrained in MJ, 
the following algorithm is used (see [7] or [5]): 

Step 1: Generate an initial A and V 
Step 2: Solve minAEM1 J(A, V) computing (Aik stands for Ai(xk)): 

Step 3: Solve minvJ(A, V) computing: 

I:k=l n(Ai,k)mxk 
Vi = '\"n ) 

L"k=l (Ai,k m 

Step 4: If the solution does not converge, go to step 2; otherwise, stop 

3 At least k Fuzzy c-means 

As the fuzzy c-means do not assure that dusters have at least k elements, we 
have defined an algorithm for dustering based on the fuzzy c-means. Being k 
the minimum number of records allowed in a duster, the algorithm is defined 
in the Algorithm 1. Note that in this algorithm, fcm(X, c, m) corresponds to 
standard fuzzy c-means (as described in Beetion 2). 

Once the dusters have been obtained, the values for the variables are 
(randomly) replaced by the values of the center of the dass. When an element 
belongs to several dusters, the corresponding center is selected by a random 
distribution proportional to the membership degree. 



Algorithm 1 micro-fuzzy-c-means 
Algorithm At least k fuzzy c-means (X, k, m) is 
begin 

c := n/(3 · k); 
P = fcm(X,c,m); 
cardMin = minpEP IPI 
if cardM in < k then 

decrease c, increase m and start again 
end if 
for p E P do 

nothing 
begin 

if IPI > 2 · k then 
define m' in terms of m and IPii 
micro-fuzzy-c-means (p, k, m'); 

end if 
end 

end for 
end 

4 Conclusions 
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In this work we have shown the applicability of fuzzy c-means to microag
gregation. Future work is on the comparison of our approach to existing 
techniques following the approach in [1]. 
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Abstract. The following paper focuses on an enrichment method for ontolo
gies. We define similarities of possible new concepts and base the similarity 
and dissimilarity of concepts on the usage statistics in large corpora. The 
method is soft in the sense, that we defme a semantically motivated heuristics 
for the influence of different linguistic properties influencing the similarity 
definition. 

1 Introduction 

The following paper focuses on the semi-automatic enrichment of ontologies 
based on statistical information. 
An ontology is a structured network of concepts from an knowledge domain 
and interconnects the concepts by semantic relations and inheritance [1]. 
Ontologies give a formal representation and conceptualisation of a knowledge 
domain. For a given ontology we fmd propositions automatically, which could 
extend the ontology by new concepts. This means we 

• 
• 
• 

• 

use a text corpus 
detect a set of candidate concepts from the corpus 
finally select a subset of those candidate concepts by ranking their similar
ity to concepts already 
existing in the given ontology . 

The fmal selection ends up in possible new concepts for the ontology to be 
proposed to a (human) ontology engineer. 
The concepts in the ontology have one or more descriptors, which are words 
or phrases from naturallanguage. On the other band, the extractable informa
tion from large text corpora are words or phrases. For our technique this 
means that we develop a method of finding suitable definitions for the seman
tic similarity and dissimilarity of words. Throughout the paper we treat the 
ontological concepts and their descriptors as the same objects. 
The paper is organised in the following way: 
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• we give the definitions in need 
• we formally explain the enrichment algorithm 
• we focus on properties of the algorithm which extend and systematically 

treat the linguistic properties we take under consideration 
• we point out related work from the area of word dustering 
• finally we summarise our results and open research issues 

2.1 Definitions 

An ontology is a 4-tuple n := (C, is_a, R, a ), where Cis a set we call con
cepts, is_a isapartial order relation on C, R is a set of relation names and 
a : R ~ p ( C XC) is a function [1]. 

Throughout this paper we assume that a concept has a character string as a 
descriptor. This character string may be a word or a phrase. 

A distance measure on n is a function d: (C XC) ~ [0,1]. Examples of dis

tance measures are: 

1) d(x,y)= i , where e is Euler's constant and s denotes the number of steps 
along the shortest relational path between the concepts x and y 
2) d( x,y )= 1, if there exists a relational path between the concepts x and y and 
d(x,y)=O, ifthere does not exist a relational path between the concepts x andy. 
3) [3] defined criteria for distance measures in thesauri, which can be applied 
to the restriction of an ontology n := (C, is_a, R, a) to the pair (C, is_a). 
Moreover one can show, that there is an infinite number of distance measures 
fulfilling more restrictive characteristics than 1) and 2). 

A text corpus ~ is a collection of text documents written in exactly one natu
rallanguage. We assume ~ to be electronically available. From a text corpus 
we define a set of words or phrases to be the candidate concepts. A proposi
tion for the ontological enrichment is a word or a phrase from ~ , which is 
used similarly to the concepts from the given ontology. Candidates aretobe 
predefined, for example as all nouns occuring in ~ . Note that ~ might be 
extended during or after the application of the enrichment algorithm. 
A rule set p is a finite set of linguistic properties, each of which can be tested 
in terms of its fulfilment frequency in the text corpus. 
The entries miJ of a representation matrix M( C, p, S) Iist, how often the j-th 

property from p was fulfilled in ~ for the descriptor the i-th concept from C. 
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2.2 The basic optimisation for ontology enrichment 

The enrichment algorithm processes information available from ' and n . lt 
computes an optimal solution for the problern of fitting the distance informa
tion among the concepts expressed by n and the dissimilarity information 
between words or phrases to be extracted from the word usage statistics con-

sidering '. 

Let us assume a given M(C, p, l;). We search for a set k = {k1, ·, kn} ofnon-

negative reals with lkl= lpl. which will be called configuration ofthe rule set 
p. Eachk; corresponds to a rule P;. 

The configuration k decides about the quantities of dissimilarity we derive 
from M(C, p,l;). 

The Kullback-Leibler divergence generally measures the dissimilarity 
between two probability mass functions [2] and was applied successfully to 
statisticallanguage modeHing and predicition problems in [4]. The Kullback
Leibler divergence D(x,y) for two words x, y is defined as 

P(wjx) 
D(x,y) = I/(wjx)log P(wjy) 

w 

(1) 

In the basic version of the Kullback-Leibler divergence, which is expressed by 

formula (1), w is a linguistic property and P( w lx) ist the probability of this 
property being fulfilled for the word x. In the sum indicated by formula (1), w 
ranges over allliguistic properties one includes in a corpus analysis. In our 
case the frequencies of observing the linguistic properties are denoted by 
M(C, p,l;). For our purposes we change (1) in such a way, that k weighs the 

influence of each property w: 

P(wjx) 
Dk(x, y) = ~k(w)P(wjx)log P(wjy) 

w 

with k(w) e k in our case 

Considering our representation matrix notation M(C, p,l;) we obtain 

Let us clarify the notation of formula (3): 

(2) 

(3) 
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x. denotes the i-th concept from C. Correspondingly in (3) the m .1 are the 
l l 

matrix entries in M( C, p, ~)in the row expressing the linguistic properties of 

x . . With this notation k(x.) = k,. holds. In that sense, we will be able to deter-
t l 

mine an optimal k = {k1, ·, kn} . 

Taking the distances from the ontology Q as an input, which should be 

approximated by the Dk(x, y) as weil as possible, the question of finding an 

optimal configuration k reduces to the question: 

which configuration k minimises the average squared error expressed by the 
differences 

2 
(d(x,y)-Dk(x,y)) ? 

Finally we present a formulation of this question in terms of a quadratic opti
misation formula. Searching for an optimal k means searching for a minimum 
of the following fitness expression 

ICI ICI 2 
m~n L L (d(xi,xj)-Dk(x;,x}) (4) 

i=li=l 

where k = {kl' , , kn} and k1 ~ 0 for all k1 E k. Note that we minimise 

over the set of all configurations, that means over all possible k. We now 
explain, which words phrases are propositions for the ontological enrichment. 
Once we optimised formula ( 4) we obtain the configuration in need to com
pute all the distance measures between all the concepts from n and the can
didates. We apply an enrichment step starting with the optimal similarity 

measures Dk(x, y). 

We only take into concern the Dk(x, y) with x e C and a candidate y. If such a 

distance between a formerly known concept (i.e. its descriptor) and a candi

date (i.e. a ward from the corpus) formerly unknown to n is lower than apre

defined threshold, y proposition to enrich Q . A suitable threshold can for 
example be defined from the average of the distances d( x,y) where x - y holds 
for some - e R . 

Additionally the Dk(x, y) with x e C and a candidate y carry even more infor

mation, namely an optimal placement of the candidate concepts. The candi
date concepts and the concepts from Q can be presented together, if a 
candidate turns out to be a proposition. This simplifies the knowledge engi
neer's understanding of how the candidate concepts evolved and in which 

semantic area of n they might belang. 
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3 Discussion of the algorithm - extending p 

The application of the algorithm needs a rule set p as one of the parameters 
given. The following section focuses on a technique which systematically 
selects and constructs p We will use the fact, that - for several distance mea
sures d - our experiments showed, that the optimisation (4) ended up in 
supressing most of the rules from p setting the corresponding ki to zero. 

Applying the optimisation to derive a configuration k we chose a p in the fol
lowing way: for each concept from C (Q given) we collect the collocators 
occuring in the same sentence at a distance of at most five words in ~ , create a 

list of all these collocators and finally check for each c e C, how often it 
was collocated in the same sentence, but at maximum distance of five words 
within ~. 
We choose this particular p , as for the German language, with which we carry 
out our experiments. The property is a standard configuration of the German 
online corpus analysis tools [5] and [6]. 
We obtained two general observations, which characterise all of our ongoing 
enrichment experiments and which imply interesting further developments of 
the algorithm, because they point to a compression of the property set p while 
applying the algorithm. The vast majority of the k; e k are zero (in our frrst 

experiments about 90% of the k; e k) and there are many minor influences of 

nonzero k; , if we also consider the fact, that that similarity must exceed a 

threshold T for a candidate concept to become a proposition. 
The fact that we observe many zeros in the solution k is related to the sparse 
structure of the optimisation problern (4). But even if we cannot predict the 
exact structure of M( C, p, ~) beyond sparsity, the sparsity ofthe data betong
ing to candidate concepts additionally leads to properties with minor influ
ence. Although we admit, that this observation needs a further strict 
systematic fundament, we use it as a working hypothesis. 
Our first experiments also point to a fact, which we already expected intu
itionally: if a concept becomes a proposition and its similarity was only deter-

mined by exactly one feature p i from p (leaving kj = 0 for i "# j) we 

detected a higher risk of bad propositions in the sense of a semantic mismatch 
or an overgeneral proposition. 
Another complication may arise, if we extend the initial corpus while apply
ing the algorithm. Such a strategy is useful, if we start with a small specialised 
corpus and a few concepts in .Q . In that case the initial corpus may contain 
not enough information, consequently information must be added by includ
ing new texts in the initial corpus. Only in that sense it is true, that specialised 
corpora perform well in domain dependent conceptual dustering or ontology 
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enrichment problems like [7] stated. But extending a corpus goes along with 
introducing a fulfilment of properties, which we did not observe in the initial 
corpus [4], which gives a bias to our computation of important properties via 
the optimal configuration k. 
For a systematic treatment of the difficulties we discussed in this section -
arbitrary choice of p , bias with propositions guided by exactly one linguistic 
property, bias after extending corpus - we give a prospect on a stepwise appli
cation of the algorithm: after applying the algorithm once we make up a new 

property set p keeping the properties, which tumed out to be influential, and 
adding new properties. 
An example for new properties is a larger context, in which a collocation may 
occur. As lang our data remain sparse, several extensions of the linguistic 
property set can result in a rich representation making the selection of our the 

modified p less arbitrary. In the special case of word-cooccurence in contexts 

the extension of p by a stepwise application of the enrichment algorithm 
becomes systematic, if we start with narrow contexts (as the distance of five 
words we used in the first experiments) and broaden the contexts monotoni
cally in every step. 

4 Related work 

Similarity between words is a topic from the theory of ward dustering algo
rithms and requires statistical inforrnation about the contexts, in which the 
words are used. Many approaches test and count collocation features of the 
words in large text corpora, such that a ward is represented by a large vector, 
which has entries communicating, how often a collocation feature was ful
filled in the corpus. The vectors aresparse [8]. 
The notion of similarity definitions by vector representations normally does 
not weight every single dimension of the vectors. In the paper we stated that 
this is possible by a soft method using the inforrnation already defined in the 
given ontology. The method is soft in the sense, that semantic information 
from an ontology is quantified and thereafter guides the selection of relevant 
linguistic properties. 
The influence of the ontological structure on the ward ( -vector) sirnilarities 
results in an optirnisation problem, which gives an answer to the question 
which dimension in the ward ( -vector) representation is influential for the 
similarity computation. 
Automatie thesaurus and ontology construction dates back from the 1970s [9]. 
Our approach is a further development of methods, which try to construct the 
whole ontology. The soft method of introducing heuristics for the ontological 
inforrnation given can only be applied, if we enrich an existing ontology 
instead of fully constructing the ontology. Besides the question about the heu
ristics guiding the optirnisation procedures described above, a number of other 
interesting questions arises along with the approach. Among them are the fol-
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lowing: how do we construct a suitable corpus to learn from, which linguistic 
preprocessing is necessary or helpful, do we need absolute, relative or proba
bilistic vector entries, how does the approach scale for larger ontologies. 
The question of evaluating the results is interesting for related areas such as 
Kohonen maps for documents and ward clustering algorithms [10]. 

5 Summary and future work 

We presented an algorithm, which returns propositions for the enrichment of 
an ontology. The algorithm selects from a set of linguistic properties regarding 
the information encoded in the ontology, for wich we wish an enrichment: at 
this point, our soft method is based on a modified Kullback-Leibler diver
gence for each single given enrichment problem. 
We also gave a prospect on a more systematic setup of the algorithm, which 
has to undergo genuine evaluation to overcome its merely constructive status. 
The area of evluation methods for the algorithm tagether with further experi
ments will be the focus of our future work on the subject. 
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Abstract. This paper is concerned with seeking new applications for the Dempster
Shafer Theory that are by their nature better suited to the axiomatic framework of 
this theory. In particular, wafer processing on a integrated circuits production line, 
chemical product quality evaluation etc. are considered. Some extensions to basic 
DST formalism are envisaged. 

1 Introduction 

The methods for decision analysis based on Dempster-Shafer theory have 
been already studied for along time, see for example works of Jaffray [1], 
Strat [8] and Yager [13]. A number of studies has been carried out within 
the framework of VBS (Valuation-based systems, comprising among other 
the probability theory and the Dempster-Shafer theory) can also represent 
and solve Bayesian decision problems [7,6]. Shenoy [5] has shown that the 
solution method of VBS for decision problems is more efficient than that of 
decision trees and of influence diagrams. Xu [12] proposed a method for deci
sion analysis using belief functions in the VBS. This is clone by generalizing 
the framework of VBS for decision-making under Dempster-Shafer theory 
(DST). Another variant of DST, the Transferable Belief Model has also been 
studied in this context [11]. 

All these studies concentrate essentially on an attempt to extend the tra
ditional Bayesian decision-making problern under uncertainty by modeling 
incomplete knowledge. It is usually assumed that an outcome of a test is 
definite and does not influence the tested process, and that for belief func
tions the removal operator is applicable, that is there exist conditional belief 
functions. 

We think that these assumptions prevent from exploiting the true poten
tial behind belieffunctions. As demonstrated in [2], the traditional approach 
to belief functions as interval probabilities simply fails if we want to work 
with generalbelief functions (and not ones with very special properties). It 
has been shown there that the intrinsic nature of combining belief functions 
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is "destructive" that is if DST should rnodel a process on real objects these 
objects rnust be occasionally destroyed in the process. The other feature is 
"blind" application of steps of a process. 

Hence when looking for application areas of DST in decision-rnaking we 
should concentrate on situations where we have to do with destructive pro
cessing. 

In this paper we will recall the current approach to decision rnaking in 
DST and its shortcornings and then we will point to actual challenges and 
new areas of potential applications of DST. 

Many books and papers can provide with a detailed introduction to DST. 
We use generally accepted denotations, explained e.g. in [4,10]. 

2 Decision Making with DST in the VBS Forrnalisrn 

Shenoy [7,6,5] introduced a forrnalisrn for decision rnaking within his frarne
work of VBS (valuation based systerns) which includes also decision rnaking 
in DST. 

VBS representation for a decision problern is denoted by a 6-tuple Ll = 
(UD, UR, { Bx} XEU, { 1r }, { Beh, Bel2, ... , Beln ... },-->) representing decision 
variables, randorn variables, frarnes of the variables, utility valuations, belief 
valuations, and precedence constraints respectively. The VBS representation 
of a canonical decision problern Llc = { {D}, {R}, {GD, 8R}, {1r}, {Bel[RID]}, 
{ D --> R}} is illustrated in Fig. 1. A graphical description is called a valua
tion network. 

Fig. 1. A graphical representation of VBS for DST decision making 

The set of variables U consists of decision variables UD and randorn vari
ables UR. The possible values of a decision variable represent the acts avail
able at that point. The possible values of a randorn variable represent the 
states of nature. Graphically decision variables are represented by the rect
angles and randorn variables are represented by the circles. In Llc, R is a 
randorn variable and D is a decision variable. 

Let A ~ U. A utility ( or payoff) valuation 1r for A is a function frorn 8 A 

to the set of real nurnbers. The values of utility valuations are utilities. The 
utility function is deerned to be a non-norrnalized belief function. 
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To solve the decision problern in DST Shenoy introduced his fusion al
gorithm [7]. He also gave some restriction for VBS representation in order 
to avoid divisions during computation. Since removal of two belief functions 
( reverse operator to EB) does not always result in a. belief function, generally 
with VBS the decision calculus in the case where the removal can be avoided, 
is discussed. Therefore, frequently one states the following assumption for the 
VBS representation. (Strat, 1990): 

Fundamental Assumption In the VBS representation, at least one of the 
following two conditions should be satisfied. (1) There is only one utility val
uation. (2} We only have a conditional for each random variable such that 
the variables on which the belief function is conditioned always precede the 
random variable. 

Solving Bayesian decision problern s in VBS is based on the criterion 
of maximizing expected payoff for combination of all decisions and all ran
dom situations with utility function. In the context of DST, we can think 
of combining (conditional) belief functions representing relationship between 
variables and representing the utility function using the Dempster-rule op
erator. Then we can obtain the interval expectation of minimal and max
imal utility over the random variables R. But such an interval would be 
very hard to be used as a ground for decision making. Hence Strat pro
poses, to obtain a unique decision, to introduce a lambda factor and to con
sider optimal decision d * with respect to this factor such a decision that 
(1r EB Bel)lD (d*) = (1r EB Bel)lD)lÜ ( {})) with {} meaning an empty set. 

As for Bayesian decision problems, in order to use VBS solution method, 
the VBS representation of a decision problern need to be well-defined for case 
of belief functions. The conditions are as follows: 

• UD~ UHD where HD denotes the set of subsets of UD for which payoff 
valuations exist in the VBS. 

• UR ~ UHR where HR denotes the set of subsets of UR for which belief 
function valuations exist in the VBS. 

• For the operator ---+ the transitive closure over U is a partial order (ir
reflexive and transitive) over U; in this partial order for any decision 
variable D and any random variable R either R precedes D or D precedes 
R; if there is a conditional for R given A-{R} and the decision variable 
D is in A, then D precedes R in the partial ordering; in there is a belief 
valuation for A and a decision variable D is in A, then D precedes some 
random variable R in A. ; . 

• Suppose D is the subset of decision variables included in the domain of 
the joint belief function Bel1 EB ... EB Beln. Then (Beft EB ... EB Beln)lD is 
a vacuous belief function. 

The fusion algorithm consists essentially in deleting all variables from 
U. If variable X precedes variable Y then Y must be deleted before X. The 
deletion means marginalization. The important thing here is that it can be 
executed by local computation. See the papers of Shenoy, and also [9]. 
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Notice that the Fundamental Assumption along with usage of proper condi
tional belief functions (that is ones with non-negative mass values) assures 
that OST decision making is applied when only one of the neighboring vari
ables in the dependence network is a true OST (multi-valued) variable, and 
the other are traditional (single-valued) ones. The proper conditional be
lief functions can always be transformed to conditional probability functions 
(with transformation of variables such that atomic events being disjoint sets 
of atomic events of the original variables) so that the "OST decision mak
ing" turns to be in fact Bayesian decision making and means predominantly 
adding some "sugar" of formalism than solving more general problems. The 
only advantage is that in case of many zero probability conditional events 
the information can be stated more compactly. 

We think, however, that decision-making applications should be sought for 
which traditional Bayesian representation falls short of capturing the intrinsic 
nature of the problem. In this case it may only be productive to try to check 
the applicability of OST. 

By an appropriate empirical model for OST we understand the following 
one (see Fig. 2) [4]. 

• We observe ("measure") a real world statet, encode it as a belieffunction 
Bel1 , know that a real 

• world process may be represented by a OST reasoning process Belp, run 
the reasoning while the real world 

• process runs in the real world transforming it into the state2. We observe 
(in exactly the same way as before) the real world and encode the state2 
as belieffunction Bel2. Bel2 shall coincide or at least be one of alternative 
predictions of the reasoning process. 

Fig. 2. Proper DST model of the real world 

As the only true models of OST turn to be "destructive models" [2], we 
shall Iook for applications where Iosses of material, energy etc. takes place in 
processes we should make decisions about. 
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4 A New Challenge: Integrated Circuits Case Study 

One of the areas of applications, where the traditional approach to DST de
cision making is not applicable and where the destructive processes, we were 
talking about in the introduction, take place, is a charge-based production of 
products with differentiated grades of quality. 

For example the production of integrated circuits as run once in the Semi
conductor Center CEMI in Warsaw. The integrated circuits had a multistage 
quality lattice with products higher in the lattice sold usually more expen
sively. For example a product matehing requirements for UCA6401N could 
also be soldas UCY7401N (lower requirements) or UC7401N (stilllower), or 
401N (the lowest), or the given chip could be completely useless, see Fig. 3 
( the openness of the TBM model of Smets would be useful here). The quality 
lattice was in many cases even more complicated, forming a lattice (instead 
of linear ordering). 

Fig. 3. Products based on falling quality (a) and the representation in DST (b) 
( arrows mean subset relationship) 

The first fragment of the production process consisted in application of 
various processes to a charge of wafers. A single stage yielded results similar 
to a Dempster-Shafer belief distribution for example a belief distribution ba
sie belief assignment had the form m( {UCA6401N, UCY7401N, UC7401N, 
401N, useless}) = 0.95, m( { 401N, useless}) = 0.01, m( { useless}) = 0.015 
etc. Two subsequent stages yielded a distribution of quality result similar to 
application of the combination operator EB of the DST: Beh2 = Bel1 EB Bel2 • 

The reason was that due to microscopic dimensions one had no chance to 
apply processes individually to each chip on the wafer and hence the quality 
disturbances of the next stage applied independently of the quality distur
bances of the preceding stage. 

In the process there were several checkpoints ("test" facilities) that had 
to decide on the quality of the chips. However, not the individual chips but 
only a few representatives (out of several hundreds) were checked. Hence the 
results of the tests never yielded a definite decision that the quality is good 
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or bad but rather suggested a belief function distribution. A decision had to 
be made based on each test whether to proceed with the production process 
or to abandon the charge altogether. The decision was to reject if the quality 
function distribution was worse than an assumed one. The comparison has 
to be based on Bel function to be rational (a worse distribution has consis
tently higher Bel function values). Notice that a decision influences the belief 
distribution in a way that is difficult to predict from the traditional belief 
function operators. We do not have currently a handy mathematical expres
sion for the belief function distortion. The calculations have to be carried out 
in a simulated manner (sampling a set of samples from the distribution, then 
evaluation, and then restoring distributions from data). 

The most difficult problern is the combination of the utility function with 
the belief distribution for the charge. The utility function reflects the distri
bution of orders of chips of each type (the focal points set on singletons: e.g. 
UCY7401N, UCA6401N etc.). The operatorEBis hardly applicable, because 
the utilization is not independent of the resulting distribution. For exam
ple, if there are too many products of UCA6401N type, they will not be 
thrown away, but they will be soldas UCY7401N. So the combination of the 
charge belief distribution cannot be considered as "combination of indepen
dent evidence" and therefore instead of Dempster rule a discrete optimization 
procedure has to be applied. 

Usually, several alternative technologies are available consisting of same 
or different steps in different order. Each process step and each testing step 
imposes some costs. With these restrictions the goal is to find the most prof
itable scenario of managing the production line. In ordertorich satisfactory 
management results, one has to fix the precise organization of the charge 
management. It has tobe decided, given the customer order portfolio, which 
technology is to be applied, and within each technology, whether or not par
ticular testing steps are to be included or not. 

Under these circumstances the actual decision making procedure requires 
in fact the computation intense analysis of all the paths possible in the de
cision making graph to find the set of the most profitable way of processing 
the charge. 

5 Other Decision Making Situations Where 
Dempster-Shafer Theory Is Applicable 

Another situation when the decision making under intrinsic belief functions 
takes place, is production planning in a chemical plant. Here we find also 
frequently a kind of quality lattice that may lead to belief function decision 
making problem: A hair shampoo is quite well suited as bath foam agent 
(though a bit too expensive in production). More important is here, however, 
the issue of quality control. The quality control is in fact a destructive process: 
a product sample taken for quality control will be in factnot usable thereafter. 
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The quality control step can be described for example by a belief function Bell 
with m1 ( {good, bad}) = 0.95 and m1 ({bad}) = 0.5. Hence if the potential for 
quality distribution in the sample was described before quality control by 
Bel, thereafter it is described by BelEBBelL Decisions made at tests may 
Iead either to continuation of the process, to total abandoning of the process 
or to reclassification of the product (downwards the quality lattice). The 
practical issue here is then the amount of tests that are carried out during the 
production process and the balancing of costs and savings of carrying out or 
dismissing tests at various stages of the process. Again, a strong dependence 
between the customer order portfolio and the utility function is present. 

Dempster-Shafer evidence combination model describes weil the situation 
of bringing to the market a set of multifunctional non-durable goods (see 
Fig. 4). We may have knowledge of general requirements in a market of 
goods fitting some functional requirements A,B,C,D in terms of Bell function: 
Bell(A,B,C)=0.8 saying that 80% of customers need goods with properties 
A,B,C (but not D) etc. We produce therefore goods with property profile 
described by Bel2 and deliver them to a set of shops, but without knowing 
the particular requirements distribution in that shop: just delivering Bel2 to 
each shop. Then our expected sale amounts would be described by Beh EB 
Bel2. (combination without normalization). The decision making undersuch 
circumstances would concern choice of the distribution Bel2 from among the 
set of technologies available to us. 

I Prodact wilhpropo!lios{ B,D} ~SHOP4 

Ji.,..dldiart<afSHOP3 

I Kliatl:ieedZu!: A I 

Fig. 4. Random distribution of products matehing agains dient needs. Product 
with properties {A,B,D} will turntobe useless foradient seeking property C. 

6 Concluding Remarks 

We feel that the research run so far on applications of the Dempster-Shafer 
theory in decision-making processes has avoided the intrinsic problems. DST 
has long ago been shown not to be a model of interval probabilities except 
for very special cases when only one of the neighboring variables in the de
pendence network is a true DST (multi-valued) variable, and the other are 
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traditional (single-valued) ones. Problems with applicability of true belief 
functions should be sought. 

We have pointed to a few sample applications here. Then one shall un
derstand that the combination of "evidence" cannot be run only using the 
Dempster-rule because not always the evidence is independent. The alterna
tive rules derived so far in the Iiterature do not fit also some typical situations 
in DST related decision making. One important example is the apriori known 
customer order portfolio. Another is the issue of modifying belief distribu
tion by application of some tests (when test results are described by a belief 
function also). 

We continue an intensive research to resolve the problern of special pur
pose evidence combination operators. New evidence combination operators 
need to be derived to replace the expensive simulations carried out currently. 
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Abstract. It is presented a method of decision making based on a concept of 
informational variables. Information variable is defined as a generalisation of 
random variable used in the case when probability distribution functions are not 
available. Instead of them a preference relation being a particular case of semi
ordering is introduced into the Borel family of subsets on a real axis. Instead of 
using numerical probabilities preference relationships among events are 
established according to the general principles of a topologicallogic, and the rules 
specified in the paper. The preference relationships can be established by 
operations performed on the graphs of preference or on their matrix 
representations. It is shown how a decision problern analogaus to this of statistical 
hypothesis verification, usually solved by Bayesian methods, in the case of a lack 
of conditional probability distributions can be formulated in the terms of 
informational variables and solved using the method described in the paper. 

Key words: decision making, topologicallogic, preference relation, informational 
variables 

1 lntroduction 

The concept of informational variable has been introduced in [1] as a 
generalisation of the well known concept of a random variable. However, it was 
inspired by a growing interest to the methods of decision making under 
uncertainty, and, in particular, to the possibilities offered in this domain by the 
concept of a topologicallogic, originally published in 1937 by C. G. Hempel [2] 
and continued by Ch. A. Vessel [3] and by the author [4,5,6]. In this paper we 
would like to show possible applications of information variables in decision 
making based on limited preliminary information. Such situations arise often in 
various application areas where the number of past observations is not sufficient 
for building a strong statistical basis for decisions' optimisation. 
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2 Basic assumptions 

Let us take into account an ordered triple: 

V= [.Q, Co, -<] (1) 

where .Q derrotes a non-empty (at lest two-element) set of elementary events; C0 is 
a sigma-algebra of subsets of .Q (called events), and-< is a preference relation in 
C0 that will be described below. V will be called an informational space. Its 
similarity to the well known concept of a probabilistic space introduced by A. 
Kolmogorov (see [7], § 1.4)) is evident; the main difference consists in the term -<, 
in a probabilistic space taking the form of a probabilistic measure. 

Preference relation is a specific type of semi-ordering introduced into C0 . To 
make it clear, let us take into account a non-empty (at least two-element) set A. 
Any binary reciprocal, symmetrical and transitive relation described in Ais called 
an equivalence relation ([8], chapt. 1). Let"' be an equivalence relation and let us 
take into account a binary reciprocal, asymmetrical and transitive relation -< 
(read: "is less preferred than") described in A, such that any two elements e ', e' 'e 
A satisfy both, e'-< e" and e"-< e', if and only if e'== e". So defined relation -< is 
called a weak semi-ordering relation. A weak semi-ordering relation -< becomes a 
strong semi-ordering relation if any two elements e', e" satisfy both, e'-< e" and 
e'-< e", if and only if e'= e". Otherwise speaking, a strong semi-ordering relation 
is antisymmetrical: for a pair of different elements no more but one of the 
relationships e'-< e" or e'-< e" may be valid. Bach strong semi-ordering relation 
is a weak one, as well. Any pair of elements e', e"e A satisfying neither e'-< e" 
nor e' '-< e' will be called mutually incomparable and denoted as e' ? e' '. The 
relation ? is non-reciprocal, symmetrical and non-transitive. Sometimes, instead of 
the notation e' -< e" its inverse form e" >- e' (read: "e" is more preferred than 
e' ")will be used. 

A typical example of a strong semi-ordering relation is the one induced in the 
family C0 of subsets by the inclusion ~ of subsets. It is easy to show that it 
satisfies the above-mentioned conditions of reciprocity, anti-symmetry and 
transitivity. Weshall call it a natural semi-ordering of subsets. 

For a given set A and a binary relation r described on it any pair of elements e ', 
e' 'e A satisfying r is called a syndrome of r. A notion e' r e'' indicating both, a 
syndrome and the corresponding relation, will be called a relationship. 

Let us suppose that there are two relations, r and q, described in A. The 
relation q is called a sub-relation of r if each syndrome of q is, at the same time, a 
syndrome of r. In such case r will be called an over-relation of q. 

Bach weak semi-ordering relation-< described on the family C0 of subsets and 
satisfying the conditions: 

aJ for any two subsets <X, ß e C0 the inclusion a ~ ß implies a-< ß; 
b/ for any y e Co such that y n a = y n ß = ~. if a -< ß then 
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(auy)-< (ßuy); 
c/ under the conditions mentioned in b/, if a? ß then (a u y) ? (ß u y); 
d/ for any subsets a, ß, y, o E Cn if a-< ß and y-< o then 
(a u y)-< (ß u o), 

will be called a preference relation in Cn. 
The preference relation -< is thus an over-relation of the natural semi

ordering in Cn; in this context natural semi-ordering may be called a trivial 
preference relation in Cn. Let us also remark that in preference relation a couple 

of relationships a-< ß and ß -< a, in general, does not imply an identity a = ß, but 
rather an equivalence a"" ß. 

Let us take into account a finite family of subsets a, ß, y, ... ,t, K E Cn and a 
corresponding linearly ordered series of relationships: 

A = [ a r' ß, ß r" y, ... , t r* K ]. 

Such a series will be called a logical chain and it willlead to a question: what type 
of relationship a r K , called a conclusion of the chain, can be deduced from it? 
The answer is given by the following inference rules of preference: 

11 if in the given logical chain A there is r', r", ... , r* = r where r ="" ,-< or >
then, correspondingly, the conclusions are: a"" K, a-< K or a >- K; 

2/ if for some e, 11 E Cn there is (e "" 11) E A then it has no influence on the 
conclusion of A; 
3/ if for some e, 11 E Cn there is (e ? 11) E Athen a? K; 

4/ if for some e, 11,jl,V E Cn there is (e-< 11) E A and (ll >- v) E Athen 
a? K. 

Logical chains whose conclusions are a -< K (or a >- K) are called, 
correspondingly, directed up-going (correspondingly, down-going) logical chains. 
Logical chain whose conclusion is a "" K is called a chain of logical equivalence. 
A logical chain A for which a = K is called a logical loop. The following 
additional inference rules will be introduced: 

51 any up-going or down-going logicalloop consisting of some events can be 
replaced by a loop of logical equivalence consisting of the same events; 
6/ if the logical chain A contains a proper sub-chain A', A' c A, then all 
relationships betonging to A' can be neglected in the inference of a conclusion 
ofA. 
The following example will illustrate the above-given concepts. 

Example 1: Let us take into account a finite set Q = {a,b,c}. The corresponding 
family of subsets Cn consists of 8 elements (including Q and an empty set 1/S). Its 
natural semi-ordering can be illustrated by a directed graph plotted in Fig. 1. 
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Fig. 1. Natural semi-ordering of subsets of a three-element set. 

Let us consider the subsets { a, b}, { a, c} and { b, c}. In the sense of natural semi
ordering they are mutually incomparable. However, Iet us assume that an 
additional logical preference of { a, b} with respect to { a, c} takes place. This 
means that in the graph an arc directed from { a, c} to { a, b} should be introduced. 
Then, according to the condition b/ of the definition of preference relation an 
additional arc directed from { c} to { b} should be also introduced. The graph of 
preference will thus contain three types of arcs: 1/ the ones indicating natural 
preferences, 2/ introduced according to additional assumptions, and 3/ deduced 
from the former ones according to the general properties of preference relations. 
Finally, the preference relation considered here will be represented by a modified 
graph shown in Fig. 2. Introduced arc is plotted by a hold line, while the deduced 
one by a dotted line. 

Fig. 2. A modified directed graph representing a preference relation. 

Let us remark that a graph representing a preference relation is, in general, 
oriented and contourless. It makes it possible to compare logically such events 
only that can be connected by an ordered path directed from a less to a more 
preferred event. Such ordered pairs correspond to logical chains whose 
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conclusions are not of the type a. ? K. In fact, only those ordered paths in the graph 
that have not been induced by natural semi-ordering of events indicate non-trivial 
preferences. 

3 lnformational variables 

Let us take into consideration a real-number axis R. We shall define the set of 
elementary events Q as a family of all semi-intervals of the form ( -oo, x], for x E 

R. The corresponding sigma-algebra of subsets will be defined as a Borel farnily 
BR of such semi-intervals and their algebraic combinations. Then the quadruple 

x = [R, n, BR, -<l (2) 
where -< is a preference relation, will be called an informational variable 
described on R. 

It is evident that the concept of information variable is an extension of this 
one of a random variable, the main difference consisting in replacement of a 
probability measure by a preference relation. Probability measure is a function 
assigning probabilities to the measurable sets of BR; in practice it is given in the 
form of an integral probability distribution (ipd) or in an equivalent form of a 
probability density function (pdf). As it has been shown above, it induces in BR an 
equivalence based on the equality of probabilities and a weak ordering relation 
based on the inequalities of probabilities. On the other hand, the preference 
relation is a rule that to each pair of events a., ß E BR assigns one of four possible 
relationships: 1 o a.-< ß, 2° ß-< a., 3° a. = ß (when both 1° and 2° are valid) or 4° 
a. ? ß (when neither 1 o nor 2° is valid). In general, no numerical probabilities for 
this purpose are necessary. Operations on probabilities are based mainly on the set 
algebra and on integral calculus, while, as it will be shown below, operations on 
preferences can be based mainly on set algebra, linear algebra and on the theory of 
graphs. Probabilities can be calculated (according to some preliminary 
assumptions) or can be evaluated on the basis of statistical observations. 
Preferences can be assigned to selected pairs of events on the basis of statistical 
observations, of experience and/or of less or more conscious and sophisticated 
intellectual processes. However, operating with preference relations it is not 
necessary to use preference graphs representing all events of BR and all 
relationships (in particular - all natural) among them. Instead, their partial 
subgraphs containing only the necessary selected nodes and selected arcs can be 
used. 

Let us take into account the real axis R and two finite intervals D1 and D2 in it, 
as shown below. 

R 

Fig. 3. Two (partially overlapping) finite intervals on a real axis. 
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Considering both intervals as events of BR one can construct for them a graph 
of natural preference shown in Fig. 4. Let us remark that if non-overlapping 
intervals are considered, then the graph will be modified so that the relationships 
(D1nD2)-< D1, (D1nD2)-< D 2 , (D1\ D2) ""D1 and (D2\ Dt) ""D2 are taken into 
account. 

Fig. 4. A graph of natural preferences for two overlapping intervals. 

Let us assume that additional preference D1 -< D2 is established. Then the 
graph of preferences takes the form shown in Fig. 5, where non-natural 
preferences are shown by continuous arrows. 

Fig. 5. A graph of preference for two overlapping intervals with assumed 
preference D 1 -< D2. 

However, if D1 and D2 are mutually disjoint, the graph in Fig. 5 should be 
modified: the pairs of nodes corresponding to: D1 and D1\ D 2, D2 and D 2\ Dt. 
should be replaced by single nodes, as representing mutually equivalent events. In 
similar way, the nodes corresponding to D1nD2 and to lll should be combined 
together as representing empty sets. The corresponding graph of preferences is 
shown in Fig. 6 a. In Fig. 8 b a graph corresponding to a situation when D1zD2, 

and in Fig 6 c a one for D1 c D2 are plotted. 
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b/ 

Fig. 6. Graphs of preference for two intervals: a/ mutually disjoint, D1 -< D2, b/ as 
before, D1 = D2, c/for Dtc Dz. 

The above-given considerations have shown how to establish preferences 
among two events represented by intervals on the real axis R. An extension of this 
approach on any finite number of events is no more but a technical problem. 

The case of a set of pair-wise disjoint intervals covering the real axis R is of 
special interest. Let us take into account a countable set of points so. SJ. ... , S;, ... e 
R such that -fXJ < So < St < ... < S; <... Then there will be considered a series of 
intervals D0 = (-fXJ, So], D; = (S;-t. s;] for i = 1, 2, 3, ... covering the real axis. 
Taking into account that the intervals are mutually disjoint one can observe that 
each pair of consecutive intervals will be represented by a graph of the form 
shown in Fig.6 a or b. However, it will reasonable to represent graphs of 
preference in a more convenient for computer calculations form, for example, in 
the form of graph-representing matrices. For this purpose Iet us define a set of 
symbols F = { -<, >-, =, ? } . Then a matrix of preference will be defined as a 
square matrix Q = [qu] such that q;j e Fand D; qü Dj represents the preference 
established among D; and Dj. The matrix Q has the following properties: 

a/ its diagonal elements are q;; = = ; 
b/ if qü =-< then qj; = >- (and vice versa); 
c/ if qu = = or ? then qj; = qü. 
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Example 2: Let us take into account four consecutive intervals on the real axis: 
Dt. D2, D3, D4, for which a graph ofpreferences takes the form shown in Fig. 7. 

Fig. 7. A graph of preferences for four intervals. 

The same relationships represented by a matrix of preference takes the 
following form: 

D1 Dz D3 D4 
DI "" -< -< ? 
Dz >- "" "" >-
D3 >- "" "" >-
D4 ? -< -< "" 

The matrix of preference in its primary form represents the introduced 
preferences only. However, it can be easily completed by the natural and induced 
ones. Being given the Statements:"~ eD;" for i = 1,2, ... ,k, in the case of limited 
information one cannot say, in general, which of them are "true" or "false" or 
even what are the probabilities of the corresponding random events. Instead of 
this, the concept of informational variable gives us the possibility to compare the 
statements without assigning to them logical, probabilistic or any other numerical 
weights. So, the extended matrices of preferences in informational variables play a 
role similar to this of ipdfs or pdfs in random variables. 

4 Decision making based on informational variables 

First, let us remind the well known statistical decision problem: there are given 
two conditional pdfs of two alternative random variables: v(xll) for X1 and v(xl2) 

for X2• It was observed a value ~· The problern consists in answering with a 
minimum probability of error, whether ~ represents the random variable 
(statistical population) X1, or X2? Assuming that both statistical populations are of 
equal prior probabilities the answer is given by calculation and comparison of the 
values v@l) and v@2). Then the greater of them indicates the right answer. Let 
us remark that for making the decision, in fact, it is not necessary to know exact 
values of the probabilities; it is enough to know, which of them is greater. This 
suggests that for making the decision redundant information has been used. It will 
be shown below that the above-formulated problern can be solved using the 
concept of informational variable needing reduced primary information. 
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It will be considered the case of a finite set of informational variables: 

XJl = [R, n, BR, ~ 11], ll = 1,2, ... ,m, (3) 

where R, n, and BR have the same sense as in formula (2) while ~ 11 denotes a 
preference relation (specific for Xll). It will be here assumed that all relations ~ 11 

are described on the same system of intervals of R. Therefore, all they will be 
represented by matrices ofpreference Q11, 11 = l, ... ,m, of the same size. 

Let us consider 11 as an additional component of informational variable. 
Therefore, the pairs [!l, D;] will be considered as new informational variables. 
Then it arises the following problem: 

Let us assume that it was observed a 1;, I; E D;, D; being an interval in R. 
Establish a decision rule for answering the question: what is the 11 * such that with 
the highest logical preference I; can be stated being a realisation of [!l*,D;] ? 

For this purpose a matrix of preference P for the pairs [!l, D;] should be 
considered. P can be constructed as a block-matrix [PJ.tv], !l,V = 1,2, ... ,m, where 
P w are matrices of preference of the variables XJl and P 11v for 11 "# v are filled by 
symbols corresponding to additional relationships introduced among selected 
events according to the above-given rules of the matrices of preference 
construction. Lacking symbols should be represented by ? as the symbol of 
incomparability. 

P being given, a sub-matrix of preference P; for the events [!l, D;], 11 = 
1,2, ... ,m, should be drawn out from it and taken into account. It gives us the 
possibility to find out the solution. For this purpose it is enough to select all such 
rows of P; that contain no symbol ~.; the corresponding indices 11 form a subset of 
those, maximising the logical preference. This will be illustrated by the following 
example. 

Example 3: There will be taken into account three informational variables, X1, X2 

and X3 on a real axis R, described by a matrix of preference Q. For the sake of 
simplicity it will be assumed that in all cases the same set of intervals: D1 = (0, 
sd .... , D4 = (/;3, ~], D5 = (~, oo), will be used for an approximation of the 
variables. Let us assume that it was observed I; E D2. The question is what is the 
informational variable represented by I; ? 

In this case the matrix of preference has the following block structure: 

ll 12 13 

Q Q Q 
21 22 23 

Q= Q Q Q 
31 32 33 

Q Q Q 



319 

Each sub-matrix QPv is of 5x5 size and its element -,Pv ii represents the assumed 
relationship between the events D; of X11 and Dj of xv. However, for the solution of 
the above-formulated problern it is enough to take into account the following 
elements: r12 22 , / 3 22 and ?3 22,. Let them be: 

1222 = "'' 1322 =-<' ?322 = ? 

By symmetry they can be completed by 

?J 22 = "'' ,Jl 22 = >- ' ,;2 22 = ? 

Then the following graph of preference can be plotted: 

Fig. 8. Graph of preference for a triple of informational variables. 

From the graph it becomes clear that the statement II!; represents X3 II has the 
highest logical preference. 

lt may happen that some of so selected rows consist only of symbols "' and ? . 
This means that the set of introduced relationships is not sufficient for making an 
univocal decision. lt is evident that any system of logical inference tells us how to 
manage the available information, not how to create it in the case of its acute 
shortage. 
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1 Introduction and basic concepts 

Consider a decision problern in which the preferences of the decision maker 
can be modelled through the Choquet integral [2] with respect to a fuzzy 
measure [10]. This means that he follows some behavioural rules while making 
decision (see [1], [9]). Next step consists in obtaining such a measure. The 
problern of identifying fuzzy measures from learning data has always been a 
difficult problern occurring in the practical use of fuzzy measures [5], [6]. 

Our starting point is a set of experimental data from which we want to 
identify the fuzzy measure. Our choice criterion will be the mean squared 
error, as this is the criterion usually considered in practical problems, due to 
its good properties. 

When dealing with cardinal information, it is weil known that the mini
mization of a squared error criterion Ieads to a quadratic program. Grabisch 
and Nicolas [6] have developed an algorithm for the identification of fuzzy 
measures from sample information. In this algorithm, they solve the quadratic 
problern whose variables are the coefficients of the fuzzy measure over each 
subset of the universal set N. A similar algorithm using Möbius inverse and 
Shapley interaction was developed in [7]. Of course, it can be argued that this 
situation is not realistic, as in most practical situations the decision maker 
is not able to provide numerical values but he will be only able to range 
the objects following his preferences, i.e. in many practical problems one has 
often to deal with non numerical, qualitative information, coming from any 
source providing information in natural language. If this addresses in the 
!arge the problern of modelling knowledge, we address herein particular the 
problern of dealing with ordinal information, that is, information given on 
some ordinal scale. The consequence is that any manipulation of the data 
is forbidden, unless these manipulations involve only order, and then, the 
algorithm developed for the cardinal case cannot be directly used. 

If many powerful tools exist when information is quantitative ( or car
dinal), the practitioner is devoid of adequate tools to deal with problems 
involving ordinal information. Usually, an arbitrary mapping on a numerical 
scale is performed to come back to the cardinal world. 
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However, in the last years some methods treating with ordinal information 
have been developed; among them, we will use the MACBETH method [3]. 

In this paper, we try to build a meaningful numerical scale, keeping the 
ordinal information. To make this, we do not deal with only one numerical 
scale but a family of possible cardinal representations. Then, we look for 
a fuzzy measure that best represents the data, i.e. that best conserves the 
ordinal information. We will propose as solution a quadratic problern under 
constrains. Finally, an algorithm leading to a linear problern is proposed. 

In the sequel, we will consider a finite set of criteria N = {1, ... , n }. Subsets 
of N are denoted with capital letters A, B, and so on. The set of all subsets 
of N is denoted P(N). 

A fuzzy measure is denoted by 1-L· The set of fuzzy measures is denoted by 
:FM. Vectors are denoted with hold letters u, b, while matrices are denoted 
with hold capitalletters H, A and so on. 

We suppose then that we are given l objects or alternatives, from which 
we want to derive the fuzzy measure. Let us denote the set of alternatives by 
X= { xl, ... , x1}. We also suppose that the decision maker is able to compare 
(in an ordinal way) these objects for each criterion and also that he is able to 
express a preference between any two alternatives, so as to obtain a ranking 
of the alternatives. 

2 ldentification of fuzzy measures with cardinal data 

Let us now recall the method developed in [6] and [7]. We suppose that we are 
given l numerical values of Choquet integral e1 , ... , e1 and also the numerical 
values jl(x1), ... , Jl(xn), ... , Jl(xl), ... , jl(xn) ofthe scores of each alternative 
over each criterion. Our goal was to determine a fuzzy measure f-L minimizing 
the quadratic error 

l 

~)C11 (fk(xl), ... , fk(xn))- ek)2. 
k=l 

Of course, we have restrictions over f-L, namely the restrictions of monotonicity. 
It has been proved in [6] that if we consider the quadratic error criterion, 

the problern reduces to solve the quadratic problem: 

m1mm1Ze ~uTD11u+TJ'u 
under the constraints A 11u- b 11 ~ 0 

(1) 

where u is the vector containing the values of f-t(A) for all A C N. In [7], 
other expressions of this problern in terms of Möbius transform and Shapley 
and Banzhaf interactions have been developed. 
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3 A method for identifying fuzzy measures 

Let us now develop a method for the ordinal case. The idea is to use the 
learning process with cardinal data studied in Section 2. To obtain these car
dinal data we are going to use the MACBETH algorithm, as it is a theoreti
cally well-founded method to build interval scales from ordinal information. 
Once cardinal data are obtained, we obtain the fuzzy measure J.L by solving 
a quadratic problern as it was dorre in Section 2. 

MACBETH is based on two fundamental assumptions: the fact that the 
decision maker is able to express in an ordinal way the intensity of preference 
between two objects, and the existence on each criterion i of two particular 
elements, denoted Oi and 1i, which have the meaning of "neutral" and "sat
isfactory", respectively. These two elements convey an absolute meaning in 
thesensethat the degree of satisfaction is the same for Oi, Vi, and for 1i, Vi. 

These assumptions enable the construction ofinterval scales v1 , ... , Vn over 
each criterion, which are made commensurable by putting vi(Oi) = 0, Vi, and 
vi(1i) = 1, Vi. Also, an overall interval scale v can be built similarly for the 
overall score (see [3] for details). Doing this, we areback to the cardinal case 
and J.L can be obtained by solving the following problem: 

l 

min ~)C~(vl(xl), ... , vn(x;))- v(xi))2 . 
~E:FM i=l 

However, before solving this prob lern, we have to make v commensurable 
with all scales Vi. 

In the sequel, we will derrote C~(v1 (xi), ... , vn(x~)) by C~(xi) in order to 
simplify notation. We will also derrote v3 (x~) by x~. 

In next paragraphs, we will develop some approaches in which we consider 
different degrees of information about the overall scale. 

3.1 Method 1 

Let us start with the siruplest solution. For the overall scale, the "over
all neutral" and the "overall satisfactory" can be defined as follows: the 
overall neutral is a synthetic object whose criteria scores are Ot, ... ,On, de
noted (ON, 10)· On the other hand, we define the overall satisfactory as an
other synthetic object whose criteria scores are 1t, ... , 1n, denoted (1N, 00). 
We then define v((ON, 10)) = 0, v((1N, 00)) = 1, which is consistent with 
vi(Oi) = 0, vi(1i) = 1, i = 1, ... , n, thanks to the relation C~(O, ... , 0) = 0 and 
C~(1, ... , 1) = 1. 

Like this, we have some values of Choquet integral v(x1 ), ... , v(x1) and the 
values v1(x1), ... ,v1 (xm), ... ,vn(x1), ... ,vn(x1); thus we are in the conditions 
of the cardinal case. Applying then the results of Section 2, we obtain the 
fuzzy measure or the set of fuzzy measures that best fit the data. 

Of course, we have all the problems derived from the cardinal case. For 
example, we can obtain several solutions. 
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3.2 Method 2 

A problern can be argued for Method 1: Adecision rnaker can easily cornpare 
objects over a concrete criterion; then, the scales obtained are rather exact 
and also the norrnalization step gives no problern. The situation changes when 
dealing with the overall score; in that case, a decision rnaker is likely to give 
wrong inforrnation when he cornpares the "overall neutral" and the "overall 
satisfactory" with other actions. The reason is that in rnany situations the 
decision rnaker is not able to irnagine an object that is, say, satisfactory for 
all criteria. 

For exarnple, suppose that we are cornparing cars and that we have as 
criteria the color, the price, the speed and the size. Then, a car that is big 
enough to be "satisfactory" for the criterurn size, is also rather expensive; 
hence, the decision rnaker can find trouble to irnagine a car "satisfactory" 
for size and also cheap ( and thus "satisfactory" for price), as no car satisfies 
these two conditions sirnultaneously. 

Thus, the overall scale obtained could be wrong and the fuzzy rneasure 
obtained would not be correct. In other words, sorne problerns can arise in the 
norrnalization step for the overall scale. Then, we can wonder what happens 
when the overall scale is not fixed and we allow sorne degrees of freedorn. 

We suppose here that we have used the MACBETH approach in order to 
obtain scales over the criteria, and also that we have found an overall scale, 
but now we do not fix values for v{{ON, l0)) and v{{lN, 00)). Hence, the 
overall scale is not uniquely deterrnined, and since v is an interval scale, we 
have a farnily of possible scales, narnely 

v* = 81 V + (h, "i/(Jt, 82 E IR. 

Then, we look not only for a fuzzy rneasure t-t but also for the best scale v* 
fitting the data or, taking account that v* is cornpletely deterrnined by 01 

and 02' we look for f-t, 01 and 02 that best describe the ordinal inforrnation. 
This leads us to solve the following problern: 

Of course, as we have rnore degrees of freedorn, this will translate into a 
reduction of the quadratic error. 

Let us now see two different ways to solve this problern. 
First, suppose that t-t is fixed. Then, Cp.(xi) is fixed, too (as we know 

the evaluations of each object over each criterion). Thus, we have the pairs 
{(v(xi),Cp.(xi))} and we want to find 81,82 rninirnizing the quadratic error. 
This problern is equivalent to find the coefficients of 01 , 02 in the regression 
problern y = Olx + 02. 

Then, for a fixed f-t, we can obtain the best values for 81 and 82, i.e. we can 
find the best overall scale v*. It rnust be noted that both 01 and 02 depend 
linearly on f-t· 
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Hence, we can find an expression for the quadratic error in terms of fL· This 
quadratic error can be found from the regression model. Finally, it suffices to 
minimize this quadratic error. Let us introduce some notations: 

If x~o) = 0 ::; x(I) ::; ... ::; x~n) and A~j) = {(1), ... , (j)}, let us define a 
vector fi by 

fi(A) = x(j) - x(j-1) 1 - . (j) . { 
i i ·r A- Ai 

0 if A =I A(t)' ... , A(n) 

From fi, we define other vectors hi, i = 1, ... , l and a matrix H by 

"'z. f. (A) z 
h·(A) = f·(A) - L..i:~= 1 3 H = '""h·h'!' • • l ' L..J • • . 

i=1 

On the other hand, let us denote 

D = I:!=1 v(xi) b· = (v(xi) - v) 
l ' • "'l ( ( i) - -)2 . L..ii=1 V X V 

l 

Then, we define new vectors gi = bihi and g = L gi. With these notations, 
i=1 

we obtain: 

Proposition 1. If we consider the quadratic error criterion, the problern of 
identifying fL reduces to solve the quadratic problem: 

mmzmzze uTHu- uggT u 
und er the constraints Au u + hu 2:: 0 

(2) 

where u is the vector containing the values of fL(A), 'v'A C N, and Au, hu are 
the same as in {1). 

We have seen that Method 2 provides a more general method than Method 
1. Moreover, as 01 and 02 are variables, we obtain a reduction in the error. 
However, an important problern may arise: In Method 2 we can obtain a 
solution for which the value of 01 is not positive. A negative value of 01 

means an inversion in the preferences of the decision maker and thus the 
result obtained cannot be taken as a good representation of the data. In this 
sense, the following can be proved: 

Proposition 2. Considerxi,xi EX. 1/C,..(xi) > C,..(xi) wheneverxi >- xi, 
then, necessarily, 01 > 0. 

This means that if the fuzzy measure fL obtained by Method 2 does not 
prod uce any inversion in the preferences given by the decision maker, then 
01 must attain a positive value. However, the reciprocal is not true as the 
following example shows: 



326 

Example 1. Suppose lXI = 2 and that we have 4 data, namely 

xi x' 2 v(x') 
0.9 0 0.225 
1 0.5 0.25 
0.1 0.8 0.025 
0 0.5 0.2 

Tedious calculation Ieads to the solution 02 

0.994, f.L(2) = 0.989. But in this case, we have 
1.5, e1 0.2, f.L(1) = 

CIL(0.9, 0) = 0.891, CIL(1, 0.5) = 1, CIL(0.1, 0.8) = 0.8, CIL(O, 0.5) = 0.5, 

and thus we have changed the preferences of the decision maker as x3 >- x4 , 

while v(x3 ) < v(x4 ). 

This simple example shows an inversion in the preferences obtained by 
the Solution and the preferences given by the decision maker, even if 81 > 0. 
If more data are given, then the probability of inversion grows. 

Another problern that arises is the problern of uniqueness. It is possible 
that several measures Iead to the same error. Let us study the structure of 
the set of solutions. Let us denote 

s = {(f-L, el (f.L), 02(!-L))If-L optimal Solution}. 

Now, an interesting result can be proved about S. 

Proposition 3. S is a convex set, i. e. if (!-LI. Bf, 0~), (f.L2, 0~, 0~) E S, then 
for any a E [0, 1], a(f.LI. Bf, B~) + (1- a)(f.L2, 0~, 0~) is a solution, too. 

In particular, the set of possible values of 01 is an interval. It can be proved 
that the extreme points of this interval can be found through the following 
linear program with variable u: 

l l l 

maxfmin(lLftv(xi)- L:rtL:v(xi))u 
IL i=l i=l i=l 

s.t. f-L is a fuzzy measure. 
Of course, this program provides the extreme points for possible 01 . The 

real optimal values for 81 are given when the fuzzy measures considered are 
also optimal. However, this result will be used in next example to see that 
it is possib}e to find Situations in which all the possib}e va}ues of 81 are 
non-positive: 

Example 2. Let us suppose that we have two objects and two criteria. Let us 
suppose that the available information is given by 



x' 1 x' 2 v(x') 
0.6 0.5 0.4 
0.6 0.3 0.6 

Then, the corresponding values of f1 , f2 considering the binary order are 

f1(1) = 0.1, f1(2) = 0, f1(1, 2) = 0.5. 

f2(1) = 0.3, f2(2) = 0, f2(1, 2) = 0.3. 
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Then, the value that multiplies J.L(1) is 0.04, the value multiplying J.L(2) is 0 
and the value multiplying J.L(1, 2) is -0.04. Thus, our objective function is 

max [0.04J.L(1) - 0.04J.L(1, 2)]. 
1-' 

As J.L is a fuzzy measure, we can never obtain a positive value for (h. 
This example shows that we can find situations in which 81 takes only 

non-positive values, and consequently, we cannot model properly the ordinal 
information. However, it must be remarked that in this example there is an 
incoherence in the preferences of the decision maker, as x 2 is preferred to x 1 

while regarding the scores over the criteria, x1 should be considered better 
than x 2 . 

4 Conclusions and open problems 

In this paper we have studied the problern of identifying a fuzzy measure when 
only ordinal information is provided. The idea of the proposed method is to 
translate the information given in natural language to cardinal information, 
and apply then the method that we have developed in [7] to identify the fuzzy 
measure. The translation of ordinal information to cardinal information is 
given through the MACBETH approach. 

Our method consists in two steps: 

1. In the first step we use the MACBETH approach to translate our ordinal 
information in a cardinal information. 

2. In the second step we look for fuzzy measures that best fit this cardinal 
information given in the first step. 

Of course, all expressions obtained could be written in terms ofthe Möbius 
inverse [8], Shapley interaction [4] and so on. 

We feel that our approach mixes both the richness of the MACBETH 
approach and fuzzy measures. However, much research must be clone: 

• An implementation of these algorithms. This should allow us to compare 
more concretely our algorithms with other methods in terms of compu
tational cost, number of iterations, ... On the other hand, a comparison 
between our algorithms could be performed; for example, if the solution 
obtained in the four algorithms is more or less the same, it does not worth 
to work with Method 2 because Method 1 is much more simpler. 
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• It could be interesting to find conditions for a unique solution and ex
pressions for the set of solutions in the general case. 

• Of course, we have developed all the algorithms for general fuzzy mea
sures, but the same process can be done for special families of fuzzy 
measures, just adding more constrains. In this sense, the special case of 
2-additive measures [4] could be of interest as the measures obtained are 
very useful for interpretations. 
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Abstract. This paper presents an approach to reasoning with learnt and expert 
information where inconsistencies are present. Information is represented as an un
certain taxonomical hierarchy where each dass is a concept specification either 
defined by an expert or learnt from data. We show through simple examples how 
learnt information and uncertain expert knowledge can be represented and how 
condusions can be reasoned from the fused hierarchy. This reasoning mechanism 
relies on a default assumption to rank condusions based on the position of con
tributing information in the dass hierarchy. We examine the aggregation function 
of the default reasoning process and propose improvements that result in more 
natural fusions of expert and learnt hierarchical information. 

1 Introduction 

In this paper we consider the problern of fusing expert knowledge with knowl
edge that has been learnt from data. We represent both expert and learnt 
knowledge within a hierarchy of uncertain classes. Informationfusion is per
formed in this environment in order to reason with structured information 
from different sources. Crucially we exploit the structure of the hierarchy 
itself to resolve inconsistencies that occur across the fused hierarchy. 

The first section discusses our choice of uncertain taxonomies for the 
representation of both expert and learnt information. We then briefly explain 
how inconsistencies can occur in uncertain hierarchies and suggest the use of 
Cao's default reasoning algorithm (3] for reasoning with partially inconsistent 
hierarchies. Following this section we look at two illustrative problems that 
show how these mechanisms can be applied in the fusion of expert and learnt 
knowledge. Finally we discuss alternative methods for the aggregation of 
subsets of consistent information that give improved performance over Cao's 
original algorithm. 

2 Learnt and expert information 

In this paper we make the assumption that expert knowledge can be rep
resented as a hierarchy of classes within which uncertainty is integrated. 
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Uncertainty in this framework takes the form of fuzzy sets and probability 
intervals where fuzzy sets represent property values and probability intervals 
express both the memberships of objects in classes and the applicability of 
properties to an object or a class. More information about these theories of 
uncertain class hierarchies can be found in [2], [4], [1] and [8]. Of course there 
may be practical reasons why we cannot represent some specific knowledge 
in this framework. For example, we may have some knowledge but we may 
not know how this knowledge fits into the class hierarchy. Alternatively we 
may be certain that some knowledge is completely inconsistent with the class 
hierarchy. In this paper we sidestep this issue and we only consider the cases 
where knowledge defines some conceptual features known to be ( to some 
degree) consistent with some known part of the uncertain hierarchy. 

We represent expert knowledge by constructing simple rules based on 
matehing discrete fuzzy sets on labels where each element is a (label : mem
bership) pair defining the membership of a point in a continuous piece-wise 
fuzzy set. For example, we first construct a vocabulary of label fuzzy sets 
L = { very_small, small, medium, Zarge, very_large} where each mem
ber is a label describing a fuzzy set. Hence [-1.5: 0 -0.75: 1 0: 0] would 
define a simple triangular fuzzy set corresponding to the label small. We 
then specify expert knowledge as discrete fuzzy sets on these labels. Hence 
legal = { small : 1 medium : 0.5} defines the property legal in terms of 
labels small and medium. In this way expert knowledge can be encoded in a 
transparent form that corresponds directly to real world linguistic statements 
such as 'the point is legal if it is small in the x axis and Zarge in the y axis, 
or it is Zarge in the x axis and small in the y axis'. These uncertain linguistic 
rules can then be inserted into the hierarchy of knowledge at the appropriate 
point. 

Learnt knowledge, on the other hand, can be represented in any number 
of ways depending on the learning mechanism used. Common representations 
are graphical, numeric or connectionist. One focus of machine learning that 
has relevance to transparent information fusion is machine learning within 
a framework of computing with words. We have presented such a machine 
learner in [6]. This method learns simple rules from data where the rules 
contain fuzzy sets on labels. Since this representation of learnt knowledge is 
the same as our proposed representation of expert knowledge we will use this 
method for learning from data in all examples in this paper. Unfortunately 
this learning mechanism does result in some decomposition error. For the 
purposes of this information fusion work this (normally undesirable) charac
teristic is not a problem. We are simply aiming to develop new approaches 
to information fusion rather than develop competitive learning algorithms. 

One question we have yet to answer is how to fuse two structured hierar
chies. The learnt models we are dealing with here are simple fuzzy rulesets 
which model singular concepts. In this respect the ruleset defines, or con
tributes to a definition of, a single uncertain class. This makes the fusion 



331 

operation much simpler since we need only consider the general problern of 
inserting a single learnt dass into an expert hierarchy. Even so, this problern 
still involves substantial computation to determine where to insert this single 
dass. In this paper we make the further assumption that we know the con
cept that the learnt dass defines and that this concept has also been defined 
by the expert independently. That is, if a learnt dass cL defines the concept 
conc(cL) and the expert hierarchy contains dasses CE= {cE1 ... CEn}, there 
must exist CEm E CE suchthat conc(cEm) = conc(cL)· This being the case 
we fuse the learnt dass into the expert hierarchy by inserting cL as a sibling 
of CEm, i.e. CL and CEm share the sameimmediate superdass. 

3 Inconsistency in uncertain dass hierarchies 

A major problern with fusion of this kind is that multiple independent sources 
of knowledge, be it from experts or from some learning mechanism, are un
likely to be entirely consistent. In constructing and fusing uncertain dass 
hierarchies these inconsistencies may only become apparent when the hierar
chy is queried. Since properties are inherited with some degree of applicability 
expressed as a support interval any inconsistency becomes evident when in
tersecting these support intervals. 

Let us take the the dasses C1 and C2 which each contain a definition for 
the property '1/J, and an object 0 which has some probability of membership 
in each dass, i.e. Pr(C1 !0) and Pr(C2 IO). We first determine the probability 
that 0 will inherit 'ljJ from C1 and C2 separately using an interval form of 
Jeffrey's rule [5](4], i.e. we calculate Pl = Pr('l/Jc1 !0) and P2 = Pr('l/Jc2 !0). 
An inconsistency between the two inherited version of P is defined by the 
intersection of intervals Pl and P2 yielding the empty interval, i.e. P1 np2 = [ ). 
Clearly we require a mechanism to deal with such inconsistencies. One ap
proach is to calculate the maximally consistent subset of inherited properties. 
Unfortunately this process is exponential in time complexity for uncertain hi
erarchies where it is possible for an object to inherit from all dasses. There are 
a number of other approaches, such as Dempster's rule, which can deal with 
independent and conflicting information with more practical time complexity 
but these are often rather blunt in application. Typically these approaches do 
not take into account the structural information defined in the hierarchy itself. 
A far better approach is to examine the hierarchy and use this to constrain 
property inheritance with respect to consistency. We would say that dasses 
higher up the hierarchy define general concepts while dasses lower down the 
hierarchy define more specific concepts. In this regard it seems natural where 
conflicts occur to draw our most concrete condusions using inherited prop
erties from dasses lower down the hierarchy and discount properties from 
dasses higher up. In this paper we implement such as approach in the form 
of Cao's default reasoning algorithm based on hierarchical ranking, as first 
presented in [3]. 
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3.1 Default reasoning in fused uncertain hierarchies 

In this paper we consider how this default reasoning algorithm impacts upon 
the fusion of expert and learnt information in uncertain dass hierarchies. 
The default reasoning algorithm derives a set of preferred consistent subsets 
P = {Pl, . . . , Pn} and combines these to form the single support interval 
Pr( 1/JIO), which denotes the support for property 1/J being applicable to object 
0, using Equation 1. Broadly the effect of Equation 1 is to intersect (i.e. 
restriet) the supports up branches of the hierarchy and then to union (i.e. 
widen) the resulting intervals across the hierarchy. A more detailed discussion 
of this algorithm with respect to information fusion is found in [7]. 

Pr(?/JIO) = U (nx 1 x E Pi) (1) 
p;EP 

3.2 Two simple examples 

We study the behaviour of this algorithm using the two simple example dass 
hierarchies of expert and learnt information shown in Figures 3 and 4 which 
define the conceptual shapes shown in Figures 1 and 2 respectively. 

1.<,---~-~-~-.---,-----, 

Fig. 1. Figure eight shape Fig. 2. Doughnut shape 

"... .. ... 
: shape '~ 
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, ........ / _.,."~---~------·-···--- ... __ _ 

( figure8 ,/ :: learnt-figure8 _:: 
'~ ..... ·- ... __ ... -·· 
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knowledge / I \ 
, -'circular_shape) learnt 

// / ):<; __ ... k.ri?.»J_l~dge 
( doughnut ,/ ( learnt-doughnut _·_·_: 
' .. ______ ....... ·-............................ --·· 

Fig. 3. Figure eight hierarchy Fig. 4. Doughnut hierarchy 

Figures 5 and 7 show the classification results using just the expert hier
archies and Figures 6 and 8 show the results using just the learnt dasses. The 
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Fig. 5. Expert's figure eight: 81.5% Fig. 6. Learnt figure eight: 84% 

'·' .---.----.----.----.----...--------, 

0.5 

.... , 

·l.~IL...5 ---'-----.,.0.'.,-5 ---'-----.,,'-:-, ---'---:'1.5 

Fig. 7. Expert's doughnut: 81.3% Fig. 8. Learnt doughnut: 85.5% 

accuracy values show the percentage of test points classified correctly. Notice 
how the expert knowledge, represented using simple linguistic fuzzy rules, 
captures the general shapes but, especially in the doughnut case, tends to 
over-generalise the structure of the concepts. The learnt models, on the other 
hand, exhibit decomposition error which results in characteristic symmetrical 
patterns. 

When we fuse the expert and learnt classes and apply default reasoning to 
resolve inconsistencies we generate the classification results shown in Figures 
9 and 10. It is interesting to observe the effects of the fusion and reason
ing processed on the structure of the classification results. Fusion results in 
slightly worse results for the figure eight problern and slightly better results 
for the doughnut problem. The important point here is that we have fused 
learnt and expert knowledge in a common hierarchical representation and 
have been able to draw measured conclusions about the shape of the con
cepts being represented through the stratified selection of consistent knowl
edge. Further to this, we can examine the linguistic rules that have been 
combined and this may be of great use to experts who wish to learn more 
about a problern domain from the learnt model. 

4 Alternative default fusion strategies 

While the aggregation function shown in Equation 1 is formally reasonable it 
is questionable in practice. The tendency in the union operation is to widen 
the support region without taking into account the intervals of uncertainty 
within the supports. Take for example the support intervals [lt, u1] and [l2, u2] 
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·•·~·L..·' --'---"".o.s=----L-----:':---'------:' 

Fig. 9. Fused figure eight: 79.5% Fig. 10. Fused doughnut: 88.8% 

which we combine by interval union to yield (MIN(h, l2 ), MAX( u 1 , u2 )]. If the 
union operation gives us [h, u1] then this clearly does not take into account 
the specificity of the narrower interval (l2 , u2]. A better approach may be to 
join these supports in a more considerate way, such as through an interval dis
junction. Another alternative is to defuzzify the supports since we commonly 
require the final support for a property to be expressed as a singleton. In 
the following alternatives the support logic conjunction is implemented as in 
Equation 2 and the support logic disjunction is implemented as in Equation 
3. The defuzzification aggregation V* is shown in Equation 4. 

[l, u]l\ [n,p] = [l x n, u x p] (2) 

[l, u] V (n,p] = [l + n -l x n, u + p- u x p] (3) 

[l l * [ ] = l + u + n + p ,u V n,p 4 (4) 

Motivation for the use of logical rather than set Operations is based on 
the selective nature of the default reasoning algorithm. The algorithm selects 
a set of consistent subsets which form a theory for the applicability of prop
erty 'ljJ. Determining the applicability of 'ljJ can therefore be thought of as the 
resolution of this theory into a single conclusion. Logical operations are one 
alternative for resolving this theory. Motivation for the use of the defuzzify
ing mechanism in Equation 4 is based on the assumption of a uniform prior 
distribution over the probability interval [l, u]. Given such a uniform distri
bution a reasonable choice for a singleton representation of the applicability 
of 'ljJ is the mid point between the upper and lower bounds. 

Table 1 show the classification results for alternative aggregation opera
tions to those in Equation 1. Method 1 equates to Equation 1. These results 
are shown graphically in Figures 11 to 18. The results show a marked im
provement over Equation 1 when using methods 3 and 4. This indicates most 
strongly that aggregation of supports from consistent subsets through Cao's 
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default reasoning algorithm can be improved by applying alternative opera
tions to set union and intersection. It is also the case that in the two examples 
the structure of the fused shapes was much improved using these alternative 
approaches. This is shown most strongly in Figures 13, 14 16, 17 and 18. 

Method Operations Figure Eight (%) I Doughnut (%)I 
1 (n,u) 79.5 88.8 
2 (n,v) 79.5 88.4 
3 (n, v*) 86 90.4 
4 (/\,V) 85 92.1 
5 (A, v*) 84.5 89.2 

Table 1. Classification results 

Fig. 11. Figure 8, method 2: 79.5% Fig. 12. Figure 8, method 3: 86% 

Fig. 13. Figure 8, method 4: 85% Fig. 14. Figure 8, method 5: 84.5% 

5 Conclusions 

We have shown how expert and learnt knowledge can be represented and fused 
in simple uncertain class hierarchies. Inconsistencies that commonly come to 
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,_, .---~--~---.--~--,------. 

.o.s 

··-~.'-;_,---:--~:----7-----::':------c-------:' .. ,. 

Fig. 15. Doughnut, method 2: 88.4% Fig. 16. Doughnut, method 3: 90.4% 

... ,,.'-:_,---':------:-:-----:---------:':------c-------:' 

Fig.17. Doughnut, method 4: 92.1% Fig. 18. Doughnut method 5: 89.2% 

light only after the information fusion process has finished can be handled in 
polynomial time using Cao's default reasoning algorithm. We present some 
alternatives methods for the aggregation of consistent subsets of applicable 
properties which generally perform better in the domain of fused expert and 
learnt uncertain hierarchical information. 
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Abstract. In the paper we discuss classifiers relevant to approximate reasoning. 
The approach is based on rough-fuzzy hybridization. We discuss its possible appli
cations to computing with words. 

1 Introduction 

We propose to use classifiers for rough-fuzzy concepts (see, [8]) as a tool in search
ing for approximate reasoning rules, called productions. From such productions 
approximate reasoning schemes can be derived. They are the basic constructions in 
rough-neuro computing [4] based on rough mereological approach [6]. The approach 
can be treated as a way to Computing with Words (see, e.g., [11], [12]). The pro
posed approach splits approximate reasoning into the following stages. In the first 
stage classifiers for relevant concepts should be induced using the existing statisti
cal and other methods (see, e.g., [2], [3], [7]). Next, productions are extracted from 
data. It is important to note that it is possible to develop productions in such a 
way that they are using only linguistic names. Using the productions approximate 
reasoning schemes can be derived. On the top level solely linguistic names appear 
in the reasoning scheme. 

2 Information Granule Systems and Parameterized 
Approximation Spaces 

In this section, we present a basic notion for our approach, i.e., information granule 
system. An information granule system is a tuple 

S= (G,R,Sem) (1) 

where 

1. Gis a finite set of parameterized constructs (e.g., formulas) called information 
granules; 

2. R is a finite (parameterized) relational structure; 
3. Sem is a semantics of G in R. 

We assume that with any information granule system there are associated: 



339 

1. H a finite set of granule inclusion degrees with a partial order relation < which 
defines on H a structure used to compare the inclusion degrees; we assume that 
H consists of the lowest degree 0 and the largest degree 1; 

2. Vp ~ G X G a binary relation to be a part to a de9ree at least p between 
information granules from G, called rou9h inclusion. (Instead of vp(9, 9') we 
also write 1.1(9, 9') ;?: p.) 

Components of an information granules system are parameterized. It means 
that we deal with parameterized formulas and a parameterized relational system. 
The parameters are tuned to make it possible to construct finally relevant infor
mation granules, i.e., granules satisfying specification orjand some optimization 
criteria. Parameterized formulas can consist of parameterized sub-formulas. The 
value set of parameters labelling a sub-formula is defining a set of formulas. By 
tuning parameters in optimization process or / and information granule construc
tion a relevant subset of parameters is extracted and used for construction of the 
target information granule. 

There are two kinds of computations on information granules. These are compu
tations on information granule systems and computations on information granules 
in such systems, respectively. The first ones are aiming at construction of a rel
evant information granule systems defining parameterized approximation spaces 
for concept approximations used on different Ievels of target information granule 
constructions and the goal of the second ones is to construct information granules 
over such information granule systems to obtain target information granules, e.g., 
satisfying a given specification (at least to a satisfactory degree). 

Examples of complex granules are tolerance granules created by means of simi
larity (tolerance) relation between elementary granules, decision rules, sets of deci
sion rules, sets of decision rules with guards, information systems or decision tables 
(see, e.g., [8]). The most interesting class of information granules are information 
granules approximating concepts specified in naturallanguage by means of experi
mental data tables and background knowledge. 

One can consider as an example of the set H of granule inclusion degrees the 
set of binary sequences of a fixed length with the relation v to be a part defined 
by the lexicographical order. This degree structure can be used to measure the 
inclusion degree between granule sequences or to measure the matehing degree 
between granules representing classified objects and granules describing the left 
hand sides of decision rules in simple classifiers. However, one can consider more 
complex degree granules by taking as degree of inclusion of granule 91 in granule 
92 the granule being a collection of common parts of these two granules 91 and 92. 

New information granules can be defined by means of operations performed 
on already constructed information granules. Examples of such Operations are set 
theoretical Operations ( defined by propositional connectives). However, there are 
other Operations widely used in machine learning or pattern recognition [3] for 
construction of classifiers. These are the Match and ConflicLres operations. We 
will discuss such Operations in the following section. It is worthwhile mentioning 
yet another important class of Operations, namely, Operations defined by data ta
bles called decision tables [8]. From these decision tables, decision rules specifying 
operations can be induced. More complex Operations on information granules are 
so called transducers [1]. They have been introduced to use background knowledge 
(not necessarily in the form of data tables) in construction of new granules. One can 



340 

consider theories or their dusters as information granules. Reasoning schemes in 
naturallanguage define the most important dass of Operations on information gran
ules to be investigated. One of the basic problems for such Operations and schemes 
of reasoning is how to approximate them by available information granules, e.g., 
constructed from sensor measurements. 

In an information granule system, the relation Vp to be a part to a degree at 
least p has a Special role. It satisfies some additional natural axioms and addition
ally some axioms of mereology [6]. It can be shown that the rough mereological 
approach built on the basis of the relation to be a part to a degree generalizes 
the rough set and fuzzy set approaches. Moreover, such relations can be used to 
define other basic concepts like doseness of information granules, their semantics, 
indiscernibility and discernibility of objects, information granule approximation and 
approximation spaces, perception structure of information granules as weil as the 
notion of ontology approximation. One can observe that the relation to be a part 
to a degree can be used to define Operations on information granules corresponding 
to generalization of already defined information granules. For details the reader is 
referred to [4]. 

Let us finally note that new information granule systems can be defined us
ing already constructed information granule systems. This Ieads to a hierarchy of 
information granule systems. 

3 Classifiers as Information Granules 

An important dass of information granules create dassifiers. One can observe that 
sets of decision rules generated from a given decision table DT = (U, A, d) (see, 
e.g., [8] can be interpreted as information granules. The dassifier construction from 
DT can be described as follows: 

1. First, one can construct granules Gj corresponding to each particular decision 
j = 1, ... , r by taking a collection {9ii : i = 1, ... , kj} of left hand sides of 
decision rules for a given decision. 

2. Let E be a set of elementary granules (e.g., defined by conjunction of descrip
tors) over IS = (U, A). We can now consider a granule denoted by 

Match(e,G1, ... ,Gr) 

for any e E E being a collection of coefficients Eij where c;j = 1 if the set 
of objects defined by e in IS is induded in the meaning of 9ii in IS, i.e., 
Sem1s(e) <:;;: Semis(9ii); and 0, otherwise. Hence, the coefficient cij is equal 
to 1 if and only if the granule e matches in IS the granule 9ii· 

3. Let us now denote by Conflict_res an operation (resolving conflict between 
decision rules recognizing elementary granules) defined on granules of the form 
Match(e, G 1 , ... , Gr) with values in the set ofpossible decisions 1, ... , r. Hence, 

ConflicLres(Match(e, G1, ... , Gr)) 

is equal to the decision predicted by the dassifier 

ConflicLres(Match(•, G1, ... , Gr )) 

on the input granule e. 
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Hence, classifiers are special cases of information granules. Parameters to be 
tuned are voting strategies, matehing strategies of objects against rules as weil as 
other parameters like closeness of granules in the target granule. 

The classifier construction is illustrated in Fig. 1 where three sets of decision 
rules are presented for the decision values 1, 2, 3, respectively. Hence, we have r = 3. 
In figure to omit too many indices we write a; instead of 9il, ß; instead of 9i2, and 
"(; instead of g;3 , respectively. Moreover, cl,c2,c3, denote cl,l,c2,1,c3,1i c4,c5,cs,c7 
denote c1,2,c2,2,c3,2,c4,2i and c-s,c9 denote c1,3,c2,3, respectively. 

a1 -+d =1 ßt-+d =2 En a2 -+d=l ß2 -+d =2 3 

a3 -+d =1 ß3 -+d =2 n D 
ß4 -+d =2 

.0. 
G3=(y1, Y2) 

I input gran);] ({tl,s,_,&3),(&4,&s ,&6,&7),(ts,~)) 
I Conflict res (Match(e,G1,G2,G3)) 

Fig. 1. Classifiers as Information Granules 

The reader can now easily describe more complex classifiers by means of in
formation granules. For example, one can consider soft instead of crisp inclusion 
between elementary information granules representing classified objects and the left 
hand sides of decision rules or soft matehing between recognized objects and left 
hand sides of decision rules. 

4 Approximation Spaces in Rough-Neuro Computing 

In this section we would like to look more deeply on the structure of approximation 
spaces in the framework of information granule systems. 

Such information granule systems are satisfying some conditions related to their 
information granules, relational structure as weil as semantics. These conditions are 
the foilowing ones: 
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1. Semantics consists of two parts, namely relational structure R and its extension 
R*. 

2. Different types of information granules can be identified: (i) object granules 
(denoted by x), (ii) neighborhood granules (denoted by n with subscripts), (iii) 
pattern granules ( denoted by pat), and (iv) decision dass granules ( denoted by 
c). 

3. There are decision dass granules c1, · · · , Cr with semantics in R* defined by a 
partition of object granules into r decision dasses. However, only the restric
tions of these coliections to the object granules from R are given. 

4. For any object granule x there is a uniquely defined neighborhood granule n". 
5. For any dass granule c there is constructed a coliection granule {(pat,p) : 

v:;(pat, c)} of pattern granules Iabelied by maximal degrees to which pat is 
induded in c (in R). 

6. For any neighborhood granule n" there is distinguished a coliection granule 
{(pat,p) : v:;(n",pat)} of pattern granules Iabelied by maximal degrees to 
which n" is at least induded in pat (in R). 

7. There is a dass of Classifier functions transforming coliection granules (cor
responding to a given object x) described in two previous steps into the power
set of {1, · · ·, r }. One can assume object granules tobe the only arguments of 
Classifier functions if other arguments are fixed. 

The dassification problern is to find a Classifier function defining a partition 
of object granules in R* as dose as possible to the partition defined by decision 
dasses. 

Any such Classifier defines the lower and the upper approximations of union 
of decision dasses c; over i E I where I is a non-empty subset of {1, · · · , r} by 

Classifier({c;}iEI) = {x E Uc;: 0 =/= Classifier(x) ~I} 
iEI 

Classifier( {Ci }iE/) = {X E u· : Classifier( X) n I =I= 0}. 

The positive region of Classifier is defined by 

POS ( Classifier) = Classifier( { c1}) U · · · U Classifier( { Cr}). 

The doseness of the partition defined by the constructed Classifier and the 
partition in R* defined by decision dasses can be measured, e.g., using ratio of the 
positive region size of Classifier to the size of the object universe. The quality of 
Classifier can be defined taking, as usual, only into account objects from U*- U: 

l . (Cl .1. )-card(POS(Classifier)n(U*-U)) 
qua tty asst ter - card((U* _ U)) . 

One can see that approximation spaces have many parameters to be tuned in 
order to construct the approximation of high quality dass granules. 

One more interesting issue is the direct connection between descriptions using 
dassifier-based granules and the characterization in terms of the Dempster-Shafer 
theory of evidence. This inter-connection derives from the relationships that exist 
between rough set theory and evidence theory as described in e.g. [9]. We may 
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introduce belief and plausibility functions that characterize granules defined by 
classifiers in the following way ( with previous notation): 

l{x EU*: Classifier(x) C I}l 
Belclassifier(I) = lU* I 

I { Classifier( {Ci }iEI) I 
lU* I 

l{x EU* : Classifier(x) n I#- 0}1 
Plclassifier(I) = IU*I 

I{ Classifier( { ci}iEI )I 
lU* I 

5 Standards, Productions, and AR-schemes 

AR-schemes have been proposed as schemes of approximate reasoning in rough 
neurocomputing (see, e.g., [4], [8]). The main idea isthat the deviation of objects 
from some distinguished information granules, called standards or prototypes, can 
be controlled in appropriately tuned approximate reasoning. Several possible stan
dard types can be chosen. Some of them are discussed in the literature (see, e.g., 
[4]). We propose to use standards defined by classifiers. Suchstandards correspond 
to lower approximations of decision classes or ( definable parts of) boundary regions 
between them. 

Rules for approximate reasoning, called productions, are extracted from data 
(for details see [8]). Any production has some premisses and conclusion. In the 
considered case each premiss and each conclusion consists of a triple {classifier, 
standard, deviation). This idea in hybridization with rough-fuzzy information gran
ules (see, e.g., [8]) seems tobe especially interesting. The main reasons are: 

• standards are values of classifiers defining approximations of cut differences and 
boundary regions between cuts [8], 

• there is a natural linear order on such standards defined by classifiers. 

To explain the meaning of productions let us consider the following example of a 
production with two premisses: 

In the production classifiers Cl, c2, c are labelled by Standards standl, stand2, 
stand and deviations t:1, E:2, E:. The deviation E: is showing the rangein which (in the 
considered linear order) can the deviation move the standard stand. The intended 
meaning of such production is that if the deviation of input from standards stand1, 
stand2 are respectively at most E:1, E:2 then the conclusion deviates from stand to 
degree at most E:. 

From production (extracted from data) AR-schemes can be derived (see, e.g., 
[8]). 

One more important step that can be performed in order to bring this framework 
closer to the idea of pure computing with words is by substituting the degrees of 
closeness ( deviations E:, E:1, E:2 in our case) by linguistic variables. What we want to 
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make possible is the formulation of granule production in a purely linguistic way, 
for example: 

if similarity between C1 output and standard stand1 is high 
and similarity between C2 OUtput and Standard stand2 is low 

then similarity between C output and standard stand is medium 
To achieve this task we have to define partitions for the ranges of devia

tion as the deviation is used to measure similarity between classifier and corre
sponding standards. Let us consider the deviation c: for the classifier C output 
and standard stand. It is quite natural to assume that the subsets of c: range 
are ordered linearly. Also, their layout should be fuzzy-like. We may e.g. take 
three such sets stating represented as {low,medium,high}. As these sets may 
(and in fact should) overlap, in turn we get more possible linguistic values e.g. 
{low, low or medium, medium, medium or high, high}. 

The retrieval of proper sets for deviation ranges should be devised as an inter
active data-driven process. By analysis of standards and classifiers and matehing 
them against the training data we attempt to establish an initial layout for devia
tions. This layout (the choice and setting of subsets) is then verified and possibly 
modified in order to achieve high compliance with the underlying data sets. The 
choice of proper parameters for the sets of deviation ranges may be based on various 
known techniques in data analysis such as clustering, statistical analysis, density 
analysis etc. 

6 Conclusion 

We have proposed to use standards defined by classifiers. Such standards can next 
be used in the process of extracting of productions from data and for deriving 
AR-schemes. This is also a step towards implementation of the general idea of 
computing with words. 
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Abstract. In this paper we describe the consensus problern solution 
applied to the web-based system interface construction for each class of 
users. We assume that we have a multiagent system that collects knowledge 
about user interactions with different systems in the form of user profiles 
which serve to user classification. This multiagent system also collects the 
interface profiles of all users of these systems, which are used for the 
adaptive interface construction. Because of the differences among the users 
and their experiences, the knowledge stored in the form of interface profiles 
is inconsistent, even for the users belanging to the same class, so the most 
efficient interface could be found when we reconcile the knowledge by 
means of consensus methods. 

Key words: Consensus method, user interface, user profile classification 

1 lntroduction 

In adaptive hypermedia the user classification is applied in almost all approaches 
[3]. Most of the methods try to assign users appropriate predefined user model 
[5,9], sometimes called the usage model [3]. The classification could be based on 
so called user data, i.e. user description delivered by the user himself, or the usage 
data gathered during the whole interaction process. The usage date could be based 
on very different elements of the user interaction with the web systems, i.e. URL' s 
of the visited pages, chosen hyperlinks, filled-in forms, words from visited pages, 
advertisement clicked, etc. [12]. 

There are many methods used for the user model acquisition: user supplied, 
acquisition rules, plan recognition and stereotype recognition, as weil as usage 
model acquisition: machine learning, Hidden Markov Models, graph-based 
induction. One of the quite popular method used in the adaptive hypermedia is so 
called clique method, i.e. used for filtering problems [3]. The clique filtering is 
made in three phases: find similar neighbors, select comparison group of 
neighbors and finally compute prediction based on (weighted) representations of 
selected neighbors. In this paper however we propose adaptive web-based 
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interface construction that is based on the consensus method used for appropriate 
prediction of the class representations using also the interface usability function 
for the 'interface knowledge' reconciliation. 

Generally, consensus is understood as a general agreement in matters of 
opinion or testimony and a powerful tool for solving many problems for which the 
solvers are in conflicts [6]. The conflict (or a conflict situation) takes place, if at 
least some participants (agents) from a certain group generate different opinions or 
different views on the same subject or issue. What is inherently hidden in this 
definition is that a conflict can be visible and considered, when the opinions of 
participants (or conflict agents) are communicated with the same class of carriers 
and referred to the same set of criteria. In other words, a common formal language 
is needed to represent conflicting opinions. In a more precise approach, it needs to 
be possible to represent the agents' opinions by means of the same mathematical 
structures, e.g. relations over the same sets, or functions with the same signatures. 
A conflict situation can be defined by means of an information system ( o/, CJJ:if, in 
which o/is a set of agents, and ~is a set of attributes representing issues of 
conflict. 

In this paper we present the consensus problern solution applied to the web
based system adaptive interface construction for each class of users. First we 
present the consensus problern and then its application to interface construction 
using consensus structure. Then we describe the user classification based on 
different methods. Finally we address the problern of the interface utility values 
determination for short. 

2 Determination of Interface Profiles' Consensus 

2.1 Basic Notions 

W e assume that a real world is described by means of a finite set A of attributes 
and a set V of elementary values, where V= U aeA Va (Va is the domain of attribute 

a). Let D(Va) denote the set of subsets of set Va and D(V8 )=U beBD(Vb) for any 
B~. We accept the following assumption: Foreachattribute a its value is a set of 
elementary values from Vm thus it is an element of set D(Va). By an elementary 
value we mean a value which is not divisible in the system. Thus it is a relative 
notion, for example, one can assume the following values to be elementary: time 
units, numbers, partitions etc. 

We define the following notions: Let B~, a tuple of type B is a function 
r: B~n(V8) where (VbEB)(r(b)c;;;Yb). Instead of r(b) we will write rb and a tuple 
of type B will be written as r8 • The set of all tuples of type B is denoted by 
TYPE(B). A tuple is elementary if all attribute values are empty sets or f-element 
sets. The set of elementary tuples of type B is denoted by E-TYPE(B). Empty 
tuple, whose all values are empty sets, is denoted by symbol <J>. Partly empty tuple, 
whose at least one value is empty, is denoted by symbol e. A non-:.empty set R of 
tuples of type B is called a relation of type B, thus Rt;;;.TYPE(B). The sum of 2 
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tuples r and r' of type B is a tuple r" of type B (r"=rvr') such that 
('VbE B)(r"b=rbur'b). A product of 2 tuples r and r' of type B is also a tuple r" of 
type B (r"=rnr') suchthat ('VbEB)(r"b=rbnr'b). Let r,r' ETYPE(B), we say that 
tuple r is included in tuple r' (that is r-< r'), iff ('VbE B)(rbr;;;.r'b). 

2.2 Definition of Conflict System 

We assume that some real world is comrnonly considered by agents which are 
placed in sites of a distributed system. The subjects of agents' interest consist of 
events which occur (or have to occur) in the world. The task of these agents is 
based on determining the values of event attributes (an event is described by an 
elementary tuple of some type). The elements of the system defined below should 
describe this situation [7]. 

Definition 1. By a conjlict system we call the following quadruple: 

Conjlict_Sys = (A, X, P, Z) 
where: 
- A - a finite set of attributes, which includes a special attribute Agent; each 
attribute aEA has a domain Va (a non-empty and finite set of elementary values) 
such that values of attribute a is a subset of Va; values of attribute Agent are 
ielement sets, which identifj; the agents. 
-X- afinite set of conjlict carriers, X ={ll{Va): aEA }. 
- P - a finite set of relations on carriers from X, each relation is of some type A 
(for Ar;;;.A and AgentEA). 
- Z- a finite set of logic formulas for which the model is relation system (X,P). 

The purpose of Definition 1 relies on representing two kinds of information: 
the first consists of information about conflicts in the distributed system, which 
require solving, and the second includes the information needed for consensus 
determining. 

In the conflict system an event is described by an elementary tuple of type 
Br;;;.A\{Agent} . The values of attributes represent the parameters of the event. For 
example the following tuple describes the event "For the class c1 the best inteiface 
should consist of the following parameters: the window size is 240x320, the so und 
volume- 0, the number of columns- 1 and the template- classical". 

Window size Sound volume 
240x320 0 

Relations belanging to set P are classified in such a way that each of them 
includes relations representing similar events. For identifying relations belanging 
to a given group the symbols .. + .. and .. - .. should be used as the upper index. If P is 
the name of a group, then relation p+ is called a positive relation (contains positive 
knowledge) and P~negative relation (contains negative knowledge). If rEP+ then 
we have the following interpretation: In the opinion of agent rAgenr one or more 
events included in rA should take place. If rEr then we say that in the opinion of 



349 

agent rAgent none of the events included in rA should take place. The same agent 
cannot simultaneously state that the same event should take place and should not 
take place. It means that the same event cannot be classified by the same agent 
into positive and negative relations simultaneously. 

2.3 Conflict Profiles 

We define a conflict situation which contains information about a concrete 
conflict as follows: 

Definition 2. A conflict situation is a pair <{P+,r}, A~B> where A.B~. 
AnB=0 and rA:;te and r'A:;te for every tuples re p+ and r'e P-. 

According to the above definition a conflict situation consists of agents 
(conflict body) which appear in relations p+ and p- (conflict content) representing 
the positive and negative knowledge of agents referring to subjects represented by 
set A of attributes. These relations are the basis of consensus. Expression A~B 
means that the agents are not agreed referring to combinations of values of 
attributes from A with values of attributes from B, and the purpose of the 
consensus choice is that for a tuple type A there should be assigned at most one 
tuple of type B. 

For a given situation s we determine the set of these agents which take part in 
the conflict as follows: 

Agent(s) = { aE VAgent: (3rE p+)(rAgent={ a}) V (3rE r)(rAgent={ a})}. 

and the set of subject elements (or subjects for short) as follows: 

Subject(s) = {eeE-TYPE(A): (e:;tS) 1\ [(3reP)(e-< r) v (3rer)(e-< r)]}. 

Set Subject(s) then includes such subject elements, which have been occupied 
by agents. For example for situation <{Win~. Wina}, {Region}~{Time, 
Wind_Speed}> the subjects are these regions for which the agents present their 
forecast for time and speed of the wind. Now for each subject eE Subject(s) Iet us 
determine sets with repetitions Profile(et and Profile(er which include the 
positive and negative knowledge of agents on subject e, as follows: 

Profile(et = {rBu(AgentJ: (rEP+) 1\ (e-< rA)}. 
Profile( er= {rBu(AgentJ: (rer)" (e-< rA) }. 

Thesesetsare called positive and negative proflies of given conflict subject e. 

2.4 Consensus Definition and Determination 

Below we present the definition of consensus [8]. 

Definition 3. Consensus on subject eeSubject(s) of situation s=<{P+,r},A~B> 
is a pair of two tuples (C(s,et, C(s,ef) where C(s,et,C(s,ere TYPE(AuB) and 
the following conditions are fulfilled: 
a) C(s,etA = C(s,e)-A = e, 
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b) C(s,et8 n C(s,e)-a= <j>, 

c) Tupfes C(s,et and C(s,er fulfillogic formulas from setZ, 
d) One or more ofthe postulates Pl-P6, described in detail in [8], are satisfied: 

Let <p be a distance function between tuples from relations belanging to set P, 
the following theorem should enable to deterrnine a consensus satisfying all 
postulates Pl-P6 [7]. 

Theorem 1. lf there is defined a distance function <p between tuples of TYPE(B), 
thenfor given subject e of situation s=<{P+,r},A~B> tuples C(s,et and C(s,er 
which satisfy conditions a)-c) of Definition 3 and minimize the expressions 

L<r(rs,C(s,e)k) and L<i'Crs,C(s,e)ß) should create a consensus 
rEprofile(et rEprofile(e)-

satisfying alt ofpostulates Pl-P6. 

2.5 Consensus Determining for User Profiles 

For our web-based information system we specify the parameters of the conflict 
system as follows: 

where: 

A = {Agent, System, Class, Al> Az, ... , An}, 

Agent represents interface agents, 
Class represents classes of users, and 
A={A1,A2, ••• ,An} is a set of attributes describing the interface profiles for 
user service. 

- P ={Profile+, Profile-} where 
Profile+, Profile- t;;;; Il(VAgent) X Il(Vlnteiface) X II(V Class) X Il(VAJ) X Il(VAz) X ... X 

Il(VAn). 
We interpret a tuple of relation Profile+, for example, <Agent:a1, Class:c1, 

A 1:al> A2:a2, ••• , An:an> as follows: in opinion of agent a1 the appropriate interface 
profile for serving users from class c1 on the web-based information system should 
be the tuple <A1:al> A2:a2, ••• , An:an>· A tuple <Agent:a2, Class:cl> A 1:a'1> A2:a'2, ••• , 

An:a'n> belonging to relation Profile- means that according to agent a2 on the 
information system for users from class c1 the profile <A1:a'1, A2:a'2, •.• , An:a'n> is 
appropriate interface for their service. The interface quality evaluation is made by 
the utility function described in the following section. 

- Z: Logical formulas representing conditions which have to be satisfied by the 
tuples belonging to the relations from P. 

A conflict situation is then defined as follows: 
s=( {Profile+, Profile-}, { Class} ~ {AJ,Az, ... ,An}). 

The set {Profile+, Profile-} is then the basis of consensus, the set of attribute 
{ Class} represents and the consensus subject, and set {A 1, A2, ••• , An} describes the 
content of consensus. The problern of the user classification will be considered in 
the following section. 
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3 User Classification 

The acquisition of the user or usage models is usually connected with the user 
classification problem. This problern has been addressed by the specialists from 
the area of information retrieval (IR) since early 60-ties of the last century [2], but 
also today, in the era of the e-economy and the Information Society this research 
is continued by many specialists from: HCI, user modeling as weil as marketing 
[4]. 

The classification used in the user modeling could have different properties. 
First, it could be made manuaily, i.e. by the users themselves or by some experts, 
or automatically. Second, it could use predefined classes or create them 
automaticaily, also the number of classes could be specified or dynamicaily 
determined according to the user population characteristics. Third it could be 
based on the user data, usually delivered by the users themselves or on the usage 
data, collected during the user interactions with web-based systems. Fourth, we 
can also consider other set partitions than classification, i.e. partitions with 
repetitions. Finally, we can use very different classification methods, from 
standard methods developed in the IR area such as Dattola or Rocchio methods [2] 
or applied by the adaptive hypermedia such as mentioned above machine learning 
tools or Hidden Markov Models [3]. 

The selection of the particular classification method could depend on many 
different circumstances. The manual classification that is made by the users 
themselves is the mosteasy to implement. It could be made by the user's simple 
selection of one of the predefined classes, i.e. student, lecturer or absolvent at an 
university site, or by submitting so called user data by filling out the questionnaire 
containing several questions on the users personal data as weil as different 
preferences and interests. That could serve as an input data for further 
classification with any of the above mentioned methods. Jonathan Rohbin the 
marketing specialists from the U.S. noticed over thirty years ago that the address 
zip code may serve as a very weil indicator of the peoples social status, interests 
and various marketing behavior [10]. However, these works are now criticized 
[13], the web-based system users are often asked to enter their zip code, along 
more or less personal questions. Users usuaily are very reluctant to giving any 
information about themselves because they treat them as too privet or simply don't 
want to loose time doing this. A good solution to this problern is the automatic 
user information gathering and classification. 

In contrary to the manual gathering the automatic methods could be made by 
the client and/or system sides using very different technologies from CGI, PHP, 
ASP, Flash to Cookies and DoubleClick [13]. Having the method to record users' 
web behavior we are able to classify them using different data concerning their 
interactions with different web-based systems, i.e. gathering data for usage model 
construction. Users working with any web-based system are making different 
actions; the most popular is of course browsing. There are however others, we can 
say more qualified actions: filling-in different forms that are part of the pages, 
joining mailing Iist, purchase of any goods that are offered on the Web, etc. 
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In our dassification problern we can assume that each time the user visits the 
particular page its agent can store its URL in the local files. These documents are 
usually in form of HTML document's, with quite deal of naturallanguage words. 
These words placed in the vector could serve as the user profile. 

The process of user dassification results in grouping heterogeneaus set of 
users U={ u~. ... ,u0 } into disjoint subsets of the set U by some measure of similarity 
or distance. Finding an appropriate measure, as weil as a user representation, are 
key problems of users dassification, the function P4 used in the Dattola 
dassification algorithm is following: 

s(u j• uk) = i min(uk,;, u j,;) • 
i=l 

The process of dassification could be computational difficult, with even 
exponential with respect to the number of elements to be dassified [1,2], so 
practically other sub-optimal solutions have to be used. They usually are based on 
the selection of some initial partition as for example in the Dattola algorithm [2]. 
Then for each vector (user profile) the distance function between the vector and 
each of the dass centers (centroides) is determined. The vector is joined to the 
dass with the center that has the smallest value of the function. There are many 
possible distance functions that could be considered, their Iist can be found in the 
work [2]. In our system architecture for the centroides could serve, for example, 
the profiles of randomly selected users who personalized the system interface by 
their own. 

4 Utility Function 

In order to measure the quality of the system interface the domain of the HCI [5,9] 
has worked out many methods most of them, however, arenot Straightforward and 
could not be measured by a simple function. In the social adaptive interfaces 
construction it is necessary to evaluate interfaces in the automatic manner. 

W eb-based systems could be built and maintained for different reasons but 
most of them have Straightforward commercial aspects. For example: the web 
portal that earns money on advertisements, Internet shop that sells different goods 
or Internet auction servers that enables exchange of different goods between their 
users, and many other ways. Each of these applications has different goals and so 
different things express their achievements. 

For web portals, usually, the moretime the user spends on browsing the portal 
pages the better, because in the meantime he or she have at least visual contacts 
with advertisements. So for such systems the utility function should consider the 
following parameters: number of pages visited, number of advertisements 
downloaded by the user's browser, number of followed links presented on the 
advertisements, frequency of visits on the site, etc. The companies such as 
DoubleClick could offer sophisticated measures in this case. 
For e-shops the most important is the amount of money spent by the user. There 
are however other possible factors that should be considered in the utility function 
construction: number of visits in the shop, number of visited pages, number of 
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goods that were put into the basket, speed of shopping, utilization of lists and 
retrieval mechanisms of goods, purchase of goods being the special offer, etc. 

For e-auction sites usually, like in eBay, there's nocharge to browse, bid on or 
buy items, but clients have to pay fees to list and sell items. Some start-ups and 
those auctions that cooperate with the web portals could not charge any fees. 
Despite of this, the utility function of any online trading center should consider: 
value and number of sold or bought items by the user, number of bids made by the 
user, number of auctions the user took part, frequency of bids made by the user, 
etc. 
The above-mentioned examples are quite typical for e-commerce but because of 
their different business models also different utility function of their interface 
systems should be considered. So the utility function should be specified 
particularly for every individual application. 

The problems with the utility function construction increase when we consider 
multiplatform access to these systems. GUI for PC is today world-known standard 
but some other platforms, i.e. handhelds and navigation systems mounted in cars 
are quite new, so that standards are still being developed. In consequence the 
utility function construction should also consider these specific interface gestures. 

5 Summary 

In the paper we presented consensus methods applied in the adaptive interface 
construction using the classification of the population of users. We also considered 
the problern of the utility function construction in the web-based systems to be 
able to evaluate the interfaces in the automatic manner. 
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Abstract. This work is about disclosure risk for national statistical offices and, 
more particularly, for the case of releasing multiple protected versions of the same 
micro-data files. This is, several copies of a single original data file are released to 
several data users. Each user receives a protected copy, and the masking method 
for each copy is selected according to the research interests of the user: the selected 
masking method is suchthat it minimizes the information loss for his/her particular 
research. 

Nevertheless, multiple releases of the same data increase the disclosure risk. 
This is so, because coalitions of data users can reconstruct original data and, thus, 
find the original (non-masked) information. In this work we propose a tool for 
evaluating this reconstruction. 

1 Introduction 

Data dissemination is a mandatory requirement for statistical offices: they 
collect data to be published. However, the release of this data has to be done 
in such a way that there is no disclosure. In other words, no sensitive data is 
linked to the original respondent. 

For example, the publication of incomes, professions and ZIP codes for the 
inhabitants of a town should not allow the inference of the exact income of a 
particular inhabitant. Moreover, publication is forbidden if there is a single 
person in the town for a given pair (ZIP, profession). This is so because the 
release of such data implies disclosure (knowing the profession and the ZIP 
code of a person implies knowing his/her income). 

To avoid disclosure, masking methods are applied (see [3], [13] for reviews 
of masking methods and [4] for a comparative study on masking methods 
performance). Masking methods introduce distortion to the data prior to its 
publication so that the information is not disclosured. Distortion should be 
kept small so that published data is valid for researchers and users (they 
can infer the same conclusions that would be inferred from the original data) 
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but on the other hand should be protected enough so that disdosure is not 
possible. Statistical Disdosure Control (SDC) sturlies methods that attempt 
to perform such a nontrivial distortion. 

1.1 Artificial Intelligence and Soft Computing for Statistical 
Disdosure Control 

The fields of Artificial Intelligence and Soft Computing provide several tools 
that are useful for Statistical Disdosure Control. These tools can be broadly 
dassified in three categories (a more detailed review is given in [6]): 

Methods to overcome distortion: Tools and methods for data mining 
and machine learning have been developed to be resilient to errors in 
datafiles ( either d ue to accidental or to intentional distortion). Among 
other uses, data mining and modeling techniques can be used to correct 
errors (if data do not follow data models) and to fill missing values. Also, 
information fusion in general and aggregation operators in particular can 
be used to increase the accuracy of the data. This is particularly appro
priate when there are multiple releases of the same data or there is data 
from multiple sources. 

Methods to evaluate disclosure risk: In general, all methods that can 
be used to overcome distortion are appropriate to evaluate disdosure 
risk. The better results of a method to overcome distortion, the worse 
the protection and the larger the disdosure risk. This is so, because if 
a method can recontruct the original data it means that data can be 
disdosured. 
Methods for re-identification (see e.g. [17]) also fall in this category. They 
are used to link records that correspond to the same individual but belong 
to different files. These techniques are used to compare the masked data 
with the original one. The more records are re-identified, the worse the 
protection achieved. Some of the existing re-identification methods are 
the probabilistic based ones, distance based ones and dustering based 
ones. Recently, techniques basedonsoft computing have been used [12]. 

Methods to cause distortion: Although that most artificial intelligence 
and soft computing techniques are used in SDC for restoring the original 
data and establishing the disdosure risk, they can also be used for causing 
intentional distortion to data. This is the case of using aggregation op
erators [5] for masking numerical data, and machine learning techniques 
for increasing the performance of a particular masking method [9]. 

In this work we focus on the first two categories. In particular, we consider 
the evaluation of disdosure risk in the case of multiple releases of the same 
data. This is, several copies of a single original data file are released to several 
data users. Each user receives a protected copy, and the masking method 
for each copy is selected according to the research interests of the user: the 
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selected masking method is such that it minimizes the information loss for 
his/her particular research. 

Nevertheless, in this situation the following property has tobe taken into 
account: 

Property 1. [6] If there is a knowledge integration technique that can recon
struct an original data set out of n different distorted versions of the data 
set, then statistical confidentiality is compromised if more than n different 
BDC-protected versions of the same confidential data set are released. 

This is so, because coalitions of data users can reconstruct original data 
and, thus, find the original (non-masked) information. Therefore, the follow
ing property also holds: 

Property 2. [6] Information loss in BDC is inversely proportional to the re
construction capabilities of Knowledge Integration and Re-identification tech
niques. Disdosure risk is proportional to these reconstruction capabilities. 

In this work, we describe our information fusion system ClusDM and show 
its application to reconstruct the original data from multiple releases of the 
same data. This works extends our previous results presented in [7]. 

To do so, Beetion 2 describes our information fusion tool and Beetion 
3 describes the application to a set of multiple protected data. The work 
finishes in Beetion 4 with some conclusions. 

2 Our information fusion approach 

Although our system, ClusDM, has been developed for its application in 
decision making environments, some of its components can be used for other 
information fusion applications. In this work we describe its application for 
fusing multiple releases of the same data. In this section, we give an overview 
of the general capabilities of the system. 

From an abstract point of view, the data fusion component is applied to 
data matrices V that contain values for each pair ( object, attribute). These 
matrices can be modeled as a function: 

where 0 = {01 , ···,On} denotes the set of objects, A1 , A2 , ···Am are the 
attributes and D(Ai) denotes the domain of attribute Ai. 

Given a matrix V of this form, the data fusion component builds a new 
attribute Ac that corresponds to the aggregation of A1, · · · , Am. When data 
is numerical, the attribute Ac is numerical. Instead, if the data is categorical 
( or some attributes are numerical and other are categorical) the new attribute 
is categorical. 
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In the case of numerical information, the system applies the principle of 
irrelevant alternatives. This is, the aggregated value for each object (Ac(Oi)) 
only depends on the values for that object (Al(Oi), · · ·, Am(Oi)). This is, 
there exists a function C such that: 

Ac(Oi) = C(A1(0i), · · · ,Am(Oi)) 

Our system implements several aggregation operators C. Among others, 
it indudes the weighted mean and the OWA operator [14]. 

In the case of considering categorical and mixed information, the system 
does not satisfy the condition of irrelevant alternatives. This condition is 
usually applied ( e.g. in [8]) for technical reasons because it simplifies the 
computations as each object is operated without considering the values of 
the others. However, while this condition is acceptable for numerical data (in 
particular, when values correspond to measurements), this is not so true for 
categorical values. In the categorical case, the values establish equivalences 
between objects (they are indistinguishable according to a given criteria) and, 
in the case of ordinal scales, preferences between objects. Therefore it seems 
natural to keep these relationships in the aggregated attribute. 

In order to keep these similarities, the condition of irrelevant alternatives 
is dropperl and we apply dustering for obtaining an aggregated attribute. 
Once the set of dusters is obtained, the system assigns linguistic labels to 
each duster. 

According to this, our approach to information fusion considers two steps. 
We give some additional details of these steps: 

Clustering: To obtain the dusters for categorical data, the system as
sumes an underlying semantics for linguistic labels based on negation 
functions following [10]. This is, negation functions that arenot a one-to
one mapping as in multivalued logic but a one-to-many functions. From 
the point of view of the user, these negation functions can be interpreted 
as antonyms following [2]. 
The dustering of the data is directed by the attributes and their number 
of categories. 

Assignment of linguistic labels: For the assignment, the system is able 
to select the most appropriate vocabulary considering the ones used in 
each variable. In this application, we select the vocabulary of the original 
criterion, because we are trying to see if we can re-identify the original 
categories. The next step consists of selecting a category to describe each 
duster and, if it is needed, to adapt the vocabulary by splitting the 
category [16]. This assignment process is explained in detail in [15]. 

3 Experimentation 

We have considered data from the American Housing Survey 1993 [1] and 
applied our approach to multiple realeases of a singlevariable (the variable 
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DEGREE). In the rest of this section we review the application of the ap
proach to a set of 20 records. 

Table 1 includes the original variable DEGREE {in column o.v.). The 
set of linguistic terms used by this variable is L = { coldest, cold, cool, mild, 
mixed, hot}. In Table 1, the original values are replaced by the position of 
the category in the set L. Thus, value 1 stands for coldest, 2 for cold, 3 
for cool and so on. This variable has been masked using 4 different masking 
methods. In particular, we have applied Top and Bottom coding, Global 
recoding and Post-Randomization Method. Several parameterizations where 
considered. Additionally, the original values of record f have been updated 
so the value for column P4 is now equal to 3. Table 1 includes the masked 
variables for 7 different pairs (techniques, parameterizations). The interested 
reader is referred to [7] for details. 

Now, we have applied the ClusDM method to obtain an aggregated value 
for each record, in order to check if we can reconstruct the original values 
from these 7 different released variables. 

namelo.v.IB4 T4 G4 RIO PS P9 P4la.v.l lnamelo.v.IB4 T4 G4 RIO PS P9 P4la.v.l 
a 3 & & 3 3 3 3 3 3 k 3 & & 3 4 3 3 3 3 
b 3 & & 3 2 3 3 3 3 I 3 & & 3 2 3 3 3 3 
c 3 & & 3 3 3 3 3 3 m 3 & & 3 3 3 3 3 3 
d 3 & & 3 3 3 3 3 3 n 2 & 2 2 2 2 2 2 2 
e 4 4 & 4 4 4 4 4 4 0 3 & & 3 3 3 3 3 3 
f 4 4 & 4 4 4 4 3 4 p 2 & 2 2 2 2 2 2 2 
g 4 4 & 4 3 4 4 4 4 q 3 & & 3 3 3 3 3 3 
h 4 4 & 4 4 4 4 4 4 r 5 & & n 5 3 3 4 3 
i 4 4 & 4 4 4 4 4 4 s 2 & 2 2 2 2 2 2 2 
j 1 & 1 n 1 1 1 1 1 t 2 & 2 2 2 3 4 2 2 

Table 1. Records used: First column corresponds to a name for the record; second 
column is the original value (o.v.); columns 3-9 are masked variables; column 10 is 
the aggregated value (a.v.) 

ntjabkregf 

Fig. 1. Dendrogram for the dustering of the records in Table 1 
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Using the Taxonomie distance and the centroid method, we obtain the 
dendrogram in Figure 1. Then, an a-cut has to be selected in the tree to 
obtain a partition of the elements. The a-cut is selected so that the number 
of clusters is equal to 4 because this is the average number of linguistic labels 
used in columns B4-P4. The number of categories used in each column is 
displayed in Table 2. The selected a-cut is also displayed in Figure 1. The 
obtained partition is defined by four sets (named A, B, C and D) as follows: 
A = {n, t}, B = {a, b, k, r}, C = {j}, D = {e, f,g}. This partition satisfies 
the conditions required in [7] for a correct partition selection: (i) records with 
all the variables with the same value should correspond to different clusters 
(e.g. record a and e) and (ii) clusters should be defined according to the 
dendrogram. 

Note that for the sake of simplicity, we only include in the dendrogram 
and in the partition one of those elements that are indistinguishable (i.e., it 
appears the element a but does not appear c because it has the same values 
for all columns). 

Column B4 T4 G4 RlO PB P9 P4 
Number of used Iabels 2 3 3 5 4 4 4 

Table 2. Number of categories used in each columns 

Once the clusters have been obtained, a category has to be assigned to 
each one. This is done considering the distance between each duster and the 
ideal element (the one that has larger value for all categories). Then, taking 
into account this distance and the location of the clusters in relation to the 
semantics of linguistic labels (see [15]) the following assignment is given: Class 
C is assigned to category 1, Class A is assigned to 2, Class B is assigned to 
3 and Class D is assigned to 4. These assignments are shown in Table 1. 

4 Conclusions 

In this work we have reviewed the applicability of artificial intelligence and 
soft computing techniques for statistical disclosure control. We have shown 
that information fusion techniques can be used by coallitions of users to 
overcome distortion in multiple releases of the same data. This is, information 
fusion techniques can be used for reconstructing an original data set out of 
n different distorted versions of the same data set. 

We have described an example consisting of 20 records with 7 different 
releases of the same variable. We have applied to this records the system 
ClusDM. 

The results obtained support the Property 2 stated in the introduction: 
disclosure risk is proportional to the reconstruction capabilities of informa-
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tion fusion systems. In this case, we have shown that the original data was 
reconstructed except for record r that is assigned to Category 3 instead of 5. 

Acknowledgements 

The authors are partially supported by the EU project CASC: Contract: 
IST-2000-25069 and CICYT project STREAMOBILE (TIC2001-0633-C03-
01/02) 

References 

1. Census Bureau, (1993), American Housing Survey 1993, Data publidy available 
from the U. S. Bureau of the Census through the Data Extraction System, 
http://www.census.gov/DES/www/welcome.html 

2. de Soto, A.R., Trillas, E., (1999), On antonym and negate in fuzzy logic, Int. J. 
of Int. Systems, 14:3, 295-303 

3. Domingo-Ferrer, J., Torra, V., (2001), A Quantitative Comparison of Disdosure 
Control Methods for Microdata, 111-133, in Confidentiality, Disdosure, and Data 
Access: Theory and Practical Applications for Statistical Agencies, P. Doyle, J. 
I. Lane, J. J. M. Theeuwes, L. M. Zayatz (Eds.), Elsevier. 

4. Domingo-Ferrer, J., Torra, V., (2001), Disdosure Control Methods and Informa
tion Loss for Microdata, 91-110, in Confidentiality, Disdosure, and Data Access: 
Theory and Practical Applications for Statistical Agencies, P. Doyle, J. I. Lane, 
J. J. M. Theeuwes, L. M. Zayatz (Eds.), Elsevier. 

5. Domingo-Ferrer, J., Torra, V., (2002), Aggregation techniques for statistical con
fidentiality, in" Aggregation Operators: New trends and applications", (Ed.), R. 
Mesiar, T. Calvo, G. Mayor, Physica-Verlag, Springer. 

6. Domingo-Ferrer, J., Torra, V., (2002), On the Connections between Statistical 
Disdosure Control for Microdata and Some Artificial Intelligence Tools, submit
ted. 

7. Domingo-Ferrer, J., Torra, V., Valls, A., (2002), Semantic based aggregation for 
statistical disdosure control, submitted. 

8. Dubois, D., Koning, J-L., (1991), Social choice axioms for fuzzy set aggregation, 
Fuzzy Setsand Systems, vol.43, pp.257-274. 

9. F. Sehe, J. Domingo-Ferrer, J. M. Mateo-Sanz, V. Torra, Post-Masking opti
mization of the tradeoff between information loss and disdosure risk in masked 
microdata sets, Lecture Notes in Computer Science 2316, 163-171. 

10. Torra, V., (1996), Negation functions based semantics for ordered linguistic 
labels, Int. J. of Intelligent Systems, 11 975-988. 

11. Torra, Towards the re-identification of individuals in data files with com
mon variables, Proc. of the 14th European Conference on Artificial Intelligence 
(ECAI2000), Berlin, Germany, 2000. 

12. Torra, V., (2000), Re-identifying Individuals using OWA Operators, Proc. of 
the 6th Int. Conference on Soft Computing, Iizuka, Fukuoka, Japan, 2000. 

13. Willenborg, L., De Waal, T., (1996), Statistical Disdosure Control in Practice, 
Springer LNS 111. 



362 

14. Yager, R. R., (1988), On ordered weighted averaging aggregation operators in 
multi-criteria decision making, IEEE Trans. on SMC, 18 183-190. 

15. Valls, A., Moreno, A., Sanchez, D., A multi-criteria decision aid agent applied to 
the selection ofthebest receiver in a transplant, Proc. of the 4th Int. Conference 
on Euterprise Information Systems, ICEIS, 431-438, Ciudad Real, Spain, 2002. 

16. Valls, A., Torra, V., (2000), Explaining the consensus of opinions with the 
vocabulary of the experts, Proc. IPMU 2000, Madrid, Spain, 2000. 

17. Winkler, W. E., (1995), Advanced methods for record linkage, American Sta
tistical Association, Proceedings of the Section on Survey Research Methods, 
pp. 467-472. 



On Multivariate Fuzzy Time Series Analysis 
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Abstract. In this paper, we propose an integrated procedure for multivariate fuzzy 
time series modeling and its theory structure through fuzzy relation equations in 
this research. Combining the data of closing price and trading volume, we apply 
this method to construct multivariate fuzzy time series model for Taiwan 
W eighted Stock Index and forecast future trend while comparing the forecasting 
performance by average forecasting accuracy. We strongly believe that this model 
will be profound of meaning in forecasting future trend of financial market. 

Keywords: Fuzzy relation, fuzzy Markov relation matrix, multivariate fuzzy time 
series, fuzzy rule base, average forecasting accuracy. 

1 Introduction 

In time series analysis, the trend of data can be the basis of detecting events' 
occurrence such as increasing, decreasing, seasonal cycles or outliers. Hence, by 
observing certain characteristics, an optimal fitting model can be selected from a 
prior model family, such as ARIMA models, ARCH models, Threshold models, 
and so forth. While the error in data collection, time lag or the correlation among 
variables can show estimated numbers as precise numbers, but actually they are a 
set of possible numbers in some intervals. Under such a situation, an attempt to 
construct a mathematical model via the traditional models and analytical methods 
to interpret the data and trends of a time series may result in the risk of producing 
over-fitting models. 

The concept of fuzzy sets (logic), first proposed by Zadeh (1965), provides a 
more realistic and moderate approach, by referring to fuzzy measure and 
classification concept human brain utilizes in dynamic surroundings, to handle the 
phenomenon of multi-complexities and uncertainties. Because fuzzy theory has 
intrinsic features of linguistic variables, it can minimize trouble on dealing with 
uncertain problems. Therefore, fuzzy theory has been widely applied in many 
fields such as aerospace, mechanical engineering, medical science, power 
generation, and geology, etc. Among these fields, the application of fuzzy control 
systems is even more popular; see Nguyen and Sugeno (1998). 

In the humanities and social sciences, fuzzy statistics and fuzzy correlation has 
gradually got attention. This is a natural result because the complicated 
phenomenon of humanities and society is hard to be fully explained by traditional 
models. Regarding stock market as an example, the essence of closing price is 
uncertain and indistinct. Moreover, there are many factors influence closing price, 
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such as trading volume and exchange rate, etc. Therefore, if we merely consider 
closing price of yesterday to construct our forecasting model, not only will we 
misestimate the future trend, but also we will suffer unnecessary loss. While 
Iiteratures in the past have been focusing on univariate fuzzy time series but lesser 
on multivariate dynamic data. In view of this, we propose an integrated procedure 
for multivariate fuzzy time series modeling and its theory structure through fuzzy 
relation equations in this research. Furthermore, combining the data of closing 
price and trading volume, we apply this method to construct multivariate fuzzy 
time series model for Taiwan Weighted Stock Index and forecast future trend 
while comparing the forecasting performance by average forecasting accuracy. 
We strongly believe that this model will be profound of meaning in forecasting 
future trend of financial market. 

2 Fuzzy Time Series Analysis 

2.1 Fuzzy Time Series 

Before developing multivariate fuzzy time series model and forecasting, we must 
give some related definitions for fuzzy time series, 

Definition 2.1 Fuzzy time series 
Let {x t E R, t = 1,2, ... , n} be a time series, n be the range of 

r 

{X 1 e R,t=1,2, ... ,n} and { ~;i =1,2, ... ,r,U~ =n} be an ordered partition on 
i=l 

Q . Let {L;, i = 1,2, ... , r} derrote linguistic variables with respect to the ordered 

partition set. For t = 1, 2, ... , n , if /J.; (X 1 ) , the grade of membership of {X J 
r 

belongs to L;, satisfies f.l; : R ~ [0,1] and L f.l; (X 1 ) = 1, then {FX 1 } is said to 
i=l 

be a fuzzy time series of {X 1 } and written as 

where I is employed to link the linguistic variables with their memberships in 
FX 1 , and the + indicates, rather than any sort of algebraic addition, that the listed 
pairs of linguistic variables and memberships collectively. 

For convenience, Iet us derrote FX 1 as FX 1 = (f.l1 ,f.l2 , ••• ,f.l,). 

Example2.1 
Consider the time series {X1}= {0.7,1.9,2.7,4.2,3.5,3.1,4.4,3.7}. Let n = [0,5] and 

choose an ordered partition set {[o, 11 [1, 21 [2, 31 [3, 41 [4,5]} on n . Let 

{~ , L2 , ~ , L4 , L5 } derrote linguistic variables: 



Very low= ~ oc [o, 1); 

Low= L2 oc [1, 2); Medium= L3 oc [2, 3) 

High= L4 oc [3,4); Very high= L5 oc [4,5]. 
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We evaluate the mean {m1 = 0.5, m2 = 1.5, m3 = 2.5, m4 = 3.5, m5 = 4.5} of the 

ordered partition set. Since X 1 is between 0.5 and 1.5, and 

1.5-0.7-08 L 
- . E I 

1.5-0.5 
0·7 -0.5 = 0.2E L 
1.5-0.5 2 ' 

we get the fuzzy set FX 1 with respect to X 1 is (0.8,0.2,0,0,0). Similarly, we can 

get the following Table 2.1. 

Table 2.1 Fuzzy time series {FX 1 } of {X 1 } 

Very low Low Medium High Very_high 

FXI= ( 0.8 0.2 0 0 0 ) 

FX 2 = ( 0 0.6 0.4 0 0 ) 

FX 3 = ( 0 0 0.8 0.2 0 ) 

FX 4 = ( 0 0 0 0.3 0.7 ) 

FX 5 _ ( 0 0 0 1 0 ) 

FX 6 = ( 0 0 0.4 0.6 0 ) 

FX 7 = ( 0 0 0 0.1 0.9 ) 

FX 8 = ( 0 0 0 0.8 0.2 ) 

Definition 2.2 Fuzzy relation 
Consider an ordered partition set {P;, i = 1,2, ... , r} on Q . Let G = {;t1 , ••• , )1,) 

and H = (v1 , ... ,v r) be fuzzy sets, then a fuzzy relation R between G and H is 

R = G' o H = [Rij 1rxr , 

where Jli, v j denote memberships, t denotes transpose, and Rij = min(J.li , V j) . 
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2.2 Calculation of Fuzzy Markov Relation Matrix 9t 

From Section 2.1, we can find that fuzzy relation is the key for constructing good 
fuzzy time series models. If we can precisely handle fuzzy relation matrix through 
fuzzy relation, then fuzzy time series models will provide a better fitting result. 
Besides, there are many different ways for calculating a fuzzy relation matrix. 
Dubois and Prade (1991), Wu (1986) bad proposed some methods to calculate 
fuzzy relation matrix but none of them is based on the same premises. 

Definition 2.3 Fuzzy Markov relation matrix 
The fuzzy time series {FX,.t = 1,2, ... ,n} is an autoregressive process of order 

one, AR( I), that is, FX 1 depends only on FX 1_1 , for all t . Let FX 1 has finite 

memberships Jl; (X 1 ) , i = 1,2, ... , r, than the fuzzy Markov relation matrix can be 

written as 

3 Multivariate Fuzzy Time Series Modeling and Forecasting 

3.1 Multivariate Fuzzy Time Series Modellog 

Definition 3.1 The FV AR(1) time series 
{(FX 1,,. FX 2,,. • • ·, FX k,t )} is a multivariate fuzzy autoregressive process of 

order one ( FV AR( I) ) if 

(

9tll 

(FX1,1 , FX2,1 , ••• ,FXk,t )= (FX 1,t-1 ,FX2,1_1 , ••• ,FXk,r-1 ~ 

9tk1 

for all t, where 9tii denote fuzzy Markov relation matrix of {FX;,r} and {FX j,t }, 

i, j = 1,2, · · ·, k . Since (FX 1,,. FX 2,,. .. ·, FX k,t) depends only on 

(FX 1,1-l, FX 2,1_ 1, • • ·, FX k,t-1) for all t, it is also said to be a multivariate fuzzy 

Markov process. 
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3.2 Principle of Qualitative ldentification by Fuzzy Rule Base 

In the multivariate fuzzy time series, one of the most important points is how to 
transform fuzzy numbers (membership functions) into corresponding linguistic 
variables (attributions). In general, it is determined by the position of the greatest 
membership function. However, if there is more than one greatest membership 
function, how to make choice to determine the attribution? So far, there is no 
certain rule to follow. To which, this research defines a linguistic vector indicator 
function to handle the situation when there is more than one greatest membership 
function. 

Definition 3.2 Linguistic vector indicator function 
Let L; = { (Lil, · · ·, L;, ); Lu : linguistic variable; j = 1, ... , r } be a linguistic 

vector of {FX ;"} and FX ;,r be a vector of memberships in L; , i = 1, ... , k . Then 

FX;,r = {(/il, ,· .. J;r,); l;j, = 1 orO; j = 1, ... ,r} is said to be linguistic vector 

indictor function, i = 1, ... ,k , and 

where f.l4J (FX;,,) denote membership of FX;,r in Lu. 

According to Definition 3.2, we can transfer fuzzy numbers predicted by 
multivariate fuzzy time series models to linguistic vector indicator functions. Yet, 
how to determine corresponding linguistic variables through linguistic vector 
indicator functions? Unfortunately, there is no rule we can follow so far. To solve 
this, we use Definition 3.2 and establish threshold function by fuzzy reasoning to 
obtain a fuzzy rule base and further analyze its outputting linguistic variables. 
Finally, we can use this threshold function H, to establish the following fuzzy 
rule base. 

Fuzzy rule base 
For i = 1, ... ,k, 

(1) If FX;,r e {(1,0,0,0,0), (1,1,0,0,0), (1,0,1,0,0), (1,1,1,0,0)}, then the outputting 

linguistic variable is" plunge (very low) " 

(2) If FX i,t E { (0, 1 ,0,0,0), (1' 1 ,0, 1 ,0), (1' 1 '1 ,0, 1 ), (1' 1 ,0,0, 1), (1 ,0,0, 1 ,0), 

( 1,1, 1,1 ,0), (0, 1,1 ,0,0), (1 ,0, 1, 1 ,0)}, then the outputting linguistic variable is" 
drop (low)" 

(3) If FX;,r e {(0,0,1,0,0), (1,0,1,0,1), (1,0,0,0,1), {1,1,1,1,1), {0,1,0,1,0), 

(1,1,0,1,1), {0,1,1,1,0)}, then the outputting linguistic variable is" draw 
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(medium)" 

(4) If FX;,r E {(O,O,O,I,O), (O,I,O,I,I), (l,O,I,I,I), (I,O,O,I,I), (O,I,O,O,I), 

(0, I, I, I, I), (0,0, I, 1 ,0), (0, 1,1 ,0, I)}, then the outputting linguistic variable is" 
soar (high) " 

(5) If FX;,r E {(O,O,O,O,I), (O,O,O,I,I), (0,0,1,0,I), (O,O,I,I,I)}, then the 

outputting linguistic variable is " surge (very high) " 

3.3 Multivariate Fuzzy Time Series Forecasting 

Forecasting provides indispensable information in decision-making process. 
Especially, a precise forecasting result can provide decision makers precious 
information to make correct decision and appropriate reaction. To which, we use 
multivariate fuzzy times series model for forecasting to realize its predictive 
effects. In this research, the multivariate fuzzy time series model of forecasting is 
defined as follows, 

Definition 3.3 Forecasting FVAR(l) time series 
For the multivariate fuzzy autoregressive process of order one model 

(FX 1," FX 2," ... , FXk,r )= (FX 1,,_1, FX2,,_1 , ... , FXk,r-1 ; (

9\11 

9\kl 

and Observations (FX 1," FX 2," ... , FX k,r ), t = 1,2, ... , n, then 
(1) One-step prediction is 

(

9\11 

(FX 1,n (1), FX 2,n (1), ... , FX k,n (1)) = (FX 1,n ,FX 2,n , ... , FX k,n ; 

9\kl 

(2) Two-step prediction is 

(

9\11 

(FX 1,n (2), FX 2,n (2), ... , FX k,n (2))= (FX 1,n, FX 2.n , ... , FX k,n ; 

9\k1 

... :u 
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(3) l -step prediction is 

(

9tll 

(FX t,n (l), FX 2,n (/), .•. , FX k,n (l) )= (FX t,n, FX 2,n , ... , FX k.n ~ 

9tkl 

... :u-
An integrated process for multivariate fuzzy time series modeling 
Step 1: Observe time series {X1,,; ... ,{xk,t}. Decide the range il; and the 

linguistic variables {Ln, L;2 , .. ·, L;,} of {x ;,1 }, i = 1,2, .. ·, k . 

Step 2: Calculate the fuzzy time series {FX;,,} of {X;,,}, i = 1,2, .. ·,k and detect 

the linguistic variable according to the position of the greatest 
membership in FX i.t' t = 1,2, ... , n . 

Step 3: Calculate the fuzzy relations between {FX;,1 }and {FX j,t }, i, j = 1,2,· .. ,k . 

Step 4: By Step 3, according to all fuzzy relations between {FX ;,1 } and {FX j,t }, 

i, j = 1•2• · · · 'k , we can get the fuzzy Markov relation rnatrix, then 
constructing a multivariate fuzzy time series model. 

Step 5: Examining FX;,,, i =1,2, .. ·,k. Ifthe number of "1" is only one, we can 

detect the corresponding linguistic variable immediately, otherwise detect 
the corresponding linguistic variables by fuzzy rule base. 

Step 6: Forecasting by multivariate fuzzy time series model. 
Step 7: Stop. 

4 An Empirical Application for Taiwan Weighted Stock Index 

4.1 Data Analysis 

These data source comes from Taiwan Stock Exchange Corporation, including 
daily price Iimit and trading volume difference of weighted index from January 15 
2000 to February 21 2000 with size 24. 

4.2 Fuzzy Model Construction 

After fuzzifying these data of daily price Iimit and trading volume difference of 
weighted index, we can apply the metbad mentioned in Section 2.1 to each fuzzy 
set Lij ( i = 1,2; j = 1,2, ... ,5) and calculate data's corresponding membership 

functions in L;i ( i = 1,2 ; j = 1,2, ... ,5 ). 
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4.3 Forecasting Performance 

Because this research is to explore the qualitative trend of time series, we put 
transformed membership functions through fuzzy rule base in fuzzy systems for 
getting their corresponding linguistic variables to facilitate analysis. We already 
comprehensively defined and introduced fuzzy rule base in Section 3.2 and 
compared it with Autoregressive Integrated Moving Average (ARIMA) usually 
used in analyzing time series data. The results derived from above principles is 
shown at Table 4.1. 

Table 4.1 The comparison of fitted value for price Iimit of Taiwan Weighted Stock 
Index 

Date Real value Best ARIMA MA(l) FVAR(l) 
2000-1-17 Soar Surge Soar 
2000-1-18 Drop Surge Draw 
2000-1-19 Drop Surge Soar 
2000-1-20 Drop Plunge Draw 
2000-1-21 Soar Draw Soar 
2000-1-24 Soar Draw Soar 
2000-1-25 Drop Drop Draw 
2000-1-26 Surge Draw Soar 
2000-1-27 Draw Draw Soar 
2000-1-28 Draw Soar Drop 
2000-1-29 Drop Draw Drop 
2000-1-31 Soar Draw Draw 
2000-2-1 Soar Draw Draw 
2000-2-9 Surge Draw Soar 

2000-2-10 Draw Draw Soar 
2000-2-11 Draw Plunge Drop 
2000-2-14 Plunge Plunge Plunge 
2000-2-15 Drop Surge Drop 
2000-2-16 Soar Draw Draw 
2000-2-17 Soar Draw Draw 
2000-2-18 Drop Drop Soar 
2000-2-19 Draw Draw Draw 
2000-2-21 Plunge Surge Plunge 

Right 0.26 0.35 
Accuracy 0.68 0.82 

The prediction for price Iimit and trading volume difference of weighted index 
in future four periods are shown at Table 4.2 and 4.3. 
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Table 4.2 The comparison of real and predictive values for price limit of Taiwan 
w·h dS kid e1g1 te toc n ex 

Date Real value Best ARIMA MA(l) FVAR(l) 
2000-2-22 Plunge Surge Drop 
2000-2-23 Drop Surge Draw 
2000-2-24 Drop Draw Drop 
2000-2-25 Plunge Draw Draw 

Table 4.3 The comparison of real and predictive values for trading volume 
d"U fT" W"htdSt kid 1 erence o atwan e1g1 e oc n ex 

Date Real value Best ARIMA MA(l) FVAR(l) 
2000-2-22 Very low Low Very low 
2000-2-23 Low Very high Low 
2000-2-24 Medium Medium High 
2000-2-25 Medium High Low 

From Table 4.2 and Table 4.3, we can get the average forecasting accuracy for 
price limit and trading volume difference of weighted index are 0.75 and 0.875, 
respectively. This result illustrates that the multivariate fuzzy time series model in 
this research can offer certainly accurate forecasting. The major reason why the 
prediction cannot hit real value is that we only consider the greatest memberships 
and omit other memberships. Therefore, only with reasonable forecasting model 
can we decide investment strategy from forecasting results. Otherwise, without 
the direction of clear outlines, investors will face a plight about which information 
they should take. 

5 Conclusion 

In the scientific research and analysis, the uncertainty and fuzziness contained in 
statistical data is often the obstacle for traditional model construction. If we use 
quasi-accurate value for cause and effect analysis or quantitative measurement, it 
will result in bias of cause and effect, misleading of decision model, and enlarging 
difference between prediction and real situation. Manski (1990) has pointed out 
that as numerical data contains the risk of over-demand and over-interpretation, 
the adoption of fuzzy numbers can help us avoid such a risk. Thus, it is very 
important to carefully examine fuzziness and robustness of numerical data in 
investigating quantitative method in social sciences. However, for those hard to 
explain cognitive questions, we can more clearly express them through 
membership functions and fuzzy statistical analysis. Hence, qualitative 
measurement and fuzzy statistics should be an advanced way to better describe 
human thinking and feeling. 

In fact, using fuzzy and simple linguistic data for constructing forecasting 
model will often increase the fuzziness of result in each period. Generally 
speaking, this kind of fuzziness seems anormal phenomenon. In the contrary, if 
the concept of handling numerical data is unchanged and forecasting method is not 
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innovated, they will deter the objectivism of quantitative method and the 
possibility for long-term forecasting. In this research, we illustrate the 
establishment of fuzzy time series, fuzzy relations, and fuzzy Markov relation 
matrix and further construct a multivariate fuzzy time series model. It is worth to 
mention that we base on experience rule and derivative method to consider a 
threshold function for building fuzzy rule base and transform fuzzy numbers to 
corresponding linguistic variables through fuzzy rule base. Lastly, we build a good 
integrated process of modeling and use this process to construct a forecasting 
model for price limit and trading volume difference of Taiwan Weighted Stock 
Index. Using daily price limit and trading volume difference of weighted index 
from January 15 2000 to February 21 2000 as historical data, we also establish a 
appropriate multivariate fuzzy times series model. Furthermore, we use average 
forecasting accuracy to compare the performances between multivariate fuzzy 
time series models and traditional ARIMA models and clearly prove that 
multivariate fuzzy time series model has better forecasting performance than 
traditional ARIMA models. Not only does this research provide a new forecasting 
method for investors, but also offer better forecasting results for investors to make 
decision with correct information. 
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