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Dependence of extreme events on spatial location
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To model the dependence of extreme events on locations, we consider extreme events of Brownian particles in
a potential. We find that barring the exception of very large potentials and/or very small regions, in general, the
probability of extreme events increases with the potential. Our approach is general and can be useful for studying
several complex systems.
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I. INTRODUCTION

Extreme events are ubiquitous in nature [1]. Most of the
mathematical analyses of extreme events focus on independent
random variables [2]. However, it is well known that there is
a location dependence to several extreme events, with some
locations being more prone to extreme events than the others.
For example, there are some regions on the earth’s surface
which are more prone to earthquakes than others [3]. Similar
dependence on locations is found for many other extreme
events such as tsunamis, volcanos, cyclones [3], floods, storms,
draughts [4], etc. Obviously, there are physical reasons for this
location dependence.

A question one may like to address is whether one can
develop a general formalism to understand such a correlation
between the region under consideration and the probability
of extreme events. It is crucial that one brings in the relevant
physics of the problem while addressing this task. The present
work is a step in this direction.

Brownian motion is a very important physics problem
which has applications in several disciplines and can act as
a base model for several problems [5–7]. Hence, we use it
for our analysis of extreme events. Our model is the motion
of a Brownian particle in a potential. The potential allows
us to introduce a location-dependent physical parameter in
the dynamics. Our analysis follows that of Refs. [8,9] for
random walks on networks. An extreme event can be defined
as that which exceeds a prescribed quantity above a threshold.
Here, it must be noted that the threshold may not be uniform
everywhere and will in general depend on the location. For
example, the definition of extreme cold weather in the Sahara
Desert can be very different from that in the North Pole. Thus,
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the threshold needs to be defined while keeping the local
conditions in mind. In our model, the inherent fluctuations in
the model lead to the crossing of this threshold, and it is not
obtained by any external driving force. Thus, they are inherent
to the system.

II. BROWNIAN PARTICLES IN A POTENTIAL

For a Brownian particle in a potential V (x), we consider
Smoluchowski equation [5,10] given by

∂Q(x,t)

∂t
= − ∂

∂x
S(x,t),

S(x,t) =
[

1

mγ
F (x) − D

∂

∂x

]
Q(x,t), (1)

so that

∂Q(x,t)

∂t
= 1

mγ

[
− ∂

∂x
F (x) + kT

∂2

∂x2

]
Q(x,t), (2)

where Q(x,t) is the probability density of Brownian particle,
S(x,t) is the probability current, F (x) = − dV

dx
is the force due

to potential V , γ is the friction coefficient, D = kT
mγ

is the
diffusion constant, k is the Boltzmann constant, m the particle
mass, and T is the temperature of the heat bath.

The stationary solution when the probability current is zero
is [5]

Qst (x) = Ae−�(x), (3)

where �(x) = V (x)/kT . The constant A can be determined
by the normalization condition

∫ b

a

Qst (x)dx = 1,

where a and b are the limits of normalization.
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The probability of finding a Brownian particle in a region
R = {x ∈ (c,d)} is given by

p(R) =
∫ d

c

Qst (x)dx. (4)

Consider N such independent and noninteracting Brownian
particles [8]. We consider the probability p(n,R) that there are
n particles in the region R and the remaining N − n particles
are outside this region. Since the particles are independent and
noninteracting, the probability p(n,R) is given by

p(n,R) =
(

N

n

)
pn(1 − p)N−n,

where we write p = p(R) for brevity. The mean number of
particles and its variance for a given region are given by

n̄ = Np, σ 2 = Np(1 − p). (5)

Extreme events are rare and normally occur in the tail of
the probability distribution. Using this intuitive notion of
extreme events, we define extreme events for region R as those
where the number of particles in the region R is greater than
some threshold value q, i.e., n > q. Since this threshold should
give extreme events in the tail of probability distribution, we
define the threshold as [8]

q = n̄ + mσ, (6)

where m is some real positive number. The value of m decides
the extent of rarity of extreme events. As the value of m

increases, the event becomes more rare. We can now write
the probability of extreme events in region R as

F(p) =
N∑

k=�q�+1

(
N

k

)
pk(1 − p)N−k, (7)

= Ip(�q� + 1,N − �q�), (8)

where Ip(..,..) is the regularized incomplete β function and
�q� is the largest integer less than q [11]. The extreme value
probability depends on (p,N,q) and not on how the region R

is defined. Note that only two of (p,N,q) are independent due
to the relation (6) between them.

Figure 1 shows a plot of extreme event probability F(p),
as a function of p for m = 4 and N = 100,1000,10 000.
The extreme event probability shows an interesting oscillatory
behavior with peaks corresponding to positive integer values
of the threshold q. Let pk, k = 1,2 . . . be the values of p

corresponding to the threshold values q = k. Using Eqs. (5)
and (6), we obtain

k − Npk = m
√

Npk(1 − pk). (9)

This leads to a quadratic equation for pk ,

p2
kN (N + m2) − pkN (2k + m2) + k2 = 0. (10)
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FIG. 1. A plot of extreme event probability F(p) as a function
of p for m = 4 and different values of N = 100,1000,10 000. The
inset shows the same figure in log-log scale. The sharp changes occur
at pk,k = 1,2,3, . . . such that the corresponding thresholds q are
integers, q = k.

Hence the values of pk corresponding to the peak values are

pk = (2k + m2) ± m
√

m2 + 4k − 4k2/N

2N (1 + m2/N)
. (11)

For large N (N >> m2,k2), we get

pk � (2k + m2) ± m
√

m2 + 4k

2N
. (12)

Between 0 < p < p1, i.e., q < 1, the probability of extreme
events increases as p increases and then abruptly falls. Again
for p1 < p < p2 (1 < q < 2), the probability of extreme
events increases as p increases. This behavior is observed for
all intervals pk < p < pk+1 (k < q < k + 1). In addition to
this oscillatory behavior, there is an overall decrease in the
probability of extreme events for p > p1. In Ref. [8], this
overall decrease led to the conclusion that the extreme event
probability for nodes with smaller degree is in general larger
than that of nodes with larger degree.

From Eq. (12), we find that pkN does not depend on N

for large N . In Fig. 2, we plot the extreme event probability
F(p), as a function of pN/N0 where N0 = 10 000, the largest
value of N that we have used. We see that for smaller values
of p, the plots for different values of N overlap, though there
are deviations for large values of p. Figure 3 shows a plot of
F(p) as a function of p, for N = 1000 and m = 1,2,3,4,6.
As expected, the probability of extreme events decreases as m

increases. The peaks pk shift to lower values of probability as m

increases. However, the overall behavior remains the same. For
smaller values of m, e.g., m = 1, the extreme event probability
distribution becomes flatter for p > p1. This is expected, since
for m = 0, pk = 0.5, k = 1,2, . . . , and the corresponding
probability of extreme events is Fk = F(pk) = 0.5. Clearly,
the extreme events are no longer rare. Thus, we must choose
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FIG. 2. A plot of extreme event probability F(p) as a function
of pN/N0, N0 = 10 000 for m = 4 and different values of N =
100,1000,10000.

larger values of m to get rare extreme events. As m increases,
there is an overall decrease in F(p) as p increases for p > p1.

III. EXTREME EVENT PROBABILITY FOR SOME
POTENTIALS

We now consider some simple potentials [12] to illustrate
the dependence of extreme event probability on the potential.
As seen from Figs. 1 and 3, for p < p1 the extreme event
probability increases, while for p > p1 it shows an overall
decrease with oscillations. This complex behavior makes it
difficult to analyze the results for different potentials.
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FIG. 3. A plot of extreme event probability F(p) as a function of
p for N = 1000 and different values of m = 1,2,3,4,6.
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FIG. 4. A plot of extreme event probability F(p) as a function of
x for linear potential and different values of dx = 0.01,0.001,0.0001.
Here, N = 1000,m = 4,c = 2. The continuous curves are the theo-
retical curves obtained using Eqs. (8), (6), and (16). The symbols
are values obtained from stochastic simulation using the Langevin
equation, Eq. (A1).

Consider a linear potential

V (x) ∝ x, 0 � x � 1 (13)

= ∞, x < 0, and x > 1, (14)

�(x) = V (x)/kT = cx, (15)

where c is some constant depending on the temperature. The
probability of a particle being in a small interval R = (x −
dx/2,x + dx/2) is [Eqs. (3) and (4)]

p(R) = 2ec

ec − 1
sinh(cdx/2)e−cx . (16)

Figure 4 shows the probability of extreme events as a function
of x, for dx = 0.01,0.001,0.0001 (continuous curves). First,
we note that for a given dx, on the average, the probability
increases as the potential increases. Second, the probability
increases as dx decreases, i.e., the width of the region de-
creases. We also do a stochastic simulation of Brownian motion
(see the Appendix) and the values obtained are shown in Fig. 4
by symbols. We see a good agreement between the theoretical
curves and the results of stochastic simulation.

A simple way to understand the increase in the extreme
event probability with dx is to consider the limiting cases.
First, consider the case when dx becomes the entire range of
x of the system. Clearly, the probability that a particle is in the
entire range is one, giving zero fluctuations, and the extreme
event probability is zero. Next, consider dx to be small, so that
the average number of particles in dx is of the order of one.
Then the likely occupancies of 0, 1, 2, 3, ... correspond to a
large fluctuation as compared to the average value and hence a
large extreme event probability [13]. Our definition of extreme
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FIG. 5. A plot of extreme event probability F(p) as a function of
x for linear potential and different values of c = 2,5,10. Here, N =
1000,m = 4,dx = 0.01. The continuous curves are the theoretical
curves obtained using Eqs. (8), (6), and (16). The symbols are values
obtained from stochastic simulation using the Langevin equation,
Eq. (A1).

events using the threshold q(p) [Eq. (6)] is able to catch the
above intuitive notion of extreme events in the two limiting
cases.

Figure 5 plots the probability of extreme events as a function
of x, for c = 2,5,10 using continuous curves. We also show the
results of stochastic simulation of Brownian particles for a = 4
in Fig. 6(a). The stochastic simulation results for other values of
a are not shown to avoid clutter of points. For x approximately
less that 0.2, the probability is larger for smaller slope of the
potential and there is a crossover, and for x approximately
larger than 0.2, the probability is larger for larger slope.

We now consider the sinusoidal potential

V (x) = B sin(2πx), (17)

�(x) = V (x)/kT = a sin(2πx), (18)

where a = B/kT is a constant depending on the temperature.
We then consider the probability of a particle being in a small
interval R = (x − dx/2,x + dx/2) of width dx. Figure 6
shows the probability of extreme events as a function of x,
for a = 1,2,3,4 in Fig. 6(a) and for a = 4,5,6,7 in Fig. 6(b).
Figure 6(a) corresponds to the region p > p1, where p1

corresponds to q = 1, i.e., the first and the largest peak of
F in Fig. 1. We see that on the average the extreme event
probability near a maximum of potential is larger than that
near a minimum. On the other hand, in Fig. 6(b) we see a slow
reversal of behavior near x = 0.25 as the amplitude c increases.
This corresponds to the region p < p1 in Fig. 1. In this region,
the average number of particles is much less than one. The
actual number of particles is 0,1,2, . . . . When the average
number of particles becomes less than one, the probability
of having one or two particles decreases as p decreases and
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FIG. 6. A plot of extreme event probability F(p) as a function
of x for sinusoidal potential and different values of the magnitude
of potential: (a) a = 1,2,3,4 and (b) a = 4,5,6,7. The curve for
a = 4 is drawn in both panels (a) and (b) for easy comparison.
Here, N = 1000,m = 4,dx = 0.01. The continuous curves are the
theoretical curves obtained using Eqs. (8) and (6). The symbols
are values obtained from stochastic simulation using the Langevin
equation, Eq. (A1). We show the stochastic simulation values only
for a = 4 in Fig. 6(a) to avoid clutter of points.

hence the probability of extreme events decreases. This is the
reason for the reversal of behavior observed in Fig. 6(b) near
the maxima.

The two examples above show that except for the exception
above which occurs for large potentials and/or very small
intervals, the probability of extreme events increases with
potential; i.e., on the average the probability of extreme events
is larger for larger potentials and smaller for smaller potentials.
We have considered some more potentials such as quadratic
potential and periodic step function, but they do not appear to
provide any additional insight.

The above result may not appear to be obvious. But, it
is important to note that the extreme events depend on the
fluctuations and not the average value.
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IV. DISCUSSION AND CONCLUSION

We have presented a model for analyzing extreme events
for a Brownian particle in a potential. We study the probability
of observing extreme events in a region and this probability
shows oscillations and exponential decay. However, if we see
the general average behavior then we find that in general, the
larger potential has a larger probability of extreme events while
smaller potential has a smaller probability of extreme events.
Exception is observed when the average number of particles
in an interval is less than one, which may be obtained for very
large potentials and/or very small intervals.

In our model, the inherent fluctuations in the model are
responsible for giving an extreme event and the extreme event
is not obtained by any external driving force. Thus, the extreme
event is an integral part of the system and it will always occur.

In our model, we consider N independent noninteracting
Brownian particles. There are two ways of looking at it.
(a) One way is to treat N independent noninteracting
particles as members of an ensemble as in statistical
mechanics. This is the meaning that we have used in
this paper. When one wants probabilities for the out-
come of an experiment, one conducts the experiment sev-
eral times (independent noninteracting experiments) and
then uses the resulting probabilities to make a proba-
bilistic prediction for the result of a single experiment.
(b) Another way is to treat N particles as one system. In
this case, the correlations and interactions between particles
can play an important role. Here, we have not addressed this
problem but it can be an extension of the present work.

Since we have analyzed the motion of a Brownian particle,
we expect our model to be useful for the problem of transport
in a potential. Besides transport in a potential, there are
other problems which use potential formulation, e.g., potential
energy surface or potential landscape for problems such as
chemical reactions, spin glasses, etc. [14,15]. Also, in some
problems, one may be able to define optimizing functions
similar to potential. Our analysis may be applicable to such
problems with suitable modifications. We have mentioned
several problems such as tsunami, volcanoes, floods, and
storms in the introduction. It will be interesting to see whether
any of them can be obtained from a potential function.
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APPENDIX: STOCHASTIC SIMULATION

We have carried out the stochastic simulation of Brownian
particles and here we give a brief outline of the procedure
we followed. While we use the Smoluchowski equation
(a version of the Fokker-Plank equation) to get the probability
distribution, we need to use the Langevin equation to simulate
motion of Brownian particles.

A general Langevin equation has the form

ẋ(t) = h(x,t) + g(x,t)�(t), (A1)

where the Langevin force is given by

〈�(t)〉 = 0; 〈�(t)�(t ′)〉 = 2δ(t − t ′). (A2)

The noise strength is absorbed in the function g(x,t). The cor-
responding probability distribution obeys the Fokker-Planck
equation.

∂Q(x,t)

∂t
= − ∂

∂x
S(x,t), (A3)

S(x,t) =
[
D(1) − ∂

∂x
D(2)

]
Q(x,t),

∂Q(x,t)

∂t
=

[
− ∂

∂x
D(1) + ∂2

∂x2
D(2)

]
Q(x,t)

where S(x,t) is the probability current and

D(1) = h(x,t) + ∂g(x,t)

∂x
g(x,t), (A4)

D(2) = g2(x,t). (A5)

For a Brownian particle in a potential we consider the
Smoluchowski equation. In the Smoluchowski equation for
a particle in a potential V (x) and high friction, we take

g2(x,t) = kT

mγ
, (A6)

h(x,t) = 1

mγ
F (x) = − 1

mγ
V ′(x). (A7)

Thus,

D(1) = 1

mγ
F (x), (A8)

D(2) = D = kT

mγ
. (A9)

Thus, we get the Smoluchowski equation

∂Q(x,t)

∂t
= 1

mγ

[
− ∂

∂x
F (x) + kT

∂2

∂x2

]
Q(x,t). (A10)

This is Eq. (2) of the text. The stationary solution when the
probability current is zero is given by Eq. (3). We have used
the stationary solution in our theoretical calculations.

We note that when using the Langevin equation we need
additional parameters. While the stationary solution involves
only the potential normalized by the temperature, we also need
the friction coefficient γ and the noise strength qn = 2γ kT /m

[5]. These additional parameters have to be chosen so as to get
the correct asymptotic stationary solution for the probability
distribution, Eq. (3).

For the numerical simulations, we evolve N random walkers
starting from randomly chosen initial positions, using the
Langevin equation. The evolution is done using numerical
integration of stochastic differential equations as described in
Ref. [16]. The potential is included using Eq. (A6). The param-
eters were varied to obtain the correct asymptotic stationary
solution, Eq. (3). The final parameters used are kT /mγ = 0.1
and qn = 4.9. To obtain the extreme event probability, we bin
the space in regions of width dx. If the number of random
walkers in a bin at a given time exceeds the threshold of
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Eq. (6), we treat it as an extreme event. Time average gives
the probability of extreme events.

The simulation results for the extreme event probabilities
are shown in Figs. 4, 5, and 6.
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