
East Asian Journal on Applied Mathematics

doi: 10.4208/eajam.161016.300517a

Vol. 7, No. 4, pp. 810-826
November 2018

Linear Regression to Minimize the Total Error of the

Numerical Differentiation

Jengnan Tzeng∗

Department of Mathematical Science, National Chengchi University, Taipei, No. 64,

Sec. 2, ZhiNan Rd., Wenshan District, Taipei City 11605, Taiwan (R.O.C).

Received 16 October 2016; Accepted (in revised version) 30 May 2017.

Abstract. It is well known that numerical derivative contains two types of errors. One is

truncation error and the other is rounding error. By evaluating variables with rounding

error, together with step size and the unknown coefficient of the truncation error, the

total error can be determined. We also know that the step size affects the truncation

error very much, especially when the step size is large. On the other hand, rounding

error will dominate numerical error when the step size is too small. Thus, to choose a

suitable step size is an important task in computing the numerical differentiation. If we

want to reach an accuracy result of the numerical difference, we had better estimate the

best step size. We can use Taylor Expression to analyze the order of truncation error,

which is usually expressed by the big O notation, that is, E(h) = Chk. Since the leading

coefficient C contains the factor f (k)(ξ) for high order k and unknown ξ, the truncation

error is often estimated by a roughly upper bound. If we try to estimate the high order

difference f (k)(ξ), this term usually contains larger error. Hence, the uncertainty of ξ

and the rounding errors hinder a possible accurate numerical derivative.

We will introduce the statistical process into the traditional numerical difference. The

new method estimates truncation error and rounding error at the same time for a given

step size. When we estimate these two types of error successfully, we can reach much

better modified results. We also propose a genetic approach to reach a confident numer-

ical derivative.

AMS subject classifications: 65M10, 78A48

Key words: Truncation error, leading coefficient, asymptotic constant, rounding error.

1. Introduction

In numerical computation, the total numerical error comes from two types of errors.

The first one is rounding error due to the limitation of hardware so as not to represent the

real number. The second one is truncation error as a result of the approximation ability of

specific numerical method. It is important to control errors of numerical computation for

many applications. To get the best numerical derivative, we must select the best step size

∗Corresponding author. Email address: jengnan�math.nu.edu.tw (J. Tzeng)

http://www.global-sci.org/eajam 810 ©2018 Global-Science Press

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 811

to balance rounding error and truncation error. However, there are some unknown factors

in truncation error analysis, so that we could not decide the best step size.

We first give some definitions that will be used in this paper.

Definition 1.1. Let f ∈ C∞(R), the k-th order numerical derivative of function f at x0

that is computed by the step size h is denoted by D(k)(f , x0,h).

For example, D(1)(f , x ,h) = (f (x + h)− f (x))/h is the forward difference to approx-

imate f ′(x) and D(2)(f , x ,h) = (f (x + h)− 2 f (x) + f (x − h))/h2 is the central difference

to approximate f ′′(x). Because there are three types of approximation methods (forward,

backward and central) and every approximation method has its specific truncation error,

we use the notation D
(k)
F,n(f , x ,h) to indicate the numerical derivative is forward method

with n-th order truncation error. Similarly, D
(k)

C ,n
(f , x ,h) indicates the central method with

n-th order truncation error and D
(k)
B,n(f , x ,h) indicates the backward method with n-th order

truncation error.

To know the error of approximation (f (x + h)− f (x))/h ≈ f ′(x), we use Taylor ex-

pression

f (x + h) = f (x) + f ′(x)h+
f ′′(ξ)

2
h2, (1.1)

where ξ ∈ (x , x + h). Hence, we have D
(1)

F,1
(f , x ,h)− f ′(x) = f ′′(ξ)h/2 = O(h). The error

term f ′′(ξ)h/2 contains two unknowns. One is the function f ′′(x) and the other is ξ. We

call this term f ′′(ξ)h/2 is the truncation error. To analyse the truncation error, we have

|D(1)
F,1
(f , x ,h)− f ′(x)| ≤ Kh, where K =maxξ∈(x ,x+h) | f ′′(ξ)/2|. In practice, we will assume

that h is small and f ′′(x) is a continuous function, then the value of f ′′(x) is closed to

f ′′(ξ). To see the error of central difference to approximate f ′′(x), we express f (x + h)

and f (x − h) by

f (x + h) = f (x) + f ′(x)h+
f ′′(x)

2
h2 +

f (3)(x)

6
h3 +

f (4)(ξ1)

24
h4 (1.2)

and

f (x − h) = f (x)− f ′(x)h+
f ′′(x)

2
h2 − f (3)(x)

6
h3 +

f (4)(ξ2)

24
h4, (1.3)

where ξ1 ∈ (x , x + h) and ξ2 ∈ (x − h, x). We have

f (x + h)− 2 f (x) + f (x − h)

h2
= f ′′(x) +

f (4)(ξ)

12
h2, (1.4)

for some ξ ∈ (x −h, x +h). Thus, we use D
(2)

C ,2
(f , x ,h) to denote (f (x +h)−2 f (x)+ f (x −

h))/h2.

The total error of D
(1)

F,1
(f , x ,h) is also related to the rounding error. We assume that

the machine epsilon is ε. Evaluate f (x + h) and f (x) will include the rounding errors,

so-called e1 and e2, and the rounding error will be proportional to the value of f . That is

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

812 J. Tzeng

e1 = ± f (x + h)ε and e2 = ± f (x)ε. Let y1, y2 be the numerical value of f (x + h) and f (x)

respectively. We have

D
(1)

F,1
(f , x ,h) =

y1 − y2

h
=
(f (x + h) + e1)− (f (x) + e2)

h

= f ′(x) +
f ′′(ξ1)

2
h+
± f (x + h)ε± f (x)ε

h

= f ′(x) +
f ′′(ξ1)

2
h+
±(f (x) + f ′(ξ2)h)ε± f (x)ε

h

= f ′(x) +
f ′′(ξ1)

2
h+ f (x)

±ε± ε
h
± f ′(ξ2)ε,

where ξ1,ξ2 ∈ (x , x + h). Thus

�

�D
(1)

F,1
(f , x ,h)− f ′(x)

�

�=

�

�

�

�

f ′′(ξ)
2

h+ f (x)
±ε± ε

h
± f ′(ξ2)ε

�

�

�

�

≤
�

�

�

�

f ′′(ξ)
2

h

�

�

�

�

+

�

�

�

�

f (x)
2

h

�

�

�

�

ε+
�

� f ′(ξ2)
�

�ε.

(1.5)

Assume that function f is smooth and the machine epsilon is pretty small, the last term can

be omitted from Eq. (1.5).

We define the error function E(h) = | f ′′(ξ)h/2|+ |2ε f (x)|/h. To minimize E(h) by h,

we have E′(h) = | f ′′(ξ)/2| − |2ε f (x)|/h2 = 0. Thus, h∗ = 2
p

ε| f (x)/ f ′′(ξ(h))| will be

reach a better-expected numerical result. Since we don’t know the exact ξ, we can roughly

estimate f ′′(ξ) by the central difference D
(2)

C ,2
(f , x ,h). That’s why we denote ξ by a function

of h, i.e., ξ(h). Here, we call the solved step size h∗ by the best modified step size. Notice

that the unknown ξ is determined by the given h and the best modified step size h∗ is

determined by some ξ near h. However, these equations are only of theoretical value and

cannot be used practically to determine h∗ because we usually don’t have any information

about the high-order derivatives. The step size h∗ does not minimize the real error, but only

its upper bound [7]. We will look for a better way to explore the best estimation of f ′′(ξ)
for error control.

Another approach to estimate f ′′(ξ) is adjust the step size h to 2h [2]. With the new

step size, we have

D
(1)

F,1
(f , x , 2h)− f ′(x) = f ′′(ξ2)h, (1.6)

where ξ2 ∈ (x , x + 2h). If we assume that h is sufficiently small, ξ ≈ ξ2 and f ′′(x) is

continuous, then we have

D
(1)

F,1
(f , x , 2h)− D

(1)

F,1
(f , x ,h) ≈ f ′′(ξ)

2
h.

Thus, f ′′(ξ) is estimated by 2(D
(1)
F,1
(f , x , 2h)− D

(1)
F,1
(f , x ,h))/h.

After we estimate f ′′(ξ) successfully, we can update the truncation error to Eq. (1.1).

Then we have

D
(1)
F,1
(f , x ,h)− f ′(x) =

f ′′(ξ)
2

h = D
(1)
F,1
(f , x , 2h)− D

(1)
F,1
(f , x ,h).

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 813

Thus, 2D
(1)
F,1
(f , x ,h)−D

(1)
F,1
(f , x , 2h) becomes a new approximation of f ′(x). Actually, it is a

second order approximation of f ′(x). This implement is called Richardson’s extrapolation

method. The general form of Richardson’s extrapolation method is

D
(1)

F,n+1
(f , x ,h) =

2nD
(1)
F,n(f , x ,h)− D

(1)
F,n(f , x , 2h)

2n − 1
, (1.7)

for n ≥ 1. One can modify the step size and use the corresponding linear combination to

obtain a high order approximation of numerical derivative.

Notice that the Richardson’s extrapolation method is derived by adjusting the step size

from h to 2h. Actually, we can estimate f ′′(ξ) by any th for t 6= 0 or 1. That is

D
(1)

F,1
(f , x , th)− f ′(x) = t

f ′′(ξt)

2
h, (1.8)

where ξt∈(x , x+th) and then f ′′(ξ) is estimated by 2(D
(1)

F,1
(f , x , 2h)−D

(1)

F,1
(f , x ,h))/((t−1)h).

Since t is chosen randomly to be near 1 but not equal to 1, the corresponding ξt should be

variant randomly and the leading coefficient f ′′(ξt)/2 can be considered as a random vari-

able. Therefore, we can try to use the statistical method to estimate the value of f ′′(ξ)/2.

2. Linear Regression Method

Let D
(1)

F,1
(f , x ,h) = (f (x + h)− f (x))/h be the forward method of the first order numer-

ical differential. From Section 1, we have

D
(1)

F,1
(f , x ,h)− f ′(x) =

f ′′(ξ)
2

h+ f (x)
cε

h
+ f ′(ξ2)ε

for some ξ,ξ2 ∈ (x , x + h) and some constant c. For the sake of convenience, we merge

the last two terms as E by assuming | f ′(ξ2)|ε is a pretty small number. We rewrite this

equation by

D
(1)

F,1
(f , x ,h)− f ′(x)≈ f ′′(ξ)

2
h+ f (x)

E

h
. (2.1)

For t 6= 0 or 1, we also have

D
(1)

F,1
(f , x , th)− f ′(x)≈ t

f ′′(ξt)

2
h+ f (x)

Et

th
(2.2)

for some ξt ∈ (x , x + th) and other rounding error term Et . When ξ and ξt are near, and

f ′′ is continuous, we can assume f ′′(ξt) ≈ f ′′(ξ). We minus Eq. (2.1) by Eq. (2.2), then

we have

D
(1)

F,1
(f , x , th)− D

(1)

F,1
(f , x ,h) ≈ t f ′′(ξt)− f ′′(ξ)

2
h+ f (x)

tE − Et

th
.

Although the rounding error term has no continuity property, we also merge tE − Et to

(t − 1)E plus an error term. Thus, we have

D
(1)

F,1
(f , x , th)− D

(1)

F,1
(f , x ,h) =

(t − 1) f ′′(ξ)
2

h+ f (x)
(1− t)E

th
+ εt ,

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

814 J. Tzeng

where εt collects all error terms and is considered a random variable. If we use different

t i to replace t, we have

yi = D
(1)
F,1
(f , x , t ih)− D

(1)
F,1
(f , x ,h) =

f ′′(ξ)
2

hvi + f (x)
E

h
wi + εi , (2.3)

where vi = (t i − 1), wi = (1− t i)/t i for i = 1, · · · , n.

Unlike the methods to optimize the best step size [8], we will introduce a statistical

approach that use the generated data to estimate the expectation values of truncation error

and rounding error by the given step size h. If we have a certain number (usually greater

than 2) of Eq. (2.3) for different t i , we can regard (vi, wi , yi) as data. We would like to use

linear regression method to find the linear solution y = αv +βw that fits these data. Then

the best solution of α and β is the expectation value of f ′′(ξ)h/2 and f (x)E/h respectively.

It is probable that the numerical derivative will become better after updating this truncation

error f ′′(ξ)h/2 and the rounding error f (x)E/h.

Using the linear regression method to yield to the best α and β is very easy. From Eq.

(2.3), we define A∈ MK,2(R), where Ai,1 = vi = t i−1, Ai,2 = wi =(1− t i)/t i for i = 1, · · · , K

and Y = (y1, · · · , yK). The least square solution of Eq. (2.3) is (α,β)T = (AT A)−1AT Y . After

obtaining the solution (α,β), we can compute the residue r which is defined by

r =
Æ

(Y T − (α,β)AT)(Y − A(α,β)T). (2.4)

This residue r shows the fitness of the linear regression. Then the new numerical derivative

D(1)∗ (f , x ,h) modified by estimating f ′′(ξ)h/2 and f (x)E/h is defined by

D(1)∗ (f , x ,h) := D
(1)

F,1
(f , x ,h)−α− β .

We can extend this method to higher-order derivatives. The general form of the total

numerical error is

D(k)·,n (f , x ,h)− f (k)(x) = g(ξ)hn +
E

hk
, (2.5)

where k is the order of derivative and n is the asymptotic rate. The dot symbol "·" in the

subscript of D(k)·,n (f , x ,h)means that it could be "F"(forward method), "C" (central method),

or "B" (backward method). The first term of the right hand side of Eq. (2.5) is truncation

error and g = f (k+p) for some p ≥ 1. The second term is rounding error and it usually

contains the factor h−n. If we adjust h to t ih, we have

D(k)·,n (f , x , t ih)− f (k)(x) = g(ξti
)tn

i hn +
Ei

tk
i
hk

. (2.6)

Eq. (2.6) minus equation (2.5) and collect the error term to εi, we have

D(k)·,n (f , x , t ih)− D(k)·,n (f , x ,h) = g(ξ)hn(tn
i − 1) +

E

hk

1− tk
i

tk
i

+ εi. (2.7)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 815

We set

yi = D(k)·,n (f , x , t ih)− D(k)·,n (f , x ,h) = g(ξ)hnvi +
E

hk
wi + εi, (2.8)

where vi = tn
i
− 1, wi = (1− tk

i
)/tk

i
and i = 1, · · · , N for some N > 2. Then yi , vi and

wi form a linear system with error term εi. Therefore, we can easily solve the expectation

value of g(ξ)hn and E/hk by linear regression method.

Similarly, the matrix form of this linear system can be expressed by A∈ MN ,2(R), where

Ai,1 = vi = tn
i
− 1, Ai,2 = wi =(1− tk

i
)/tk

i
for i = 1, · · · , N and Y = (y1, · · · , yN). The

minimal square solution of Eq. (2.8) is (α,β)T = (AT A)−1AT Y . The solution α and β is

the expectation value of g(ξ)hn and E/hk respectively. We can also compute the residue

r by r =
p

(Y T − (α,β)AT)(Y − A(α,β)T). Then we can update g(ξ)hn and E/hk to the

numerical high-oder derivative that is defined by

D(p)∗ (f , x ,h) := D(p)·,n (f , x ,h)−α− β , (2.9)

when the residue r is acceptable.

3. Distribution of the Scaling Factor t

In Section 2, we show that we can modify the Richardson’s extrapolation with different

scaling factors t i to generate a set of data (vi, wi , yi) as Eq. (2.8). Using this data, we

can estimate truncation error and rounding error by linear regression method. Then we

can modify the numerical derivative by the regression coefficient. Notice that we are not

discussing how to find the optimal step size t ih or the optimal scaling factor t i . Some t ih

make D
(p)
·,n (f , x , t ih) good and some t ih make D

(p)
·,n (f , x , t ih) bad. However, we have no idea

whether D
(p)
·,n (f , x , t ih) is good or not, because we need a prior true solution. Up to now,

we only know t i is considered a random number. Therefore, what is the best distribution

of t i is a task.

In numerical analysis, errors can be described by two characteristics. One is accuracy

and the other is precision [3]. Accuracy refers to how closely a computed result agrees with

the true solution. Precision refers to how closely individual computed results agree with

each other. When we have no idea about the true solution, we never know the accuracy

of our computed results. However, we can compute the numerical derivative by different

step size t ih. Then we have resource to compute the precision. This is the key point for us

to look for the appropriate distribution of the scaling factor t i .

Let us focus on what is the better form of the distribution of t i now. First, t i should not

have the same sign only. It is well known that the central method D
(1)

c,2
(f , x ,h) is usually

better than the forward method D
(1)

f ,1
(f , x ,h) and the backward method D

(1)

b,1
(f , x ,h). If t i

contains two signs, then we have chance to obtain the result as central method. Therefore,

it is natural for us to design the distribution of t i as a Gaussian mixture distribution t i ∼
0.5N (−µ,σ)+0.5N (µ,σ), where N (µ,σ) is normal distribution with mean µ and standard

deviation σ. Around one half samples t i come from N (−µ,σ), and the rest comes from

N (µ,σ).

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

816 J. Tzeng

The further problem is how we can find the better µ and σ, so that the distribution of

t i reaches a better performance. To solve this problem, we can design a genetic approach

to seek a better distribution.

For each distribution G j(µ j,σ j) = 0.5N (−µ j,σ j) + 0.5N (µ j,σ j), we can compute the

coefficient of the linear regression for Eq. (2.8). Then we can compute the correspond-

ing residue r j and the modified numerical derivative D(k)∗ (f , x ,h) j . Instead of precision,

our concern is the fitness of regression. That is, the smaller r j should lead to the better

D
(p)
∗ (f , x ,h) j . Thus, we can design the genetic approach to seek the better distribution

G(µ j ,σ j) by the following.

Given a step size h, we start from an initial µ0 and σ0. We sample t i from the mixture

distribution G0(µ0,σ0), then we compute the related data (vi, wi , yi). We solve Eq. (2.8).

Then we update the expectation value of truncation error and rounding error to obtain

D(k)∗ (f , x ,h)0 and compute the residue r0.

Assume we have (µ j ,σ j), r j and D(k)∗ (f , x ,h) j for some j ≥ 0. We perturb (µ j,σ j)

twice and obtain two parameters (µ
(j)

1
,σ
(j)

1
) and (µ

(j)

2
,σ
(j)

2
). For each parameter (µ

(j)

ℓ
,σ
(j)

ℓ
),

ℓ = 1,2, we have the mixture distribution G j(µ
(j)

ℓ
,σ
(j)

ℓ
). We randomly choose tℓ

i
from

G j(µ
(j)

ℓ
,σ
(j)

ℓ
), generate data (vℓ

i
, wℓ

i
, yℓ

i
), compute the regression coefficient, and compute

the related residue r̃ℓ and the modified numerical derivative D∗,ℓ by our method. If r̃1 < r̃2,

then we set r j+1 = r̃1 and the modified numerical derivative D(k)∗ (f , x ,h) j+1 is D∗,1; else we

set r j+1 = r̃2 and the modified numerical derivative D(k)∗ (f , x ,h) j+1 is D∗,2.

We can generate a sequence D(k)∗ (f , x ,h) j for j = 0,1,2, · · · . We can compute the

relative error between D(k)∗ (f , x ,h) j+1 and D(k)∗ (f , x ,h) j for j ≥ 1. If the relative error

RE j = |D(k)∗ (f , x ,h) j+1 − D(k)∗ (f , x ,h) j |/|D(k)∗ (f , x ,h) j | is smaller than a tolerance τ, then

we stop the iteration process. We can also set a maximal iteration number M to stop the

iteration process. The final D(k)∗ (f , x ,h) j is output. With this genetic approach, we can find

a better result than the traditional method. The experimental result will be shown in the

next section.

4. Experimental Result

Two examples are to be shown that our implements are better than traditional meth-

ods. One example is the first derivative D
(1)
F,1
(f , x ,h) and the other is the second derivative

D
(2)

C ,2
(f , x ,h). We set f (x) = 3ex +10 sin(x) and valuate the first derivative and the second

derivative at x0 = π/4. Both of them are computed under the condition that we have the

true solution of function derivative.

In Table 1, the first column is the step size h that starts from 10−3 to 10−11. These step

sizes are chosen subjectively. The second column is the step size hb, which is derived by

solving the optimal step size to minimize the total error in Eq. (2.5) by the given h. The

third column is the absolute error w.r.t the step size h, the fourth column is the absolute error

w.r.t the step size hb, and the last column is the absolute error computed by our method.

In Table 1, we use 8 samples of t ihb to form the linear system and 4 scaling factors t i

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 817

Table 1: Example of D
(1)

F,1 (f , x , h) for f (x) = 3ex + 10 sin(x) at x = π/4.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−3 1.57104988608e-07 0.000245695130346 4.00592519156e-08 4.57891502492e-1 1

10−4 1.5710483124e-07 2.45621961596e-05 3.62021062017e-08 9.31006383098e-11

10−5 1.57109518407e-07 2.45605701998e-06 4.57071038795e-08 3.00861557889e-11

10−6 1.57257450482e-07 2.4431511747e-07 3.6117695501e-08 9.89590631661e-11

10−7 1.84735675792e-07 2.22705125452e-08 4.43045458098e-08 1.52837742462e-11

10−8 2.61255698159e-08 1.73128739789e-07 5.27110071147e-08 4.06359390581e-11

10−9 1.84735675792e-09 1.77184989525e-06 4.07631825183e-07 3.10553360805e-09

10−10 1.84735675792e-10 2.13117751287e-05 3.29233208518e-06 8.78334240895e-08

10−11 1.84735675792e-11 0.000216711027463 7.06020047971e-05 5.87577741129e-07

Table 2: Example of D
(1)

F,1 (f , x , h) for f (x) = ln(x) at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−3 1.17817305704e-09 1.20983583057 1.7024447132e-06 1.02329522633e-09

10−4 1.17890304578e-09 0.12458488961 1.48504782516e-06 1.7430608068e-09

10−5 1.17891034013e-09 0.0124958348835 1.58702189168e-06 2.79953837889e-10

10−6 1.17891036526e-09 0.00124995847557 1.52275192988e-06 2.33555397244e-11

10−7 1.17891036526e-09 0.000124999682782 1.52275192988e-06 8.72248051564e-10

10−8 1.17781246406e-09 1.25163268194e-05 1.64273784975e-06 5.4116355841e-10

10−9 1.14193155157e-09 1.19205196825e-06 1.45973995558e-06 1.4272103499e-09

from the normal distribution N (40,0.1) and the others from N (−40,0.1). The parameter

(µ,σ) = (±40,0.1) is tuned by the prior true solution.

We can see that the best subjective step size is h = 10−7. It makes the minimal error

in the level of 10−8. The best modified step size is h∗ = 1.57257450482× 10−7 and its

corresponding error is 3.6117695501× 10−8. The best result of our method makes the

error to be 1.52837742462×10−11. Compare the third column, the fourth column and the

last column of Table 1. We can see that our proposed method makes 3 significant figures

improvement.

To avoid only show the example of smooth function, we will show some examples of

derivative near the steep region.

Tables 2, 3 and 4 show the first derivative of ln(x),
p

x and arctan(x) at x = 0.02,

respectively. Some data are not shown in the table, for example the h = 10−10 and 10−11

in Table 2, because we meet the case of overflow. We can see that our method is pretty

good near the steep region. In the example of f (x) = ln(x), our method have 5 figures

improvement compared with the best modified step size h∗; in the case of f (x) =
p

x , we

have 4 figures improvement and in the case of f (x) = arctan(x), we have also 4 figures

improvement.

In Table 5, we use the same function and the same point x0 in the Table 1 to demonstrate

the numerical second derivative. The subjective step size comes from 10−1 to 10−8. The

modified step size h∗ is solved by Eq. (2.5) for D
(2)
C ,2
(f , x ,h) method. We still use 8 samples

to construct the linear system and 4 t i come from the normal distribution N (20,0.8) and the

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

818 J. Tzeng

Table 3: Example of D
(1)

F,1 (f , x , h) for f (x) =
p

x at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−3 1.19162689545e-09 0.0431226813479 5.65993558688e-08 5.46602763052e-11

10−4 1.19208823886e-09 0.00440840324538 6.58976992973e-08 9.82023351526e-11

10−5 1.19209284989e-09 0.000441831285876 5.0935365703e-08 7.83861864306e-11

10−6 1.19209305203e-09 4.41930524246e-05 4.50962009957e-08 7.01447788742e-11

10−7 1.19207901455e-09 4.41953461205e-06 4.25713433394e-08 9.18776166259e-12

10−8 1.19294089849e-09 4.39940180286e-07 5.80553560781e-08 7.52775619617e-12

10−9 1.22820782709e-09 4.02598914206e-08 5.21358507477e-08 2.56195065163e-11

10−10 2.12731835878e-10 1.81784713504e-07 1.33002697744e-08 3.67555763603e-10

10−11 2.12731835878e-11 1.84711925044e-06 1.43772399319e-07 2.97564994867e-09

Table 4: Example of D
(1)

F,1 (f , x , h) for f (x) = arctan x at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−3 2.10804589852e-08 2.03165235707e-05 5.08672881594e-10 1.25155441566e-12

10−4 2.10804485548e-08 2.00172629128e-06 4.81062634172e-10 3.9179770539e-13

10−5 2.10804367519e-08 1.9987370059e-07 5.50319900761e-10 8.85291839836e-13

10−6 2.10795310111e-08 1.99863454675e-08 6.08984640493e-10 8.71525074331e-14

10−7 2.1007628945e-08 2.01114080944e-09 4.24490997908e-10 1.59650070941e-13

10−8 1.59989335537e-08 3.45806272506e-10 4.95699037373e-10 5.57109913757e-13

Table 5: Example of D
(2)

C ,2(f , x , h) for f (x) = 3ex + 10 sin(x) at x = π/4.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−1 0.000321311849431 0.0113756208619 1.39763453255e-07 3.82777476382e-10

10−2 0.000321307189585 0.000113757590071 1.38210512257e-07 6.61025123527e-11

10−3 0.000321398951575 1.14063431056e-06 1.21283529497e-07 1.19108611862e-11

10−4 0.000252970977166 1.56532621531e-07 7.2418397612e-08 3.65634245103e-10

10−5 1.6917188842e-05 2.94664204717e-05 2.23234017693e-06 6.79091642919e-08

10−6 2.01180413368e-06 0.00095317197696 0.000545098216634 1.78540298951e-06

10−7 1.92216375885e-07 0.135956291771 0.0585226207873 0.000174089324108

10−8 2.01180413368e-08 18.2547960537 4.88015933617 0.0369473845101

other 4 t i come from N (20,0.8). The parameter is also tuned by the prior true solution. We

can see that the best subjective step size is h= 10−4 and the best modified step size is h∗ =
0.000252970977166. Compare the third column, the fourth column and the last column

of Table 5, we can see that our method makes at least 2 significant figures improvement.

As we have demonstrated before, we compare our method by the second order differ-

ence in the ln(x),
p

x and arctan(x). The results are shown from the Table 6 to Table 8.

We can see the ability of our method is good in second order derivative as in first order

derivative. Even though the given step size h is far away the best modified step size h∗, the

modification ability of our method is very stable, i.e., errors of our method are almost in

the same level.

From Tables 1 and 8, the good results of our method are fine tuned by the mean and

standard deviation of the distribution of t i . This can be done only when we know the true

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 819

Table 6: Example of D
(2)

C ,2(f , x , h) for f (x) = ln(x) at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−2 5.77448023003e-06 376.820724518 0.000111786614525 1.09695520223e-07

10−3 5.77448023003e-06 3.13021811843 0.000111786614525 1.82426902029e-07

10−4 5.77448023003e-06 0.0312505518705 0.000111786614525 3.26532699546e-07

10−5 5.77448023003e-06 0.000313432337407 0.000111786614525 1.18005118566e-07

10−6 5.77448023003e-06 0.000206850927498 0.000111786614525 4.10050233768e-08

10−7 5.77448023003e-06 0.000206850927952 0.000111786614525 6.89792614139e-08

10−8 5.77448023003e-06 4.66314355435 0.000111786614525 2.51523488259e-07

10−9 5.77448023003e-06 164.5352591 0.000111786614525 2.0624293029e-07

10−10 5.77448023003e-06 2500.0 0.000111786614525 2.47273874265e-07

Table 7: Example of D
(2)

C ,2(f , x , h) for f (x) =
p

x at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−2 6.53066704079e-06 7.98796952899 3.05024778413e-06 2.73003735174e-08

10−3 6.53066704079e-06 0.0691441740839 3.05024778413e-06 1.15812923696e-08

10−4 6.53066704079e-06 0.000690543098088 3.05024778413e-06 1.790100157e-08

10−5 6.53066704079e-06 6.76506388686e-06 3.05024778413e-06 7.45875183839e-09

10−6 6.53066704079e-06 2.32109577638e-05 3.05024778413e-06 5.94624793848e-10

10−7 6.53066704079e-06 0.00205845721342 3.05024778413e-06 7.98226551524e-09

10−8 6.53066704079e-06 0.125617190618 3.05024778413e-06 2.58509658124e-09

10−9 6.53066704079e-06 5.12162080143 3.05024778413e-06 5.66281244119e-09

10−10 6.53066704079e-06 2863.94590921 3.05024778413e-06 5.96089932969e-09

Table 8: Example of D
(2)

C ,2(f , x , h) for f (x) = arctan x at x = 0.02.

step size h modified step size h∗ Error by h Error by h∗ Error of our method

10−2 0.00014523463664 3.99161044438e-06 7.17035285314e-10 3.34539340674e-12

10−3 0.00014523463664 3.99163509052e-08 7.17035285314e-10 2.1729285038e-12

10−4 0.00014523463664 3.64655652896e-10 7.17035285314e-10 4.76804706828e-12

10−5 0.00014523463664 4.43912100204e-08 7.17035285314e-10 1.96585803192e-13

10−6 0.00014523463664 3.47914369246e-06 7.17035285314e-10 8.01418653662e-12

10−7 0.00014523463664 0.000277565452897 7.17035285314e-10 1.54441737177e-12

10−8 0.00014523463664 0.0294209198493 7.17035285314e-10 9.32413868338e-12

10−9 0.00014523463664 0.0399680191898 7.17035285314e-10 4.2170017478e-12

10−10 0.00014523463664 346.904727176 7.17035285314e-10 3.37530697836e-12

solution. Practically, we don’t know the true solution and we don’t know the direction to

tune the best distribution of t i . In the second part of this section, we will use the genetic

approach in Section 3 to seek the suitable distribution of the scaling factor t automatically.

Table 9 is the performance of first order derivative by the genetic approach of our

method. The first column is the given step size h. They are 10−p, where p = 3, · · · , 11.

We all start from the initial parameter (µ0,σ0) = (3,0.1). We fix the σk = σ0 for all k ≥ 1

and only perturb the µk in this example. The tolerance to stop the process is set to be 10−11.

And we set 600 as the maximal number of iterations. The second column is the number of

iterations that stop the processing, the third column is the error of our method, the fourth

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

820 J. Tzeng

Table 9: Example of D
(1)

F,1 (f , x , h) for f (x) = 3ex + 10 sin(x) at x = π/4 for automatially adjust t i.

step size h iterations Error of our method final µ residue

10−3 600 1.89549453466e-07 -1.53532444528 1.45417999735e-08

10−4 27 1.9543318075e-09 -1.50321747158 2.26930663538e-10

10−5 4 2.3944224381e-10 5.53938472154 6.75506067507e-12

10−6 11 9.98845450795e-12 8.55463039103 6.07647290642e-11

10−7 43 3.42723183167e-10 13.4489517888 8.56695877758e-10

10−8 268 1.04719788396e-09 -20.9218048074 2.4304803334e-09

10−9 600 3.30193739018e-08 13.5533853948 3.66736226511e-08

10−10 600 1.03510055638e-07 41.7581081724 4.49121450386e-07

10−11 600 1.08822671052e-06 29.7910215213 3.16557370495e-06

Table 10: Example of D
(2)

C ,2(f , x , h) for f (x) = 3ex + 10 sin(x) at x = π/4 for automatially adjust t i .

step size h iterations Error of our method final µ residue

10−1 600 4.07661652468e-06 -2.26213894994 3.22595339162e-08

10−2 60 7.21258608394e-11 -0.424114283318 2.11850032521e-10

10−3 12 1.97531158097e-10 11.5473654127 7.54039386063e-12

10−4 200 1.18793704318e-08 19.1288807055 2.26839134415e-10

10−5 600 2.05409143861e-07 56.6157962034 1.12364129007e-09

10−6 600 7.2792357963e-06 59.4761465819 5.18360008963e-07

10−7 600 0.00737921301028 33.0407040331 5.23379975084e-05

10−8 600 1.20287020036 48.3163185335 0.00586809520932

column is the µ of the final mixture distributions, and the last column is the final residue.

When the initial step size is near the best step size of the traditional method, we can see

that the processing stops soon and the result is good as we demonstrate in Table 1. When

the initial step size is far from the best step size of the traditional method, the processing

can not stop automatically and the result is worse than the experiments in Table 1. There

is one significant figure difference or so. We also see that this genetic processing has the

ability to self-adjust the parameter µ. If we set the initial step size h as the best step size

and see the processing stop automatically in a few iterations, then we can trust the output

result.

We are interested in whether the residue is a signal to control the accuracy. In Table 9,

we can compute the correlation coefficient between the absolute error (column three) and

the residue (column five). The correlation coefficient is 0.98. That is, the residue is actually

a signal to control the accuracy.

Table 10 is the example of the self-adjust processing for the second derivative. We

use the setting h = 10−p for p = 1, · · · , 8. The tolerance is set to be 10−10. The other

settings are the same as in the example of Table 9. Obviously, when the step size h falls

on 10−2 to 10−4, the processing stops before it reaches the maximal iterations. Therefore,

the optimal solution will appear in these three outputs. We can select the output that has

the smallest residue. That is the case of h = 10−3. This solution is one significant feature

difference than we have shown in Table 1. This characteristic is the same as the example

in the first derivative. From Tables 9 and 10 we can see that the self-adjust processing

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 821

works pretty well without any prior knowledge. In Table 10, we are also interested in

the relationship between the accuracy and residue. The correlation coefficient between

column 3 and column 5 is 0.85. That is, they are highly relative to each other. This gives

us confidence to select the output with small residue.

The last part is to show our method works well to general functions. To show the general

performance of our method, we define the smooth function fa,b(x) as aex+ b sin(x), where

a and b are random variables from normal distribution N (3,0.5) and N (10,1) respectively.

We set the domain of x ∈ [0.5π, 1.5π] and choose randomly 64 functions of fa,b to obtain

the average results for the data presentation.

As we have shown before, the best initial h is chosen by solving the minimization of the

total error in Eq. (2.6). For example, the initial h is chosen by 2

s

| f (x)

D
(2)
C ,2
(f ,x ,h)
|ε in the case of

D
(1)

F,1
(f , x ,h), h is chosen by 3

s

| 3 f (x)

D
(3)

F,1
(f ,x ,h)
|ε in the case of D

(1)

C ,2
(f , x ,h), and h= 4

s

| 48 f (x)

D
(4)

C ,2
(f ,x ,h)
|ε

in the case of D
(2)
C ,2
(f , x ,h).

We use the same approach and the same setting of all the parameter in Tables 9 and

10 to compute the first, second and fourth derivative by our method. Then we compare

these results with those of the traditional methods. Since one half the scaling factor t i in

our method is sampled from the distribution N (µ,σ) and the other half from N (−µ,σ),

we can consider the new method uses information of high order numerical derivative, like

the central difference. Therefore, we also compare our method to the relative high order

numerical derivative that is derived by Richardson’ s extrapolation.

We first compare the first derivative between forward method, central method, the

second order forward method derived by Richardson’s extrapolation and our method. The

result is shown in Fig. 1. From top to bottom, the black line is the error of the traditional

forward method D
(1)

F,1
(f , x ,h) for first derivative. All values are the average of the numerical

derivative of 64 random functions fa,b. We also take the average by log10 for showing the

result clearly. The blue line is the error of D
(1)

F,2
(f , x ,h) that is derived from D

(1)

F,1
(f , x ,h)

by Richardson’s extrapolation. The third green line is the error of the central difference

D
(1)

C ,2
(f , x ,h). The last red line is the error of our method. We can see that our method is

the best one. We improve about three significant figures to the forward method D
(1)
F,1
(f , x ,h)

and about two significant figures to the central difference D
(1)

C ,2
(f , x ,h).

The next example shown in Fig. 2 is the comparison of the second derivative for the

central method D
(2)
C ,2
(f , x ,h), the high order method derived by Richardson’s extrapolation

D
(2)

C ,4
(f , x ,h) and our method. All parameters are the same as we have shown in Table 10.

From top to bottom, the black line is the error of D
(2)

C ,2
(f , x ,h), the blue line is the error of

D
(2)
C ,4
(f , x ,h) and the red line is for our method. We can see that our method is still the best

one. We improve about four significant figures than the traditional method D
(2)

C ,2
(f , x ,h)

and improve about two significant figures than the high order method D
(2)

C ,4
(f , x ,h).

The next example shown in Fig. 3 is the comparison of the fourth derivative for the

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

822 J. Tzeng

Figure 1: Comparison between the numerial �rst derivative and our method, where f (x) ≈ 3ex +

20 sin(x). The blak line is the error of D
(1)

F,1 (f , x , h), the blue line is D
(1)

F,2 (f , x , h), the green line is

D
(1)

C ,2(f , x , h), and the red line is our method.

Figure 2: Comparison between the numerial seond derivative and our method, where f (x) ≈ 3ex +

20 sin(x). The blak line is the traditional method D
(2)

C ,2(f , x , h), the blue line is D
(2)

C ,4(f , x , h), and the red

line is our method.

central method D
(4)

C ,2
(f , x ,h), the high order method derived by Richardson’s extrapolation

D
(4)
C ,4
(f , x ,h) and our method. All parameters are the same as we have shown in Table 10.

From top to bottom, the black line is the error of D
(4)

C ,2
(f , x ,h), the blue line is the error of

D
(4)
C ,4(f , x ,h) and the red line is for our method. We can see that our method is still the best

one. We improve about three significant figures than the traditional method D
(4)

C ,2
(f , x ,h)

and improve about one significant figures than the high order method D
(4)

C ,4
(f , x ,h).

The previous example using the function form f (x) = aex + b sin(x), where a ∼

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 823

Figure 3: Comparison between the numerial fourth derivative and our method, where f (x) ≈ 3ex +

20 sin(x). The blak line is the traditional method D
(4)

C ,2(f , x , h), the blue line is D
(4)

C ,4(f , x , h), and the red

line is our method.

Figure 4: First order derivative omparison, where f (x) ≈ 3ex + sin(20x).The blak line is the error of

D
(1)

F,1 (f , x , h), the blue line is D
(1)

F,2 (f , x , h),the green line is D
(1)

C ,2(f , x , h), and the red line is our method.

N (3,0.5) and b ∼ N (10,1), respectively. This function form is a smooth function. We

are interested in how performance is when the function is oscillating. We use the function

form f (x) = aex + sin(bx), where a ∼ N (3,0.5) and b ∼ N (20,1) to demonstrate results

of first order, second order and fourth order derivative. Fig. 4 is the result of first order

derivative. The step size h is 10−8. From top to bottom, they are the error of D
(1)

F,1
(f , x ,h),

D
(1)

F,2
(f , x ,h), D

(1)

C ,2
(f , x ,h) and our method D(1)∗ (f , x ,h), respectively. We can see that the

order is the same as Fig. 1. Our method improve the first order forward method very much.

We have about 3 figures significant improvement.

Fig. 5 is result of the second derivative. The step size h is 10−6. The black line is

D
(2)
C ,2
(f , x ,h); the blue line is D

(2)
C ,4
(f , x ,h) and the red line is our method D(2)∗ (f , x ,h).

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

824 J. Tzeng

Figure 5: Seond order derivative omparison, where f (x) ≈ 3ex+sin(20x).The blak line is the traditional

method D
(4)

C ,2(f , x , h),the blue line is D
(4)

C ,4(f , x , h), and the red line is our method.

Figure 6: Fourth derivative omparison, where f (x) ≈ 3ex + sin(20x). The blak line is the traditional

method D
(4)

C ,2(f , x , h), the blue line is D
(4)

C ,4(f , x , h), and the red line is our method.

We can see that our method still improve the accuracy very much. There is about 2 fig-

ures significant. We also see that the high order method D
(2)

C ,4
(f , x ,h) becomes worse than

D
(2)

C ,2
(f , x ,h) under the step size setting.

Fig. 6 is result of the fourth derivative. The step size h is 10−3. The black line is

D
(4)

C ,2
(f , x ,h); the blue line is D

(4)
C ,4(f , x ,h) and the red line is our method D(4)∗ (f , x ,h). We

can see that our method still works fine. There is about 3 figures significant improvement

then D
(4)

C ,2
(f , x ,h) and half figure significant improvement then D

(4)

C ,4
(f , x ,h).

It is clearly that our method takes more computational complexity to obtain the esti-

mations of truncation error and rounding error. One might ask how is the accurate per-

formance under the equal computational complexity? If we only use two sampling of t i

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

Minimize the Error of Numerical Differentiation 825

Figure 7: Comparison the numerial derivative between D
(1)

F,3 (f , x , h) and our method D(1)∗ (f , x , h) under

the same omputational omplexity. The blue line is D
(1)

F,3 (f , x , h) and the red line is D(1)∗ (f , x , h).

Figure 8: Using ln(x) to ompare the numerial derivative between D
(1)

F,3 (f , x , h) and our method

D(1)∗ (f , x , h) under the same omputational omplexity. The blue line is D
(1)

F,3 (f , x , h) and the red line

is D(1)∗ (f , x , h).

to compute D
(1)
F,1
(f , x ,h), i.e., n = 2, the computational complexity is equivalent to the

third order forward method D
(1)

F,3
(f , x ,h) that is applied Richardson’s extrapolation twice.

Fig. 7 is result that compared between D
(1)

F,3
(f , x ,h) by Richardson’s extrapolation twice and

D(1)∗ (f , x ,h) by our method. All the setting of function is the same as in Fig. 1, but change

the sampling of our method from n = 8 to n = 2. We can see that the performance of

D
(1)
F,3
(f , x ,h) is almost the same as D

(1)
F,2
(f , x ,h) by Richardson’s extrapolation. The perfor-

mance of D(1)∗ (f , x ,h) by our method decayed one figure significant. However, it is still

better than the performance of D
(1)
F,3
(f , x ,h).

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

826 J. Tzeng

Fig. 8 shows the result that compared between D
(1)
F,3
(f , x ,h) by Richardson’s extrapola-

tion twice and D(1)∗ (f , x ,h) by our method, but change the testing function to ln(x). We are

interested in the performance between the steep region and the smooth region. Thus, we

focus the numerical derivative on the interval [0.001,2] and set the step size by h = 10−7.

We can see that when x is near 0, the performance of D
(1)

F,3
(f , x ,h) is better than our method.

On the other hand, when x is away from 0, our performance is better. That is our method

works well in the smooth region under the fixed computational complexity. The reason is

we used the fixed step size h. If the step size become small in the steep region, our method

can obtain the better result.

5. Conclusion

Our linear regression method is superior to the traditional numerical derivative. We can

successfully estimate truncation error and rounding error at the same time. Therefore, we

can use these estimation to modified the numerical derivative to obtain a better result. The

proposed genetic approach gives us a way to find the better solution of numerical derivative

without the prior true solution. In the lower order numerical derivative, our performance is

pretty well. The performance will decay as the order of the derivative increases. However,

our method improves at least one significant figure.

Acknowledgments

This paper is supported by the Ministry of Science and Technology, R.O.C of the project

MOST 103-2410-H-004-182-MY2.

References

[1] J. L. Barlow, Numerical aspects of solving linear least squares problems. In Rao, C.R. Computa-

tional Statistics. Handbook of Statistics. 9. North-Holland. ISBN 0-444-88096-8, 1993.

[2] R. Butt, Introduction to Numerical Analysis Using MATLAB, Jones & Bartlett Learning, pp. 11-

18, 2009.

[3] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw-Hill, 7-th Edition,

2015.

[4] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag New York, Inc, 1999.

[5] L. F. Richardson and J. A. Gaunt, The diferred approach to the limit, Philosophical Transactions

of the Royal Society A 226, 299-349, 1927.

[6] C. W. Ueberhuber, Numerical Computation 1: Methods, Software, and Analysis, Springer, pp.

139-146, 1997.

[7] W. Y. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB,

John Wiley & Sons, 2005.

[8] A. Curtis and J. Reid The choice of step lengths when using differences to approximate Jacobian

matrices, J. Inst. Math. Appl., v. 13, 121-126, 1974.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/eajam.161016.300517a
Downloaded from https://www.cambridge.org/core. National Cheng Chi University, on 19 Sep 2018 at 03:52:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/eajam.161016.300517a
https://www.cambridge.org/core

