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I .  I N T R O D U C T I O N  

The principal objective of this paper is to establish oscillation theorems for ordinary and partial 
difference equations. 

We are concerned with the self-adjoint second-order linear difference equation 

A ( P n - I A x , - I )  + Q , x ,  = 0, Vn • N = {1, 2 , . . .  }, (1.1) 

where 

P , > 0 ,  Vn = 0 , 1 , 2 , . . . .  (1.2) 

The oscillatory behavior of (1.1) has been extensively discussed by several authors; see for exam- 
ple [1-4]. However, they deal with (1.1) under the hypothesis 

Q, -- c¢. (1.3) 
iffil 

Therefore, i t  is interesting to discuss (1.1) without requiring the hypothesis (1.3). In fact, we shall 
establish an oscillation theorem for (1.1) when (1.3) is not satisfied. Our results are motivated 
by those of Yu and Chen [5]. For general oscillations in neutral delay difference equations, we 
refer to [6]. 

Let A1, A2, A12 be partial difference operators defined as A lu~ ,n  -- U~+l,n - u~,n, ~2u~,n -- 
~rn,n-l-1 - -  Urn,n, and ~Um,n - -  A l ( ~ l U m , n ) .  Basing on the results in Section 2, we shall discuss 
oscillations of the discrete analogue for the nonlinear wave equation 

A2(gn- IA2~n ,n - l )  + b n - l ~ 2 ~ , n - I  

- c ~ 1 2 ( G ( m  - 1, n, um-l ,n)Um-l.n)  + g(rn, n, um,n)u~,n = 0, Vm E G, n E IN, (1.4) 

~4),n ---~ UM+I,n ---~ 0, Vn E ~, 

where M E N, f~ = { 1 , 2 , . . . , M ) ,  S = { 0 , 1 , 2 , . . . } ,  an, c~ > 0, b,~ E R, Vn E N, and g and G 
are continuous functions in G x N x R. The main results are given in Theorems 3.5 and 3.6. In 

T y p ~  by A ~ S - T ~  
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addition, we also obtain a sufficient condition such that every nonoscillatory nontrivial solution 
of (1.4) is bounded. 

2. O S C I L L A T I O N S  O F  S E L F - A D J O I N T  
S E C O N D - O R D E R  L I N E A R  E Q U A T I O N  

In this section, we shall consider the self-adjoint second-order difference equation (1.1). The 
following result is known [3]. 

THEOREM [A]. I f  

and the condition (1.3) hold, then (1.1) is oscillatory. | 

Here we shall establish an oscillation theorem for (I.I) when (1.3) is not satisfied. Throughout 

this paper we say that a nontrivial solution (zn}n°°__o of the difference equation (1.1) is oscillatory 
if for every n E N there exists nl,n2 >_ n such that xnlxn2 < O. Otherwise, it is nonoscillatory. 
The difference equation (1.1) is said to be oscillatory if it has no nonoscillatory nontrivial solution. 
Otherwise, it is nonoscillatory. 

We shall use the following conditions as assumptions in our theorems. 

(A1) There exists a nonnegative integer N such that Pn _< 1 and Qn > 0 for all n > N. 

(A2) If we define H(n °) = ~-~:n Q~, then there exists a nonnegative integer k such that the 

sequences H(n m) = Y]~n iQ~H~ m-l) < co for all m = 1,2,. . .  ,k and ~-~1 iQ~H~ k) = co" 

LEMMA 2.1. Assume that (1.2) and (A1) hold. Let xn be an eventually positive solution of the 
difference inequality 

A(Pn-IAXn-x)  + Qnx.  <_ O, (2.1) 

and set 

Then we have eventua/]y 

Yn = PnAxn. (2.2) 

y. > o. (2.3) 

PROOF. Assume that xn > 0, Vn >_ N1, for some N1 _> N. Then we have Ayn_l <_ -Q,~xn < 0, 
Vn >_ N1. Therefore, if (2.3) does not hold, then there exist M > 0 and N2 _> NI such that 
Vn > N2 we have Yn < -M. Thus by (A1), (1.2), and (2.2), we get Ax,, < y,, < -M, Vn > N2. 
This implies xn --* - co  which contradicts the positivity of xn. | 

LEMMA 2.2. Assume that (1.2), (A1), and (A2) hold. Let xn be an eventually positive solution 
of the difference inequality (2.1) and let y ,  be defined by (2.2). Then we have eventually 

Yn < 0. (2.4) 

PROOF. Assume that 
x~ > 0, Vn >_ No, 

for some No _> N. Then by (2.1), (2.2), and (2.5), we have 

(2.5) 

A~]n-1 ~ --QnXn ¢~ O, V n  ~> g O. 

Therefore, if the conclusion does not hold, then Yn > 0 eventually. By (1.2) and (2.2), we have 
eventually Axn > 0. Thus there exist M > 0 and N1 E N such that Azn > 0 and xn >_ M, 
V n _> N1. Then 

Ayn-1 _< -Qnxn <_ -MQn,  Vn >_ N1, 
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and so 

Y n - 1  ~-- MH (°), 

From (A1), (1.2), (2.2), and (2.6), we obtain 

Axn_ 1 >_ M H  (°), 

which yields 
xn >_ M(n - N1)H (°), 

Then by (2.1) and (2.2), it follows that 

Vn> N1. 

Vn >_ N1 + 1, 

Vn_> NI + I. 
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(2.8) 

Then there exists an integerN3 > N2 + 1 such that 

_Mnt~  H(1) Ay(n-1) _~ 22 ~n . , Vn > Nz, 

which contradicts the positivity of 9n for k = 1. By induction, we conclude that such k in (A2) 
does not exist, which contradicts our assumption (A2). | 

LEMMA 2.3. Assume that (1.2) and (A1) hold. Let zn be an eventually negative solution of the 
difference inequality 

A(Pn-IAXn-I)  + QnXn >_ 0, (2.8) 

and let Yn be defined by (2.2). Then we have eventually Yn < O. | 

LEMMA 2.4. Assume that (1.2), (A1), and (A2) hold. Let xn be an eventually negative solution 
of the difference inequality (2.8) and let Yn be defined by equation (2.2). Then we have eventually 
y . > 0 .  II 

From the above discussion, the following theorem is immediate. 

THEOREM 2.5. Assume that (1.2), (A1), and (A2) hold, then (1.1) is osci//atory. II 

EXAMPLE 2.6. The self-adjoint difference equation 

A2zn_l + 1 0, Vn 1,2,. (2.9) 
n-..ff X n  = = . .  

satisfies all assumptions of Theorem [A] if and only i ra  < 1. In fact, condition (1.3) is not satisfied 
when a > 1. But all assumptions of Theorem 2.5 hold when 1 < a < 2. So by Theorem [A] and 
Theorem 2.5, equation (2.9) is oscillatory when a < 2. | 

V n > N 2 + I ,  

Vn_> N2+I. 
M 

A~n_ 1 <= --T('/'/, -- N2)QnI-I (1), 

there exists an integer N2 > N1 + 1 such that 

_Mnf~  H(O) 

which contradicts the positivity of Yn for k = 0. 
If k ~ 0, by (2.7), we obtain 

Yn-I • MH(1) 
- -  2 Ir~ , 

and so 
M Xn _> T ( n -  N2)H (1), 

which, by (2.1) and (2.2), yields 

Vn _> N2, (2.7) 

Vn > N2, 

Ayn-1 <_ - M ( n  - N1)QnH (°), Vn >_ N1 + 1. 

Since (M(n - N1)Q.H(°))/(nQ.H(~ °)) = (M(n - N1)/n) ~ M as n ---, ~ and is increasing, 
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3. O S C I L L A T I O N S  O F  D I S C R E T E  A N A L O G U E  
F O R  N O N L I N E A R  W A V E  E Q U A T I O N  

Following [7], we discuss oscillation of discrete analogue for nonlinear wave equation (1.4). A 
nontrivial solution um,, of (1.4) is said to be oscillatory if for every N E N there exist ml, m2 E f~ 
and nl, n2 _> N such that uml,n,um2,,2 <_ O. Otherwise, it is nonoscillatory. 

We shall obtain sufficient conditions for the oscillation of a nontrivial solution of (1.4). For this, 
we first consider a method of finding a linear difference equation such that a nontrivial solution 
of (1.4) is oscillatory if a nontrivial solution of the linear difference equation is oscillatory. To do 
this, we need several results which are provided in the following lemmas. 

LEMMA 3.1. Consider the ieollowing Sturm-Liouville system: 

A2¢._I + A¢. = 0, ¥ n  6 f~. (3.1) 
40 = 0 ,  CM+I = 0 ,  

Let A1 be the least eigenva/ue of system (3.1) and ¢(n 1) be the eigenftmction corresponding to A1. 
Then A1 > 0 and ¢(1) > O, V n 6 fL 

PROOF. See [1,8]. II 

Let L y  n = A(an- lAyn-x)  + bnYn. We shall establish the discrete version of Green's formula. 

LEMMA 3.2. Let I. 1M+I a n d / .  IM+I be sequences. Then tgn Jn=0 t ~n  I n = O  

M M 

z . L y .  - ~-~y.Lzn = {a.wtz.,y.l}MffiO, 
n=l n=l 

where w[zn,y,] is called the Casoratian of z ,  and y, ,  and is defined by 

w[z,,y,~]= I z .  y ,  [ 
A z .  A y .  " 

PROOF. See [1,3]. 

LEMMA 3.3. Let N e N and {Un}neS be a sequence such that 

Un >O, V n >  N (3.2) 

and 

where 

II e We a88tune 

then we have 

(a) U , > O ,  V n > N ,  

A(an_ lmUn-1  ) 4- bn_, AUn-x 4- c~Un <_ 0, 

a,,c~ > 0, ¥ n  e S. 

bn < an , V n E S, 

V,  oo (b) there exists { . } .=N,  such that Vn > Un > O, Vn > N and 

Vn > N, (3.3) 

(3.4) 

(3.5) 

A(f ln- lAVn-1)  4- bn-lAWn-1 4- c~Vn = 0, Vn >/ 'V 4- 1. 
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PROOF. First, we rewrite (3.3) in the form 

a.AU. + ( b , - i  - a n_,)AU._, + c~,U. _< 0, Vn >_ N. (3.6) 

From (3.4), (3.5), and (3.6), we have AU, < 0, if AUn_ 1 ~ 0, VR ~ N. Then suppose that 
there exists an integer N* > N such that AUN. <_ O, we conclude that {U,},es is eventually 
decreasing. Otherwise, {U,},es is eventually increasing. Consequently, from (3.2), we get the 
desired result (a). To prove (b), we set 

Subst i tu t ion  of  (3.7) into (3.3) gives 

[/.+1 > 0, Vn > N. (3.7) 
U. 

/ 
1) + ( b , - ,  - a , - 1 )  ~1 - - -  

CO Let {T.} ,=N be a sequence which satisfies 

TN = SN 

and 

* < 0, Vn  > N. (3.8) 1 + c .  _ 

(1) 
a~(T, - i) + (b,-1 - an-l) 1 Tn-l' + C* = O, 

From (3.4), (3.5), (3.8), (3.9), and (3.I0), we obtain 

TN >_ S, ,  Vn >_ N. 

O0 Now define the  new sequence {V, } ,=N as follows: 

(3.9) 

and 

Vn >_ N + I. (3.10) 

It is easy to check that 

(3.11) 

V. >_ U. > O, V n > N. 

In fact,  i t  is t r ivial  for n = N.  For n _> N + 1, 

.-1 n-1 

II T, II s,=uo, 
iffiffi N ~= N 

which follows from (3.7), (3.11), (3.12), and (3.13). 

Hereafter we shall require the following assumptions. 

(BI) g is nonnegative in f/x [0,oo) x R. 
(B2) There exists a constant Go > 0 such that G(m, n, u) > Go in f/x [0, co) x R. 

Finally, we need to show that 

A(an-lAVn-1) Jr- bn-lAV.-1 q- c~Vn = O, V n > _ N + I .  

N + n -  I 

VN+n " ~  [iN I~ Ti, Vn e N. (3.13) 
i=N 

VN = UrN (3.12) 
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THEOREM 3.4. Consider the difference equation 

A(an-lAVn-1) + bn-lAVn_l + AIGoCnVn = O, V n  • N, (3.14) 

where an,b,,c~ are defined as in system (1.4) and A1 is the least eigenvalue of system (3.1). 
Assume that (B1) and (B2) hold and 

bn < an, Vn • S, (3.15) 

then every nontrivial solution of system (1.4) is oscillatory, ff every solution of equation (3.14) is 
oscillatory. 

PROOF. Suppose system (1.4) has an eventually positive nontrivial solution urn,n. We set 

M 

lrn----I 

where ~b~ ) is the eigenfunction of system (3.1) corresponding to its least eigenvalue A1. If we 
multiply equation (1.4) by ~ )  and sum from m = 1 to M, then the following expression is 
obtained: 

M M 

E A'Can-lA2um'n-llep(lm) + E bn-lA2ura'n-ldP~) 
m-~ l ra-~ l 

M 

-- ~ ~ a 2 ( G (  m -  1,n,U~-l,n)~-1,n)dp~ ) 
raffil 

M 

+ ~ g(~,n,~,.)~,.~) =0, 
In----1 

Vme f~, and n e N. By assumption (B2), Lemma 3.2, and the boundary conditions: 

(3.17) 

Uo,n = UM+z,n = O, Vn E S, 

and 
4' = ~+i =0, 

we o b t ~  

M 

~ ( a ( ~ -  1, ~, ~,,._1,.),~_1,.)~) 
m, f f i l  

M M 

ra----I 
M 

= Z G(m, n, um n~um nA z'A(1) , ~ ~ ~ t r ~ - -  1" 

m----1 

(3.18) 

Since q#~) is a solution of system (3.1), we have 

~ 2 ~ ) _ .  1 = - ~ ) .  (3.19) 

Since um,n is an eventually positive solution of system (1.4), there exists N E N such that  

t ~ , .  > 0, ¥ m e f~ and n > N. (3.20) 
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From (B1), (B2), (3.16), (3.17), (3.18), (3.19), and (3.20), we obtain 

M 

0 A(an_lAUn_l)  -1- b._lAUn-1 cn y ~  G(rn, n u " A2~(1) = -- ' m , n ) ~ m , n  ¢ ) m - I  
r¢~----1 

M 
+ > 

rn,=O 

M 

>_ A(an-IAUn-I )  + bn-iAUn-1 + 11Cn ~ G(rn, n,u,n,n)um,nd~(lm ) 
m--'--I 

>_ A(an-IAUn-x)  + b . - IAUn-1 + ~laOC.nVn, V n  > N .  

By Lemma 3.3, equation (3.14) has an eventually positive solution. FinMly, by replacing Um,n 
by -um,n if system (1.4) has an eventually negative solution, we obtain that  equation (3.14) has 
an eventually negative solution, m 

Note that  equation (3.14), if bn < a, ,  Vn E S, can be written in the self-adjoint form 

A(p ,_ IAV,_ I )  + qnV, = O, Vn • N, 

where 

and 

n - I  
a i  

Pn = an H ai ~ bi 
/----0 

n - 1  

II  qn = ~1c~ -- • 
~=0 a i  - b~ 

Therefore, by Theorem [A] and Theorem 2.5, we get the following sufficient conditions for the 
oscillations of equation (1.4). 

THEOREM 3.5. Assume that  (B1), (B2), and (3.5) hold. If  

oo n - 1  

 o= II °,-b, - - ~ ( X )  

nffi0 iffi0 a i  

and 
oo n - - I  

Z H à  Cn - -  = 0 0 ,  

,--0 iffio a~ - bi 

then every solution of (7.4) is oscillatory. 

THEOREM 3.6. Assume that  (BT), (B2), and (3.5) hold. Assume that  

(C1) there exists a nonnegative integer N such that 

n - 1  

an 1-I a~ < 1, Vn > N, 
{--o ai - bi - 

and that 
(c2) 

Furthermore, by defining 

we assume that 

oo n - - 1  

I1 h 
nffi0 i = 0  ~{ v~ 

oo j - 1  
a_~ 

jffin i--O 

n E N ,  

| 



200 S.-C. Fu AND L.-Y. TSAI 

(C3) there extra a nonnegative integer k such that the sequences 

oo j-I 
(ti H ( m - 1 )  z.(") = E j c j  II  ~ - - ~  < oo, 

j = n  i----0 

for m = 1 , 2  . . . .  , k a n d  

oo j-1 
a~ H!k) 

EJ~,II  o,_b, -, =oo 
j = l  i----O 

Then every solution of (1.4) is oscillatory. 

EXAMPLE 3.7. The system 

a22..,._1 - n~a2~_ l , .  + .~ , .  =0, Vm = l , . . . , M  and n E N 

Vn = 0,1, . . .  

By induction, we obtain 

Then by (3.21), U, is bounded. 

From Lemma 3.8, we immediately obtain the following. 

THEOREM 3.9. Assume that bn < an, Vn E S and 

E K  a ] <=' 
n=O i=O 

then every nonosdllstory solution of system (1.4) is bounded. 

Un+l <~ ( Pn ~p/n') Un Ar ~ n l  (un -- Un-1) 

<~ Un "}" ~ n  l ( un -- U n - 1 ) ,  

Pn(Vn+l - Vn) <~ Pn-l(Vn - Un-1), VII, >__ N .  

n - 1  

u o < U o + d E L  
- -  k ~ O  P k  

II 

for n 3, N, and hence, 

ltO, n = 1/,M+I, n = O~ 

is oscillatory when a < 2. | 

LEMMA 3.8. Let N E N and Pn,Qn > 0 for n _> 0. If we assume 

oo 1 
E ~ < oo, (3.21) 
n~O n 

then every nonoscillatory solution of the difference inequality 

A(Pn-IAUn-I )  + Q .U.  <_ o, Vn _> N, (3.22) 

is bounded. 

PROOF. Let U. be an eventually positive solution of (3.22). We can assume that there exists an 
integer NI E N such that U. > 0, Vn _> NI. By (3.22), we have 
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