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Oscillation in Nonlinear Difference Equations
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Abstract—In this paper, we shall discuss oscillatory behavior of the solutions of difference equa-
tions, including the self-adjoint second-order linear equation and the discrete version of the nonlinear
wave equation. Our work is to give sufficient conditions such that every nontrivial solution of the
equations oscillates. © 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The principal objective of this paper is to establish oscillation theorems for ordinary and partial
difference equations.
We are concerned with the self-adjoint second-order linear difference equation

A(Pp-1Azpn_1) + Qnzn =0, VneN={1,2,...}, (1.1)
where

P.>0, ¥Yn=0,1,2,.... (1.2)

The oscillatory behavior of (1.1) has been extensively discussed by several authors; see for exam-
ple [1-4]. However, they deal with (1.1) under the hypothesis

> Qi=oco. (1.3)

i=]1

Therefore, it is interesting to discuss (1.1) without requiring the hypothesis (1.3). In fact, we shall
establish an oscillation theorem for (1.1) when (1.3) is not satisfied. Our results are motivated
by those of Yu and Chen [5]. For general oscillations in neutral delay difference equations, we
refer to [6)].

Let Ay, Az, A? be partial difference operators defined as At n = Um41.5n — Um,ny Doy =
Um,n+l — Umn, 80d Aupm = A1(A1Um,n). Basing on the results in Section 2, we shall discuss
oscillations of the discrete analogue for the nonlinear wave equation

Az(an-182Umn-1) + bn-182Um,n—1
—cnAHG(Mm - 1,0, Um—1,0)tm-1,n) + 9(M, Ny Umn)timn =0, VmeQ, neN, (1.4)
Upn = UM+1n = 0, Vne S’

where M e N, @ = {1,2,...,M}, § = {0,1,2,...}, @n,cn > 0, b, € R,Vn € N, and g and G
are continuous functions in  x N x R. The main results are given in Theorems 3.5 and 3.6. In
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addition, we also obtain a sufficient condition such that every nonoscillatory nontrivial solution
of (1.4) is bounded.

2. OSCILLATIONS OF SELF-ADJOINT
SECOND-ORDER LINEAR EQUATION

In this section, we shall consider the self-adjoint second-order difference equation (1.1). The
following result is known [3].

THEOREM [A]. If

ST
= b
and the condition (1.3) hold, then (1.1) is oscillatory. 1

Here we shall establish an oscillation theorem for (1.1) when (1.3) is not satisfied. Throughout
this paper we say that a nontrivial solution {z,}32, of the difference equation (1.1) is oscillatory
if for every n € N there exists n;,n2 > n such that z,,z,, < 0. Otherwise, it is nonoscillatory.
The difference equation (1.1) is said to be oscillatory if it has no nonoscillatory nontrivial solution.
Otherwise, it is nonoscillatory.

‘We shall use the following conditions as assumptions in our theorems.

(A1) There exists a nonnegative integer N such that P, <1 and Q, >0 for all n > N.

(A2) If we define H = ron @i, then there exists a nonnegative integer k such that the
sequences H{™ = Yion iQH™ VY <ooforallm=1,2,...,k and 32, iQ:H® = .

LEMMA 2.1. Assume that (1.2) and (A1) hold. Let z,, be an eventually positive solution of the
difference inequality

A(Ppo1Azp—1) + Qrz, <0, (2.1)
and set
yﬂ = PnAxn. (2.2)
Then we have eventually
yn > 0. (2.3)

PROOF. Assume that z,, > 0, Vn > Nj, for some N; > N. Then we have Ay,.1 < —Qnzy, <0,
Vn > N;. Therefore, if (2.3) does not hold, then there exist M > 0 and N, > N; such that
Vn > N, we have y, < —M. Thus by (Al), (1.2), and (2.2), we get Az, <y, < —M,Vn > Na.
This implies £, = —oo which contradicts the positivity of z,,. ]
LEMMA 2.2. Assume that (1.2), (A1), and (A2) hold. Let z,, be an eventually positive solution
of the difference inequality (2.1) and let y,, be defined by (2.2). Then we have eventually

Yn < 0. (2.4)
PROOF. Assume that
2,>0, Vn> N, (2.5)
for some Ng > N. Then by (2.1), (2.2), and (2.5), we have

Ayn—l < ~Qnzn <0, Vn 2 Np.

Therefore, if the conclusion does not hold, then y, > 0 eventually. By (1.2) and (2.2), we have
eventually Az, > 0. Thus there exist M > 0 and N; € N such that Az, > 0 and z,, > M,
¥n > Ni. Then

A‘yn—l < —Qnzn < "'MQm Vn2> N,
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and so

Un-1 = MH®,  V¥n>Nj. (2-6)
From (A1), (1.2), (2.2), and (2.6), we obtain
Az, > MH®, VYn>N;+1,

which yields
Tn ZM(n—Nl)H,(,o), vn> Ny + 1.

Then by (2.1) and (2.2), it follows that
Ayn-1 £ —M(n- N))Q.HY®, VYn>N +1

Since (M(n — Nl)QnH,(mo))/(nQ,,H,(,o)) = (M(n—- N1)/n) — M as n — oo and is increasing,

there exists an integer Ny > N; + 1 such that
Ay < ~HnQuHD, o2 Ny, 27)

which contradicts the positivity of y,, for k = 0.

If k # 0, by (2.7), we obtain

Yn-12 %H'SI), Vn > N,
and so M
Tn 2 5 (n~ N)HD,  Yn>Np+1,

which, by (2.1) and (2.2), yields

M
Byn-1 S =S (n - M)QuHY,  Vn2Np+1
Then there exists an integerN3 > N; + 1 such that
M
Ay < —2—2nQnH,(,1), Vn > N3,
which contradicts the positivity of y, for k = 1. By induction, we conclude that such k in (A2)

does not exist, which contradicts our assumption (A2). [

LEMMA 2.3. Assume that (1.2) and (A1) hold. Let z,, be an eventually negative solution of the
difference inequality

A(P -1A.’L'n_1) + Qnzy >0, (28)
and let y, be defined by (2.2). Then we have eventually y, < 0. ]

LEMMA 2.4. Assume that (1.2), (A1), and (A2) hold. Let z,, be an eventually negative solution
of the difference inequality (2.8) and let y,, be defined by equation (2.2). Then we have eventually

yn > 0. |
From the above discussion, the following theorem is immediate.
THEOREM 2.5. Assume that (1.2), (Al), and (A2) hold, then (1.1) is oscillatory. ]

EXAMPLE 2.6. The self-adjoint difference equation
A%z, + lzn =0, Vn=12,... (2.9)
na

satisfies all assumptions of Theorem [A] if and only if o < 1. In fact, condition (1.3) is not satisfied
when a > 1. But all assumptions of Theorem 2.5 hold when 1 < a < 2. So by Theorem [A] and
Theorem 2.5, equation (2.9) is oscillatory when o < 2. (]
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3. OSCILLATIONS OF DISCRETE ANALOGUE
FOR NONLINEAR WAVE EQUATION

Following (7], we discuss oscillation of discrete analogue for nonlinear wave equation (1.4). A
nontrivial solution u, », of (1.4) is said to be oscillatory if for every N € N there exist m;,mq € Q
and ny,ng > N such that um, n, Um, n, < 0. Otherwise, it is nonoscillatory.

We shall obtain sufficient conditions for the oscillation of a nontrivial solution of (1.4). For this,
we first consider a method of finding a linear difference equation such that a nontrivial solution
of (1.4) is oscillatory if a nontrivial solution of the linear difference equation is oscillatory. To do

this, we need several results which are provided in the following lemmas.

LEMMA 3.1. Consider the following Sturm-Liouville system:

A2¢n—1 + A¢n = 0,

b0=0, b1 =0, "< @)

Let )y be the least eigenvalue of system (3.1) and ¢$,1) be the eigenfunction corresponding to A;.
Then A, > 0 and ¢ >0, Vn € Q.

PROOF. See [1,8]. ]
Let Ly, = A(an—1A¥n—1) + bpy,. We shall establish the discrete version of Green’s formula.

LEMMA 3.2. Let {y,} 4! and {2,}M%! be sequences. Then

M M
Z 2nLy, — Z Ynlzy = {anw[zm yn]}%—.—o;
n=1 n=1

where w|(zy,, yn) is called the Casoratian of z, and yy,, and is defined by

2n Yn

w[znsyn] = Azn Ayn

PROOF. See [1,3]. |
LEMMA 3.3. Let N € N and {Up}nes be a sequence such that

Us20, VYn2N (3.2)
and
A(ap-1AUp-1) + bp—1AU,—1 + c U, <0, VYn2> N, (3.3)
where
an,Cp >0, VnesS. (3.4)
If we assume
bn < @y, VneS, (3.5)

then we have

(8) U, >0,Vn > N,
(b) there exists {V,}32 v, such that V,, > U, >0,¥n > N and

A(an_lAVﬂ—l) + bn—lAVn—]_ + C:'Vﬂ = 0, vn 2 N + 1.
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PROOF. First, we rewrite (3.3) in the form

anAUn + (bn_l - an_l)AUn—l + C;Un S 0, Vn 2 N.

197

(3.6)

From (3.4), (3.5), and (3.6), we have AU, < 0, if AU,_; <0, Vn > N. Then suppose that
there exists an integer N* > N such that AUy. < 0, we conclude that {Up},es is eventually
decreasing. Otherwise, {Uy,}nes is eventually increasing. Consequently, from (3.2), we get the

desired result (a). To prove (b), we set

S, = U['}“ >0, Vn>N.

Substitution of (3.7) into (3.3) gives

1
Sn—l

an(Sn — 1) + (b1 — @n-1) (1 - ) +¢n <0, Vn > N.

Let {T}32 v be a sequence which satisfies

Ty = SN

Tn—l
From (3.4), (3.5), (3.8), (3.9), and (3.10), we obtain

1
an(Tn — 1) + (bn-1 — Gn-1) (1— ) +c, =0, Vn2N+1.

Tn > Sn, VYn2> N.
Now define the new sequence {V,}32 \ as follows:
VN =Un

and
N+4+n-1

Vwin=Uy J] T, VneN
i=N

It is easy to check that
A(an-1AVp—1) + bp1AVy1 + Vs =0, Vn>2N+1.

Finally, we need to show that
Va.2U, >0, vn> N.

In fact, it is trivial forn = N. Forn > N +1,

n~-1 n-1
Va=Un [[Ti2Un ] 8= Ua,
=N i=N

which follows from (3.7), (3.11), (3.12), and (3.13).
Hereafter we shall require the following assumptions.
(B1) g is nonnegative in Q x [0,00) x R.

(B2) There exists a constant G > 0 such that G(m,n,u) > Go in 2 x [0,00) x R.

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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THEOREM 3.4. Consider the difference equation
A(@r-1AVh_1) + ba1AV,_1 + MGocn Vs =0, VneN, (3.14)

where an,bn,c,, are defined as in system (1.4) and A is the least eigenvalue of system (3.1).
Assume that (Bl) and (B2) hold and

b, < ay,, VnesS, (3.15)

then every nontrivial solution of system (1.4) is oscillatory, if every solution of equation (3.14) is
oscillatory.

PROOF. Suppose system (1.4) has an eventually positive nontrivial solution uy, . We set
M
Up = Z: Umn (1 Vnes, (3.16)
m=1

where ¢$,1.) is the eigenfunction of system (3.1) corresponding to its least eigenvalue X;. If we
multiply equation (1.4) by ¢$,1.) and sum from m = 1 to M, then the following expression is
obtained:

M M
Y A2(an-182Umn-1)88) + Y bno182Umn_ 188

m=1} m=1
M
- Z C'IA%(G(m -1,n, um—l,n)um—l,n) ,(',P (317)
m=1
M
+ Z g(m, n, um,n)um,n¢$y]{) =0,
m=1

Vm € 2, and n € N. By assumption (B2), Lemma 3.2, and the boundary conditions:
Uon = UM41n = 01 Vne Sa

and . -
¢1() ) = ¢M+1 =4,

we obtain

M
Z A%(G(m = 1,n, um—l.n)um—l.n)¢1(v'1;)

m=1

M M
= Z G(m,n, um,n)um,,,Aquf,ll_l + {w [ ) G(m,n, um,n)um,n] }m=0 (3.18)

m=1

M
= Z G(m, n, um,n)“m,nA2¢£r1;)_1-

m=1
Since ¢&) is a solution of system (3.1), we have
A0 = g, (3.19)
Since um » is an eventually positive solution of system (1.4), there exists N € N such that

Umn 2 0, Vme Qandn> N. (3.20)
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From (B1), (B2), (3.16), (3.17), (3.18), (3.19), and (3.20), we obtain

0= A(an-1AUn-1) + bp_1AUn_1 — Cn Z G(M\ M, U YU nAZG5) |

m=1
M
+ Y 9(m,n, tm,n)um,ndl)
m=0

M
> A(an—IAUn—l) + bp—1AUn—1 + Mcn Z G(m, n, um,n)um.nqssyl.)
m=1

> A(an_lAUn_l) + b 1AUL_1 + M1GocnUn, Vn > N.

By Lemma 3.3, equation (3.14) has an eventually positive solution. Finally, by replacing uy, »

by —Um n if system (1.4) has an eventually negative solution, we obtain that equation (3.14) has

an eventually negative solution. ]
Note that equation (3.14), if b, < an, Vn € S, can be written in the self-adjoint form

A(pr_1AVa_1) + ¢V, =0, VneN,

where
n-1
Pn = an
" gal_bt
and
n-1
@n = A1Cn
;I-:‘!;a,—b

Therefore, by Theorem [A] and Theorem 2.5, we get the following sufficient conditions for the
oscillations of equation (1.4).

THEOREM 3.5. Assume that (B1), (B2), and (3.5) hold. If

S o T %% - a0

n=0 =0
and
S el 22 = e
n=0 =0 @i — b
then every solution of (1.4) is oscillatory. (]

THEOREM 3.6. Assume that (B1), (B2), and (3.5) hold. Assume that
(C1) there exists a nonnegative integer N such that

Vn >
a"ga.—b. n>N,

and that
(C2)

Soll 2

n=0 im0 B~ b

Furthermore, by defining

H(")—Z Ha . neN,

j=n i=0

we assume that
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(C3) there exists a nonnegative integer k such that the sequences

oo j-1
, a4 -1
H,gm) = E J¢j I I a‘—:b':H;m ) < 00,
ij=n i=

form=1,2,...,k and

i=0

i—1
§°° 'c'JII—Ei—H(k)~oo

7€ a; —b, 1 T
J=1 £ £

Then every solution of (1.4) is oscillatory. (]

EXAMPLE 3.7. The system
1
A%um,,._l - FAfum_l,n + ufn,n =0, Vm=1,...,MandneN
Uopn = UM+1,n =0, Vn=01,...

is oscillatory when a < 2. 1
LEMMA 3.8. Let N € N and P,,Qy, > 0 for n > 0. If we assume

i 1

— < 00, (3.21)
n=0 P"

then every nonoscillatory solution of the difference inequality

is bounded.

PROOF. Let U, be an eventually positive solution of (3.22). We can assume that there exists an
integer N; € N such that U, > 0, Vn > Ny. By (3.22), we have

n — P,_
Un+1 < (P_Qn) Un + 2 l(Un - Un—l)

P, P,
Pn—l
S Un + P (Un - Un—l),
n

for n > N, and hence,
Po(Uny1 = Un) £ Poc1(Uy, = Up-1), Vn2>N.

By induction, we obtain
n~-1

1
n < dE _
Up<Up+ k=0Pk

Then by (3.21), U, is bounded. (]
From Lemma 3.8, we immediately obtain the following.

THEOREM 3.9. Assume that b, < a,, Vn € S and
(-] n-1
1 H P - Qi)
— — ] < 00,
nz=0 (P" i=0 B

then every nonoscillatory solution of system (1.4) is bounded. 1
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