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ON MARRERO’S Jm-HADAMARD MATRICES

Yaio-Zhern Shih and Eng-Tjioe Tan

Abstract. In this paper, generalizing Marrero’s construction, we introduce the
concept of Jm−Hadamard matrices, and by allowing permutations, we con-
struct other 2mm! − 1 Jm-Hadamard matrices from a given one of order mt;
previous construction generated only other 2m − 1 ones. We also generalize
Craigen’s construction of products of two Hadamard matrices to those of sev-
eral Hadamard matrices and a Jm-Hadamard matrix, yielding generalizations
of Craigen’s results. Furthermore, we introduce the Jm-class CJm for m = 2
or 4k and study the partially ordered set M of Jm−classes CJm. Our main
result shows that CJ8 � CJ4 � CJ2.

1. INTRODUCTION

The remained unsolved Hadamard Conjecture asserts the existence of Hadamard
matrices for all orders that are divisible by four. A step toward solving Hadamard
conjecture is to construct other Hadamard matrices from a given one. Here we
study two such constructions: Marrero’s construction and Craigen’s construction.
In a previous paper [5], we generalized Marrero’s construction of J2−Hadamard
matrices to Jm−Hadamard matrices, m = 2 or m = 4k, k ∈ N. A Marrero’s
J2−Hadamard matrix (see [2]) is a normalized Hadamard matrix of order 2t of the
form (

J J A
J −J B

)
,

where J ∈ Mt×1({1}) and A, B ∈ Mt×(2t−2)({±1}). By changing A into −A
or B into −B, he yielded other 22 − 1 Hadamard matrices from the given one. A
Jm−Hadamard matrix is an Hadamard matrix of order mt of the form
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M ⊗ J

∣∣∣∣∣∣∣∣∣
A1

A2
...

Am


 ,

where M is an Hadamard matrix of order m, J ∈ Mt×1({1}),A1, A2, · · ·Am ∈
Mt×(mt−m)({±1}), and ⊗ is the Kronecker product (see [5], Definition 2.1). By
changing Ai to ±Ai, we constructed other 2m−1 Hadamard matrices ([5], Theorem
2.2).

In this paper, our main results will be stated in Sections 2, 3, 4, and 5. In Section
2, by revisiting and simplifying the proof of our previous result in [5], it turns out
that we can yield other 2mm!− 1 Hadamard matrices by allowing permutations on
{1, 2, ...,m} σ ∈ Sm (Theorem 2.1 and Remark below). In fact, if we transform Ai

mentioned above into ±Aσ(i) for i = 1, 2, ...,m, where σ is a permutation of the
set {1, 2, ..., m}, then the new matrices are still Jm−Hadamard matrices (Theorem
2.1). Thus we can construct other 2mm! − 1 Hadamard matrices from a given
Jm−Hadamard matrix.

In Section 3, we study the Kronecker product of several Hadamard matrices
and a Jm−Hadamard matrix. For a given Hadamard matrix of order 4k and a
J4h−Hadamard matrix, the Kronecker product enables us to yield a J16kh−Hadamard
matrix (Proposition 3.3). Continuing this process, one easily gets a J22n+2k1k2···knh−
Hadamard matrix from given n Hadamard matrices of orders 4k1, 4k2, ..., 4kn, re-
spectively, and a J4h−Hadamard matrix. On the other hand, there is another tech-
nique due to Craigen to construct a J2lh−Hadamard matrix with smaller 2-exponent
l from the given Hadamard matrices: In Proposition 3.4, we use Craigen’s con-
struction (see [1], Theorem 1) to generate a J8kh−Hadamard matrix from a given
Hadamard matrix of order 4k and a J4h-Hadamard matrix. Moreover, our main re-
sult in this Section is Theorem 3.5 which generalizes Craigen’s result (see [1], Theo-
rem 3) to yield a J23l−3mnp1p2···pl−2

-Hadamard matrix of order 23l−3mntp1p2 · · ·pl−2

from a given Hadamard matrix of order 2lm, a J2ln-Hadamard matrix of order 2lnt,
and l− 2 different pairs of DW (4pi) for i = 1, 2, ..., l− 2. In particular, Craigen’s
Theorem 3 [1] is a Corollary of our Theorem 3.5 for l = 2 and t = 1, and Propo-
sition 3.4 is a Corollary of our Theorem 3.5 for l = 2 and arbitrary t. Moreover,
the product construction in Theorem 3.5 can be applied to a general case of several
Hadamard matrices and a Jm−Hadamard matrix (Remark at the end of Section 3).

In Section 4, we introduce the concept of Jm−classes,m = 2 orm = 4k, k ∈ N,
denoted by CJm which contains the equivalent class of Jm−Hadamard matrices. By
Marrero’s approach, each Hadamard matrix belongs to CJ2. For a given Hadamard
matrix, it seems difficult to determine to which CJm it belongs. Nevertheless, we
can decide to which CJm it doesn’t belong. In Proposition 4.1 and Proposition 4.2
we show that an Hadamard matrix of order 12h or 20h doesn’t belong to CJ4h.
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Our main result in Section 4 is Theorem 4.3 which asserts that CJ8 � CJ4 � CJ2.
In the last Section 5, we study the poset M of Jm−classes CJm : Firstly, M

is not totally ordered (or a chain). We end this note by leaving the question open
whether for a given k, CJ2k ⊆ CJ2h for some 1 �= h < k.

2. FURTHER RESULTS ON Jm-HADAMARD MATRICES

In our previous paper [5], Theorem 2.2, for a given Jm−Hadamard matrix H as

in Introduction, we show that all the matrix of the form Ĥ =


M ⊗ J

∣∣∣∣∣∣∣∣∣
±A1

±A2
...

±Am




are Jm−Hadamard matrices, generalizing Marrero’s result ([2], Proposition). In the
following, we will prove a stronger result where permutations are allowed:

Theorem 2.1. Let H be a Jm-Hadamard matrix of the form as above. Then

Ĥ =


M ⊗ J

∣∣∣∣∣∣∣∣∣
B1

B2
...

Bm




is also a Jm−Hadamard matrix, where Bi = Aσ(i) or Bi = −Aσ(i) for i =
1, 2, . . . , m and σ ∈ Sm.

Proof. We have:

H =




M1 A11

M1 A12
...

...
M1 A1t

M2 A21

M2 A22
...

...
M2 A2t
...

...
Mm Am1

Mm Am2
...

...
Mm Amt




, and Ĥ =




M1 B11

M1 B12
...

...
M1 B1t

M2 B21

M2 B22
...

...
M2 B2t
...

...
Mm Bm1

Mm Bm2
...

...
Mm Bmt




,
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if we write M =




M1

M2
...

Mm


 , Ai =




Ai1

Ai2
...

Ait


 and Bi =




Bi1

Bi2
...

Bit


, where Mi, Aik

and Bik are the row vectors of M, Ai and Bi, respectively, for i = 1, 2, ...,m and
k = 1, 2, ..., t.

Since H is an Hadamard matrix, then for i, j = 1, 2, ...,m and k, l = 1, 2, ..., t,
we have

MiM
T
j + AikA

T
jl =

{
mt, if i = j and k = l,

0, otherwise.

This implies

(2.1) AikA
T
jl =




mt − m, if i = j and k = l,

−m, if i = j and k �= l,

0, if i �= j.

It suffices to prove that MiM
T
j + BikBT

jl =

{
mt, if i = j and k = l,

0, otherwise.

Case 1. For i = j and k = l, i.e. σ(i) = σ(j), MiM
T
j + BikBT

jl =
MiM

T
i + BikBT

ik = m + BikBT
ik = Mσ(i)M

T
σ(i) + Aσ(i)kA

T
σ(i)k = mt, by (2.1).

Case 2. For i = j and k �= l, MiM
T
j + BikBT

jl = MiM
T
i + BikBT

il =
MiM

T
i + Aσ(i)kAT

σ(i)l = m + (−m) = 0, by (2.1).

Case 3. For i �= j, i.e. σ(i) �= σ(j), then MiM
T
j + BikB

T
jl = MiM

T
j ±

Aσ(i)kA
T
σ(j)l = 0 + 0 = 0, by (2.1). This completes the proof.

Remark. It seems that one gets more Hadamard matrices from the Jm−Hadamard
matrix above by also permuting rows inside each Bi, i = 1, 2, ...,m. However, by
these permutations, one actually gets equivalent ones. Furthermore, it fails to pro-
duce Hadamard matrices if one permutes rows from different Bis.

By Theorem 2.1, we may produce 2mm! − 1 other Hadamard matrices from
a given Jm-Hadamard matrix. In passing, we note the following further charac-
terization of Hadamard matrices which will be useful in our discussion later on
Jm−classes (our last Section 5).

Corollary 2.2. Let H be a Jm-Hadamard matrix of the form as above. If M
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is a Jl-Hadamard matrix of the form
L ⊗ J ′

∣∣∣∣∣∣∣∣∣
C1

C2
...

Cl


 ,

then

Ĥ =





L ⊗ J ′

∣∣∣∣∣∣∣∣∣
±Cδ(1)

±Cδ(2)
...

±Cδ(l)


⊗ J

∣∣∣∣∣∣∣∣∣
±Aσ(1)

±Aσ(2)
...

±Aσ(m)




is also a Jl-Hadamard matrix, where σ ∈ Sm and δ ∈ Sl. In particular, H itself is
a Jl−Hadamard matrix.

Proof. Let M̂ =


L ⊗ J ′

∣∣∣∣∣∣∣∣∣
±Cδ(1)

±Cδ(2)
...

±Cδ(l)


 . By Theorem 2.1, M̂ is a Jl−Hadamard

matrix of order m and trivially Ĥ is an Hadamard matrix. It remains to prove that
Ĥ is evidently a Jl−Hadamard matrix.

To this end, just put L ⊗ (J ′ ⊗ J) = L ⊗ J ′′, where J ′ ∈ Mt′×1({1}), J ∈
Mt×1({1}) and J ′′ ∈ Mtt′×1({1}), here t′ = m

l , then clearly,

Ĥ =





L ⊗ J ′′

∣∣∣∣∣∣∣∣∣
±Cδ(1) ⊗ J

±Cδ(2) ⊗ J
...

±Cδ(l) ⊗ J




∣∣∣∣∣∣∣∣∣
±Aσ(1)

±Aσ(2)
...

±Aσ(m)




is a Jl-Hadamard matrix and the proof follows.

3. A GENERALIZATION OF CRAIGEN’S RESULT TO Jm-HADAMARD MATRICES

In this section, our main purpose is to generalize a Craigen’s result (Theorem
3.1 below) to Jm−Hadamard matrix (Theorem 3.5). To this end, we first review
some pertinent definitions and results.

A pair (S, P ), where S, P ∈ M4h×4h({±1}), is an orthogonal pair, notation:
(S, P ) is an OP (4h), if it satisfies

SST + PPT = 8hI4h and SP T = PST = O4h.
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In [1], using certain product construction, Craigen proved the following result (see
Theorem 3, [1]) on how to construct an Hadamard matrix from given two Hadamard
matrices.

Theorem 3.1. [(Craigen)] If there are Hadamard matrices of orders 4h and 4k,

then there is an OP (4hk) (S, P ). Moreover,
(

S P
P S

)
is an Hadamard matrix

of order 8hk.

A matrixM ∈ M4m×4m({0,±1}) is a weighing matrix of order 4m with weight
2m if MMT = 2mI4m. Two weighing matrices of order 4m, namely W = (wij)
and U = (uij), are disjoint if wijuij = 0. For convenience, we say that (W, U) is
a pair of DW (4m) if W and U are two disjoint weighing matrices of order 4m

with weight 2m. Seberry and Zhang [4] proved the following result.

Lemma 3.2. [(Seberry and Zhang)] If there are two Hadamard matrices of
orders 4m and 4n, there exists a pair of DW (4mn).

We start with the Kronecker product of an Hadamard matrix K of order 4k, and
a J4h−Hadamard matrix H = (M ⊗ J |A) of order 4ht. In our previous paper [5],
Theorem 2.5, using combinatorial arguments, we showed that K ⊗H is equivalent
to a J16kh−Hadamard matrix (K ⊗ M ⊗ J |K ⊗ A). In the following, using only
matrix multiplications and Kronecker product (see e.g. Craigen’s paper [1], p. 57),
we reprove the result as follows.

Proposition 3.3. Let K be an Hadamard matrix of order m = 2 or 4k. If
H = (M ⊗ J |A) is a Jn−Hadamard matrix of order nt, n = 2 or 4h, then
K⊗H ∼ (K ⊗ M ⊗ J |K ⊗ A) and (K ⊗ M ⊗ J |K ⊗ A) is a Jmn−Hadamard
matrix of order mnt.

Proof. Let H̃ = (K ⊗ M ⊗ J |K ⊗ A) . Then

H̃H̃T = KKT ⊗ MMT ⊗ JJT + KKT ⊗ AAT

= KKT ⊗ (MMT ⊗ JJT + KKT ⊗ AAT )

= 4kI4k ⊗ 4htI4ht = 16khtI16kht.

Since K⊗M is an Hadamard matrix of order 16kh, hence H̃ is a J16kh-Hadamard
matrix.

With the supposedly existing Hadamard matricesK andH as in Proposition 3.3,
using successively Sylvester’s constructions, we yield a J2l+4kh−Hadamard matrix
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for l ≥ 0. Now, using Craigen’s technique, we shall obtain a J2l+4kh−Hadamard
matrix with l = −1. In fact, we have the following result which is a generalization
of Craigen’s Theorem 1 in [1].

Proposition 3.4. If there exist an Hadamard matrix K of order 4k and a
J4h−Hadamard matrix H of order 4ht, then there is a J 8kh−Hadamard matrix of
order 8kht.

Proof. Write K =
(

K1

K2

)
and H =

((
H1 H2

) ⊗ J
∣∣ A1 A2

)
, where

Ki ∈ M2k×4k({±1}), Hi ∈ M4h×2h({±1}), Ai ∈ M4ht×(2ht−2h)({±1}) for i =
1, 2, and J ∈ Mt×1({1}). Since K and H both are Hadamard matrices, we have

K1K
T
1 = K2K

T
2 = 4kI2k, K1K

T
2 = K2K

T
1 = O2k,

(H1H
T
1 + H2H

T
2 )⊗ JJT + A1A

T
1 + A2A

T
2 = 4htI4ht.

As in Craigen’s constructions, put

S =
1
2
(K1 + K2) ⊗ H1 +

1
2
(K1 − K2)⊗ H2,

P =
1
2
(K1 + K2) ⊗ A1 +

1
2
(K1 − K2) ⊗ A2.

Let Ĥ =
(

S ⊗ J
∣∣ P

)
. Since by direct calculations,

ĤĤT = SST ⊗ JJT + PPT = 8khtI8kht,

we conclude that Ĥ is a J8kh−Hadamard matrix.

Now we are in a position to prove our main result and apply it to the Kronecker
product of several Hadamard matrices and a Jm−Hadamard matrix.

Theorem 3.5. If there are an Hadamard matrix H of order 2 lm, a J2ln−
Hadamard matrix K of order 2 lnt, and l − 2 different pairs of DW (4p i) for
i = 1, 2, ..., l − 2, then there is a J23l−3mnp1p2···pl−2

−Hadamard matrix of order
23l−3mntp1p2...pl−2.

Proof. LetH =




H1

H2
...

H2l


 andK =

((
K1 K2 · · ·K2l

)⊗J
∣∣A1 A2 · · ·A2l

)
,
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where Hi ∈ Mm×2lm({±1}), Ki ∈ M2ln×n({±1}) , J ∈ Mt×1({1}), and
Ai ∈ M2lnt×n(t−1)({±1}) for i = 1, 2, . . . , 2l. Then

(3.1) HiH
T
j =

{
2lmIm , if i = j,

Om , otherwise,

(3.2)
2l∑

i=1

KiK
T
i = 2lnI2ln.

and

(3.3) KKT =
2l∑

i=1

KiK
T
i ⊗ JJT +

2l∑
i=1

AiA
T
i = 2lntI2lnt

Let (Xi, Yi) be l − 2 different pairs of DW (4pi) for i = 1, 2, ..., l − 2, and set
F = {Z1 ⊗ Z2 ⊗ · · · ⊗ Zl−2 | Zi = Xi or Yi for i = 1, 2, ..., l− 2}. Clearly, the
cardinal number of F is 2l−2, and we have for Fi ∈ F, i = 1, 2, ..., 2l−2:

FiF
T
i = (Z1 ⊗ Z2 ⊗ · · · ⊗ Zl−2)(Z1 ⊗ Z2 ⊗ · · · ⊗ Zl−2)T

= Z1Z
T
1 ⊗ Z2Z

T
2 ⊗ · · · ⊗ Zl−2Z

T
l−2

= 2p1I4p1 ⊗ 2p2I4p2 ⊗ · · · ⊗ 2pl−2I4pl−2
,

= 2l−2p1p2 · · ·pl−2I4l−2p1p2···pl−2
.

We define

2S =
2l−2∑
i=1

Fi ⊗ {(H2i−1 + H2i) ⊗ K2i−1 + (H2i−1 − H2i)⊗ K2i},

2P =
2l−2∑
i=1

Fi ⊗ {(H2l−1+2i−1 + H2l−1+2i) ⊗ K2l−1+2i−1

+(H2l−2+2i−1 − H2l−1+2i) ⊗ K2l−1+2i},

2V =
2l−2∑
i=1

Fi ⊗ {(H2i−1 + H2i) ⊗ A2i−1 + (H2i−1 − H2i) ⊗ A2i},

2U =
2l−2∑
i=1

Fi ⊗ {(H2l−1+2i−1 + H2l−1+2i) ⊗ A2l−1+2i−1

+(H2l−2+2i−1 − H2l−1+2i) ⊗ A2l−1+2i},
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and
W =

((
S P
P S

)
⊗ J

∣∣∣∣
(

V U
U V

))
.

It suffices to show that
(

S P
P S

)
is an Hadamard matrix of order 23l−3mnp1

p2 · · ·pl−2 and W is an Hadamard matrix of order 23l−3mntp1p2 · · ·pl−2. The
following algebraic calculation shows that (S, P ) is an OP (23l−4mnp1p2 · · ·pl−2).
In fact, first we calculate SST using Equation (3.1):

SST = 1
4

∑2l−2

i=1 FiF
T
i ⊗ {(H2i−1H

T
2i−1 + H2iH

T
2i) ⊗ K2i−1K

T
2i−1

+(H2i−1H
T
2i−1 + H2iH

T
2i) ⊗ K2iK

T
2i},

by Equation (3.1),

=
1
4

2l−2∑
i=1

2l−2p1p2 · · ·pl−2I4l−2p1p2···pl−2
⊗ 2 · 2lmIm ⊗ {K2i−1K

T
2i−1 + K2iK

T
2i}

=
2l−2∑
i=1

22l−3mp1p2 · · ·pl−2I22l−4mp1p2···pl−2
⊗ {K2i−1K

T
2i−1 + K2iK

T
2i}.

Analogously,

PPT =
2l−2∑
i=1

22l−3mp1p2 · · ·pl−2I22l−4mp1p2···pl−2

⊗{K2l−1+2i−1K
T
2l−1+2i−1

+ K2l−1+2iK
T
2l−1+2i

}.

Using Equation (3.2), we get:

SST + PPT =
2l∑

i=1

22l−3mp1p2 · · ·pl−2I22l−4mp1p2···pl−2
⊗ KiK

T
i

= 23l−3mnp1p2 · · ·pl−2I23l−4mnp1p2···pl−2
.

A direct calculation, using Equation (3.1), proves that SP T =PST =O23l−4mnp1p2···pl−2
.

This shows (S, P ) is an OP (23l−4mnp1p2...pl−2) and this orthogonal pair (S, P )

produces an Hadamard matrix
(

S P

P S

)
of order 23l−3mnp1p2 · · ·pl−2, by Craigen’s

Theorem 3.1.
Similarly,

V V T + UUT =
2l∑

i=1

22l−3mp1p2 · · ·pl−2I22l−4mp1p2···pl−2
⊗ AiA

T
i , and
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V UT = UV T = O23l−4mntp1p2···pl−2
.

Hence we obtain, by Equation (3.3),

(3.4)
(SST + PPT ) ⊗JJT + (V V T + UUT )

= 23l−3mntp1p2 · · ·pl−2I23l−4mntp1p2···pl−2
.

Clearly,

(3.5)
(SPT + PST ) ⊗JJT + (V UT + UV T )

= O23l−4mntp1p2···pl−2
.

Finally, by definition of W and by Equations (3.4), (3.5), we show easily that

WWT = 23l−3mntp1p2 · · ·pl−2I23l−3mntp1p2···pl−2
.

This completes the proof of the Theorem.

Theorem 3.1 is a Corollary of Theorem 3.5 whenever we choose l = 2 and t = 1.
On the other hand, if we take l = 2 and arbitrary t, then we obtain Proposition 3.4.
To illustrate how Theorem 3.5 yields better result, we choose a special example of
four Hadamard matrices of orders 4m1, 4m2, 4m3, 4m4, and a J23m5

−Hadamard
matrix: Repeated Craigen’s construction yields a J27m1m2m3m4m5

−Hadamard ma-
trix. However, by Theorem 3.5, we can improve the 2-exponent 7 to 6.

Remark. The product construction in Theorem 3.5 can be applied to several
Hadamard matrices and a Jm−Hadamard matrix as follows: Firstly, use Seberry-
Zhang’s construction to generate l − 2 different pairs of DW (4pi), i = 1, 2, ...,
l − 2, secondly, proceed with Craigen’s construction to generate an Hadamard
matrix of order 2lm′, and next proceed with the product construction in Propo-
sition 3.4 to generate a J2ln−Hadamard matrix, then, using Theorem 3.5, we get a
J23l−3m′np1p2···pl−2

−Hadamard matrix.

4. HADAMARD MATRICES BELONGING TO Jm−CLASSES CJm

In this section, we are interested in the problem to which Jm−Hadamard matrix
does a given Hadamard matrix belong? For convenience, we define such family as
follows: The family of all Hadamard matrices equivalent to some Jm−Hadamard
matrix is called a Jm-class and denoted by CJm.

By Marrero’s construction, each Hadamard matrix belongs to CJ2. For a given
Hadamard matrix, it seems difficult to determine to which CJm it belongs. Never-
theless, for some particular Hadamard matrices, we can decide to which CJm each
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of them doesn’t belong. The following two results supply us criteria for this purpose
which are generalizations of Example 3.1 and Example 3.2 in [5], respectively.

Proposition 4.1. If H is an Hadamard matrix of order 12h, then H doesn’t
belong to CJ4h.

Proof. If H were equivalent to a J4h-Hadamard matrix, then

H ∼


M ⊗ J

∣∣∣∣∣∣∣∣∣
A1

A2
...

A4h


 , where M is an Hadamard matrix of order 4h, J ∈

M3×1({1}) and Ai ∈ M3×8h({±1}) for i = 1, 2, ..., 4h. By multiplying rows or

columns of


M ⊗ J

∣∣∣∣∣∣∣∣∣
A1

A2
...

A4h


, M can be normalized. HenceH must be equivalent

to the J4h-Hadamard matrix of the form:

H ∼ H̃ =




4h︷ ︸︸ ︷
J J · · · J
...

...
...

...

A1
...


 =




4h︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣
A1

...


 .

By eventually multiplying columns of




A1

A2
...

A4h


 by −1, H̃ can be normalized.

However, H̃ is not an Hadamard matrix, since there are at least 4h 1s at the same
positions between the second row and the third row contradicting to the fact that
there are exactly 12h

4 1s at the same positions in both rows except the first one (see
[3], Theorem 10.9, p. 429). Thus H̃ is not a J4h-Hadamard matrix.

Proposition 4.2. If H is an Hadamard matrix of order 20h, then H doesn’t
belong to CJ4h.

Proof. Suppose thatH is a normalized J20h-Hadamard matrix of the form as in
Proposition 4.1 with J ∈ M5×1({1}) and Ai ∈ M5×16h({±1}) for i = 1, 2, ..., 4h.
We will use the same argument as above to derive a contradiction by counting the
number of 1s in the second, the third, the fourth and the fifth row. As before, we
know that there are exactly 10h 1s at each row and 20h

4 1s at the same positions
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between any two different rows except the first one. By arranging the 1s as forward
as possible, so H , with the first five rows written down, is of the following form:

H =




4h︷ ︸︸ ︷
J J · · · J
...

...
...

...

A1
...




=




4h︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1

h︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1

5h︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
−1 −1 · · · −1

10h︷ ︸︸ ︷
1 1 · · · 1
−1 −1 · · · −1




.

Looking at the (10h+1)th column up to the (20h)th column , to fill in the 10h 1s in
the third row, we need 5h positions in last 10h columns. With the same argument,
to fill in the 10h 1s in the fourth row, we need at least 4h positions in the last 10h

columns differ from the positions already taken in the third row. Finally, in the fifth
row, we need at least 3h positions in the last 10h columns differ from the positions
already taken in the third and the fourth rows. This means that we need in total at
least 5h + 4h + 3h = 12h positions to fill in the 1s in the last ten columns which
is impossible. Therefore, we conclude that every Hadamard matrix of order 20h is
not equivalent to a J4h-Hadamard matrix.

A natural question is whether CJ2k+1 ⊆ CJ2k . Our initial contribution to this
question, using Proposition 3.3 and Proposition 4.1, is to show the following result;
this works in the special case of Hadamard matrices of order 8 which is known to
be unique up to equivalence.

Theorem 4.3. CJ8 � CJ4 � CJ2.

Proof. By Marrero’s construction and Example 3.1 in [5], we obtain CJ4 �
CJ2. It remains to show that CJ8 � CJ4.

By the uniqueness of Hadamard matrices, every J8−Hadamard matrix of order
8t is equivalent to the following normalized Hadamard matrix (see e.g. [6])






1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1




⊗ J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1

A2

A3

A4

A5

A6

A7

A8
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=










1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ⊗

(
1
1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
−1 −1 −1 −1
1 1 −1 −1
−1 −1 1 1
1 −1 1 −1
−1 1 −1 1
1 −1 −1 1
−1 1 1 −1




⊗ J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1

A2

A3

A4

A5

A6

A7

A8




=







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ⊗

(
J
J

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J J J J A1

−J −J −J −J A2

J J −J −J A3

−J −J J J A4

J −J J −J A5

−J J −J J A6

J −J −J J A7

−J J J −J A8




,

where J ∈ Mt×1({1}) and Ai ∈ Mt×(8t−8)({±1}) for i = 1, 2, .., 8. This yields
CJ8 ⊆ CJ4. Next, let H be an Hadamard matrix of order 12 of the form((

1 1
1 −1

)
⊗ J |A

)
, where J ∈ M6×1({1}) and A ∈ M12×10({±1}).

Set Ĥ =
((

1 1
1 −1

)
⊗

(
1 1
1 −1

)
⊗ J

∣∣∣∣
(

1 1
1 −1

)
⊗ A

)
.

By Proposition 3.3, Ĥ ∈ CJ4. Since Ĥ is an Hadamard matrix of order 24, by
Proposition 4.1, Ĥ doesn’t belong to CJ8, and this gives CJ8 � CJ4.

5. THE PARTIALLY ORDERED SET M OF Jm−CLASSES CJm

In this section, we consider the poset M = {CJm|m = 2 or m ∈ 4k, k ∈ N}
which is easily seen not to be a chain. To see this, we show the following non-
inclusions:

CJ8 � CJ12 � CJ8.

In fact, let H be an Hadamard matrix of order 12. Then the Sylvester-Hadamard

matrix
(

H H
H −H

)
∼

(
H ⊗

(
1
1

)
| H ⊗

(
1
−1

))
∈ CJ12 which has order

24, hence by Proposition 4.2 it doesn’t belong to CJ8. This shows the non-inclusion
CJ12 � CJ8. To prove the other non-inclusion, we construct a Sylvester-Hadamard
matrix of order 16 which belongs to CJ8 and doesn’t belong to CJ12 because 16
is not a multiple of 12.
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As a consequence of our Corollary 2.2, a Jm−Hadamard matrixH is a Jl−Hada-
mard matrix for some l | m, where l depends on m and H . In particular, if
m is a 2 power, then l is also. So we are led to consider the smaller poset
M2 = {CJ2k |k ∈ N} and pose the following question: For a given k, does there
exist a 1 �= h < k such that CJ2k ⊆ CJ2h? Another related question is whether
M2 is a lattice: Given h, k ∈ N, whether CJ2h and CJ2k has a least upper bound
CJ2h ∨ CJ2k and a greatest lower bound CJ2h ∧ CJ2k?
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