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Abstract
In this paper, we use the Sylvester’s approach to construct another Hadamard matrix, namely a

Jm-Hadamard matrix, from a given one. Consequently, we can generate other 2m − 1 Hadamard
matrices from the constructedJm-Hadamard matrix. Finally, we also discuss the Kronecker product
of an Hadamard matrix and aJm-Hadamard matrix.
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1. Introduction

An h × h matrixH ∈ Mh×h({±1}) is an Hadamard matrix ifHHT = hIh, whereIh

is the unith × h matrix. As usual, here we haveh = 2 or h = 4t, t ∈ N. An important
problem is to construct other Hadamard matrices from a given one. As it is clear, one gets
equivalent Hadamardmatrices from the given one by either permuting rows or columns and
by multiplying any row or column by−1; for general properties and results on Hadamard
matrices, we refer to Dinitz and Stinson [1] and van Lint andWilson [2]. A recent construc-
tion by Marrero [3] allows us to yield three other Hadamard matrices from a given one. The
construction goes as follows: letH be any 2t × 2t Hadamard matrix. By using the above
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row and column operations, it is easily seen, thatH can be transformed into the following
form:

H ∼
(

J J A

J −J B

)
=
((

1 1
1 −1

)
⊗ J

∣∣∣∣AB
)
,

where⊗ is the Kronecker product,J ∈ Mt×1({1}) andA, B ∈ Mt×(2t−2)({±1}).
The main result of such construction asserts that we get three Hadamard matrices by

changingA into−A orB into−B. More precisely,(
J J −A

J −J −B

)
,

(
J J −A

J −J B

)
and

(
J J A

J −J −B

)

are all Hadamard matrices.
The aim of this paper is to generalize the above construction by replacing the Hadamard

matrix
(
1
1

1
−1

)
with a larger size Hadamard matrixM of ordermand by replacingJwith a

suitably smaller size. The advantage is that it yields another Hadamard matrix of the form:

H ∼


M ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


 ,

whereA1, A2, . . . , Am ∈ Mt×(mt−m)({±1}). Such Hadamard matrix will be called aJm-
Hadamard matrix (see Definition 2.1); Marrero’s Hadamard matrix is an example of a
J2-Hadamard matrix. Note thatm is not the order ofH but ofM.
In this paper, we stress that form�4, theJm construction of an Hadamard matrixH is

not always possible (Examples 3.1 and 3.2), whereas any Hadamard matrix is equivalent
to aJ2-Hadamard matrix. However, a large class of Hadamard matrices allows us to create
Jm-Hadamard matrices, namely the class of Sylvester–Hadamard matrices (Theorem 2.2).
As a final result, we consider the Kronecker product of an Hadamard matrix of orderk

and aJm-Hadamard matrix; surprisingly, we obtain an Hadamard matrix equivalent to a
Jkm-Hadamard matrix (Theorem 2.5).

2. Jm-Hadamard matrices

In order to create other Hadamard matrices from a given one, the first step is to transform
it into a special form as follows:

Definition 2.1. LetM be an Hadamard matrix of order m. IfH is anmt × mt Hadamard
matrix of the form:

M ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


 ,
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then H is called aJm-Hadamard matrix, whereJ ∈ Mt×1({1}), A1, A2, . . . , Am ∈
Mt×(mt−m)({±1}) and⊗ is the Kronecker product.

Here, we again emphasize thatm is not the order ofH but ofM and it is not related to the
sizet of J. The following is the generalization of Marrero’s main result onJ2-Hadamard
matrices [3], proposition:

Theorem 2.2. Let H be aJm-Hadamard matrix defined as in Definition2.1.Then

Ĥ =


M ⊗ J

∣∣∣∣∣∣∣∣
B1
B2
...

Bm




is also an Hadamard matrix, whereBi = Ai or Bi = −Ai for i = 1,2, . . . , m.

Proof. Let

M =



M1
M2
...

Mm


 ,

whereMi are the row vectors ofM for i = 1,2, . . . , m. SinceM is an Hadamard matrix,
then

MkM
T
l =

{
0 if k �= l,

m if k = l.
(2.1)

BecauseH is aJm-Hadamard matrix, then, by multilinearity of the Kronecker product, we
may write it as follows:

H =


M ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


=



M1 ⊗ J

M2 ⊗ J
...

Mm ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


 ,

where every two rows inMi ⊗ J are equal fori = 1,2, . . . , m. In fact,

Mi ⊗ J =



Mi

Mi
...

Mi




t×m

.
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RewriteHandĤ in the rowvectors form
(
M̄i |Ai

)
mt×mt

and
(
M̄i |Bi

)
mt×mt

respectively,

whereM̄i ,Ai andBi are theith rows of

M ⊗ J,




A1
A2
...

Am


 and




B1
B2
...

Bm


 ,

respectively, fori = 1,2, . . . , mt . Note thatM̄i may be equal toM̄j even if i �= j . The
reason is thatM̄i andM̄j may be the rows of someMk ⊗ J . SinceH is an Hadamard
matrix, then

(
M̄i |Ai

) (
M̄j

∣∣Aj

)T =
{
0 if i �= j,

mt if i = j,

i.e.,

M̄iM̄
T
j + AiA

T
j =

{
0 if i �= j,

mt if i = j.
(2.2)

We claim thatĤ is also an Hadamard matrix; i.e.,

M̄iM̄
T
j + BiB

T
j =

{
0 if i �= j,

mt if i = j.

For i = j , no matterAi = Bi orAi = −Bi , it is true that

M̄iM̄
T
i + BiB

T
i = M̄iM̄

T
i + AiA

T
i = mt .

For i �= j , there are two cases.
Case1: If M̄i andM̄j are the rows of someMk ⊗ J , thenM̄i = M̄j = Mk. Simulta-

neously,Bi andBj are the rows ofBk. But this time, we get the case

Bi = Ai andBj = Aj or Bi = −Ai andBj = −Aj .

Thus,BiB
T
j = AiAT

j , in any situation. This implies

M̄iM̄
T
j + BiB

T
j = M̄iM̄

T
j + AiA

T
j = 0, by (2.2).

Case2: If M̄i andM̄j are the rows ofMk ⊗ J andMl ⊗ J , respectively, fork �= l. In
this case,M̄i =Mk andM̄j =Ml . Simultaneously,Bi andBj are the rows ofBk andBl ,

respectively. HencēMiM̄
T
j =MkM

T
l = 0, by (2.1). Together withM̄iM̄

T
j +AiA

T
j = 0,

for i �= j , we haveAiA
T
j = 0. Now, there are four possibilities:

Bi = Ai andBj = Aj ;Bi = Ai andBj = −Aj ;

Bi = −Ai andBj = Aj ;Bi = −Ai andBj = −Aj .

HenceBiB
T
j =±AiA

T
j =0. This impliesM̄iM̄

T
j +BiB

T
j =0 for i �= j . This completes

the proof of the theorem.�
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From Theorem 2.2, we might create other 2m − 1 Hadamard matrices. More precisely,
there are only other 2m−1−1 Hadamard matrices up to equivalence since we may multiply

−1 to a given matrix


 B1

B2

...
Bm


 to get an equivalentJm-Hadamard matrix.

The next question iswhether there exists aJm-Hadamardmatrix form=4t.The following
theorem and corollary tell us how to produce aJm-Hadamard matrix by use of Sylvester’s
approach. To this end, letH be a given Hadamard matrix, the Sylvester–Hadamard matrix
induced byH is an Hadamard matrix of the form(

H H

H −H

)
.

Note that the above Sylvester–Hadamard matrix induced byH is actually equivalent to a
Jm-Hadamard matrix (whose proof of this important fact is similar to that of the following
theorem):(

H H

H −H

)
∼
(

H ⊗
(
1
1

) ∣∣∣∣H ⊗
(

1
−1

))
.

Theorem 2.3. If H is aJm-Hadamardmatrix, then theSylvester–Hadamardmatrix induced
by H is equivalent to aJm-Hadamard matrix.

Proof. BecauseH is aJm-Hadamardmatrix, then, bymultilinearity of the Kronecker prod-
uct, we may write it as follows:

H =


M ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


=



M1 ⊗ J

M2 ⊗ J
...

Mm ⊗ J

∣∣∣∣∣∣∣∣
A1
A2
...

Am


 ,

whereMi are the row vectors ofM for i = 1,2, . . . , m.

After suitably permuting rows, the Sylvester–Hadamard matrix is equivalent to


M1 ⊗ J

M1 ⊗ J

M2 ⊗ J

M2 ⊗ J
...

Mm ⊗ J

Mm ⊗ J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 M1 ⊗ J A1
A1 −M1 ⊗ J A1
A2 M2 ⊗ J A2
A2 −M2 ⊗ J A2
...

...
...

Am Mm ⊗ J Am

Am −Mm ⊗ J Am




=




M1 ⊗ Ĵ

M2 ⊗ Ĵ
...

Mm ⊗ Ĵ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 M1 ⊗ J A1
A1 −M1 ⊗ J A1
A2 M2 ⊗ J A2
A2 −M2 ⊗ J A2
...

...
...

Am Mm ⊗ J Am

Am −Mm ⊗ J Am



,

where

Ĵ =
(

J

J

)
.

This is aJm-Hadamard matrix and we complete the proof.�
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As indicated above, Sylvester’s approach allows us to yield the following.

Corollary 2.4. If there is an Hadamard matrix of order m, then we may get a Sylvester–
Hadamard matrix equivalent to aJm-Hadamard matrix. This construction allows us also
to yield an Hadamard matrix which is at the same time equivalent to aJm2t -Hadamard
matrix for all t ∈ N. In particular, if we choose the initial Hadamard matrix

H =
(
1 1
1 −1

)
,

then there is an Hadamard matrix which is at the same time equivalent to aJ2t -Hadamard
matrix for all t ∈ N.

Proof. Use the same approach as in the proof of Theorem 2.3.�

As it is well known, the Kronecker product of two Hadamard matricesK of orderkandH
of orderh is also an Hadamard matrix of orderkh. As it is expected, we have the following
result forJm-Hadamard matrices.

Theorem 2.5. If K is an Hadamard matrix of order k and H is aJm-Hadamard matrix,
then the Kronecker product of K and H is equivalent to aJkm-Hadamard matrix.

Proof. LetKi be theith rowvector ofK for i=1,2, . . . , k andH beof the form(M⊗J |A),
where

A =




A1
A2
...

Am


 .

Then

K ⊗ H =



K1 ⊗ (M ⊗ J |A)

K2 ⊗ (M ⊗ J |A)
...

Kk ⊗ (M ⊗ J |A)


 .

After suitably permuting columns,

K ⊗ H ∼



K1 ⊗ (M ⊗ J )

K2 ⊗ (M ⊗ J )
...

Kk ⊗ (M ⊗ J )

∣∣∣∣∣∣∣∣
K1 ⊗ A

K2 ⊗ A
...

Kk ⊗ A


= ( (K ⊗ M) ⊗ J |K ⊗ A) .

SinceK ⊗ M is an Hadamard matrix of orderkm, thenK ⊗ H is equivalent to aJkm-
Hadamard matrix and the proof is completed.�
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3. Counterexamples

A normalized Hadamard matrix is an Hadamard matrix with the first row and the first
column having entries all 1. In the following two examples, we make use the following fact
about normalized Hadamard matrices (see [4, Theorem 10.9, p. 429]): IfH is a normalized
Hadamard matrix of ordern >2, thenn = 4m for somem. Moreover, each row (column)
except the first has exactly 2m 1’s and 2m−1’s, and for any two rows (columns) other than
the first, there are exactlympositions in which both rows (columns) have 1’s.

Example 3.1. Every Hadamard matrix of order 12 is not aJ4-Hadamard matrix.

Proof. Without loss of generality, wemayassume thatHbeanormalized 12×12Hadamard
matrix. If H is aJ4-Hadamard matrix, then

H =

M ⊗ J

∣∣∣∣∣∣∣
A1
A2
A3
A4


 ,

whereM is an Hadamard matrix of order 4,J ∈ M3×1({1}) andAi ∈ M3×8({±1}) for
i = 1,2,3,4. Since every Hadamard matrix of order 4 is easily known to be equivalent to


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ,

henceHmust be equivalent to theJ4-Hadamard matrix of the form

H̃ =



J J J J A1
J J −J −J A2
J −J J −J A3
J −J −J J A4


=




1 1 1 1
1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1

A2

A3

A4




.

However,H̃ is not anHadamardmatrix, since there are at least four 1’s at the same positions
between the second row and the third row contradicting to the fact mentioned above: there
are exactly124 1’s at the same positions in both rows except the first. ThusH is not aJ4-
Hadamard matrix. �

Example 3.2. Every Hadamard matrix of order20 is not aJ4-Hadamard matrix.



88 Yaio-Zhern Shih, Eng-Tjioe Tan / Expo. Math. 23 (2005) 81–88

Proof. Weassume thatH be a normalizedJ4-Hadamardmatrix with the formas in Example
3.1 withJ ∈ M5×1({1}) andAi ∈ M5×16({±1}) for i = 1,2,3,4. We will use the same
argument as above to derive a contradiction by counting the number of 1’s at the second,
the third, the fourth and the fifth row. As before, we know that there are exactly ten 1’s at
each row and204 1’s at the same position between any two different rows except the first
row. By arranging the 1’s as forward as possible, soH, with the first five rows written down,
is of the following form:

H =
(

J J J J A1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

)

=




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1
1 1 1 1
1 1 1 1
.
.
.

.

.

.
.
.
.

.

.

.



.

Considering the last ten columns, to fill in the ten 1’s in the third row, we need five
positions in last ten columns. With the same argument, to fill in the ten 1’s in the fourth
row, we need at least four positions in the last ten columns differ from the positions already
taken in the third row. Finally, in the fifth row, we need at least three positions in the last
ten columns differ from the positions already taken in the third and the fourth rows. This
means that we need in total at least 5+4+3= 12 positions to fill in the 1’s in the last ten
columns which is impossible. Therefore, we conclude that every Hadamard matrix of order
20 is not aJ4-Hadamard matrix.

By the samewayasabove, all Hadamardmatrices of order 24and40are notJ8-Hadamard
matrices, and so on. This fact leads to the following questions:

4. Some open questions

1. As also mentioned in [3], it is well known that every Hadamard matrix is equivalent to
aJ2-Hadamard matrix. Given any Hadamard matrix, is it equivalent to aJm-Hadamard
matrix for somem�4?

2. The above Examples 3.1 and 3.2 show that any Hadamardmatrices of order 12 and 20 are
notJ4-Hadamard matrix. These examples seem to provide counterexamples to Question
1, if the following is true: aJ8-Hadamard matrix is equivalent to aJ4-Hadamard matrix.
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