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Bayesian methods for categorical data under

informative censoring

Thomas J. Jiang∗ and James M. Dickey†

Abstract. Bayesian methods are presented for categorical sampling when some
observations are censored (i.e., suffer missing distinctions between categories).
Such problems have been researched over the years, as they can be important
in applications. However, previous work has assumed strong restrictions, such as
truthful reporting, noninformative censoring, etc. Here, we attempt to remove
such restrictions. In particular, we remove two of the three restrictions imposed
by Dickey, Jiang, and Kadane (1987). We provide Bayesian methods for cases
more general than those considered by Paulino and de B. Pereira (1992, 1995),
and others. Thus, it will no longer be necessary to make unrealistic assumptions
commonly employed regarding the censoring model. A theorem of Identifiability-
by-Conditioning is provided, allowing familiar improper prior densities. By this
theorem, we obtain identical Bayesian updating results by imposing constraints
on either prior, likelihood, or posterior directly. Several computational procedures
are suggested, and an example is used to illustrate methods.

Keywords: Bayesian inference, generalized Dirichlet distributions, informative cen-
soring, multiple hypergeometric functions

1 Introduction

Bayesian treatments of categorical sampling with censored, or partially-classified, data
were given by Karson and Wrobleski (1970), Antelman (1972), Kaufman and King (1973),
Albert and Gupta (1983), Gunel (1984), Smith and Gunel (1984),
Smith, Choi, and Gunel (1985), Albert (1985), Kadane (1985), and
Gibbons and Greenberg (1989). These all dealt with 2 × 2 contingency tables that
have information missing regarding row or column variables. Dickey, Jiang, and Kadane
(1987) extended consideration to the general multinomial. All these studies were re-
stricted to noninformatively-censored categorical data. (For treatments from the fre-
quentist viewpoint, see e.g., Hartley (1958), Chen and Fienberg (1974, 1976),
Dempster, Laird, and Rubin (1977), Little and Rubin (1987).

Bayesian treatments for informatively censored data can be found in
Basu and de B. Pereira (1982), Paulino and de B. Pereira (1992, 1995), Walker (1996),
and Tian, Ng, and Geng (2003), among others. In particular, Paulino and de B. Pereira
(1995), Walker (1996), and
Tian, Ng, and Geng (2003) all considered the general censored data problem with truth-
ful reports. Paulino and de B. Pereira (1995) and Tian, Ng, and Geng (2003) both gave
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posterior distributions and posterior expectations under a restricted Dirichlet prior dis-
tribution family, while Walker (1996) used MAP (maximum a posteriori) methods to
make inference.

In practice, it is likely that reported data fail to match the true categories, and
the pattern of censoring, itself, has information regarding parameters of interest. For
example, suppose that each person’s income falls into one of five categories. An indi-
vidual, whose income is in the highest category, may report his/her income as being in
the second highest category. This is an example of nontruthful-reporting. In addition,
to discourage a refusal to respond, an individual may be allowed to report a set-union
of two or more categories. However, then, an individual who is actually in the highest
category, may be more likely to report himself/herself as being in the top two categories
than another individual who is actually in the second highest category. This would,
then, be an example of informatively censored reporting.

In the present paper, we consider an unrestricted Dirichlet prior distribution family
and allow sample data having non-truthful reports, both of which contexts are more
general than considered by Paulino and de B. Pereira (1992, 1995), and others. We
then offer new methods as a breakthrough in the analysis of categorical data in the
general context of informative censoring, both the new theory, as such, and methods
for its use in practice. Hence, it will no longer be necessary to make the possibly un-
realistic assumptions commonly employed regarding the censoring model. Of course,
statistical identifiability will still be needed to have sample information about the to-
tality of unknown parameters, but the available sets of restrictions need not be limited
to the old choices of noninformative censoring, truthful reporting, and the like. Sev-
eral computational procedures are suggested, and an example is then used to illustrate
methods.

2 Sampling Process and Bayesian Inference

2.1 Multiple Bernoulli Sampling Process with Informative censoring

In a sequence of n (n prespecified) multiple-Bernoulli trials having I categories, let
Y1, . . . , Yn denote the first, second, . . . , n-th trial variable. With θi denoting the prob-
ability that a trial outcome lies in the i-th category for i = 1, . . . , I , write for the k-th
trial,

Pr(Yk = i) = θi, for k = 1, . . . , n.

Then θ+ = 1, where θ+ =
∑I

i=1 θi. (Throughout this paper, a variable or a parameter
with “+” in a subscript represents the sum over all possible such subscript values; for
example, ai+ =

∑J

j=1 aij , when the possible values of j, for this i, are 1, . . . , J .) For
notational convenience, we use the first I positive integers as the possible values for the
categorical variable.

The Dirichlet distributions are the conjugate prior family for samples from such a
multiple-Bernoulli distribution. The random vector θ = (θ1, . . . , θI) is said to have
the Dirichlet distribution D(b), denoted by θ ∼ D(b), with parameter vector b =



Jiang and Dickey 543

(b1, . . . , bI), each bi > 0, if θ has the following joint density in any I−1 of its coordinates.
For all θ in the probability simplex {θ | each θi > 0, θ+ = 1},

f(θ; b) ≡ B(b)−1
I
∏

i=1

θbi−1
i , (1)

where B(b) =
[

∏I
i=1 Γ(bi)

]/

Γ(b+).

The prior general moment, for a Dirichlet prior distribution, θ ∼ D(b), is

g(c; b) ≡ E
θ|b

(

I
∏

i=1

θci

i ) = B(b + c)/B(b).

The predictive distribution is then the Dirichlet-multiple-Bernoulli, with mass function
Pr(Y = y) = g(x; b), where x = (x1, . . . , xI ) is the vector of frequency counts of the
outcomes vector y = (y1, . . . , yn) in each of I categories. That is, xi denotes the number

of yj ’s equal to i, and
∑I

i=1 xi = n.

Consider, first, the situation when all the data is fully and truthfully categorized.
Based on the first trial outcome Y1 = y1, the posterior distribution, starting from the
conjugate prior (1), is again a Dirichlet distribution, with updated parameters,

θ|Y1 = y1 ∼ D(b + δy1
), (2)

where δy denotes an I-coordinate vector with value 1 for its y-th coordinate, and 0
otherwise. The posterior Dirichlet density is then f(θ; b+δy1

) and the posterior moment
is g(c; b+ δy1

). Before receiving outcome y2, we now treat (2) as the prior distribution.
The posterior distribution, after Y2 = y2, is then

θ|Y1 = y1, Y2 = y2 ∼ D(b + δy1
+ δy2

). (3)

This process continues until we have received all n outcomes y1, . . . , yn. The eventual
posterior distribution is

θ|y1, . . . , yn ∼ D(b + δy1
+ δy2

+ · · · + δyn
)

∼ D(b + x). (4)

The corresponding posterior density is f(θ; b + x) and the posterior moment has the
closed form, g(c; b + x).

It is likely, in practice, that some of the outcomes may not be reported completely
and truthfully. We shall use a random variable Rk for the k-th report, say, the report
of the k-th respondent (or subject), where k = 1, . . . , n. Here, the outcome value rk of
random variable Rk is a set of categories, a non-empty subset of {1, . . . , I}. For example,
suppose the first respondent, who is actually in the second category, reports as being
either in the third or the fourth category. Then, in this example, r1 = {3, 4}, and this
first report is a non-truthful report, since 2, the true category of the first subject, is not
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in the reported category set r1 = {3, 4}. Assume that there are only J (J ≤ 2I − 1)
different category sets considered possible, that is, available for reporting. We use
j = 1, . . . , J to index these sets of categories. Further, let λi,r and λij (respectively,
with and without a comma) denote the conditional probabilities that a respondent, who
is actually from the i-th category, reports in the category set r, or the j-th category set.
Here, for each i,

∑

all r λi,r =
∑J

j=1 λij = 1. Let Λ be these probabilities λij arranged
in matrix form. Then, Λ is an I × J conditional-probability matrix. In n trials, the
probability of receiving reports R1 = r1, . . . , Rn = rn is then the product of independent
marginal probabilities, each of the form,

Pr(Rk = rk | θ, Λ) =

I
∑

i=1

λi,rk
θi, (5)

for each k = 1, . . . , n.

In this paper, we treat the matrix Λ as an unknown parameter and consider the
most general case for the likelihood function with factors (5) in the sense that we allow
a datum to be either informatively or noninformatively censored. If we are sure that the
censoring mechanism, itself, is noninformative, we could include restrictions on (5). For
example, we could assume an equality of conditional probabilities λ1,rk

= · · · = λI,rk
.

(Then, the k-th report rk would be wholly uninformative.) On the other hand, if we
are sure it is not possible for the k-th report rk to have come from the 1st category, we
could assume that λ1,rk

= 0 in (5).

2.2 Bayesian Updating under Restrictions

The following theorem says that the posterior distribution based on joint prior and
constrained likelihood function is equivalent to that based on constrained prior and full
likelihood function, if both approaches use the same linear constraint function. It is also
equivalent, then, to the constrained posterior based on joint prior and full likelihood
function, for the same constraint function.

Theorem 1 (Identifiability by Conditioning).

Suppose there exist joint prior density, likelihood function, and joint posterior density.
Consider the following three methods to obtain a constrained posterior distribution for
a linear constraint. Conditional distributions involved are conditional on the linear
constraint.

(1) Take conditional prior from the joint prior to get constrained prior. Then use
Bayes formula to yield constrained posterior.

(2) Take joint prior and constrained likelihood function. Then use Bayes formula to
yield constrained posterior.

(3) Take joint prior and likelihood function. Use Bayes formula to yield joint posterior.
Then take conditional distribution from the joint posterior to obtain a constrained
posterior.
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Then

1. The conditional prior (or posterior) density is proportional to the constrained
unconditional prior (or posterior) density.

2. If methods (1), (2) and (3) use the same linear function for the constraint, they
yield the same constrained posterior distribution.

Proof. Purely for notational convenience, we will assume here that the vector referred
to by the symbol θ contains all the unknown parameters. We consider a vector of linear
constraints,

`(θ) =
∑

i

`iθi = c.

1. The conditional prior (or posterior) density of the remaining, or linearly redefined
variables θ̃, is just given by the familiar expression for a conditional density in
terms of the joint density:

h(θ̃|` = c) =
f [θ(θ̃, `)]J

f1(` = c)
,

where J is the constant Jacobian and, at ` = c, the marginal density in the
denominator just acts as a normalizing constant. So the conditional density, given
the linear constraints ` = c, is proportional to the constrained joint density.

2. After a linear change of variable in the prior and the likelihood, obtain a posterior
density proportional to the product,

f [θ(θ̃, `)]J

n
∏

k=1

[

I
∑

i=1

λi,rk
θi(θ̃, `)

]

.

This yields the same constraints on the product, hence, the same posterior density
of θ̃, whether the constraints are first applied to the prior or to the likelihood.

The above Identifiability-by-Conditioning Theorem gives us the freedom to apply a
constraint function to prior, likelihood, or posterior. Therefore, the approach to take to
a problem of unidentifiability can be decided, based on which method is easier to apply
or more natural in context.

Dickey, Jiang, and Kadane (1987) developed Bayesian inferences with the following
three assumptions concerning the censoring process λi,r:

(i) Truthful reporting:
λi,r = 0 when i 6∈ r.
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(ii) Every possible report outcome Rk = r differentially noninformative among the
categories within r:

λi,r = λi′,r, whenever both i ∈ r and i′ ∈ r.

(iii) Prior independence assumed between the parameter arrays θ and Λ.

In this paper, we drop assumptions (i) and (ii) and assume (iii) with I+1 independent
Dirichlet prior distributions,

θ ∼ D(a) and λi∗ ∼ D(bi∗),

where i = 1, . . . , I . (In this paper, a variable or a parameter with “∗” notation in
a subscript indicates a vector with components having all the possible such subscript
values.) Then, the joint prior probability density function of θ and Λ is proportional to

(

I
∏

i=1

θai−1
i

)





I
∏

i=1





J
∏

j=1

λ
bij−1
ij







 . (6)

As an example, consider the structure with all subsets included as possible, available
for reports, λi∗ = (λi,{1}, λi,{2}, . . . , λi,{I}, λi,{1,2}, . . . , λi,{1,...,I}) = (λi1, λi2 . . . , λiI , . . . ,
λiJ ), where J = 2I − 1. This can be considered the most general case, in the following
sense. We understand that a zero Dirichlet parameter coordinate, ai = 0 or bij = 0,
corresponds to a singular prior distribution in which θi = 0 or λij = 0, with probability
one, respectively. Then if the experimental data don’t disagree with such prior-presumed
singularities, they would be preserved in the posterior distribution. If the data disagree,
a partially noninformative posterior density, with nonzero arguments, would apply au-
tomatically.

Even if the prior is not directly expressed by (6) (i.e. a constrained prior not in
the joint prior family), using the Identifiability-by-Conditioning Theorem, we can find,
first, the general posterior distribution based on (5) and (6), and then use a suitable
method, e.g. transformation of variables, to obtain the constrained posterior distribu-
tion. Therefore, our discussion in this paper will focus on the general prior (6) and
general likelihood (5).

Consider the inference following a report only of the first trial (first respondent).
The posterior probability density function resulting from (5) for k = 1 (first trial) and
the joint prior (6) is then proportional to

(

I
∏

i=1

θai−1
i

)





I
∏

i=1





J
∏

j=1

λ
bij−1
ij









(

I
∑

i=1

λi,r1
θi

)

=

I
∑

m=1







(

I
∏

i=1

θ
ai+δm

i −1
i

)





I
∏

i=1





J
∏

j=1

λ
bij+δ

mr1
ij

−1

ij















,

(7)
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where δm
i is 1 for i = m, and is 0 otherwise, and δmr1

ij is 1 for i = m and j = r1, and is
0 otherwise. This posterior density can be expressed as

I
∑

m=1

Am

A+







(

I
∏

i=1

θ
ai+δm

i −1
i

)





I
∏

i=1





J
∏

j=1

λ
bij+δ

mr1
ij

−1

ij















/

Am, (8)

where Am = B(a + δm)
∏I

i=1 B(bi∗ + δmr1

i∗ ), a = (a1, . . . , aI), δm = (δm
1 , . . . , δm

I ),

bi∗ = (bi1, . . . , biJ), δmr1

i∗ = (δmr1

i1 , . . . , δmr1

iJ ), and A+ =
∑I

m=1 Am.

Here the posterior density (8) is a weighted average of I products of Dirichlet den-
sities. The weight Am/A+ in the mth term is proportional to (am ∗ bmr1

/bm+). The
posterior moment is the similarly weighted average of I ratios of A’s, each of the form
A′

m/Am, where A′
m is, like Am, a product of B’s. For example, the posterior mean of

θ1 is
∑I

m=1 (Am/A+) (A
(1)
m /Am), where A

(1)
m = B(a(1) + δm)

∏I

i=1 B(bi∗ + δmr1

i∗ ), and
a(1) = (a1 + 1, a2, . . . , aI).

If we receive, now, the further report R2 = r2, the updated posterior probability
density function is proportional to the product of (8) and (5) for k = 2. This would
give the new posterior p.d.f. as a mixture of I2 products of Dirichlet densities. The
posterior moment is now the weighted average of I2 ratios of A’s. As the number of
reports received increases, the number of ratios of A’s increases dramatically. This
would make the computation of posterior moments unfeasible. In the next section, we
shall give posterior probability density functions and suggest possible uses of alternative
computational methods for posterior moments even when the sample size is not small.

3 Posterior distribution and computational methods

With the general prior (6) and general likelihood function (5), the posterior probability
density function, after receiving reports R1 = r1, . . . , Rn = rn, is then proportional to

(

I
∏

i=1

θai−1
i

)





I
∏

i=1





J
∏

j=1

λ
bij−1
ij









[

n
∏

k=1

(

I
∑

i=1

λi,rk
θi

)]

. (9)

Let nj =
∑n

k=1 δj(rk) for 1 ≤ j ≤ J , where δj(rk) is 1 if rk = j, and is 0 otherwise.

Hence,
∑J

j=1 nj = n. Define wij = θiλij , for i = 1, . . . , I , and j = 1, . . . , J . Then the
posterior probability density function corresponding to (9) can be reexpressed in terms
of wij ’s. The kernel of the density can be shown to be





I
∏

i=1





J
∏

j=1

w
bij−1
ij









[

I
∏

i=1

w
ai−bi+

i+

]





J
∏

j=1

w
nj

+j



 , (10)

since the Jacobian is {
∏I

i=1 w1−J
i+ }.

Now, let K = I · J , the 1 × K row vector b = [b1∗, b2∗, . . . , bI∗], the K × I matrix

G(1) = [g
(1)
∗1 , g

(1)
∗2 , . . . , g

(1)
∗I ], and the K × J matrix G(2) = [g

(2)
∗1 , g

(2)
∗2 , . . . , g

(2)
∗J ], where,
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for each i and 1 ≤ i ≤ I , bi∗ = (bi1, bi2, . . . , biJ ) is a 1 × J row vector and g
(1)
∗i is a

K×1 column vector having 1 on each of the J × (i − 1)+1st, J × (i− 1)+2nd, . . ., and

J×(i − 1)+J th components and having 0 otherwise, and, for each j and 1 ≤ j ≤ J , g
(2)
∗j

is a K×1 column vector having 1 on each of the jth, J+jth, . . ., (I−1)·J+jth components
and having 0 otherwise. The above posterior distribution is a generalized Dirichlet
distribution, as defined by Dickey (1983) and Dickey, Jiang, and Kadane (1987). Its
density can be expressed as

B−1 [b] · R−1 (b, G,−e) ·





I
∏

i=1





J
∏

j=1

w
bij−1
ij









[

I
∏

i=1

w
ai−bi+

i+

]





J
∏

j=1

w
nj

+j



 , (11)

where e = (a1−b1+, a2−b2+, . . . , aI−bI+, n1, n2, . . . , nJ), G = [G(1)|G(2)] is a K×(I+J)
matrix, and R is a Carlson (1977) multiple hypergeometric function. (See Dickey (1983)
for probabilistic interpretations and statistical uses of R.) Therefore, the posterior
moment is

E





I
∏

i=1

J
∏

j=1

w
dij

ij



 =
B[b + d] · R(b + d, G,−e)

B[b] · R(b, G,−e)
, (12)

which is proportional to a ratio of Carlson functions R. Jiang, Kadane, and Dickey
(1992) give computational methods for ratios of R.

We note that the prior distributions that Paulino and de B. Pereira (1995) and
Tian, Ng, and Geng (2003) consider are cases where ai = bi+, for all i = 1, . . . , I .
In such a special case, (10) can be reexpressed as





I
∏

i=1





J
∏

j=1

w
bij−1
ij













J
∏

j=1

w
nj

+j



 . (13)

Using the definition of Jiang, Kadane, and Dickey (1992, p.235), the matrix parameter
in Carlson’s R for the normalizing constant of (13) is a 1-level nested-partition indica-
tor. Theorem 2 of Jiang, Kadane, and Dickey (1992) gives a closed form of Carlson’s R
function for any level of nested-partition indicator matrix. Hence the normalizing con-
stant of (13) can be expressed in closed form, and so the posterior mean and standard
deviation of θi can be easily calculated.

An application area expert (or experts) may not feel comfortable, however, with this
restriction when he/she assesses the prior. For example, an expert may have the prior
equivalent of 10 observations on first category, but may have only 6 observations on how
they might be reported. In this case, he/she would have a1 = 10 and b1+ = 6. The prior
family should be large enough to allow a choice accurately expressing the real predata
expert uncertainty concerning θ and Λ (see, e.g., Dickey and Jiang (1998, p.651)). So,
in this paper, we make no such restriction on the a′s and b′s.

The computation of posterior moments, the moments of (11) may be done by the “ex-
pansion method” or by the Monte Carlo method, given by Jiang, Kadane, and Dickey
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(1992). If the sample size is not small, however, the “expansion method” is not fea-
sible. Although the Monte Carlo method and even the Gibbs sampler can give good
approximation to the posterior estimates, we note that the quasi-Bayes method, given by
Jiang and Dickey (2007), which is analogous to the methods given by Makov and Smith
(1977), Smith and Makov (1978) and Titterington, Smith, and Makov (1985, Chap-
ter 6), provides a more efficient approximate computational method for our problems.
Specifically, the quasi-Bayes method provides a simpler and easier algorithm for cod-
ing and also requires much less CPU time for better accuracy. See Jiang and Dickey
(2007) for details. Further, Jiang and Dickey (2007) show that the quasi-Bayes method
gives the same posterior means as those given by Paulino and de B. Pereira (1992, 1995)
under their restricted priors.

4 Example

In this section, to illustrate methods, we use the Monte Carlo, the quasi-Bayes, and
the Gibbs sampler approaches to reanalyze the data from Paulino and de B. Pereira
(1995). The problem is concerned with the determination of the degree of sensitivity
to dental caries, categorized in three risk levels: low, medium, and high. We label
the low, medium, and high levels by 1, 2, and 3, respectively, and assume the possible
reported category sets are {1}, {2}, {3}, {1, 2}, and {2, 3}, labelled as 1, 2, 3, 4, and
5, respectively. Therefore, I = 3 and J = 5 in this example. Using our notation, the
count data are n1 = 14, n2 = 17, n3 = 20, n4 = 28 and n5 = 18. Two different priors
(Table 1) are used here. The first prior, which was given by Paulino and de B. Pereira
(1995), is the case where ai = bi+, for all i = 1, 2, and 3. In the second prior, ai 6= bi+,
for any i.

At least two possible scenarios could make the above second prior highly possible.

Scenario 1:
An expert gives his/her prior knowledge on θ that there are 8, 6, and 8 equivalent
sample subjects in low, medium, and high risk levels, respectively. However, this expert
is not able to translate his/her prior knowledge on [λij ] into equivalent sample evidence,
but he/she does think that three independent Dirichlet distributions would adequately
represent his/her knowledge on λi∗, i = 1, 2, 3. He/she then gives the means and the
variances of these three distributions. Finally, equating these to the formulas for the
mean and the variance of a Dirichlet distribution, one can solve for the parameters of
Dirichlet distributions. These parameters [bij ] are given in the bottom right of Table 1.
The entire parameters for the second prior are given in the bottom of Table 1.

Scenario 2:
A partial prior is given by an expert who gives his/her initial knowledge that is reported
in category sets {1}, {2}, {3}, {1, 2}, {2, 3} of each risk level, as shown in the bottom
right of Table 1. At the next stage, he/she thinks that the equivalent 8, 6, and 8,
instead of 4, 3, and 4, sample subjects would be best adequate to represent his/her
prior knowledge on θ. Therefore, this expert’s true prior information is given in the
bottom of Table 1.
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The old methods fail for both of these two scenarios, since ai 6= bi+ for at least one
i.

The posterior means and standard deviations, using the Monte Carlo method, quasi-
Bayes method, and the Gibbs sampler, are given in Table 2. Under the first prior, the
quasi-Bayes method gives the exact posterior means, which are the same as those given
by Paulino and de B. Pereira (1995). Under the second prior, Table 2 shows that the
posterior mean of θi lies between the value under the first prior and ai/a+, for all i.
These results are consistent with what one would anticipate, since the bij ’s are the same
for both priors and each ai is increased in the second prior. We note that the CPU time
for the quasi-Bayes method here is practically 0 seconds, while those for the Monte Carlo
method and the Gibbs sampler are about 14.4 seconds and 1.5 seconds, respectively. In
addition, by comparing the posterior means obtained using the Monte Carlo method,
the Gibbs sampler is seen to be less accurate than our quasi-Bayes method.

5 Conclusions

Methods here generalize Dickey, Jiang, and Kadane (1987)’s fully Bayesian methods by
removing two of their three conditions. Our methods also generalize the cases con-
sidered by Paulino and de B. Pereira (1992, 1995), and others. From now on, it will
no longer be necessary to assume such restrictions, when not realistic in regard to the
censoring model. Our example illustrates that the new methods are convenient and
computationally feasible.

Appendix

Table 1: Prior information

prior a′ [bij ]

1





4
3
4









3 0 0 1 0
0 1 0 1 1
0 0 3 0 1





2





8
6
8









3 0 0 1 0
0 1 0 1 1
0 0 3 0 1
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Table 2: Posterior estimates of θ

prior method E(θ1) E(θ2) E(θ3) CPU time
(Intel(R) Xeon(TM) 3.20GHz)

1 m 0.2965 0.3988 0.3047 13.87500 sec
(0.0900) (0.1064) (0.0678)

q 0.2963 0.3981 0.3056
.
= 0 sec

(0.0437) (0.0469) (0.0441)
g 0.3114 0.3833 0.3053 1.546875 sec

(0.0962) (0.1103) (0.0707)
2 m 0.3286 0.3507 0.3208 14.42188 sec

(0.0772) (0.0880) (0.0612)
q 0.3101 0.3738 0.3161

.
= 0 sec

(0.0422) (0.0422) (0.0424)
g 0.3356 0.3460 0.3185 1.515625 sec

(0.0811) (0.0883) (0.0639)

Note:
1. Entries in parentheses are the (approximate) SD’s.

2. Methods m, q, and g are Monte Carlo, quasi-Bayes, and Gibbs sampler,
respectively.
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