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Abstract: We consider the estimation problem of a logistic regression model. We

assume the response observations and covariate values are both subject to measure-

ment errors. We discuss some parametric and semiparametric estimation methods

using mismeasured observations with validation data and derive their asypmtotic

distributions. Our results are extentions of some well known results in the litera-

ture. Comparisons of the asymptotic covariance matrices of the studied estimators

are made, and some lower and upper bounds for the asymptotic relative efficiencies

are given to show the advantages of the semiparametric method. Some simulation

results also show the method performs well.

Key words and phrases: Kernel estimation, estimated likelihood, logistic regression,

measurement error, misclassification.

1. Introduction

Logistic regression is the most popular form of binary regression; see Cox

(1970) and Pregibon (1981). Researchers often use logistic regression to estimate

the effect of various predictors on some binary outcome of interest. Basically,

the model assumes that the log of the odds of the outcome is a linear function

of the predictors. That is, suppose that the variables (Xi, Yi) follow the model

Pr(Yi = 1 | Xi = xi) =
exp(xT

i β
0)

{1 + exp(xT
i β

0)} ≡ F (xT
i β

0),

where the Xi are random d-vector predictors and the Yi are Bernoulli response

variables. Usually, the maximum likelihood (ML) method is used to estimate

the regression coefficients β0. Under some regularity conditions, the maximum

likelihood estimator of β0 is asymptotically normal.

The ML method requires that the data consist of precise measurements for

the binary outcomes and predictors. However, the data are often not measured

perfectly. For instance, Golm, Holloran and Longini (1998, 1999) mentioned that

collecting information on exposure to infection for estimating vaccine efficacy may

be mismeasured. On the other hand, Albert, Hunsberger and Bird (1997) and

Bollinger and David (1997) gave examples showing that the binary outcome of
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interest may also be misclassified. It is generally true that the usual analyses

based on the mismeasured observations lead to inconsistent estimation.

The topic of binary regression when predictors Xi are measured with error

has been the subject of several recent papers, see Carroll, Spiegelman, Lan, Bai-

ley and Abbott (1984), Carroll and Wand (1991), Reilly and Pepe (1995), and

Lawless, Kalbfleisch and Wild(1999), etc. When the binary responses Yi are sub-

ject to misclassification, Pepe(1992) and Cheng and Hsueh (1999) discussed bias

correction methods in the estimation of logistic regression parameters. In this

paper, we study the estimation problem of β0 when both observations Yi and pre-

dictors Xi are measured with error. Parametric and semiparametric methods are

discussed. We find that the proposed semiparametric estimation method is a gen-

eralization of the pseudolikelihood method of Carroll and Wand (1991) and the

estimated likelihood method of Pepe (1992). Many other estimating approaches

have been proposed in the literature. A method based on the mean score was

proposed by Pepe, Reilly and Fleming (1994) and Reilly and Pepe (1995) for

the mismeasured outcome data problem and mismeasured covariate data prob-

lem, respectively. However, Golm et al. (1999) and Lawless et al. (1999) argued

that this semiparametric method is less efficient. Robins, Rotnitzky and Zhao

(1994) proposed a class of semiparametric efficient estimators for the model with

mismeasured predictors based on the inverse probability weighted estimating

equation approach. When both response variable and predictors are subject to

measurement error, the semiparametric efficient estimator has not been formally

derived yet. In this paper we only emphasize various imputation approaches.

The weighting methods, such as the semiparametric efficient estimation derived

by Robins et al. (1994), will not be discussed further.

We assume in this paper that the complete data set consists of a primary

sample plus a smaller validation subsample which is obtained by double sampling

scheme. Extension of the selection probabilities for the validation data set to

depend on the observed surrogate covariates is discussed briefly in Section 3.

Asymptotically, we also suppose that the validation subsample size is a fraction

of the major sample size. The estimators under discussion will be formally defined

in Section 2. In Section 3, some asymptotic results are derived for semiparametric

and parametric estimators of β0. Comparisons of their asymptotic covariance

matrices are given in Section 4. Further, finite sample properties are explored

through a simulation study in Section 5.

2. Estimation Methods

Suppose the true random variables (Y,X) are subject to mismeasurement

and the surrogate observations are represented by (Y 0,W ), here X = (1, X1)
T

and W = (1,W1)
T . In addition to the primary sample {(Y 0

i ,Wi), i = 1, . . . , n},
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a smaller validation subsample is also observed in order to understand the mis-

measurement structure. The sampling scheme is to randomly select k units from

the primary sample and at the selected units the true measurement devices are

used to obtain the validation data. Here the simple random sampling scheme is

considered and for the sake of simplicity, the first k units of the primary sample

are assumed to be the selected units. Thus we have the validation subsample

{(Y 0
i , Yi, Xi,Wi), i = 1, . . . , k}. Later in Section 3 the theoretical results will be

given for the case that the sampling scheme depends on the value of the surrogate

predictors W .

From the primary sample, we denote the regression function of Y 0 on W = w

as π0(w) = Pr(Y 0 = 1 | w). For Y and W being assumed mutually inde-

pendent given X, and Y 0 and X being mutually independent given Y,W , the

above regression function can be rewritten as π0(w) = π(w, β0), where π(w, β) =

{1− θ0(w)}E{F (XT β) | w}+φ0(w)E{F̄ (XTβ) | w} ≡ 1− π̄(w, β). Here the ex-

pectation is taken with respect to the conditional density f 0
X|W , F̄ (·) = 1−F (·),

and the misclassification probability functions θ0(w) and φ0(w) are defined by

θ0(w) = Pr(Y 0 = 0 | Y = 1, w) and φ0(w) = Pr(Y 0 = 1 | Y = 0, w). Note that

the surrogate W is often a fallible measurement of X and corresponding to a

coarser partition in the sample space. The conditional independence of Y 0 and

X given Y , W would be implied if the misclassification scheme depends onX only

through the value of W . It is clear that the expectation E[{Y 0−F (W Tβ0)}W T ]

is not necessarily zero. Hence it is inappropriate to apply the usual likelihood

method to the primary sample for inference about β0. In the following, we discuss

some consistent estimates based on different imputation methods.

Suppose first that f 0
X|W and θ0(w), φ0(w) are known a priori. Then for the

observation (y0
j , wj), j = k + 1, . . . , n, in the primary sample, the corresponding

log-likelihood and score function are

L∗(β | y0
j, wj)=y

0
j lnπ(wj , β) + (1 − y0

j ) ln π̄(wj , β),

S∗(β | y0
j, wj)≡

∂L∗(β | y0
j , wj)

∂β

=
y0

j −π(wj , β)

π(wj, β)π̄(wj, β)
{1−θ0(wj)−φ0(wj)}E{F (XT

j β)F̄ (XT
j β)Xj | wj}.

Since,
y0

j − π(wj , β)

π(wj , β)π̄(wj , β)
=

2y0
j − 1

y0
jπ(wj , β) + (1 − y0

j )π̄(wj , β)
,

1−θ0(wj)−φ0(wj) = {1−θ0(wj)−π(wj , β)}
E{F (XT

j β) | wj}
E{F (XT

j β) | wj}E{F̄ (XT
j β) | wj}

,
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we have

y0
j − π(wj , β)

π(wj , β)π̄(wj , β)
{1 − θ0(wj) − φ0(wj)} =

E(Yj | y0
j , wj) −E{F (XT

j β) | wj}
E{F (XT

j β) | wj}E{F̄ (XT
j β) | wj}

.

Consequently,

S∗(β | y0
j , wj) =

E(Yj | y0
j , wj) −E{F (XT

j β) | wj}
E{F (XT

j β) | wj}E{F̄ (XT
j β) | wj}

E
{

F (XT
j β)F̄ (XT

j β)Xj | wj

}

=
{A0

1(y
0
j , wj) −A0

2(y
0
j , wj)}E{F (XT

j β)F̄ (XT
j β)Xj | wj}

[

A0
1(y

0
j , wj)E{F (XT

j β) | wj} +A0
2(y

0
j , wj)E{F̄ (XT

j β) | wj}
] ,

where A0
1(y

0
j , wj) = Pr(Y 0

j = y0
j | Yj = 1, wj) =

{

θ0(wj)
}(1−y0

j
) {

1 − θ0(wj)
}y0

j ,

and A0
2(y

0
j , wj) = Pr(Y 0

j = y0
j | Yj = 0, wj) =

{

φ0(wj)
}y0

j
{

1 − φ0(wj)
}(1−y0

j
)
.

Using this result, we easily see that the MLE β̂f of β0 can be obtained by solving

the likelihood equations

k
∑

i=1

S(β | yi, xi) +
n
∑

j=k+1

S∗(β | y0
j , wj) = 0, (1)

where S(β | yi, xi) = {yi − F (xT
i β)}xi.

Unfortunately, in applications f 0
X|W (·), θ0(·) and φ0(·) are rarely known and

β̂f can not be obtained. If the subsample size k is large enough, a simple esti-

mate β̂s can be obtained by using only the validation subsample, i.e., β̂s satisfies
∑k

i=1 S(β | yi, xi) = 0. Such a simple estimate is in general not efficient; see

Cheng and Hsueh (1999). The basic reason is that the information contained

in the primary sample is not properly exploited. To do this, assume there ex-

ist parametric functions and parameters (γ0, α0), independent of β0, such that

θ0(W ) = θ(W ;α0), φ0(W ) = φ(W ;α0) and f0
X|W (X | W ) = f(X | W ; γ0) al-

most surely. See Carroll and Wand (1991) and Cheng and Hsueh (1999) for

related discussions. Then one can employ the usual approach to obtain the joint

MLE (β̂m, α̂m, γ̂m). On the other hand, the maximum pseudolikelihood estimate

(MPLE) β̂p can be obtained by solving (1) with α0 and γ0 in S∗(β | y0
j , wj) being

replaced by their MLE α̂p and γ̂p derived from the validation data.

In general, β̂m can be shown to be more efficient than β̂p asymptotically.

However, in solving the equations for finite sample cases, the computational com-

plexity grows (and numerical stability deteriorates) with the number of unknown

parameters, so that β̂m may not have proper performance, see the simulation

study in Section 5.
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The last approach to be discussed is a semiparametric method. Assuming
f0

X|W (· | w), θ0(w) and φ0(w) in S∗(β | y0
j , wj) of (1) are unknown functions,

a nonparametric method is used to estimate them. Formally, we propose the
MPLE β̂sp solving the following pseudolikelihood equations

k
∑

i=1

S(β | yi, xi) +
n
∑

j=k+1

Ŝ∗(β | y0
j , wj) = 0,

Ŝ∗(β | y0, w) =
{Â1(y

0, w) − Â2(y
0, w)}Ê[F (XTβ)F̄ (XTβ)X | w]

[

Â1(y0, w)Ê{F (XTβ) | w} + Â2(y0, w)Ê{F̄ (XTβ) | w}
] .

Here, for any integrable function g(x;β), the estimated expectation Ê{g(X;β) |
w} is given by Ê{g(X;β) | w} = {∑k

i=1Kh(w − wi)g(xi;β)}/{∑k
i=1Kh(w −

wi)}. Moreover Â1(y
0, w) and Â2(y

0, w) are estimates of A0
1(y

0, w) and A0
2(y

0, w),
with θ0(w) and φ0(w) being replaced by their nonparametric estimates θ̂(w) =
{∑k

i=1Kh(w − wi)yi(1 − y0
i )}/{

∑k
i=1Kh(w − wi)yi} and φ̂(w) = {∑k

i=1Kh(w −
wi)(1 − yi)y

0
i }/{

∑k
i=1Kh(w − wi)(1 − yi)}. The above kernel function K(t) is

taken to be a density function, Kh(t) = h−1K(t/h), the bandwidth h depends
on n and tends to zero as n→ ∞.

We remark that the proposed semiparametric estimation method generalizes
the methods of Carroll and Wand (1991) and Pepe (1992). If Y = Y 0 with prob-

ability one, i.e., only measurement error occurs in the predictor, β̂sp is the MPLE
of Carroll and Wand (1991). On the other hand, if X = W with probability one,
i.e., only misclassification occurs in the response, β̂sp reduces to the maximum
estimated likelihood estimate of Pepe (1992).

3. Asymptotic Distributions

The asymptotic distributions of the estimators proposed in the preceding
section will be presented here for the case d = 1. Extension to general d is simple

and the related results will be given in a remark. The asymptotic properties
depend on certain regularity conditions.

A.1 β0 ∈ Λ, an open set in R2.

A.2 E(X2) <∞.

A.3 The misclassification probability functions θ0(w) and φ0(w) ∈ (0, 1), and
the density function f 0

W (w) of W are strictly positive in the space of W .
Furthermore, these functions and their l-th derivatives, l = 1, 2, are in L4

and also satisfy a weighted Lipschitz condition. (A function η(·) is said
to satisfy a weighted Lipschitz condition if there exists a constant c and a
bounded function ψ in L4 such that |η(x) − η(y)| < ψ(x)|x − y| for all x, y

with |x− y| < c.)
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A.4 The parametric functions θ(w;α),φ(w;α) and f(x | w; γ), and their partial

derivatives ∂θ(w;α)/∂α, ∂φ(w;α)/∂α and ∂f(x | w; γ)/∂γ, are uniformly

continuous at (α0, γ0) for all x and w in the support of X and W .

A.5 The function K(·) is a second-order kernel (see Gasser and Müller (1979)).

A.6 h = hn → 0 with nh2 → ∞ and nh4 → 0, as n → ∞. Also, as n → ∞,

k = rn{1 +O(h2)}, where r ∈ (0, 1].

In the following, we give the basic asymptotic results under the assumption

that α = (α0, α1)
T and γ = (γ0, γ1)

T . Except for the asymptotic normality of

β̂sp, whose proof is given in the Appendix, the proofs for other estimators are

standard and thus are omitted.

Theorem 1. Suppose conditions (A.1)−(A.6) hold and let β̃ be any estimator

discussed in Section 2. Then as n → ∞, n1/2(β̃ − β0) converges in distribution

to a normal with mean zero. Their asymptotic covariance matrices are

lim
n→∞

Cov {n1/2(β̂f − β0)} = Σf = {rIv + (1 − r)Ic
v}−1,

lim
n→∞

Cov {n1/2(β̂s − β0)} = Σs = (rIv)
−1,

lim
n→∞

Cov {n1/2(β̂m − β0)} = Σm = Σf +
(1 − r)2

r
ΣfImΣf ,

lim
n→∞

Cov {n1/2(β̂p − β0)} = Σp = Σf +
(1 − r)2

r
ΣfIpΣf ,

lim
n→∞

Cov {n1/2(β̂sp − β0)} = Σsp = Σf +
(1 − r)2

r
ΣfIspΣf .

Here Iv = E{F (XT β0)F̄ (XTβ0)X⊗2} and

Ic
v = E







{1 − θ0(W ) − φ0(W )}2
[

E{F (XT β0)F̄ (XTβ0)X |W}
]⊗2

π0(W ){1 − π0(W )}






,

Ip = E





{1−θ0(W )−φ0(W )}E{F (XT β0)F̄ (XTβ0)X|W}
π0(W ){1 − π0(W )}

(

π̇0
α(W ;α0, γ0)

π̇0
γ(W ;α0, γ0)

)T




×




E

[

F (XT β0)θ̇⊗2(W ;α0)
θ0(W ){1−θ0(W )}

+ F̄ (XT β0)φ̇⊗2(W ;α0)
φ0(W ){1−φ0(W )}

]

0

0 E{ḟ (X |W ; γ0)}⊗2





−1

×E




{1−θ0(W )−φ0(W )}E{F (XTβ0)F̄ (XTβ0)X|W}
π0(W ){1 − π0(W )}

(

π̇0
α(W ;α0, γ0)

π̇0
γ(W ;α0, γ0)

)T




T

,
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Isp = E











{1 − θ0(W ) − φ0(W )}
[

E{F (XT β0)F̄ (XTβ0)X | W}
]⊗2

[π0(W ){1 − π0(W )}]2

×
(

E{F (XTβ0)|W}θ0(W ){1−θ0(W )}+E{F̄ (XTβ0)|W}φ0(W ){1−φ0(W )}

+ {1 − θ0(W ) − φ0(W )}2[E{F 2(XTβ0) | W} −E2{F (XTβ0) | W}]
)}

,

Im =
r

(1 − r)2
∆(β0,α0,γ0){∆(α0,γ0) − ∆T

(β0,α0,γ0)Σf∆(β0,α0,γ0)}−1∆T
(β0,α0,γ0),

∆(β0,α0,γ0) = (1 − r)E

[

{1 − θ0(W ) − φ0(W )}E{F (XT β0)F̄ (XTβ0)X | W}
π0(W ){1 − π0(W )}

×
(

π̇0
α(W ;α0, γ0)

π̇0
γ(W ;α0, γ0)

)T ]

,

∆(α0,γ0) = r





E

[

F (XT β0)θ̇⊗2(W ;α0)
θ0(W ){1−θ0(W )} + F̄ (XT β0)φ̇⊗2(W ;α0)

φ0(W ){1−φ0(W )}

]

0

0 E{ḟ(X |W ; γ0)}⊗2





+(1 − r)E





1

π0(W ){1 − π0(W )}

(

π̇0
α(W ;α0, γ0)

π̇0
γ(W ;α0, γ0)

)⊗2


 .

In this,

π̇α(W ;α0, γ0) =
∂π0(W )

∂α

∣

∣

∣

∣

∣

(α0 ,γ0)

= E{F̄ (XTβ0) |W}φ̇(W ;α0) −E{F (XT β0) |W}θ̇(W ;α0),

π̇γ(W ;α0, γ0) =
∂π0(W )

∂γ

∣

∣

∣

∣

∣

(α0 ,γ0)

= {1 − θ0(W ) − φ0(W )}E{F (XT β0)ḟ(X |W ; γ0) | W},

θ̇(W ;α0) =
∂θ(W ;α)

∂α

∣

∣

∣

∣

α0

, φ̇(W ;α0) =
∂φ(W ;α)

∂α

∣

∣

∣

∣

α0

,

ḟ(X | W ; γ0) =
∂ ln f(X | W ; γ)

∂γ

∣

∣

∣

∣

γ0

,

where, for any column vector A, A⊗2 = AAT .

Remark 1. It can be seen that Im, Ip and Isp are nonnegative definite matrices,

and thus (1−r)2

r ΣfImΣf , (1−r)2

r ΣfIpΣf , (1−r)2

r ΣfIspΣf can be regarded as addi-
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tional variations due to estimating the unknown functions θ0(W ), φ0(W ) and

f0
X|W by parametric and nonparametric methods.

Remark 2. It is well known that the information matrix Iv is the variance

of the score; that is, Iv = Var {S(β0 | Y,X)} = E[Var {S(β0 | Y,X) | X}].
We see that the information matrices I c

v and Isp also have similar expressions:

Ic
v = E[Var {S∗(β0 | Y 0,W ) | W}] = E[ρ(Y, Y 0 | W )Var {S∗(β

0 | Y,W ) | W}],
and Isp = E(ρ(Y, Y 0 |W )[1−ρ(Y, Y 0 |W ){1−ρ(Y, F (XT β0) |W )}]Var {S∗(β

0 |
Y,W ) | W}), where S∗(β | Y,W ) = ∂ lnPr(Y | W )/∂β, and ρ(Y, Y 0 | W ) =

Corr2(Y, Y 0 | W ) = {{1 − θ0(W ) − φ0(W )}2E{F (XT β0) | W}E{F̄ (XTβ0) |
W}}/[π0(W ){1 − π0(W )}],

ρ(Y, F (XTβ0) |W ) = Corr2(Y, F (XTβ0) |W )

=
E{F 2(XTβ0) | W} − [E{F (XT β0) | W}]2

E{F (XT β0) | W}E{F̄ (XTβ0) |W} .

Thus these information matrices depend not only on the score S∗(β
0 | Y,W ) but

also on the squared correlation functions.

Remark 3. For obtaining the validation subsample, a simple random sampling

design is used. However, the selection probabilities may depend on the value of

W . For example, suppose g(w) is the selection probability. Then the asymptotic

covariance matrix of β̂sp becomes Σ∗
sp = Σ∗ + Σ∗I∗spΣ

∗, where

Σ∗−1=E
[

g(W )E{F (XT β0)F̄ (XTβ0)X⊗2 | W}
]

+E
(

{1−g(W )}
{1−θ0(W )−φ0(W )}2

[

E{F (XTβ0)F̄ (XTβ0)X|W}
]⊗2

π0(W ){1 − π0(W )}
)

,

I∗sp=E
{{1−g(W )}2

g(W )

{1−θ0(W )−φ0(W )}
[

E{F (XT β0)F̄ (XTβ0)X | W}
]⊗2

[π0(W ){1 − π0(W )}]2

×
(

E{F (XTβ0)|W}θ0(W ){1−θ0(W )}+E{F̄ (XTβ0)|W}φ0(W ){1−φ0(W )}

+{1 − θ0(W ) − φ0(W )}2[E{F 2(XTβ0) |W} −E2{F (XT β0) |W}]
)}

.

Other asymptotic covariance matrices in Theorem 1 can be modified accordingly.

Remark 4. It is clear that Σsp reduces to the asymptotic covariance matrix

of Carroll and Wand’s (1991) estimator provided Y = Y 0 with probability one.

Suppose X = W with probability one, then Σsp is the asymptotic covariance

matrix of Pepe’s (1992) estimator; see also Cheng and Hsueh (1999).
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Remark 5. The results in Theorem 1 can be extended to d > 1 vector predic-

tors, provided the function K is a pth order kernel, p > d, and the bandwidth

parameter satisfies nh2d → ∞ and nh2p → 0 as n→ ∞.

Remark 6. All the asymptotic covariance matrices can be estimated by moment

type estimates.

4. Comparisons of Asymptotic Covariance Matrices

In this section, we discuss the behaviors of different estimators by comparing

their asymptotic covariance matrices. The general results basically agree with

our expectation, but some of their proofs are not trivial. For any matrices A and

B, we write A ≥ B if A−B is a nonnegative definite matrix.

4.1. Results under general conditions

First, from Remark 1 of Section 3, we have Σm ≥ Σf , Σp ≥ Σf and

Σsp ≥ Σf . Further, suppose we let {∆v
(α0 ,γ0)}−1 be the asymptotic covariance

matrix of the MLE (α̂p, γ̂p) which is obtained from the validation subsample.

Then one can rewrite Σp as Σp = Σf [Σ−1
f +∆(β0,α0,γ0){∆v

(α0 ,γ0)}−1∆T
(β0,α0,γ0)]Σf ,

and consequently we have

Σp − Σm

=Σf∆(β0,α0,γ0)

[

{∆v
(α0,γ0)}−1−{∆(α0 ,γ0)−∆T

(β0,α0,γ0)Σf∆(β0,α0,γ0)}−1
]

∆T
(β0,α0,γ0)Σf .

Since {∆v
(α0 ,γ0)}−1 and {∆(α0,γ0) − ∆T

(β0,α0,γ0)Σf∆(β0,α0,γ0)}−1 are respectively,

the asymptotic covariance matrices of (α̂p, γ̂p) and (α̂m, γ̂m), the above results

yield the following theorem.

Theorem 2. Given conditions (A.1)−(A.6), we have Σs ≥ Σf ,Σsp ≥ Σf and

Σp ≥ Σm ≥ Σf .

4.2. Results under special constraints

Cheng and Hsueh (1999) compared the asymptotic covariance matrices when

X = W with probability one. Here the comparisons focus on the case when

Y = Y 0 with probability one.

As a consequence of Theorem 1, if Y = Y 0 with probability one, the matrices

Σf and Isp simplify to

Σf =
[

rE{F (XTβ0)F̄ (XTβ0)X⊗2}

+(1 − r)E
( [E{F (XT β0)F̄ (XTβ0)X | W}]⊗2

E{F (XT β0) | W}E{F̄ (XTβ0) |W}
)]−1

,
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Isp = E
(

ρ(Y, F (XTβ0) |W )E
[

{S∗(β0 | Y,W )}⊗2 | W
])

.

Then Corollary 1 follows easily from

Σs − Σsp = Σf

(

(1 − r)E{S∗(β
0 | Y,W )}⊗2

−(1 − r)2

r
E
(

ρ(Y, F (XT β0) | W )E[{S∗(β
0 | Y,W )}⊗2 |W ]

)

+
(1−r)2

r
E{S∗(β0|Y,W )}⊗2

[

E{S(β0|Y,X)}⊗2
]−1

E{S∗(β0|Y,W )}⊗2

)

Σf .

Corollary 1. Suppose conditions (A.1)−(A.6) are satisfied, that Y = Y 0 with

probability one, and ρ(Y, F (XTβ0) |W ) ≤ min(r/(1 − r), 1). Then Σs ≥ Σsp.

Accordingly, the semiparametric estimator β̂sp is always better than the sim-

ple MLE β̂s under our conditions. Similar conclusion can be derived for the case

that X = W with probability one. Now suppose β0 is a scalar. Then under the

conditions of Theorem 1 and ρ(Y, F (XT β0) | W ) ≤ ρ∗, with probability one for

some constant ρ∗, the ARE of β̂s with respect to β̂sp is always smaller than

e1(ρ
∗, I, r) = 1 − (1 − r)2I[I − {ρ∗ − r/(1 − r)}]

{r + (1 − r)I}2
,

where the coefficient of reliability I = E{S∗(β
0 | Y,W )}2/E{S(β0 | Y,X)}2 ≤ 1.

This can be used to measure the quality of surrogate predictors W . Some curves

of e1 are given in Figure 1 for ρ∗ = 0.3. The results clearly show that if the

coefficient I is large enough, then even for a smaller sampling fraction r, the semi-

parametric estimator β̂sp is still much more efficient than the simple MLE β̂s.
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Figure 1. For ρ∗ = 0.3, curves of e1(ρ
∗, I, r) at various I.



LOGISTIC REGRESSION MODEL WITH MISMEASURED OBSERVATIONS 121

Similar results can be derived for the ARE of β̂sp with respect to β̂f . We

note that under the same conditions, a lower bound for the ARE of β̂sp with

respect to β̂f is

e2(ρ
∗, I, r) = 1 − (1 − r)2Iρ∗

r2 + r(1 − r)I + (1 − r)2Iρ∗
.

Some curves of e2 are also given in Figure 2 for ρ∗ = 0.3. The ARE is at least

0.60 for r ≥ 0.3. Further, for fixed r, e2 increases as the coefficient of reliability

I decreases.
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Figure 2. For ρ∗ = 0.3, curves of e2(ρ
∗, I, r) at various I.

5. Simulation Studies

In order to study the finite sample performance of the estimates, some em-

pirical studies were carried out. The logistic regression model considered was

F (xTβ0) = exp(x)/{1 + exp(x)} so (β0
0 , β

0
1) = (0, 1). A linear error model

for the predictor X was assumed: Wi = Xi + v · Ui, for some v. Xi and Ui

were pseudo independent N(0, 0.25) random variables. Thus given Wi = wi,

Xi is a N(wi/(1 + v2), (0.25)v2/(1 + v2)) variate. We also assumed that given

Wi = wi, the misclassification probabilities were independent of Xi and Yi, i.e.,

θ0(wi) = φ0(wi), for all wi, where θ0(wi) = θ(wi, α
0) and φ0(wi) = φ(wi, α

0).

Four different models were considered.

(1a) Wi = Xi +0.1Ui and Yi = Y 0
i with probability one. In this case, no misclas-

sification occurs, and hence the only functional form needed for estimating

β̂m and β̂p is f(x|w; γ) = N(w/(1 + 4γ), γ/(1 + 4γ)), γ > 0.

(1b) Wi = Xi + 0.1Ui and θ0(wi) = φ0(wi) = 0.1. In this case, the functional

forms needed for computing β̂m, β̂p are θ(w,α) = α0, φ(w,α) = α1, and

f(x|w; γ) = N(w/(1 + 4γ), γ/(1 + 4γ)), γ > 0.
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(2a) Wi = Xi + Ui and Yi = Y 0
i with probability one. In this case, no misclas-

sification occurs, and hence the only functional form needed for estimating

β̂m and β̂p is f(x|w; γ) = N(w/(1 + 4γ), γ/(1 + 4γ)), γ > 0.

(2b) Wi = Xi + Ui and θ0(wi) = φ0(wi) = exp(wi − 2.5)/{1 + exp(wi − 2.5)}.
In this case, the misclassification probabilities follow a logit model with

regression coefficients α0
0 = −2.5, α0

1 = 1. The functional forms needed

for estimating β̂m and β̂p are θ(w,α) = exp(α0 + α1w)/{1 + exp(α0 +

α1w)}, φ(w,α) = exp(α0 + α1w)/{1 + exp(α0 + α1w)}, and f(x|w; γ) =

N(w/(1 + 4γ), γ/(1 + 4γ)), γ > 0.

Model (1b) features small measurement error for both responses and covariates.

On the other hand, Model (2b) has more severe measurement error. The primary

sample size used was n = 150, and the sampling fractions for validation subsam-

ples were r = 0.2, 0.4 and 0.6. One thousand pseudo data sets were generated to

compute the simulated mean squared errors.

The function K(·) used in computing the nonparametric regression estimates

was the Epanechnikov kernel, that is, K(t) = (3/4)(1 − t2)I[−1,1](t); see Eubank

(1988). Several bandwidths h = aσ̂wk
−1/3 were used in our simulations. Here

σ̂w is the sample standard deviation of W based on the validation data set, and

a is some constant value. Such choice of bandwidth was justified by Sepanski,

Knickerbocker and Carroll (1994); see also Carroll and Wand (1991) and Wang

and Wang (1997).

First, we investigate the performance of β̂sp for various choices of a. The

performance of β̂sp = (β̂sp,0, β̂sp,1)
T is measured by its simulated total mean

squared error (TMSE), defined to be MSE(β̂sp,0)+MSE(β̂sp,1). Table 1 reports

the simulation results. It is seen that the performance of β̂sp is not sensitive to

the choice of a. This agrees with many findings for semiparametric estimation

using kernel regression. Here, however, a better choice is a = 1 and hence we use

this value for h in remaining simulations.

Table 1. Simulated TMSE of β̂sp for different a

W = X + .1U W = X + U

θ0(W ) = 0 θ0(W ) = .1 θ0(W ) = 0 θ0(W )= exp(W−2.5)
{1+exp(W−2.5)}

a r= .2 r= .4 r= .6 r= .2 r= .4 r= .6 r= .2 r= .4 r= .6 r= .2 r= .4 r= .6

0.5 .2005 .1860 .1742 .2270 .1972 .1748 .3418 .2444 .2011 .3810 .2584 .2110

1.0 .1899 .1863 .1625 .2112 .1813 .1843 .3091 .2121 .1989 .3158 .2470 .2046
1.5 .1947 .1900 .1715 .1991 .1901 .1870 .3592 .2604 .2182 .3612 .2496 .2238

2.0 .2027 .1900 .1767 .2453 .1867 .1832 .3645 .2665 .2254 .3374 .2505 .2268

Next, we compare the simulated mean squared error of different estimates for

β = (β0, β1)
T . The results are tabulated in Table 2. Obviously, β̂sp has the best
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overall performance among the competing estimates. Moreover, the behavior

of the simulated TMSE for β̂sp seems insensitive to the selection of r values.

This is particularly true when the model has only minor measurement errors.

Unreported calculations also show that the simulated standard errors (SE) for

β̂sp,0 and β̂sp,1 are stable. Under all cases considered, the simulated SE’s range

from 0.166 to 0.188 for β̂sp,0 and from 0.366 to 0.506 for β̂sp,1. In general, β̂sp

has much better performance than the other estimates, especially when r ≤ 0.4.

From Table 2, we also see that the estimates β̂f and β̂p are quite competitive and

better than the simple estimate β̂s. The latter statement is especially clear when

r = 0.2. However, the simulated SE’s for β̂f,0, β̂p,0 and β̂s,0 are not very different.

These values range from 0.219 to 0.421. On the other hand, the simulated SE’s

for β̂f,1, β̂p,1 are smaller than those of β̂s,1, particularly when r = 0.2. The largest

simulated SE for β̂f,1 and β̂p,1 is 0.894 compared with the corresponding value

1.292 for β̂s,1.

Table 2. Simulated TMSE of different estimators

β̂s β̂m β̂p β̂f β̂sp

W = X + .1U

θ0(W ) = 0. r = .2 1.2917 14.6527 .8332 .8318 .1899

r = .4 .4917 6.4017 .4144 .4570 .1863

r = .6 .2840 1.5523 .2808 .2799 .1625

θ0(W ) = 0.1 r = .2 1.2917 13.6781 .8721 .8039 .2112

r = .4 .4917 4.7618 .4284 .4488 .1813

r = .6 .2840 2.4016 .2967 .2987 .1843

W = X + U
θ0(W ) = 0. r = .2 1.2917 17.0013 .8311 .8945 .3091

r = .4 .4917 5.3543 .4606 .4339 .2121

r = .6 .2840 1.4972 .2697 .2476 .1989

θ0(W ) = exp(W−2.5)
1+exp(W−2.5) r = .2 1.2917 36.7846 .8622 .8203 .3158

r = .4 .4917 7.0655 .3740 .3992 .2470

r = .6 .2840 2.2060 .2754 .2530 .2046

Finally, we comment on the comparison between β̂m and β̂p. In general, β̂p is

better than β̂m unless r = 0.6. This happens because there are more parameters

to be estimated simultaneously in computing β̂m, and the validation subsample

size k is not large enough. The largest simulated SE is 3.103 for β̂m,1 and 1.769 for

β̂m,0, showing that the estimates β̂m are not very stable. The performance of β̂m

and β̂p are expected to become better if k is sufficiently large and the parametric

functions θ(w,α), φ(w,α) and fX|W (x|w; γ) are correctly modeled. Cheng and

Hsueh (1999) reported that the performances of β̂m and β̂p depend heavily on
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the correct choice of the models for misclassification probabilities when X = W

with probability one. Therefore, β̂m and β̂p are not very robust and extra care

needs to be taken to apply the parametric methods.
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Appendix

Proof of Theorem 1. By Taylor’s Theorem and for n→ ∞, we have

√
n(β̂sp−β0)=

[

1

n

{

−∂
2 l̂(β0)

∂β2

}

− 1

2n

{

−∂
3̂l(β∗)

∂β3

}

(β̂sp−β0)

]−1
1√
n

{

∂l̂(β0)

∂β

}

+op(1),

where β∗ is some quantity such that |β∗ −β0| ≤ |β̂sp − β0|. Here l̂ is the pseudo-

likelihood, and

∂l̂(β0)

∂β
=

k
∑

i=1

{

∂l1,i(β
0)

∂β

}

+
n
∑

j=k+1

{

∂l̂2,j(β
0)

∂β

}

,

∂l1,i(β
0)

∂β
= {Yi − F (XT

i β
0)}Xi,

∂l̂2,j(β
0)

∂β
=

[Â1(Y
0
j ,Wj) − Â2(Y

0
j ,Wj)]Ê[F (XT

j β
0)F̄ (XT

j β
0)Xj |Wj]

Ê{F (XT
j β

0) |Wj}Â1(Y 0
j ,Wj) + Ê{F̄ (XT

j β
0) |Wj}Â2(Y 0

j ,Wj)
.

Further,

−∂
2 l̂(β0)

∂β2
=

k
∑

i=1

{

−∂
2l1,i(β

0)

∂β2

}

+
n
∑

j=k+1

{

−∂
2 l̂2,j(β

0)

∂β2

}

,

−∂
2l1,i(β

0)

∂β2
= F (XT

i β
0)F̄ (XT

i β
0)XiX

T
i ,

−∂
2 l̂2,j(β

0)

∂β2

=

(

[Â1(Y
0
j ,Wj) − Â2(Y

0
j ,Wj)]Ê[F (XT

j β
0)F̄ (XT

j β
0)Xj |Wj ]

Ê{F (XT
j β

0) |Wj}Â1(Y
0
j ,Wj) + Ê{F̄ (XT

j β
0) |Wj}Â2(Y

0
j ,Wj)

)⊗2

−
[Â1(Y

0
j ,Wj) − Â2(Y

0
j ,Wj)]Ê[{1 − 2F (XT

j β
0)}F (XT

j β
0)F̄ (XT

j β
0)Xj |Wj ]

Ê{F (XT
j β

0) | Wj}Â1(Y 0
j ,Wj) + Ê{F̄ (XT

j β
0)|Wj}Â2(Y 0

j ,Wj)
.
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By the Law of Large Numbers,

1

n

{

−∂
2 l̂(β0)

∂β2

}

=
1

n

{

−∂
2l(β0)

∂β2

}

+

[

1

n

{

−∂
2 l̂(β0)

∂β2

}

− 1

n

{

−∂
2l(β0)

∂β2

}]

= rE[F (XTβ0)F̄ (XTβ0)}XXT ]

+(1 − r)E

{

{1 − θ0(W ) − φ0(W )}2

π0(W ){1 − π0(W )} (E[F (XTβ0)F̄ (XTβ0)X | W ])⊗2

}

+op(1) +Op(
1

n
√
h

+
1√
n

+ h2)

= Σ−1
f + op(1), n→ ∞, h→ 0 and n2h→ ∞.

Then as n→ ∞, h→ 0, n2h→ ∞,
√
n(β̂sp −β0) = {Σf + op(1)}

{

∂l̂(β0)
∂β

}

/
√
n+

op(1). Further, by Taylor’s Theorem again, as n→ ∞,

n
∑

i=k+1

{

∂l̂2,j(β
0)

∂β

}

=
n
∑

i=k+1

{

∂l2,j(β
0)

∂β
+Hn,j

}

+Op(
1

nh
3

2

+ nh4 +
1

h
+

√
nh

3

2 ),

where Hn,j = 1
k

∑k
i=1 hi,j, and

hi,j =
Kh(Wi −Wj)

f(Wj)

({

∂2l2,j(β
0)

∂β∂θ0(Wj)

}

Yi{1 − Y 0
i − θ0(Wj)}

E{F (XT
j β

0) |Wj}

+

{

∂2l2,j(β
0)

∂β∂φ0(Wj)

}

(1 − Yi){Y 0
i − φ0(Wj)}

E{F̄ (XT
j β

0) | Wj}

+

{

∂2l2,j(β
0)

∂β∂E{F (XT
j β

0) | Wj}

}

[

F (XT
i β

0) −E{F (XT
j β

0) |Wj}
]

+

{

∂2l2,j(β
0)

∂β∂E[F (XT
j β

0)F̄ (XT
j β

0)Xj |Wj ]

}

×
[

F (XT
i β

0)F̄ (XT
i β

0)Xi −E[F (XT
j β

0)F̄ (XT
j β

0)Xj |Wj ]
]

)

.

As a consequence, for n→ ∞,

1√
n

{

∂l̂(β0)

∂β

}

=

√
n

k(n−k)
k
∑

i=1

n
∑

j=k+1

[

k

n

{

∂l1,i(β
0)

∂β

}

+
n−k
n

{

∂l2,j(β
0)

∂β

}

+
n−k
n

hi,j

]

+Op(
1

n
3

2h
3

2

+ n
1

2h4 +
1

n
1

2h
+ h

3

2 ).
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Define two i.i.d. random vectors Zi = (Xi,Wi, Yi, Y
0
i ), i = 1, . . . , k and Z∗

j =

(Wj, Y
0
j ), j = k + 1, . . . , n and let

Qn(Zi;Z
∗
j ) =

k

n

{

∂l1,i(β
0)

∂β

}

+
n− k

n

{

∂l2,j(β
0)

∂β

}

+
n− k

n
hi,j.

Then k−1(n−k)−1∑k
i=1

∑n
j=k+1Qn(Zi;Z

∗
j ) is a generalized U-statistic. Applying

the Central Limit Theorem for generalized U-statistics (see Serfling(1980)), we

have, for n→ ∞,

√
n

k(n− k)

k
∑

i=1

n
∑

j=k+1

Qn(Zi;Z
∗
j )

=
√
n





1

k

k
∑

i=1

E{Qn(Zi;Z
∗
j ) | Zi} +

1

n− k

n
∑

i=k+1

E{Qn(Zi;Z
∗
j ) | Z∗

j }


+ op(1)

d→N

(

0,Σ−1
f +

(1 − r)2

r
Isp

)

,

E{Qn(Zi;Z
∗
j ) | Zi}

=
k

n

{

∂l1,i(β
0)

∂β

}

+
n− k

n

{1 − θ0(Wi) − φ0(Wi)}E[F (XT
i β

0)F̄ (XT
i β

0)Xi | Wi]

π0(Wi){1 − π0(Wi)}
×
(

Yi{1 − Y 0
i − θ0(Wi)} − (1 − Yi){Y 0

i − φ0(Wi)}

−{1 − θ0(Wi) − φ0(Wi)}[F (XT
i β

0) −E{F (XT
i β

0) |Wi}]
)

+Op(h
2),

E{Qn(Zi;Z
∗
j ) | Z∗

j } =
n− k

n

{

∂l2,j(β
0)

∂β

}

.

Consequently, as n→ ∞,
√
n(β̂sp − β0)

d→ N
(

0,Σf + (1−r)2

r ΣfIspΣf

)

.
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