
Trust Region Newton Methods for Large-Scale Logistic Regression

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science, National Taiwan University, Taipei 106, Taiwan

Ruby C. Weng chweng@nccu.edu.tw

Department of Statistics, National Chengchi University, Taipei 116, Taiwan

S. Sathiya Keerthi selvarak@yahoo-inc.com

Yahoo! Research, California

Abstract

Large-scale logistic regression arises in many
applications such as document classification
and natural language processing. In this pa-
per, we apply a trust region Newton method
to maximize the log-likelihood of the logis-
tic regression model. The proposed method
uses only approximate Newton steps in the
beginning, but achieves fast convergence in
the end. Experiments show that it is faster
than the commonly used quasi Newton ap-
proach for logistic regression. We also com-
pare it with linear SVM implementations.

1. Introduction

The logistic regression model is useful for two-class
classification. Given data x and weights (w, b), it as-
sumes the following probability model

P (y = ±1|x,w) =
1

1 + exp(−y(wT x + b))
,

where y is the class label. If training instances are
xi, i = 1, . . . , l and labels are yi ∈ {1,−1}, one esti-
mates (w, b) by minimizing the negative log-likelihood:

min
w,b

l∑
i=1

log(1 + e−yi(w
T xi+b)).

There are numerous applications of logistic regression.
It can be extended to a multi-class classification model,
which is a special case of conditional random fields,
and is also called the maximum entropy model in the
natural language processing community.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

To have a simpler derivation without considering the
scalar b, one often augments each instance with an
additional dimension:

xT
i ← [xT

i , 1] wT ← [wT , b].

Moreover, to obtain good generalization abilities, one
adds a regularization term wT w/2, so in this paper
we consider the following form of regularized logistic
regression:

min
w

f(w) ≡ 1
2
wT w + C

l∑
i=1

log(1 + e−yiw
T xi), (1)

where C > 0 is a parameter decided by users so that
the two terms in (1) are balanced.

There are many methods for training logistic regres-
sion models. In fact, most unconstrained optimization
techniques can be considered. Those which have been
used in large-scale scenarios are, for example, iterative
scaling (Pietra et al., 1997), nonlinear conjugate gra-
dient, quasi Newton (in particular, limited memory
BFGS) (Liu & Nocedal, 1989), and truncated New-
ton (Komarek & Moore, 2005). All these optimization
methods are iterative procedures, which generate a se-
quence {wk}∞k=1 converging to the optimal solution of
(1). One can distinguish them according to the follow-
ing two extreme situations of optimization methods:

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

For instance, iterative scaling updates one component
of w at a time, so the cost per iteration is low but
the number of iterations is high. In contrast, New-
ton’s method, which is expensive at each iteration, has
very fast convergence rates. Many have attempted to
compare these methods for logistic regression. Malouf
(2002) has done an extensive comparison for large-
scale sets. Currently, most argue that the limited

561



Trust Region Newton Methods for Logistic Regression

memory BFGS method is the most efficient and effec-
tive (e.g., Malouf (2002), Sutton and McCallum (2006)
and references therein). In this article, we aim at sit-
uations for which both l (number of instances) and n
(number of features) are very large. In addition, the
data instances x1, . . . ,xl are sparse (i.e., many feature
values are zero). Many recent applications from doc-
ument classification and computational linguistics are
of this type.

Truncated Newton methods have been an effective ap-
proach for large-scale optimization, but their use for lo-
gistic regression has not been fully exploited. Though
Komarek and Moore (2005) have considered this type
of methods, their implementation does not follow rig-
orous optimization derivations, and hence may not be
guaranteed to obtain the minimum of (1). In Section
2, we discuss an efficient and robust truncated Newton
method for logistic regression.

The second term in (1) can be considered as a loss
function, so regularized logistic regression is related
to other learning approaches such as Support Vector
Machines (SVM) (Boser et al., 1992). L1-SVM solves
the following optimization problem:

min
w

f1(w) ≡ 1
2
wT w + C

l∑
i=1

max
(
0, 1− yiwT xi

)
,

while L2-SVM solves

min
w

f2(w) ≡ 1
2
wT w + C

l∑
i=1

(
max(0, 1− yiwT xi)

)2
.

Figure 1 shows the different shapes of the three loss
functions. SVM is often used with a nonlinear ker-
nel, where the data vectors xi are mapped to a high
dimensional space. However, there are certain ap-
plications for which with/without nonlinear mapping
give similar performances. For the case of no nonlin-
ear mapping, we have the possibility of directly solv-
ing bigger optimization problems. We refer to such
cases as linear SVM. Considerable efforts have been
made on its fast training (e.g., Keerthi and DeCoste
(2005); Joachims (2006)). L1-SVM involves the op-
timization of a non-differentiable function of w, so
unconstrained optimization techniques cannot be di-
rectly applied. For L2-SVM, the training objective
function is differentiable but not twice differentiable
(Mangasarian, 2002). A modified Newton method has
been proposed in Keerthi and DeCoste (2005) for large
problems. Logistic regression and SVM differ only
in their loss functions, and they usually give similar
performances. In Sections 3 and 4, we discuss exist-
ing optimization methods for logistic regression/linear

Figure 1: Different loss functions. Dotted (black):
max(0, 1−ywT x), dashed (red): (max(0, 1−ywT x))2,
solid (blue): log(1 + e−ywT x). The x-axis is −ywT x.

SVM and conduct comparisons. Results show that
the proposed Newton’s method is consistently better.
Finally, Section 5 gives conclusions. A complete re-
port of this work is at http://www.csie.ntu.edu.
tw/∼cjlin/papers/logistic.pdf

2. Trust Region Newton Methods

In this section, we discuss Newton and truncated New-
ton methods. For large-scale logistic regression, we
then propose a trust region Newton method, which is
a type of truncated Newton approach.

2.1. Newton & Truncated Newton Methods

To discuss Newton methods, we need the gradient and
Hessian of f(w):

∇f(w) = w + C

l∑
i=1

(σ(yiwT xi)− 1)yixi,

∇2f(w) = I + CXT DX,

where I is the identity matrix,

σ(yiwT xi) = (1 + e−yiw
T xi)−1,

D is a diagonal matrix with

Dii =σ(yiwT xi)(1− σ(yiwT xi)), andX =

xT
1
...

xT
l

 (2)

is an l × n matrix. The Hessian matrix ∇2f(w) is
positive definite. One can easily prove that (1) attains
a unique global optimal solution.

Since ∇2f(wk) is invertible, the simplest Newton’s
method updates w by the following way

wk+1 = wk + sk, (3)

where k is the iteration index and sk, the Newton di-
rection, is the solution of the following linear system:

∇2f(wk)sk = −∇f(wk). (4)

562



Trust Region Newton Methods for Logistic Regression

However, there are two issues in using this update rule:

1. The sequence {wk} may not converge to an optimal
solution. In fact, even the function value may not be
guaranteed to decrease.

2. While we assume that the data matrix X is sparse,
XT DX is much denser. The Hessian matrix is then
too large to be stored. Thus, solving the linear system
(4) is an issue that needs careful consideration.

Optimization researchers address the first issue by ad-
justing the length of the Newton direction. Two tech-
niques are often used: line search and trust region.

For the second issue, there are two major types of
methods for solving linear systems: direct methods
(e.g., Gaussian elimination), and iterative methods
(e.g., Jacobi and conjugate gradient). The main oper-
ation of certain iterative methods is the product be-
tween the Hessian matrix and a vector s:

∇2f(w)s=(I +CXT DX)s=s+C·XT (D(Xs)). (5)

As we assume sparse X, (5) can be efficiently calcu-
lated without storing the Hessian matrix ∇2f(wk).
Therefore, for large logistic regression, iterative meth-
ods are more suitable than direct methods, which
require the whole Hessian matrix. Among iterative
methods, currently conjugate gradients are the most
used ones in Newton’s methods. The optimization
procedure then has two layers of iterations: at each
outer iteration an inner conjugate gradient procedure
finds the Newton direction. Unfortunately, conjugate
gradient methods may suffer from lengthy iterations in
certain situations. To save time, one may use only an
“approximate” Newton direction in the early stages of
the outer iterations. Such a technique is called trun-
cated Newton method (or inexact Newton method).

Komarek and Moore (2005) are among the first to
apply truncated Newton methods for logistic regres-
sion∗. They approximately solve (4) by conjugate gra-
dient procedures and use (3) to update wk. They ter-
minate the conjugate gradient procedure if the rela-
tive difference of log likelihoods between two consec-
utive conjugate gradient iterations is smaller than a
threshold. However, they do not provide a convergence
proof. In fact, when we tried their code, we found that
‖∇f(wk)‖ may not approach zero and hence {wk}
may not converge to an optimum†.

Optimization researchers have well addressed the
above two issues together. They devise the procedure

∗They minimize only the negative log likelihood without
the regularization term wT w/2.

†We used the data set citeseer for this purpose. See
Section 4 for a description of this dataset.

of outer iterations, and specify stopping conditions for
the inner iterations. The overall framework guaran-
tees the convergence to the global minimum. The
truncation rule of the inner algorithm is important as
one should stop after a sufficiently good direction has
been found. A survey of truncated Newton methods
is in Nash (2000). Some comparisons between limited
memory quasi Newton and truncated Newton are in
Nocedal and Nash (1991).

2.2. A Trust Region Newton Method

We consider the trust region method in Lin and
Moré (1999), which is a truncated Newton method
for bound-constrained problems (i.e., variables are in
certain intervals). We simplify the setting to uncon-
strained situations, so the method is closer to Steihaug
(1983) which is an earlier work meant for such cases.

At each iteration of a trust region Newton method for
minimizing f(w), we have an iterate wk, a size ∆k of
the trust region, and a quadratic model

qk(s) = ∇f(wk)T s +
1
2
sT∇2f(wk)s

as the approximation of the value f(wk + s)− f(wk).
Next, we find a step sk to approximately minimize
qk(s) subject to the constraint ‖s‖ ≤ ∆k. We then
update wk and ∆k by checking the ratio

ρk =
f(wk + sk)− f(wk)

qk(sk)
(6)

of the actual reduction in the function to the predicted
reduction in the quadratic model. The direction is
accepted if ρk is large enough:

wk+1 =

{
wk + sk if ρk > η0,

wk if ρk ≤ η0,
(7)

where η0 > 0 is a pre-specified value.

From Lin and Moré (1999), updating rules for ∆k

depend on positive constants η1 and η2 such that
η1 < η2 < 1, while the rate at which ∆k is updated
relies on positive constants σ1, σ2, and σ3 such that
σ1 < σ2 < 1 < σ3. The trust region bound ∆k is
updated by the rules

∆k+1 ∈ [σ1 min{‖sk‖,∆k}, σ2∆k] if ρk ≤ η1,

∆k+1 ∈ [σ1∆k, σ3∆k] if ρk ∈ (η1, η2),
∆k+1 ∈ [∆k, σ3∆k] if ρk ≥ η2. (8)

Similar rules are used in other trust region methods.
Our trust region method is given in the following table.

563



Trust Region Newton Methods for Logistic Regression

Algorithm 1 A trust region algorithm

Given w0.
For k = 0, 1, . . . (outer iterations)
• If ∇f(wk) = 0, stop.
• Find an approximate solution sk of the trust re-

gion sub-problem

min
s

qk(s) subject to ‖s‖ ≤ ∆k. (9)

• Compute ρk via (6).
• Update wk to wk+1 according to (7).
• Obtain ∆k+1 according to (8).

The conjugate gradient method to approximately solve
the sub-problem (9) is given in the following table.

Algorithm 2 Conjugate gradient procedure for ap-
proximately solving the trust region sub-problem (9)

Given ξk < 1,∆k > 0. Let s̄0 = 0, r0 = −∇f(wk),
and d0 = r0.
For i = 0, 1, . . . (inner iterations)
• If

‖ri‖=‖∇f(wk)+∇2f(wk)s̄i‖≤ξk‖∇f(wk)‖, (10)

then output sk = s̄i and stop.
• αi = ‖ri‖2/((di)T∇2f(wk)di).
• s̄i+1 = s̄i + αidi.
• If ‖s̄i+1‖ ≥ ∆k, compute τ such that

‖s̄i + τdi‖ = ∆k. (11)

Output sk = s̄i + τdi and stop.
• ri+1 = ri − αi∇2f(wk)di.
• βi = ‖ri+1‖2/‖ri‖2.
• di+1 = ri+1 + βidi.

The main operation is ∇2f(wk)di, which is imple-
mented using the idea in Eq. (5). Algorithm 2 is
different from standard conjugate gradient methods
for linear systems as the constraint ‖s‖ ≤ ∆ must be
taken care of. If the conjugate gradient iterate s̄i+1

violates the trust region constraint, (11) finds a point
on the trust region boundary. This is a careful de-
sign to make sure that the approximate Newton di-
rection is good enough and the trust region method
converges. Next, we discuss convergence properties.
For the sequence {wk} to have at least one limit point
(i.e, {wk} has at least one convergent sub-sequence),
since f(wk) is decreasing, it suffices to show that the
level set {w | f(w) ≤ f(w0)} is closed and bounded.
The proof of this for our problem is simple, but is omit-

ted due to space limitation. To have the limit point to
be the minimum, Theorem 2.1 of Lin and Moré (1999)
requires that ∇2f(wk) is uniformly bounded. We have
this property as ∇2f(w) is continuous in this bounded
level set.

Eq. (10) is a relative stopping condition in solving
a linear system. The parameter ξk effectively controls
the computational effort associated with the inner iter-
ations. By the explanation after the proof of Theorem
5.4 of Lin and Moré (1999), if ξk < 1, the trust region
method Q-linearly converges to the global minimum of
(1). That is,

lim
k→∞

‖wk+1 −w∗‖
‖wk −w∗‖

< 1, (12)

where w∗ is the unique optimal solution of (1). If
ξk → 0 as k → ∞, then the limit in (12) becomes
zero, so we have Q-superlinear convergence.

3. Related Methods

In this section, we discuss two related techniques,
which will be compared in Section 4. The first is a
modified Newton method for L2-SVM (Keerthi & De-
Coste, 2005). It is now one of the fastest implemen-
tations in training linear SVMs. The second is Liu
and Nocedal (1989), which is a general limited mem-
ory quasi Newton implementation. Many consider it
as very efficient for training logistic regression. We also
discuss implementation issues of the proposed trust re-
gion Newton method.

3.1. Modified Newton Method for L2-SVM

The key idea of Keerthi and DeCoste (2005) to solve
L2-SVM is that for any given index set I ⊂ {1, . . . , l},
if the optimal solution w∗ of the following problem

min
w

f2(w) ≡ 1
2
wT w + C

∑
i∈I

(1− yiwT xi)2 (13)

satisfies

1− yi(w∗)T xi

{
> 0 if i ∈ I,

≤ 0 if i /∈ I,

then w∗ is an optimal solution of the L2-SVM prob-
lem. Once I is fixed, (13) is a simple regularized least
square problem and can be solved by the following lin-
ear system:

(I + 2CXT
I,:XI,:)w = 2CXT

I,:yI , (14)

where XI,: includes X’s rows corresponding to the set
I. Their algorithm is described in the following table.

564



Trust Region Newton Methods for Logistic Regression

Algorithm 3 Modified Newton Method for L2-SVM

Given w0.
For k = 0, 1, . . .
• If ∇f(wk) = 0, stop.
• Set up (14) using

Ik = {i | 1− yi(wk)T xi > 0}.

Solve (14) by conjugate gradients and obtain w̄k.
• Let sk = w̄k −wk. Find

αk = arg min
α≥0

f(wk + αsk),

and set wk+1 = wk + αksk.

Keerthi and DeCoste (2005) prove that Algorithm 3
converges to the optimal solution of in a finite number
of iterations. Compared to our approach, this method
has the following advantages and disadvantages.

Advantages: The final set I corresponds to the set
of support vectors. Thus, the sets Ik may be small at
final iterations, and solving (14) by conjugate gradient
methods is fast.
Disadvantages:
1. Their convergence result assumes that at each iter-
ation, (14) is exactly solved. However, they use a rel-
ative stopping condition in practical implementations,
so the convergence remains an issue. In contrast, the
convergence of trust region Newton method has been
well studied under various early stopping conditions of
the conjugate gradient procedure.
2. Using XI,: in (14) requires an easy access of X’s
rows. This restricts the way how X is stored. Our ex-
periments show that sometimes an easy access of X’s
columns leads to shorter training time. For fairness in
our later comparisons, all methods use the same way
to store X, so that X’s rows are easily accessed.

More discussions on the stopping conditions of Algo-
rithm 3 are given in Section 4.2. To avoid exactly solv-
ing every instance of equation (14), one may also ap-
ply the trust region framework to L2-SVM. However,
as L2-SVM is not twice differentiable, the convergence
and the numerical behavior need to be investigated.

3.2. Limited Memory quasi Newton Method

We briefly introduce the approach in Liu and Nocedal
(1989). Quasi Newton methods use approximate in-
verse Hessian Hk and can easily update it to Hk+1.
One of the most popular updates is BFGS. The ap-
proach by Liu and Nocedal (1989) is almost the same
as BFGS, but restricts the update to use only m vec-

tors from the previous iterations. The matrix Hk is
not formed explicitly and there is an efficient way to
compute Hk∇f(wk). This property is useful as we
cannot afford to store Hk. Since only an approximate
Hessian is used, this method sometimes suffers from
slow convergence. The algorithm is in the following
table.

Algorithm 4 Limited memory BFGS

Given w0,H0 and a small integer m.
For k = 0, 1, . . .
• If ∇f(wk) = 0, stop.
• Use m vectors from previous iterations to calcu-

late Hk∇f(wk).
• Search αk so that f(wk − αHk∇f(wk)) satisfies

some sufficient decrease conditions. Obtain Hk+1.

Regarding convergence, problem (1) satisfies Assump-
tion 6.1 of Liu and Nocedal (1989), so Algorithm 4
converges to the optimum of (1). For experiments, we
use m = 5, which is the default choice in the LBFGS
software (Liu & Nocedal, 1989).

3.3. Implementation Issues of Trust Region
Newton Method

We give details of parameters in the proposed Algo-
rithms 1 and 2. All settings are almost the same as
the TRON software (Lin & Moré, 1999).

We set the initial ∆0 = ‖∇f(w0)‖ and take η0 = 10−4

in (7) to update wk. For changing ∆k to ∆k+1, we use

η1 = 0.25, η2 = 0.75, σ1 = 0.25, σ2 = 0.5, σ3 = 4.0.

As (8) specifies only the interval in which ∆k+1 should
lie, there are many possible choices for the update
rules. We use the same rules as given in Lin and Moré
(1999). In the conjugate gradient procedure, we use
ξk = 0.1 in the stopping condition (10). One may won-
der how the above numbers are chosen. These choices
are considered appropriate following the research on
trust region methods in the past several decades. It is
unclear yet if they are the best for logistic regression
problems, but certainly we would like to try custom
settings first.

4. Comparisons

4.1. Data Sets

We consider six data sets from various sources. Table
1 lists the numbers of instances, features, and nonzero
feature values. Except citeseer, all other problems are
quite balanced. It is known that unbalanced sets usu-

565



Trust Region Newton Methods for Logistic Regression

Table 1: Data statistics.
Problem # instances # features # nonzeros
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
citeseer 181,395 105,354 512,267
yahoo-japan 176,203 832,026 23,506,415
rcv1 677,399 47,236 49,556,258
yahoo-korea 460,554 3,052,939 156,436,656

ally lead to shorter training time. Therefore, problems
used in this article are more challenging in terms of
training time. More details of the data sets are de-
scribed below.

real-sim: This set is from the web site http://people.
cs.uchicago.edu/∼vikass/datasets/lskm/svml/.
news20: This is a collection of news documents. We
use the data processed in Keerthi and DeCoste (2005).
They consider binary term frequencies and normalize
each instance to unit length.
citeseer: This set, obtained from http://komarix.
org/ac/ds/#spardat, is a collection of research pa-
pers. Positive ones include those authored by “J. Lee.”
yahoo-japan: This set, from Yahoo!, includes docu-
ments in hundreds of classes. We consider the class
with the largest number of instances as positive and all
remaining instances as negative. We use binary term
frequencies and normalize each vector to unit length.
rcv1: This set (Lewis et al., 2004) contains newswire
stories from Reuters Ltd. Each vector is a cosine nor-
malization of a log transformed TF-IDF feature vector.
The news documents are in a hierarchical structure
of classes. We use the set at http://www.csie.ntu.
edu.tw/∼cjlin/libsvmtools/datasets/binary. It
splits the data to positive/negative by using the two
branches in the first layer of the class hierarchy. Data
which are multi-labeled are not considered.
yahoo-korea: This set, obtained from Yahoo!, includes
documents in a hierarchy of classes. We consider the
largest branch from the root node (i.e., the branch in-
cluding the largest number of classes) as positive, and
all others as negative.

Clearly, all sets are from document classification. Past
experiences have shown that for such data, linear
classifiers are often as good as kernalized ones. We
find that normalizations are usually needed so that
the length of each instance is not too large. Other-
wise, when the number of features is large, wT xi may
be huge and cause difficulties in solving optimization
problems. (For good performance also, such normal-
izations are usually needed.)

4.2. Comparisons

We compare four methods. Two solve logistic regres-
sion, one solves L2-SVM, and one solves L1-SVM.

TRON: the trust region Newton method discussed in
Section 2.2.

LBFGS: the limited memory quasi Newton implemen-
tation (Liu & Nocedal, 1989). See the discussion in
Section 3.2. The source code is available online at
http://www.ece.northwestern.edu/∼nocedal.

SVMLIN: modified Newton method for L2-SVM dis-
cussed in Section 3.1. The code (by Vikas Sindhwani)
is at http://people.cs.uchicago.edu/∼vikass.

SV Mperf (Joachims, 2006): it is an approximation al-
gorithm for L1-SVM. A threshold controls how well the
approximation is. Since this approach is very different
from the other three, we conduct a separate compari-
son at the end of this sub-section.

We do not consider the code in Komarek and Moore
(2005) because of two reasons. First, we have men-
tioned its convergence problems in Section 2.1. Sec-
ond, for sparse data, it handles only those with 0/1 fea-
tures, but most our data have real-numbered features.
All sources used for our comparisons are available at
http://www.csie.ntu.edu.tw/∼cjlin/liblr.

For the initial w0, all the methods use 0. Regarding
the stopping conditions, for TRON and LBFGS, we use

‖∇f(wk)‖∞ ≤ 10−3. (15)

Though SVMLIN minimizes a different function f2(w),
a similar condition should be ‖∇f2(wk)‖∞ ≤ 10−3.
Note that

∇f2(w) = (I + 2CXT
I,:XI,:)w − 2CXT

I,:yI ,

where I = {i | 1−yiwT xi > 0} is an index set depend-
ing on w. Recall in Algorithm 3 that we sequentially
obtain the following items:

wk → Ik → w̄k.

In practice we use

‖(I+2CXT
Ik,:XIk,:)w̄k−2CXT

Ik,:yIk
‖∞ ≤ 10−3, (16)

and

1− yiw̄kxi

{
≥ −10−3 if i ∈ Ik,

≤ 10−3 if i /∈ Ik,
(17)

as the stopping condition. We also use (16) as the
stopping rule when solving (14) by conjugate gradi-
ents. The default setting of SVMLIN is similar, but a
relative stopping condition is used for (16).

It is important to check the prediction ability of lo-
gistic regression and L2-SVM, so we first report cross-
validation (CV) accuracy. For the larger sets (yahoo-
japan, rcv1, and yahoo-korea), we use two-fold CV. For

566



Trust Region Newton Methods for Logistic Regression

Table 2: Comparison of three methods. Here time (in seconds) is the total training time in the CV procedure.
As TRON and LBFGS minimize the same formulation and their CV accuracy values are almost the same, we
present only the result of TRON. The number of CV folds is five for small problems, and is two for larger ones
(yahoo-japan, rcv1, yahoo-korea). Note for both models, the CV values do not increase using C > 16.

Logistic regression L2-SVM
TRON LBFGS SVMLIN

C CV Time Time CV Time
0.25 95.85% 10 32 97.43% 20

1 96.97% 16 63 97.53% 29
4 97.41% 23 96 97.24% 47

16 97.51% 35 175 96.86% 92

(a) real-sim

Logistic regression L2-SVM
TRON LBFGS SVMLIN
CV Time Time CV Time

89.74% 62 187 95.78% 79
93.36% 96 434 96.72% 147
95.49% 144 806 96.90% 270
96.30% 198 1424 96.86% 495

(b) news20

Logistic regression L2-SVM
TRON LBFGS SVMLIN
CV Time Time CV Time

99.84% 9 15 99.85% 19
99.84% 14 28 99.85% 21
99.84% 20 50 99.80% 100
99.85% 32 83 99.72% 492

(c) citeseer

Logistic regression L2-SVM
TRON LBFGS SVMLIN

C CV Time Time CV Time
0.25 91.91% 60 176 92.87% 144

1 92.50% 96 337 93.00% 290
4 92.81% 163 702 92.71% 651

16 92.86% 283 1184 92.14% 1396

(d) yahoo-japan

Logistic regression L2-SVM
TRON LBFGS SVMLIN
CV Time Time CV Time

97.18% 78 241 97.76% 131
97.56% 122 988 97.74% 275
97.72% 181 946 97.53% 595
97.69% 261 1422 97.07% 1370

(e) rcv1

Logistic regression L2-SVM
TRON LBFGS SVMLIN
CV Time Time CV Time

81.34% 528 2512 85.43% 1734
84.03% 912 4368 86.48% 3813
85.75% 1771 8937 86.38% 8896
86.40% 4475 14074 85.66% 19751

(f) yahoo-korea

others, five-fold CV is conducted. We do not con-
sider other measurements such as Area Under Curve
or F-measure as all problems except citeseer are rather
balanced, and CV accuracy is suitable. Moreover, dif-
ferent values of the regularization parameter C may
affect the performance as well as training time. So we
check different values and present results of C = 0.25,
1, 4, and 16 in Table 2. Both logistic regression and
L2-SVM achieve their best CV in this range of C val-
ues. In the table we show CV accuracy and the total
training time in the CV procedure.

Regarding CV values, for small C, L2-SVM is slightly
better than logistic regression. However, as C in-
creases, the two give similar CV values. Overall, the
two learning models give comparable generalization
performance. On training time TRON is better than
LBFGS, so truncated Newton methods are effective
for training logistic regression. If we take TRON and
SVMLIN, though it may not be right to compare the
training speed using the same C, TRON has the advan-
tage of fast convergence. Note that as C increases, the
stopping condition (15) is more strict. But TRON’s
training time does not increase as much as that of
SVMLIN. Thus, TRON does not easily get into a sit-
uation of long training time. Both approaches spend
most of their time on the operation (5) in the con-
jugate gradient procedure. Since SVMLIN accurately
solves Newton directions in early iterations, many con-
jugate gradient iterations are wasted.

In the above comparisons, we do not include SV Mperf

because it significantly differs from the other three
codes, which follow more traditional optimization

(a) real-sim (b) rcv1

Figure 2: A comparison between TRON (blue solid
line) and SV Mperf (red dotted line). The y-axis shows
the accuracy differences between current models and
that of using the stopping tolerance 0.1. The x-axis
(training time) is in seconds. We use C = 1. One must
be careful that SV Mperf ’s C parameter is different.
We take our C value and set SV Mperf ’s C parameter
as Cl/100.

derivations. SV Mperf uses a threshold to control how
well the obtained solution approximates the optimal
one. This threshold is different from the tolerance used
in the stopping condition (15). A suitable comparison
is to check the relationship between training time and
testing accuracy. In other words, how quickly the algo-
rithm can achieve an accuracy close to that of using the
minimum of the optimization problem. We conduct
the following experiment. A data set is equally split
into training and testing sets. We then run SV Mperf

with its default threshold 0.1, and TRON with the
stopping condition ‖∇f(wk)‖∞ ≤ 0.1 to obtain their
respective models and testing accuracy. Since accu-
racy stabilizes for tolerances smaller than 0.1, the ac-
curacies obtained from these solutions can be taken to
be very close to those of the true minima. So we check
against these accuracy values as training time increases

567



Trust Region Newton Methods for Logistic Regression

from zero. Figure 2 shows the results for real-sim and
rcv1. We do not present results for other data sets as
for unknown reasons SV Mperf needs lengthy time for
predicting data with a large number of features (e.g.,
news20 and yahoo-japan).

From Figure 2, we see that SV Mperf quickly obtains
models with some accuracy values, but the conver-
gence is slow. For TRON, it needs at least a certain
amount of time to have the first model, but the ac-
curacy of this model is already close to that of the
optimal one. The final convergence is also faster. The
experiment indicates that unless the problem is ex-
tremely huge so that limits on computational time
force one to use very early sub-optimal stopping, (e.g.,
the accuracy is still 10% away from that of the final
model), TRON is a more effective method. We use
C = 1 for this experiment. Results of using other C
values show similar observations.

4.3. Stopping Tolerance

The stopping tolerance used in Section 4.2 is 10−3, but
one may wonder whether it is too strict. We thus com-
pare the three methods (TRON, LBFGS, and SVMLIN)
using two larger stopping tolerances: 0.1 and 10. We
summarize some observations in the following:

Stopping tolerance 0.1: All CV accuracy values are
almost the same, so for these data sets, a tolerance
value of 0.1 is usually small enough. The training time
of all three approaches is less. Overall, TRON is the
fastest among the three methods.
Stopping tolerance 10: For some cases, SVMLIN
gives an erroneous CV accuracy. The reason is that
the index set I is wrongly identified under the loose
stopping condition (16)-(17). Thus, it is possible that
in (17), one should use a smaller tolerance than in (16).
In contrast, TRON and LBFGS yield CV values close
to those by using tolerances 0.1, since their gradient
function is calculated in a more straightforward way.

5. Discussion and Conclusions

The experiments indicate that because our method
(TRON) only has to approximately find the Newton
direction, it is faster than the Newton method for L2-
SVM (Keerthi & DeCoste, 2005). We may also apply
the same trust region strategy to their formulation.
However, as L2-SVM is not twice differentiable, the-
oretical convergence and implementation issues must
be investigated. This is a useful future research topic.

In summary, we have shown that a trust region Newton
method is effective for training large-scale logistic re-
gression problems. The method has nice optimization

properties following past developments for large-scale
unconstrained optimization. It is interesting that we
do not need many special settings for logistic regres-
sion; a rather direct use of modern trust region tech-
niques already yields excellent performances.

References

Boser, B. E., Guyon, I., & Vapnik, V. (1992). A train-
ing algorithm for optimal margin classifiers. COLT.

Joachims, T. (2006). Training linear SVMs in linear
time. ACM KDD.

Keerthi, S. S., & DeCoste, D. (2005). A modified finite
Newton method for fast solution of large scale linear
SVMs. JMLR, 6, 341–361.

Komarek, P., & Moore, A. W. (2005). Making lo-
gistic regression a core data mining tool (Technical
Report). Carnegie Mellon University.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004).
RCV1: A new benchmark collection for text cate-
gorization research. JMLR, 5, 361–397.

Lin, C.-J., & Moré, J. J. (1999). Newton’s method
for large-scale bound constrained problems. SIAM
Journal on Optimization, 9, 1100–1127.

Liu, D. C., & Nocedal, J. (1989). On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45, 503–528.

Malouf, R. (2002). A comparison of algorithms for
maximum entropy parameter estimation. CONLL.

Mangasarian, O. L. (2002). A finite Newton method
for classification. Optimization Methods and Soft-
ware, 17, 913–929.

Nash, S. G. (2000). A survey of truncated-Newton
methods. Journal of CAM, 124, 45–59.

Nocedal, J., & Nash, S. G. (1991). A numerical
study of the limited memory BFGS method and the
truncated-newton method for large scale optimiza-
tion. SIAM Journal on Optimization, 1, 358–372.

Pietra, S. D., Pietra, V. D., & Lafferty, J. (1997). In-
ducing features of random fields. IEEE PAMI, 19,
380–393.

Steihaug, T. (1983). The conjugate gradient method
and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, 20, 626–637.

Sutton, C., & McCallum, A. (2006). An introduction
to conditional random fields for relational learning.
In L. Getoor and B. Taskar (Eds.), Introduction to
statistical relational learning. MIT Press.

568


