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The inclusion of covariates improves the prediction of class memberships in latent class
analysis (LCA). Several methods for examining covariate effects have been developed over
the past decade; however, researchers have limited to the comparisons of the performance
among these methods in cases of the single-level LCA. The present study investigated the
performance of three different methods for examining covariate effects in a multilevel setting.
We conducted a simulation to compare the performance of the three methods when level-1 and
level-2 covariates were simultaneously incorporated into the nonparametric multilevel latent
class model to predict latent class membership at each level. The simulation results revealed
that the bias-adjusted three-step maximum likelihood method performed equally well as the
one-step method when the sample sizes were sufficiently large and the latent classes were
distinct from each other. However, the unadjusted three-step method significantly under-

estimated the level-1 covariate effect in most conditions.

Keywords: covariate effects, latent class models, multilevel modeling

INTRODUCTION

Observational units in behavioral or social science studies
often are hierarchically clustered within a higher level unit.
For example, individuals are nested within a group, and mea-
surement occasions are nested within an individual. The latent
class analysis (LCA) (Goodman, 1974; Lazarsfeld & Henry,
1968) has been extended to account for the dependence due to
the multilevel data structure by adopting the random-effects
approach (Bryk & Raudenbush, 1992; Goldstein, 1995;
Snijders & Bosker, 1999). A number of researchers have
introduced extensions of LCAs that assume different forms
of random effects at the higher level (e.g., Asparouhov &
Muthén, 2008; Di & Bandeen-Roche, 2011; Finch & French,
2013; Henry & Muthén, 2010; Vermunt, 2003; 2004). The
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present study will focus on the nonparametric multilevel latent
class model (MLCM) (Vermunt, 2003) as the approach to
accommodate a nested data structure.

Vermunt’s (2003) nonparametric MLCM includes a dis-
crete random effect at a higher level to account for the depen-
dency due to the multilevel data structure. The discrete random
effect is characterized by a number of latent classes following
the multinomial distribution, relying on the assumption that
each higher level unit is assigned to one of the higher level
latent classes. Thus, one key feature of this nonparametric
approach is to provide classification information for both
higher and lower level units (e.g., Bassi, 2009; Bijmolt, Paas,
& Vermunt, 2004; da Costa & Dias, 2014; Finch & Marchant,
2013; Onwezen et al., 2012; Pirani, 2013; Rindskopf, 2006;
Riidiger & Hans-Dieter, 2013). Moreover, the nonparametric
MLCM does not require unverifiable distributional assump-
tions regarding the random effect (Aitkin, 1999) and is com-
putationally less intensive (Vermunt & Van Dijk, 2001).

An important modeling issue in the LCA is the use of
covariates. The inclusion of covariates in the model improves
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the prediction of class memberships and facilitates the identi-
fication of the latent classes (Clogg, 1981; Dayton &
Macready, 1988; Hagenaars, 1993). For the nonparametric
MLCM, covariates can be introduced at both levels 1 and 2
to predict latent class memberships (Henry & Muthén, 2010;
Vermunt, 2003). Specifically, level-2 covariates can be
included to predict latent class memberships at both individual
and group levels. This means that level-2 covariates can pre-
dict the probability that a group belongs to a particular level-2
class and the probability that an individual belongs to a level-1
latent class. On the other hand, level-1 covariates can be used
to predict level-1 class membership. The covariate effects in
nonparametric MLCMs are usually estimated by multinomial
logistic regression (Henry & Muthén, 2010).

Pirani’s (2013) study offers an empirical example demon-
strating the use of covariates in MLCAs. She investigated
Europeans’ experiences and perceptions of social exclusion
using nonparametric MLCMs with level-1 and level-2 covari-
ates. In particular, she included sex, age, and occupational status
as level-1 covariates, and individual responsibility, GDP, and
social protection (the percentage of GDP spent on social protec-
tion) as level-2 covariates to predict latent class membership at
the individual and country levels, respectively. She noted that
the level-2 covariates had an important role in understanding the
perceptions of social exclusion in European regions given dif-
ferent social, economic, cultural, and political contexts. As she
demonstrated, the inclusion of level-2 covariates allows for a
better explanation of contextual or environmental differences.
Other applications of covariates at both levell and level 2 can be
found in da Costa and Dias (2014), Finch and Marchant (2013),
and Riidiger and Hans-Dieter (2013).

Recently, exploratory methods for estimating covariate
effects in the context of mixture modeling have received
increased attention (e.g., Asparouhov & Muthén, 2014; Lanza,
Tan, & Bray, 2013; Vermunt, 2010). Two approaches have been
discussed primarily in the literature: the one-step method and the
three-step method. The one-step method assesses the covariate
effect at the same stage of identifying the latent class structure.
This means that the parameters defining the structure of the
latent classes and the covariate effects are estimated simulta-
neously (e.g., Bandeen-Roche, Miglioretti, Zeger, & Rathouz,
1997; Dayton & Macready, 1988; Hagenaars, 1990, 1993). The
three-step method, in contrast, examines the covariate effects in
a stepwise manner (e.g., Asparouhov & Muthén, 2014; Bakk,
Tekle, & Vermunt, 2013; Bolck, Croon, & Hagenaars, 2004;
Lanza et al., 2013; Vermunt, 2010). The classical (unadjusted)
three-step method proceeds as follows. The first step of the
procedure is identifying the underlying number of latent classes;
individuals are then assigned to latent classes based on their
posterior class membership probabilities, and subsequently, the
association between a set of covariates and latent classes mem-
berships is examined by ANOVA or regression analysis.

The main advantage of the three-step method over the one-
step method is that the class solutions are not distorted by the
inclusion of covariates (Bakk et al., 2013; Bakk & Vermunt,
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2016; Vermunt, 2010). For the one-step method, the inclusion of
covariates may affect class enumeration, resulting in distorted
latent class solutions, and it potentially changes the substantive
meaning of the latent classes. However, such a distortion is less
likely to occur in the three-step method, because class enumera-
tion and the estimation of covariate effects are made separately.
This implies that, in comparison with the one-step method, the
three-step method can avoid potential problems that can arise
when the two steps (class enumeration and the estimation of
covariate effects) take place simultaneously (Bakk et al., 2013).

Despite these advantages, a potential problem of the classical
three-step method is that the covariate parameters are severely
underestimated (Bolck et al., 2004). To address this shortcom-
ing, Bolck et al. (2004) developed a correction method, the
three-step Bolck-Croon-Hagenaars method (BCH method), in
which the third step of the classical three-step method was
modified using the reweighted frequency table. Vermunt
(2010) also suggested an alternative bias-adjusted three-step
method, the maximum likelihood three-step method (this
method will be called the ML method in this paper), making it
possible to obtain corrected standard errors (SEs) and accom-
modate continuous covariates. Bakk et al. (2013) proposed a
more integrative framework of the bias-adjusted three-step
method that can deal with both covariates and distal outcomes.
These methods were implemented in software such as Latent
GOLD Version 5.0 (Vermunt & Magidson, 2013) and Mplus
Version 7.1 (Muthén & Muthén, 2012).

The bias-adjusted three-step method can be applied to
explore various relationships between latent class memberships
and external variables (e.g., covariates and distal outcomes) in
such a way that covariates are used to predict latent class
memberships (Vermunt, 2010), or latent class memberships
can predict distal outcomes (Asparouhov & Muthén, 2014).

More recently, Lanza et al. (2013) proposed a new three-step
method for estimating the effects of continuous distal outcomes
without making distributional assumptions. Bakk and Vermunt
(2016) refined their approach by improving estimates of SEs
using resampling methods. Gudicha and Vermunt (2011)
showed that the bias-adjusted three-step method performs well
with continuous indicators. The simulation study by Bakk and
Vermunt (2016) also demonstrated that the bias-adjusted three-
step method is robust against the violation of the normality
assumption in predicting class memberships when using con-
tinuous distal outcomes. Moreover, the bias-adjusted three-step
method was applied to other mixture models such as latent
Markov models (Bartolucci, Montanari, & Pandolfi, 2015; Di
Mari, Oberski, & Vermunt, 2016), regression mixture models
(Kim, Vermunt, Bakk, Jaki, & Van Horn, 2016), latent profile
analysis (Dziak, Bray, Zhang, Zhang, & Lanza, 2016), and
LCAs with multiple discrete latent variables (Bakk et al., 2013).

Recent work further extended the bias-adjusted three-step
method for the situations in which data arise from hierarchical
structures. Bennink, Croon, and Vermunt (2015) proposed a
bias-adjusted three-step method for micro—macro analysis,
which explains the relationship between level-2 external
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variables through level-1 predictors. Their model is analogous to
2-1-2 mediation models, because the effect of level-2 indepen-
dent variables on the outcome variable (at the same level) is
mediated by the level-2 latent class memberships defined by the
level-1 indicators.

The bias-adjusted three-step method for micro—macro
analysis proceeds as follows: The first step is to identify a
latent class model at level-2 (measurement model), where
level-1 predictors are used as indicators. The second step is
to assign groups to the level-2 latent classes by aggregating
the level-1 predictors. The third step, then, is to investigate
the association between level-2 latent classes and level-2
external variables while correcting for the classification
errors that have occurred in the second step.

The simulation study by Bennink et al. (2015) showed that
the bias-adjusted three-step method yielded unbiased para-
meter estimates for both the BCH or ML methods regardless
of the classification rules applied (modal or proportional
assignment). The one-step method also recovered true values
equally well compared with the bias-adjusted three-step
method, whereas the unadjusted three-step method underes-
timated the covariate effects at level-2 under most conditions.

A number of studies have explored the use of several meth-
ods for evaluating covariate effects at the individual level (e.g.,
Bakk, Oberski, & Vermunt, 2014; Bakk et al., 2013; Bolck
et al., 2004; Vermunt, 2010). However, researchers are often
interested in exploring covariate effects at different levels of a
hierarchy. To our knowledge, Bennink et al. (2015, 2016) have
investigated the covariate effects in the multilevel setting, but
their studies focused only on the situation where level-2 covari-
ates are expected to affect the level-2 outcome directly or
indirectly through a level-2 latent class. These studies did not
cover the case in which level-1 and level-2 covariates predict
class membership at each level simultaneously. The present
study aims to fill this gap and therefore focuses on investigating
the performance of three methods for estimating covariate
effects when both level-1 and level-2 covariates are simulta-
neously incorporated into the nonparametric MLCM to predict
latent class membership at each level. We carried out a simula-
tion study to explore and compare the three methods of evaluat-
ing covariate effects: the one-step method, the classical three-
step method, and the ML method.

The remainder of the paper is organized in this manner:
We first describe the specifications of MLCMs with level-1
and level-2 covariates, followed by an introduction of the
three-step method for evaluating covariate effects in a non-
parametric MLCM. We also present the simulation design
and results and use an empirical example to illustrate the
evaluation of the covariate effects. We then conclude with a
discussion and final remarks.

MLCMs with Level-2 and Level-1 Covariates

MLCMs with level-2 and level-1 covariates can be formally
specified as follows: Let Yg;; be the response to an indicator j of

an individual i in group g, whereg = 1,...,G,i=1,...,ny,
andj = 1,...,J. The vector Yy; denotes the J indicators for an
individual i in group g, and Y, denotes the full responses of all
subjects in group g. The Z,, refers to one of the O level-2
covariates, and Z is the level-2 covariate vector. The Zg;, is
one of the W level-1 covariates, and Zg; is the vector of Zg;,.

The nonparametric MLCM is defined by two separate
equations for the higher and lower levels, which are graphi-
cally represented in Figure 1. As Figure 1 shows, the MLCM
incorporates a discrete latent variable () at the higher level
with L latent classes, in addition to the one at the lower level
(Xgi) with M latent classes. The outcomes of these discrete
latent variables can be conceptualized as latent classes at two
different levels consisting of groups or individuals that are
internally homogenous within each class but distinct among
classes in terms of response patterns.

For the individual level, the probability density of the
individual’s response i in group g given level-1 covariates
can be written as follows:

P(Ygi = ygilHy = I, Zg;)
M J

= P(Xg =m|Hy = 1,Zg) x [ [/ (Xei = yeilXei = m).
m=1 Jj=1

(1)

The term P(X,; = m|H, = [, Zg;) is the latent class probabil-
ity. This parameter represents the distribution of conditional
latent class probabilities given a level-2 latent class (/) and a
set of level-1 covariates (Zg); it can be parameterized by
means of a multinomial distribution, as shown in Equation 2:

w
eXp(Vozm + Z ymegiw)

P(Xg = m|Hy = 1,Zg;) = — . .
Z exp(yOIm’ + Z ym’ngiW)
m'=1 w=1

2
level-2

””””””””””””””””””””””””””””””””””””””””””””””” level-1

FIGURE 1 Nonparametric MLCM with level-2 and level-1 covariates.



Note that the logit parameter y,,, can be rewritten as
Yomi = Vm + Uim, Where the discrete random variable u;, varies
across level-1 classes, capturing differences between the L
classes at level-2 (Bijmolt et al., 2004; Henry & Muthén,
2010). The parameter y,,,, represents the class-specific effects
of the wth covariate at level-1 (Z,;,) on latent class member-
ship m. These logit parameters are subjected to identification

constraint; that is, Z Yoml = Z Ve = 0 for the effect cod-
m=1
ing and yy;; = V1, = 001 Yopn = Vasw = 0 for dummy coding.
The conditional response probability f(Ye; = ygij|Xei =
m) in Equation 2 represents the probability of observing a
certain response pattern yg; for a variable j of subject i in
group g given the latent class m. This parameter can take
different forms of probability distributions depending on the
types of observed responses. When the indicators are cate-
gorical, the parameter can be expressed using logit equa-
tions as shown in Equation 3:

4 Bim
= Yol = m) = Mexp(ﬂQ/ B ) 7 3)

Zl eXp (IBOj + lBjm’)

m'=

f(Ygij

where f; denotes the intercept for indicator j, and p,,
indicates a class-specific effect, which characterizes the
nature of the discrete latent variable Xg;.

For the group level, the marginal density of the response
vector of group g is

P(Yy = yg|Zg7Zgi)

= iP(Hg = I‘Zg)

(HZP Xei = m|Hy = 1, Z) [ [/

=1 m Jj=1

Yoij = il Xei = m)) :
4

Equation 4 shows that level-1 classes are indicators of the
discrete latent variable at level-2 (H,). Thus, the state of
level-1 classes (e.g., class separations) has a direct impact
on the composition of the level-2 latent classes (Lukociené,
Varriale, & Vermunt, 2010).

The first term, P(H, = I|Z,), is represented by a vector
with each element expressing the probabilities of g being in
the level-2 class [ (I=1,...,L) given level-2 covariates
(Zg). Because the level-2 classes are assumed to be exhaus-
tive and mutually exclusive, elements of this vector can be
conceptualized as class sizes, and thus the sum of this vector
equals one. The parameter can be expressed as:

9]
exp(aor + Z igZgq)

P(Hg = I|Zg) Q)

L )
> exp(aor + Z 0rgZeq)

I'=1
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where ag; denotes the category effect of the level-2 latent
classes and a;, represents the class-specific effect of the gth
covariate (Zg,) on level-2 latent class memberships.

The Bias-Adjusted Three-Step Method of Estimating
Covariate Effects in MLCMs

The bias-adjusted three-step method for nonparametric
MLCMs proceeds as follows: In the first step, the MLCM
representing the relationship between latent classes and their
indicators is built. The MLCM in the first step of the analysis
with nonparametric specifications can be presented as

L
P(Y, =y,) =Y _ P(H,

=1

(HZP o = m|Hy = 1) Hf( gii = ygij|Xgi:m)>-
i=1 m=
(6)

The numbers of both level-1 and level-2 classes are determined
during this step. A number of prior studies related to model
selection in MLCMs have suggested that the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978) is a great measure to
determine the number of latent classes for both the iterative
approach (Lukociené, Varriale, & Vermunt, 2010) and the simul-
taneous approach (Yu & Park, 2014). For the application of the
BIC, applying a number of groups as the sample size for the
penalty term yields better performance than applying the total
sample size, because using the latter as the penalty term is too
harsh, which results in poor performance (Lukociené et al.,
2010; Yu & Park, 2014).

In the second step, using the model chosen in the previous
step, groups and individuals are assigned to latent classes
based on their posterior class membership probabilities at
each level (Bennink et al., 2015; Clogg, 1981; Goodman,
1974; Hagenaars, 1990). The posterior probabilities at the
group and the individual levels can be easily obtained by
using Bayes’ rule as seen in Equations 7 and 8, respectively.

O

gi = Ygi [ Xei = m)

P(Xgi = m|Ygi = ygi) = P(Yg = ¥y)
1 gi

®)

When assigning groups and individuals, the most common
classification rule is modal assignment, in which each unit is
assigned to the class with the highest posterior probability.
Specifically, the modal assignment rule can be expressed as the
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following. Let W, denote the assigned class for group g, and Wy,
indicate the assigned class for individual i in group g. Then,
higher and lower level units are assigned to a single class for
which the posterior membership probability is the largest (Bolck
et al., 2004). This method is also referred to as hard partitioning.

Although the modal assignment rule yields a minimum
risk of misclassification (Frithwirth-Schnatter, 2006;
Skrondal & Rabe-Hesketh, 2004), the assignment is still
made with a certain degree of uncertainty, particularly
when the dominant posterior latent class probability is
unclear. In such a case, some observational units are inap-
propriately assigned, resulting in a certain amount of classi-
fication error. These classification errors at the higher and
the lower levels can be quantified using the conditional
probabilities, P(W, =s|H, =1) and P(Wy = t| Xy = m),
respectively.

P(Wg = s|H, =1) 721) g:SYg:ygV’[g:l)

721) g7Yg‘H 71 ( g*S|Yg7Yg)

_ ZP(Yg - Yg)P( g I‘Yg — yg)P(Wg = S‘Yg = yg)
m P(Hy =1)
&
G2 P(Hy =1|Yy)
— & , and
P(Hy =1)

)

P(Wgi = t|Xgi = m) = ZP Wei =1, Ygi = ¥gi| Xei = m)
= ZP gi = Ygl‘Xgl =m)P(Wgi = t|Xgi = m)

Vai

_Z g17Yg|

g
,,%,;P(Xgi = m|Ygi)Wgi
P(Xgi =m)

P(Xgi = m|Yg = ygi)P(ng = t|Xgi = m)
P(Xgi = m)

(10)

where wy = P(W, = 5|Yg) and wg; = P(Wg = t|Y,i). Note
that P(W, = s|H =1) and P(Wy = t|Xy = m) represent
the condltlonal probabilities that groups and individuals
originally belonging to level-2 class / and level-1 class m
are falsely assigned to class s and ¢, where / and m differ
from s and ¢, respectively. Based on the modal assignment
rule, the weights P(W, =s|Yy) and P(W, = t|Yy) are
equal to one for the class with the largest posterior class
probability and zero otherwise.

The third step is to estimate the relationships between
covariates (Zg and Zg) and the assigned class member-
ships (W, and W,;), taking into account biases caused by
the classification errors in the second step. The relation-
ships between covariates and the class memberships can be
represented as

M)~

P(Wy =s|Zy) =) P(H, =1|Zg)P(Wy = s|Hy = I).

—
Il

1

(11)

M
P(Wei = t|Zg) = Y P(Xgi = m|Zgg)P(Wei = t| X = m).

m=1

(12)

Equations 11 and 12 indicate that P(W, = s|Z,) and
P(Wy; = t|Zg) are linear combinations of posterlor class
probabilities and classification errors at each level.
Vermunt’s bias-adjusted ML method presumes that the mod-
els described in Equations 11 and 12 are latent class models
at two levels, in which assigned class memberships (W, and
W) serve as single indicators at the higher and lower
levels, respectively. Based on this assumption, covariate
effects can be assessed by estimating the parameters of the
latent class models, while classification errors, P(W, =
s|Hy =1) and P(Wy = t|Xg; = m), are assumed to be
known and fixed (Vermunt, 2010). Conversely, the alterna-
tive bias-adjusted three-step BCH method reformulates
Equations 11 and 12 into reweighted forms by multiplying
the inverse of the rescaled classification error (Bolck et al.,
2004). Then, simple cross-tabulations or ANOVAs can be
implemented to estimate the association between the class
membership and covariates.

SIMULATION STUDY

Previous studies have suggested that the performance of
methods for assessing covariate effects is strongly asso-
ciated with sample sizes and class separation (Bakk et al.,
2013; Bolck et al., 2004; Di Mari et al., 2016; Vermunt,
2010). Separation among classes usually refers to the extent
of heterogeneity among latent classes; it is strongly asso-
ciated with the concept of classification error because it
quantifies the classification uncertainty of observational
units. For MLCMs, when level-1 or level-2 classes are
poorly separated, there is greater uncertainty in assigning
groups or individuals into latent classes with an increased
likelihood of classification errors.

In this simulation study, the class separation at higher
and lower levels was manipulated through patterns of class-
specific parameters following previous simulation studies
(e.g., Kim, 2014; LukocCiené et al., 2010; Nylund,
Asparouhov, & Muthén, 2007; Tofighi & Enders, 2007;
Yang & Yang, 2007). Class separation at the higher level
was controlled by patterns of conditional latent class prob-
abilities, P(X;; = m|H; =1), and class separation at the
lower level was manipulated via patterns of conditional
response probabilities, P(Yy; = yg;|Xyi = m). Note that
class separation in the MLCM is not only influenced by



the pattern of the class-specific parameters, but also is
associated with other factors, such as sample size, number
of latent classes, number of item or categories, and class
sizes. Lukociené et al. (2010) described how those factors
affect class separation at two levels.

Simulation design

We designed a simulation study to compare the relative
performance of the one-step method, the classical three-
step method, and the bias-adjusted three-step ML method
in the situation where covariate effects at two levels are
assessed simultaneously. Because the BCH method and the
ML method yielded similar results when covariate effects
were evaluated at the individual level (Vermunt, 2010) and
the group level (Bennink et al., 2015), we only considered
the ML method for analyses. We evaluated the relative
performance of the three methods by examining the effi-
ciency and bias in the parameter estimates. Following the
approach used by Vermunt (2010), we measured parameter
bias by comparing average estimated values with true
population values, while efficiency was evaluated by cal-
culating the ratio of the estimated SEs and standard devia-
tions (SDs) of parameter estimates over simulation
replications. An observed ratio closer to one indicates
that a method is more efficient.

Data were generated from the population model: two
level-2 classes and three level-1 classes with six dichoto-
mous indicators and two numeric covariates (one at each
level) with five categories scored (=2, —1, 0, 1, and 2). Six
design factors were manipulated: (1) level-2 sample sizes,
(2) level-1 sample sizes, (3) conditional latent class prob-
abilities, (4) conditional response probabilities, (5) magni-
tude of level-2 covariate effects, and (6) magnitude of level-
1 covariate effects.

We manipulated the level-2 sample size (i.e., the number
of groups) and the level-1 sample size (i.e., the number of
individuals in a group) to investigate the effects of sample
size at both levels. There were 50 or 100 groups (G) with
10, 30, or 50 individuals per group (n,) to represent small,
medium, and large samples. These specifications resulted in
six levels of total sample sizes: 500; 1,000; 1,500; 2,500;
3,000; and 5,000.

We use the term class distinctness to characterize the
pattern of class-specific parameters. We chose two pat-
terns of conditional latent class probabilities to generate
different degrees of separation among level-2 classes:
more distinctive conditions and less distinctive condi-
tions, respectively. For more distinctive conditions, the
true population values of the parameters differed greatly
among the classes in which larger differences in the
values yielded more distinguishable classes, therefore
inducing more separated classes. For less distinctive con-
ditions, on the other hand, the true population parameter
values were more evenly distributed. Such patterns
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resulted in less distinguishable classes, therefore inducing
less separated classes.

Likewise, two different levels of class separation at
level-1 were created by manipulating the pattern of condi-
tional response probabilities. The values were set to differ
greatly among the level-1 classes in the conditions
designed for more distinctive classes, but the values were
more evenly distributed in less distinctive conditions. The
exact parameter values used in the simulation study are
summarized in the Appendix.

The magnitude of covariate effects was manipulated
through logit parameters, representing the association
between covariates and class memberships. A higher
value of this parameter corresponds with larger covariate
effects. The logit parameters for covariate effects at level-
1 were assumed to be 2 and 2 for large (v = 2, 21 = 2),
1 and 1 for moderate (y;; = 1, y; = 1), and 0 and 0 for
no effect (y;; = 0, yo; = 0) conditions, while the third
class was set as the reference category. Similarly, the logit
parameters for the level-2 covariate effect were set to 2,
1, and 0, representing large (a;; = 2), moderate (a;; = 1),
and no effect (a;; = 0) conditions where the second class
was selected as the reference category. The sizes of the
higher-level latent classes were assumed to be equal,
which implies that groups have equal probabilities of
belonging to each higher-level latent class.

Analysis

A factorial simulation experiment was performed to evalu-
ate the effects of six manipulated factors and to compare the
relative performance of the three methods. The design
yielded 144 (2 x 2 x 2 x 2 x 3 x 3) conditions by crossing
six design factors. For each simulation condition, 100 repli-
cations were simulated according to the parameter specifica-
tions listed in the Appendix. We used the Latent GOLD 5.0
Syntax Module (Vermunt & Magidson, 2008) to generate
data, estimate model parameters, save the posterior latent
class probabilities of individuals as well as groups,' and
estimate level-2 and level-1 covariate effects by applying
the three methods. We then averaged the obtained parameter
estimates and their SEs across all 100 replications for each
condition. The SD of the parameter estimates over simula-
tion replications was also calculated.

The specifications of the simulation design yielded
diverse MLCM structures, from highly separated to extre-
mely poorly separated clusters and classes. We used the
measures of classification quality (Rgmmpy measures) at
each level to ensure that our design covered a wide range
of latent cluster and class structures. The eight controlled

factors resulted in the Rzntmpyhigh ranging from 0.158 to 1

! The modal assignment rule was used to assign individuals and groups
into level-1 and level-2 latent classes.
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and the R ranging from 0.271 to 1. The average

Rgmmpy'high and Rgmmpy_low across all conditions were 0.774
(SD = 0.248) and 0.745 (SD = 0.154), respectively.

Simulation results

Table 1 presents the parameter estimates of the level-2
covariate effects, the average estimated SEs, and the com-
puted SDs of parameter estimates for the three methods over
six sample size conditions. In general, the bias in the level-2
covariate parameters (i.e., the discrepancy between the esti-
mated and true population values) tended to decrease as the
level-2 sample size increased. The results also showed that
all three methods recovered parameters well when level-2
covariate effects were moderate and none.

When the covariate effect was large, the classical three-
step method had the largest overall bias (average bias less
than 10%). In particular, the classical three-step method
underestimated the parameters when the sample sizes were
relatively small (total sample size < 1,500), but the under-
estimation vanished as the sample sizes increased. A similar
pattern of results was found for the ML method, but para-
meter estimates obtained from the ML method were slightly
less biased (average bias less than 5%). The one-step
method, alternatively, slightly overestimated the parameters
under the same conditions (average bias less than 5%).

When comparing the average estimated SEs with SDs
across replications, the one-step method was the most effi-
cient approach, showing that the average ratios of SEs and

SDs were almost equal to one (average ratio = 1.03). The
average ratio obtained from the classical three-step method
was below one under the conditions of large and medium
covariate effects, indicating that overall SEs tended to be
underestimated (average ratio = 0.82). The ML method also
yielded underestimated SEs under the same conditions
(average ratio = 0.85), but the average ratio was a bit closer
to one in comparison with the classical three-step method.
Moreover, the SEs were slightly overestimated for both
three-step methods when covariate effects were small.
These results are consistent with previous studies investigat-
ing covariate effects at a single level using the modal assign-
ment (Bakk et al., 2013, 2014; Vermunt, 2010).

Table 2 presents the parameter estimates of the level-1
covariate, the averaged SEs, and the SDs of parameter
estimates across six sample size conditions. As Table 2
shows, the parameter bias tended to decrease as the level-1
sample sizes increased; this pattern suggested that having
more level-1 samples allowed all three methods to estimate
level-1 covariate parameters more precisely.

Among the three methods, the classical three-step
method performed the worst, showing the largest para-
meter bias (average bias less than 30%). This method
yielded downward-biased parameter estimates, except
for conditions of small covariate effects and such under-
estimations were more severe when the covariate effects
were large (average bias more than 40%), in contrast, the
parameter estimates obtained from the one-step method
were slightly overestimated (average bias less than 5%).
The ML method underestimated the parameters,

TABLE 1
Average Estimated Level-2 Covariate Effect (o), SEs, and SDs Under Six Sample Size Conditions

Samples One-Step Classical Three-Steps ML Three-Steps
ng G Estimate SE SD Estimate SE SD Estimate SE SD
o = 2
10 50 2.11 0.73 0.75 1.42 0.45 0.59 1.46 0.50 0.66
100 2.07 0.57 0.57 1.55 0.26 0.39 1.60 0.30 0.43
30 50 2.08 0.65 0.65 1.49 0.82 1.01 1.55 0.81 1.05
100 2.11 0.64 0.49 2.12 0.27 091 2.09 0.35 0.89
50 50 2.15 0.66 0.67 2.46 0.97 1.10 2.20 0.98 1.11
100 2.09 0.48 0.45 2.24 0.77 0.94 2.12 0.78 0.87
oy = 1
10 50 1.15 0.47 0.50 1.02 0.26 0.27 1.04 0.28 0.28
100 1.06 0.32 0.34 1.01 0.18 0.20 1.02 0.18 0.20
30 50 1.08 0.34 0.35 1.14 0.29 0.30 1.12 0.30 0.31
100 1.08 0.25 0.23 1.01 0.20 0.21 1.03 0.21 0.22
50 50 1.07 0.33 0.33 1.15 0.29 0.30 1.12 0.30 0.31
100 1.03 0.23 0.21 1.10 0.21 0.24 1.08 0.21 0.22
o =0
10 50 0.03 0.30 0.20 0.02 0.22 0.13 0.02 0.23 0.14
100 0.00 0.19 0.12 0.00 0.15 0.09 0.00 0.15 0.09
30 50 0.01 0.22 0.13 0.02 0.21 0.13 0.02 0.21 0.13
100 0.02 0.19 0.10 0.01 0.15 0.10 0.01 0.15 0.10
50 50 0.02 0.20 0.13 0.02 0.20 0.13 0.02 0.20 0.13
100 0.01 0.16 0.09 0.01 0.15 0.09 0.01 0.15 0.09
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TABLE 2
Average Estimated Level-1 Covariate Effect (y), SEs, and SDs Under Six Sample Size Conditions

Samples One-Step Classical Three-Steps ML Three-Steps
G ng Estimate SE SD Estimate SE SD Estimate SE SD
Yin=2
50 10 2.20 0.49 0.86 1.07 0.12 0.41 1.55 0.32 0.51
30 2.13 0.21 0.82 1.27 0.09 0.23 1.62 0.21 0.46
50 2.03 0.18 0.81 1.37 0.06 0.21 1.78 0.18 0.37
100 10 2.19 0.36 0.94 1.03 0.09 0.39 1.65 0.23 0.53
30 2.12 0.34 0.83 1.05 0.10 0.16 1.68 0.32 0.41
50 2.09 0.16 0.14 1.39 0.05 0.20 1.90 0.14 0.34
yn=1
50 10 1.09 0.41 0.46 0.58 0.13 0.26 0.92 0.29 0.46
30 1.05 0.20 0.43 0.63 0.08 0.26 0.91 0.21 0.24
50 1.01 0.12 0.41 0.62 0.06 0.23 0.98 0.16 0.18
100 10 1.04 0.24 0.25 0.56 0.09 0.16 0.90 0.22 0.44
30 1.05 0.20 0.12 0.55 0.09 0.13 0.94 0.22 0.20
50 1.01 0.12 0.08 0.63 0.05 0.13 0.96 0.14 0.18
Yynu=0
50 10 0.07 0.30 0.25 0.02 0.11 0.07 0.04 0.26 0.23
30 0.01 0.13 0.09 0.01 0.08 0.05 0.01 0.14 0.11
50 0.01 0.10 0.05 0.01 0.06 0.03 0.01 0.12 0.08
100 10 0.02 0.15 0.08 0.02 0.07 0.05 0.03 0.19 0.13
30 0.01 0.15 0.06 0.01 0.08 0.03 0.03 0.18 0.07
100 0.01 0.09 0.03 0.00 0.05 0.02 0.01 0.11 0.07

particularly when level-1 sample sizes were small
(ng = 10), but such downward bias lessened as the
level-1 sample size increased (average bias less than
10%). This pattern suggested that level-1 covariate para-
meters were more precisely estimated under larger sam-
ple size conditions.

The results indicated that the classical three-step method
severely underestimated SEs, particularly when covariate
effects were medium and large (average ratio = 0.39). The
one-step method also underestimated the SEs under the
same conditions, but the downward bias was less severe
than the classical three-step method (average ratio = 0.73).
The underestimation bias of the ML method was compar-
able to the one-step method (average ratio = 0.70), and such
bias was more evident when the covariate effect was large,
and the level-1 sample size was small.

Table 3 illustrates the parameter estimates of the level-2
covariate, the averaged SEs, and the SDs of parameter
estimates under the four conditions of class distinctness.
Table 3 shows that the parameter estimates were closer to
the true values under the conditions in which the level-2
classes were more distinctive. This result indicated that a
greater degree of class separation at level-2 provides better
recovery of the level-2 covariate parameters.

The results also indicated that the one-step method
slightly overestimated the parameters in all conditions. The
ML method, on the other hand, performed well when level-
2 classes were more distinctive (average bias less than 5%),
regardless of level-1 class distinctiveness. In line with pre-
vious studies (Bakk et al., 2013; Bennink et al., 2015), the

SEs obtained from the classical three-step method were the
smallest among the three methods. The one-step method
slightly overestimated the SEs in all conditions (average
ratio 1.18); however, the SEs obtained from the ML
method were slightly underestimated when level-2 covariate
effects were medium and large (average ratio = 0.85), but
overestimated under conditions where the covariate effects
were small (average ratio = 1.56).

Table 4 exhibits the parameter estimates of the level-1
covariate, the averaged SEs, and the SDs of parameter
estimates under four conditions of class distinctness. In
general, the level-1 covariate parameters were precisely
estimated under conditions in which level-1 classes were
more distinctive. We observed severe underestimation with
the classical three-step method; this pattern was more evi-
dent, particularly when level-1 covariate effects were large,
and level-1 classes were less distinctive (average bias more
than 60%), compared with more distinctive level-1 classes
(average bias less more than 40%).

Note, however, that the one-step and three-step ML
methods performed well in terms of parameter recovery
(average bias less than 10% for both methods), even though
the former method slightly overestimated the parameters.
The latter slightly underestimated when level-1 covariate
effects are large, but slightly overestimated under moderate
and small conditions. Interestingly, the performance of the
three-step ML method was not only affected by class dis-
tinctness at the same level (level-1), but also interacted with
the distinctness of the level-2 classes. More specifically, the
largest bias was observed under the condition in which both
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TABLE 3
Average Estimated Level-2 Covariate Effect (o), SEs, and SDs Under Four Class Distinctness Conditions

Class Distinctness One-Step Classical Three-Steps ML Three-Steps
Lvl Lv2 Estimate SE SD Estimate SE SD Estimate SE SD
oy = 2
More More 2.08 0.54 0.54 2.03 0.39 0.47 2.02 0.45 0.49
Less 2.04 0.63 0.59 2.22 0.96 1.31 2.24 1.02 1.31
Less More 2.12 0.65 0.64 1.93 0.41 0.55 1.95 0.43 0.54
Less 2.21 0.68 0.66 1.92 0.60 1.19 1.86 0.58 1.10
o =1
More More 1.03 0.27 0.27 1.07 0.26 0.27 1.06 0.27 0.27
Less 1.08 0.35 0.34 1.11 0.22 0.26 1.09 0.25 0.26
Less More 1.05 0.29 0.29 1.08 0.26 0.27 1.08 0.26 0.27
Less 1.14 0.46 0.45 1.03 0.21 0.25 1.04 0.22 0.25
oy = 0
More More 0.02 0.18 0.12 0.02 0.18 0.11 0.02 0.18 0.11
Less 0.01 0.21 0.14 0.01 0.18 0.12 0.01 0.19 0.12
Less More 0.01 0.19 0.12 0.01 0.18 0.12 0.01 0.18 0.12
Less 0.02 0.25 0.17 0.02 0.18 0.12 0.02 0.18 0.12
TABLE 4
Average Estimated Level-1 Covariate Effect (y), SEs, and SDs Under Four Class Distinctness Conditions
Class Distinctness One-Step Classical Three-Steps ML Three-Steps
Lv2 Lvl Estimate SE SD Estimate SE SD Estimate SE SD
Yu=2
More More 2.02 0.21 0.42 1.21 0.10 0.53 1.96 0.21 0.37
Less 2.08 0.39 0.69 0.70 0.09 0.10 1.73 0.37 0.74
Less More 2.04 0.20 0.49 1.14 0.08 0.46 1.94 0.17 0.46
Less 2.18 0.37 0.77 0.69 0.07 0.27 1.63 0.19 0.65
=1
More More 1.01 0.13 0.37 0.72 0.10 0.25 1.05 0.16 0.37
Less 1.08 0.34 0.47 0.52 0.10 0.21 1.12 0.35 0.55
Less More 1.02 0.11 0.37 0.69 0.07 0.07 0.99 0.12 0.12
Less 1.06 0.28 0.23 0.46 0.06 0.15 1.02 0.19 0.35
Y =0
More More 0.01 0.10 0.06 0.01 0.09 0.05 0.02 0.12 0.08
Less 0.04 0.24 0.14 0.01 0.10 0.06 0.04 0.34 0.22
Less More 0.01 0.08 0.05 0.01 0.05 0.03 0.01 0.08 0.04
Less 0.03 0.19 0.19 0.01 0.06 0.04 0.02 0.13 0.09

level-1 and level-2 classes were less distinctive among four
possible conditions (average bias less than 10%), and this
pattern was particularly prominent when the covariate effect
was large (average bias less than 40%). Conversely, the
smallest bias was found when the classes were more dis-
tinctive at both levels (average bias less than 5%).

The estimated SEs of the covariate effects tended to decrease
as the lower-level classes became more distinctive. The one-step
method performed better than the three-step ML method regard-
ing efficiency, and this pattern was more pronounced when the
covariate effect was large (average ratio = 0.49 for the one-step
method; average ratio = 0.43 for the ML method). This result is
consistent with Bakk et al. (2013) results, which demonstrated
that the SE bias of the ML method is slightly higher than the SE

bias of the one-step method under the condition of strong
covariate effects with nominal indicators.

EMPIRICAL EXAMPLE

Participants

To illustrate the application of the three methods for evalu-
ating covariate effects at two levels, we used data from the
motivated identity construction in a cultural context
20082011 (Vignoles & Brown, 2011), which consists of
two large-scale surveys studies. The aim of the study was to
examine the strengths of identity motives, sources of motive



satisfaction, and cultural beliefs and value across different
nations. Detailed information on the study is available on
the UK data archive (http://www.data-archive.ac.uk/).

To capture maximum cultural diversity between and within
nations, we focused on the study 2, as participants in the study
1 were high school students from 19 nations (Time 1) and 16
nations (Time 2), and participants in the study 2 were adults
from 36 nations. The sample in the study 2 consisted of 8746
participants (56% females, mean age = 35.0, SD = 13.0) from
64 cultural groups in 36 nations.

Measures

The study 2 investigated constructs related to motivated
identity construction such as collectivism, favoritism, and dif-
ferential cultural trust of in-group and out-group members.
Among many constructs, contextualism beliefs are an important
part of cultural collectivism that cover a range of different
contexts: family, social groups, position in society, the place
one comes from, occupation, where one lives, social position,
role in society, and educational achievement (Owe et al., 2013).

We selected six items from the contextualism scale,
which originally consisted of 14 items (Owe et al., 2013).
The chosen six items surveyed opinions on whether people
change easily, the importance of one’s social position, and
the importance of where one comes from. The original items
were rated on 6-point scales ranging from 1 (completely
disagree) to 6 (completely agree). Responses were dichot-
omized into disagree and agree to be consistent with the
simulation design in the present study.

A single covariate at each level was included in the
analysis; the level-2 covariate was region, which broadly
divided countries into six categories based on geographical
location (Africa, Asia, Europe, North America, South
America, and Oceania), and the selected level-1 covariate
was gender with two categories (male or female).

Analysis

An analysis was performed using the selected items and the
covariates at two levels. We first built an MLCM model for
contextualism beliefs based on the six selected items. The data
were fit to 16 models with a different latent structure of two to
five classes at each level. According to extant literature, BIC
with number of groups as the sample size for the penalty term
was used to determine the number of latent classes. Among the
16 models, the model with two classes at the country level
(GClass) and three classes at the individual level (Class) showed
the lowest BIC value with excellent fit to data (R2,,,, jigr =
0.81, R, 0. 1ow = 0-75), thus selected as a final model. Once the
final model was selected, the effects of covariates were then
assessed using the three methods, one-step method, the classical
three-step method, and the bias-adjusted three-step ML method.
The analyses are carried out using the Latent GOLD 5.0 Syntax
Module (Vermunt & Magidson, 2013).
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Results

The estimated conditional response probabilities of the final
model are presented in Table 5. The results suggested that
individuals in Class 1 rarely endorsed the items related to
“personal change,” but individuals in Class 3 tended to
answer the same items positively. Conversely, individuals
in Class 2 answered positively to the items related to the
“importance of social position” and “where people come
from.” Although there were some minor differences in
response patterns, we named three classes according to the
pattern of estimated conditional response probabilities:
Class 1 was referred to as the Mover class, Class 2 as the
Social-Oriented class, and Class 3 as the Stayer class with
respect to their attitudes toward understanding people.

Table 6 shows the probabilities of the individual-level
classes conditional on country-level classes and gender. The
countries in GClass 1 had a dominant Stayer class, showing
that about 62% of the males and 63% of females were in this
class, whereas the countries in GClass 2 had no dominant class
but were more evenly distributed. Note that 37% of the males
in GClass 2 valued achieving a high social position, while only
32% of females considered social positions important.

Table 7 shows the countries classified into each country-
level class (GClass), with estimated GClass sizes of 54%
and 46%. The results indicated that countries from the same
continent are likely to be in the same GClass, showing that
GClass 1 primarily comprised countries in Europe and
Northeast Asia, whereas GClass 2 comprised countries
from South America and Africa.

After identifying the level-1 and level-2 classes, we
calculated classification errors at each level using posterior
class membership probabilities. We then applied the classi-
cal three-step and ML methods to evaluate the covariate
effects at each level. For the one-step method, we assessed
the covariate effects while selecting the number of classes.
Table 8 reports the estimates of the covariate effects on the
class memberships and their SEs at both levels.

TABLE 5
Conditional Response Probabilities on Six Selected Items
Social-
Indicators Stayer oriented Mover

You can always substantially change the kind  0.08 0.32 0.70
of person you are.

No matter what kind of person you are, you can  0.06 0.38 0.91
always change a lot.

To understand a person well, it is essential to ~ 0.13 0.84 0.14
know about his/her role in society.

To understand a person well, it is essential to ~ 0.29 0.78 0.31
know about which social groups he/she is a
member of.

One can understand a person well without 0.39 0.68 0.57
knowing about the place he/she comes from.

To understand a person well, it is essential to ~ 0.08 0.77 0.13

know about the place he/she comes from.
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TABLE 6
Conditional Latent Class Probabilities Given Country-Level Classes
and Gender
Class
Gender GClass Stayer Social Mover
Male 1 0.62 0.21 0.17
2 0.34 0.37 0.29
Female 1 0.63 0.19 0.18
2 0.36 0.32 0.32
TABLE 7

Predicted Country-Level Class Membership

GClass 1 (54%) GClass 2 (46%)

Belgium, Egypt, Georgia, Germany, Brazil, Chile, China, Colombia,
Hungary, Iceland, Italy, Japan, Ethiopia, Ghana, Malaysia,
Lebanon, New Zealand, Norway, Namibia, Oman, Philippines,
Romania, Russia, Singapore, Uganda, Peru, Cameroon
Spain, Sweden, Turkey, Great
Britain, United States, Thailand

TABLE 8
Estimates of Covariate Parameters, SEs, and P-values of the Three
Compared Methods

GClassl Stayer Mover

Methods a;;  SEs p vy SEs P y2;  SEs P

One-Step  —0.60 0.17 <0.01 —0.14 0.07 <0.05 0.04 0.08 <0.05
Classical ~ —0.62 0.11 <0.01 —0.10 0.06 <0.05 -0.01 0.06 <0.05
ML —0.62 0.14 <0.01 —0.14 0.08 <0.05 —0.01 0.08 <0.05

As shown in Table 8, the ML methods provided parameter
estimates similar to those of the one-step method at both levels.
Howeyver, the classical three-step method underestimated the
level-1 covariate parameters as compared to the other two
methods. Moreover, similar to the results of the simulation
study, the SEs obtained from the classical three-step method
was smaller than those from other two methods. These results
were in agreement with the findings in the simulation study;
that is, the ML method performed similarly to the one-step
method when there were sufficient sample sizes at individual
levels (N = 8,652) and classes at both levels were well-sepa-
rated (R? =0.81, R? =0.75).

entropy.high entropy.low

DISCUSSION AND CONCLUSION

The purpose of the current study was to examine the relative
performance of three approaches for estimating covariate effects
in the context of an MLCM. We were particularly interested in
whether existing methods for LCAs with single-level covariates

can be generalized to situations where both level-1 and level-2
covariates effects are simultaneously estimated. To answer this
question, we conducted a simulation study by manipulating
level-1 and level-2 sample sizes, level-1 and level-2 class dis-
tinctness, and the magnitude of level-1 and level-2 covariate
effects. We evaluated the simulation results with respect to the
bias in covariate parameters and the efficiency of the SEs.

The findings of the current study regarding bias in parameter
estimates were generally consistent with those of previous stu-
dies (Bakk et al., 2013; Bennink, Croon, & Vermunt, 2013; Di
Mari et al,, 2016; Vermunt, 2010); the classical three-step
method yielded serious underestimation of covariate para-
meters. However, we observed such serious downward bias
only on the level-1 covariate parameters, whereas the level-2
covariate parameters were less biased. We also found that the
ML method performed well under the conditions of having a
sufficient number of samples and a distinct class structure; this
method performed as well as the one-step method regarding
parameter recovery and the accuracy of the SEs. Nevertheless,
under the conditions of small sample sizes and less distinctive
classes, the three-step ML method yielded biased parameter
estimates and SEs at both the individual and group levels.
These results are in agreement with previous simulation studies
assessing covariate effects at the individual level (e.g.,
Asparouhov & Muthén, 2014; Bakk et al., 2013). One possible
explanation for this pattern is the nature of the ML estimation
procedure for LCA, which exaggerates the heterogeneity of
latent classes and consequently underestimates the amount of
the classification error (Vermunt, 2010).

The findings related to sample size effects are consistent
with previous simulation results. In general, a larger number of
groups or group sizes led to better performance in recovering
the covariate parameters and their SEs. One notable finding is
that covariate parameters at both levels were particularly sen-
sitive to the sample sizes at level-1. This result may be due to
the model specification of a nonparametric MLCM, in which
level-1 sample sizes affect the composition of both level-1 and
level-2 latent classes. Although we did not examine how large
of a sample is needed to guarantee good performance, a group
size of 10 individuals was clearly not enough.

We found that class distinctness also affects the precision of
covariate parameter estimates and their SEs. The simulation
results revealed that a larger bias was associated with having
less distinct classes at both levels. One important finding of our
study is that bias was not only affected by class distinctness at a
single level, but it also was associated with interactions of class
distinctness at two levels. Specifically, conditions with less
distinctive classes at both levels produced the largest bias
among four possible conditions, while the lowest bias in the
estimated parameters and their SEs were found under more
distinct classes at both levels.

The findings of the current study suggested that sample
sizes and class distinctness play important roles in accu-
rately estimating covariate parameters. Therefore, we
recommend that researchers take the importance of those



two factors into consideration and assess how level-1 and
level-2 classes are separated in advance by using measures
such as Rgnm)py, which is provided by most software for
MLCMs (e.g., Latent Gold or Mplus). Information about
class separation can guide the selection of the appropriate
method to obtain more reliable and unbiased results.

Based on the findings in the present study, we recom-
mend using the ML method for estimating covariate effects
in MLCMs, particularly when the sample sizes are suffi-
ciently large, and the classes are well separated. However, in
cases where the sample sizes are limited, and latent classes
are poorly separated, the one-step method is a more favor-
able approach over the stepwise methods. We do not recom-
mend the classical three-step method for estimating
covariate effects in an MLCM because the parameters are
severely downward-biased at the level-1.
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APPENDIX

Specifications of the Conditional Latent Class Probabilities for More- and Less-Distinct Classes

Parameters

Higher level Lower level P(Hy) P(X,i|Hg) P(Ygij|Xgi)
More More [1/2] 8 1 (8 8 8 8 8 .8 .8 .8
1/2 1 “} 222 2 8 8 8 8
o 18 2 2 2 2 2 2 2 2]
Less [1/2] 8 1 (7 72 7 7 7 79 .7 7]
1/2 1 -1} 33339977
o 18 |3 3 3 3 3 3 3 3]
Less More [1/2] 715 [8 8 8 8 8 .8 .8 8]
1/2 15 ~15} 222 2 8 8 8 8
o A5 T 2 2 2 2 2 2 2 2]
Less [1/2] g.15 (7 72 7 7 7 7 7 7]
1/2 15 ~15} 33337777
o 157 |3 3 3 3 3 3 3 3]
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