
Pergamon
Information Processing & Management, Vol. 31, No. 1. pp. 47-58, 1995

Copyright 0 1994 Ekvier Science Ltd
Printed in Great Britain. All rights reserved

0306-4573195 $9.50 + .oo

0306-4573(94)00033-6

INFORMATION/KNOWLEDGE ACQUISITION METHODS
FOR DECISION SUPPORT SYSTEMS

AND EXPERT SYSTEMS

HENG-LI YANG
Department of Management Information Systems, College of Business Administration,

National Cheng-Chi University, 64, Sec.2, Chihnan Road, Taipei, Taiwan
E-mail: yanh@mis.nccu.edu.tw

(Received 18 November 1993; accepted in final form 16 May 1994)

Abstract -The construction of a decision support system must define its information
requirements. Building an expert system needs knowledge acquisition-the accumula-
tion, transfer, and transformation of problem-solving expertise from some knowledge
source. There are a few methods associated with the information requirement elicitation
(IRE) and knowledge acquisition (KA). This paper compares representative IRE and KA
methods. It concludes that though most methods can be applied to both types of sys-
tems, there are still few methods that are unique to one type.

Keywords: Decision support systems, Expert systems, Information requirement elicita-
tion, Knowledge acquisition.

1. INTRODUCTION

The effectiveness of an information system requires the thorough elicitation of user infor-
mation requirements. Similarly, a key aspect of expert systems development is knowledge
acquisition (KA). Knowledge acquisition is the general name given to the process of elic-
iting, acquiring, and representing knowledge consisting of descriptions, relationships, and
procedures in a specialized domain of interest (Dhaliwal & Benbasat, 1989). Its major func-
tions are to extract knowledge from expert(s), and analyze and formalize the knowledge
into some computer understandable forms (Shaw & Woodward, 1989). It should appro-
priately represent the knowledge structure to conceptualize the mental model(s) or expert(s)
and facilitate inference and explanation capabilities.

Byrd et al. (1992) compare some information requirement-elicitation (IRE) and
knowledge-acquisition methods. They demonstrate that these two research streams have
many things in common, and techniques from IRE and KA address very similar issues.
However, it is doubtful whether all methods can be applied to any information system
development.

The focus of this paper is on two special types of information systems-decision sup-
port systems (DSS) and expert systems (ES). In fact, DSS and ES are as ends of a contin-
uum. There are some efforts to integrate these two systems into one, and the distinction
between these two systems has become fuzzy. However, this paper adopts the traditional
views of these two systems for comparison. IRE methods for DSS development are com-
pared with KA methods for ES development. The purpose is neither to survey all avail-
able methods nor to provide the details of these methods. Rather, the applicability of the
different methods is discussed from the point of view of the different characteristics under-
lying these two types of systems.

The major intention of this paper is to test two extreme hypotheses: (1) all IRE meth-
ods and KA methods are unique to DSS and ES development, respectively; that is, there
is no common method, and (2) all methods are common. Hypothesis I may be trivially
rejected by the conclusion of the previous paper (Byrd et al. 1992). The testing of Hypoth-
esis II is more interesting.

If some methods can be found to reject Hypothesis II, it is worth discussing why-

47

48 H.-L. YANG

does the difference of the underlying system characteristics cause DSS and ES to need dif-
ferent development methods?

In the following, the definition and architectures of ES and DSS are first reviewed and
compared in Section 2. Section 3 discusses the development cycles and IRE/KA methods
for two types of systems. Section 4 discusses how and why the methods used in ES devel-
opment differ from those used in DSS development, and the applicability of methods to
both systems. Section 5 concludes this paper.

2. OVERVIEW OF DSS AND ES

2.1 Definitions
2.1.1 DSS. It is somewhat difficult to articulate the definition of DSS because there

is no consensus on what a DSS is. One definition, consistent with those of Turban (1993)
and Sprague & Carlson (1982), is: A DSS is an interactive, computer-based information
system that utilizes decision rules and models, coupled with a comprehensive database to
support all phases of the decision-making process mainly in semistructured (or unstruc-
tured) decisions under the full control of the decision makers. Here the term “semistruc-
tured decision” is used for situations in which information needs cannot be described in
detail before making a decision, and the procedures for obtaining the best (or a good
enough) solution are unknown. In addition, the following characteristics and capabilities
are helpful to check whether a system is a DSS or not.

l DSSs support all phases of the decision-making process: intelligence, design, choice,
and implementation (Turban, 1993).

l Support is provided for various managerial levels, ranging from top executives to
line managers, and to individuals as well as to groups.

l DSSs support several interdependent and/or sequential decisions and a variety of
decision-making processes and styles.

l DSSs must be easy to use and adaptive over time. DSSs are so flexible that the deci-
sion maker is able to confront changing conditions quickly and adapt the DSSs to
meet these changes.

l DSSs attempt to improve the effectiveness of decision making, rather than its
efficiency.

2.1.2 ES. According to Turban (1993), an expert system is a computerized advisory
program that attempts to imitate or substitute the reasoning processes and knowledge of
experts in solving specific type of problems. More precisely, it solves real-world problems
requiring an expert’s interpretation, employs heuristic knowledge and/or qualitative mod-
els of the problem domain, reaches the same conclusions that a human expert would have
if faced with a similar situation, and employs a programming methodology based on a sep-
aration between knowledge and its application (Pfeifer & Liithi, 1987).

Human experts are scarce and expensive. The objective of an expert system is the dis-
semination of expertise: transferring expertise from some expert(s) to a computer and then
on to other human nonexperts. The problem areas addressed by expert systems include
interpretation, predication, diagnosis, design, planning, monitoring, debugging, repair,
instruction, and control (Turban, 1993).

2.1.3 General architectures ofDSS and ES. Three major components of a DSS are:

l data management component for relevant data,
l model management component for analytical capabilities, and
l communication (dialogue) subsystem through which the user can communicate with

the DSS.

An expert system is composed of:

Information/knowledge acquisition 49

knowledge base for a particular problem domain,
inference engine to propagate inferences over the knowledge,
explanation subsystem to explain what/why/how about the reasoning process,
user interface for problem-oriented communications between the user and computer,
and
workplace (i.e., an area of working memory) for the description of a current
problem.

&. 1.4 Comparison of DSS and ES. Similarity: ES and DSS share some characteris-
tics. As Turban (1993) pointed out, one major similarity is to give assistance in solving
unstructured problems. According to Luconi et al. (1986), no straightforward solution tech-
niques (e.g., standard procedures) for such problems are known, and so some flexible
problem-solving strategies are used to decide which standard procedures (i.e., algorithms
or formulas) to apply to solve problems.

Difference: If we adopt the traditional views of these two types of systems, there are
some fundamental differences between them. Here, the differences are examined in terms
of the following dimensions.

1. Origination of system. Historically, DSSs are mainly from the discipline of man-
agement science and decision science to improve (management) decision making, whereas
ESs are from the discipline of artificial intelligence for problem solving in a particular
domain.

2. Objective of system. As has been pointed out by a number of authors (e.g., Keen
& Scott-Morton, 1978; Sprague, 1980) a task (such as management decision making) that
is at the same time multi-dimensional, multi-objective, and only partially defined, cannot
be automated. One reason is that such tasks typically employ much “common sense.” So
the objective of a DSS is not to automate management decision making, but rather to sup-
port the intuition of the decision maker. On the other hand, the objective of an ES is to
replicate a human advisor and to replace him or her.

3. Characteristics of problem area. The problems most DSSs deal with are broad and
ill specified (i.e., the goals are typically formulated in very general and vague ways; only
partial specifications are available)-for example, the new product or service planning. The
applicability of ES is restricted to narrow domain and (more or less) well defined
problems - for example, the car repair problem. That is because human experts are good
only if they operate in a very narrow domain. However, the fact that a problem is well
defined does not mean it is easy to solve, because the solution path may be highly com-
plex (Pfeifer & Ltithi, 1987).

4. Type of problem treated. DSSs are more suitable for dealing with ad hoc and unique
situations, whereas ESs are more suitable for providing advice on repetitive problem areas.
The repetitiveness of problems may indicate the high payoff from ESs.

5. Representation of problem solving process. A DSS has a sparse representation of
the decision-making process. It only contains an implicit (and typically rather vague) model
of the decision process involved. On the other hand, an ES has a dense representation of
the problem-solving process. It contains an implicit or explicit model of the kind of infor-
mation needed and how this information is processed. For example, in a car repair ES,
though the system might not have a basic physics or engineering model, it contains all the
necessary information to repair a car-the mental model of a human repair expert (if the
system is appropriately constructed), and “knows” what kinds of input data it needs.

6. Control and interactivity (possibility for user intervention). A DSS must allow the
user to confront a problem in a flexible and personal way by providing the ability to manip-
ulate the data and models in a variety of ways through the decision-making process. So,
the initiative is always with the user. However, an ES contains a more or less complete
model of the problem-solving process. With minor exceptions, the initiative is always with
the system -the system asks for data, performs all the reasoning steps, asks for more infor-
mation, and in the end comes up with a solution,

In some systems with advanced options (e.g., ESs for medical diagnosis), ESs can be

50 H.-L. YANG

used to conduct sensitivity analysis (i.e., what-if analysis similar to a DSS) to change any
of the input data (e.g., likelihood estimates). The system would ask more questions and
then display new recommendation(s). However, basically it is the system rather than the
use to take most of the initiative.

7. Users of system. A DSS may provide support for managers, ranging from top exec-
utives to line managers, whereas an ES has several possible users: a nonexpert client seek-
ing direct advice, a pupil or student who wants to learn, an ES builder who wants to
improve or increase the knowledge base, and an expert who wants an assistant.

8. Types of knowledge in database/knowledge base. The database of a DSS contains
facts (declarative knowledge), whereas the knowledge base of an ES contains facts, procedural
knowledge, heuristics, and others (e.g., judgments, causal knowledge, meta-knowledge).

9. Reasoning capability. An ES, by definition, exhibits some reasoning capability. A
DSS does not possess such a capability at all (though an advanced DSS, called intelligent
DSS, may include knowledge subsystem and incorporate reasoning capabilities).

10. Explanation capability. A DSS user can normally trust the quality of information
produced by the individual modules of the DSS. The whole process is under his or her con-
trol and he or she can use the modules or not. However, an ES user plays a passive role
in the problem-solving process and gets a solution. Is the solution given by the system to
be trusted without question? This necessitates an explanatory capability of the system to
allow users to decide whether to trust the solution or not.

11. Source of knowledge. DSSs mainly use knowledge from the reconstructed sources
(e.g., statistical, management science, or quantitative models) to provide the system’s ana-
lytical capabilities, whereas ESs can use knowledge from authentic sources (the chosen
human experts) as well as the reconstructed sources.

12. Nature of support. DSSs can provide individual, group, and organizational sup-
ports. Group support is to a group of people, each engaged in separate but highly inter-
related tasks. Organizational support is to organizational tasks or activities involving a
sequence of operations, different functional areas, and required resources. ESs mainly give
advice and explanations to an individual (or a group).

In summary, because these two types of systems have different objectives, their rep-
resentation of the problem-solving process, initiative, incorporated knowledge, etc., are dif-
ferent. The different representation of the problem-solving process would have great impact
on their development methods, as shown in later sections.

3. INFORMATION/KNOWLEDGE ACQUISITION METHODS
IN DSS/ES DEVELOPMENT

3.1 System development cycles
Turban (1993) summarized a DSS development life cycle as: predesign, design, con-

struction, implementation, maintenance, and adaptation. Predesign stage is just like infor-
mation requirements and analysis phase in a traditional system development life cycle
(SDLC). Similarly, there is also a SDLC in an ES. Benbasat & Dhaliwal(1989) have pro-
posed an ES development life cycle as: modelling, knowledge elicitation, system construc-
tion, experiment, and use.

Comparing the development cycles of DSS and ES, we observe that the knowledge
acquisition in ES development is a phase similar to information requirements and analy-
sis stage in DSS development. Each of their functions is to determine what knowledge
should be put into the systems, though there are some substantial differences in the knowl-
edge contents, knowledge source, and acquisition processes. In a DSS, information require-
ments are from users to system builders. Then the system builders design a system to meet
the requirements. In an ES, the system builder must extract the knowledge from the expert.
The user requirements (e.g., graphic interface and explanation facilities) are generally
assumed clear or are simply ignored, though some researchers emphasize their importance
in developing ESs (Breuker & Wielinga, 1987; Greenwell, 1988).

Information/knowledge acquisition 51

3.2 Information/knowledge acquisition methods in DSWES
This section surveys some methods often mentioned in IRE or KA research area. The

description for each method is brief. As mentioned in Section 1, the purpose is not to sur-
vey all available methods. Rather, the intention is to have some sample methods to test the
following extreme hypotheses:

HYPOTHESIS I
There is no common method to DSS and ES development. That is, each IRE or KA

method is unique to DSS or ES, respectively.

HYPOTHESIS II
AN development methods are common to DSS and ES. That is, any IRE or KA

method can be applied to either system development.

3.2.1 DSS information requirement elicitation. ROMC: ROMC is a process-
independent method developed by Sprague & Carlson (1982). It assumes that a DSS should
support the commonality of decision making and leave the users themselves to develop their
own styles, knowledge, and skills. This method is intended to identify information require-
ments in each of three capability areas (intelligence, design, and choice) of DSS. One set
of identified capabilities can support a variety of decision-making processes. Four com-
ponents constitute this method.

l Representations: provide representations (e.g., pictures, chart, number, equation,
table, report, etc.) to help the decision maker conceptualize and communicate the
problem, since decision makers rely on these kinds of conceptualizations in mak-
ing or explaining a decision.

l Operations: provide operations to analyze and manipulate those representations.
l Memory aids: provide a set of memory aid such as databases, libraries, etc., to assist

the user in linking representations and operations.
l Control Mechanisms: facilitate users control and operation of the entire system and

integrate the representations, operations, and memory aids into useful decision-
making systems that would fit the users knowledge, skills, and style.

One should note that the representations are not as detailed as the decision makers’
conceptualizations, and the operations might support only common decision-making activ-
ities (Sprague & Carlson, 1982). It is a process-independent approach, and encourages deci-
sion makers to exercise direct, personal control over the support (e.g., let the decision
maker select the sequencing of operations).

Asking: Using this method, the system analyst directly asks users the information
requirements either by interviews or questionnaires with closed/open questions, or through
brainstorming, guided brainstorming, or group consensus. These methods can be used in
determining both organizational and specific application information requirements (Davis,
1982).

Deriving from existing information systems: The existing systems that have been
implemented can be used to derive requirements for a proposed information system for the
same type of organizations or for the same type of applications. Textbooks, handbook,
industry manuals, and packages can also be used to determine the requirements. This
method is suitable for information requirements determination in a stable environment
(Davis, 1982).

Synthesis from characteristics of utilizing systems: Information requirements are orig-
inated from the activities of the object systems (the real world, i.e., the organization). Anal-
ysis of the characteristics of the utilizing organization is a logical way to get the information
requirements for the new system. A lot of methods fall into this category.

1. Event analysis (Bahl 8z Hunt, 1984): Events are identifiable activities in decision
making. Decisions can be described by analysis of the events. Endogenous events may con-
sist of activities carried out by actors both inside and outside an organization. Exogenous

IPM 31:1-E

52 H.-L. YANG

events involve activities that are not part of the decision-making process itself, but are con-
sidered a relevant part of the environment.

2. Decision participants analysis (Bahl & Hunt, 1984): The user positions in the orga-
nization and roles in the decision making are related to the decision information require-
ments. It begins with exhaustively listing all actors who participate or are expected to
participate in a decision. By explaining their roles and relationships in the decision process,
the information requirements are clearer.

3. Decision process and contents analysis (Davis, 1982; Bahl & Hunt, 1984): The whole
process can be divided into three periods: pre-decision, decision, and post-decision. It
begins with identifying a decision, defines its decision process by means of some tools (e.g.,
decision tables), and then finds out information needed for the decision process.

4. Critical successfactor (CSF) analysis (Davis, 1982): CSF analysis is a method of
eliciting requirements by asking users to define the factors that are critical to success in per-
forming their functions or making decisions. CSFs are the few key areas that must go right
if an organization is to be successful. A series of interviews and meetings can transform
individual CSFs into departmental and overall organizational CSFs.

5. Strategy set transformations (Davis, 1982; Davis & Olson, 1982; Meador & Rosen-
feld, 1986): The organization and decision area’s objectives may result in different infor-
mation requirements. By identifying, validating, and then transforming the organizational
goals and strategies, the organizational information requirements can be determined.

6. Business systems planning (BSP) (David, 1982): BSP is a comprehensive IBM meth-
odology. Information requirements are derived from the organization in a top-down fash-
ion by starting with business objectives and then defining business processes. Business
processes are used to identify the business entities, data classes, and their relationships. An
information architecture is proposed by relating processes to data classes, and the priori-
ties for the development of the applications are then set.

Among these methods, CSF, strategy set transformation, and BSP are more suitable
for organizational information requirements determination.

Prototyping: Prototyping as a DSS development approach was introduced mainly
because the user requirements are difficult to be predefined or very changeable. It is also
very effective for user requirement determination. Users interact with their system in its
environment to specify their requirements more completely and correctly (Naumann 8z
Jenkins, 1982; Davis, 1982).

Process tracing methods: In recent literature, it is pointed out that to extend the sup-
port areas, DSS research should emphasize decision makers rather than just the decision
itself (Bahl & Hunt, 1985). Process tracing methods (Todd & Benbasat, 1987) are differ-
ent from the above discussed techniques because they focus on the decision-maker behav-
iors in the decision-making process and try to open the “black box.” This set of methods
includes information display board, eye movement tracing, computer logs, written proto-
col, and verbal protocol. It is observed that among them, protocol analysis is the most pow-
erful for discovering the dynamics of problem definitions, hypothesis formation, and
information search in a less structured context. This method can be used for identifying
biases and inconsistencies of the decision maker in the process, and provide the relevant
support to overcome the weaknesses; facilitating designers to be aware of the heuristics,
methods, and information sources used to solve a particular problem; and developing an
effective user-computer interface.

However, verbal protocol analysis is a controversial technique and has many detrac-
tors (e.g., often time-consuming and subject to bias when techniques for eliciting verbal-
ization are not rigorous). A balanced picture appears to show that under specific conditions
verbal protocols are valid and do provide data that is not available from other methods
(Ericsson & Simon, 1984).

3.2.2 ES knowledge acquisition methods. Knowledge acquisition has been the bot-
tleneck in ES development because of human knowledge characteristics, lack of theoreti-
cal support, and overall methodological framework for knowledge acquisition, as well as
the high demands on knowledge engineer skills (Shaw & Woodward, 1989). Fortunately,

Information/knowledge acquisition 53

this field has drawn great attention from researchers from different areas, and numerous
methods have been developed in recent years.

Direct methods: Direct methods ask the expert to report on knowledge he or she can
directly articulate (Olson & Rueter, 1987). These methods include interviews, question-
naires, observations, protocol analysis, interrupt analysis, and inferential j70 w analysis.
Direct methods rely on the availability of the information to both introspection and artic-
ulation. In addition, the knowledge engineer’s communication skills also affect the elici-
tation process.

Indirect methods: It is not uncommon for human experts to perceive complex rela-
tionships or come to sound conclusions without knowing exactly how they did it. These
indirect methods do not directly ask the experts to express their knowledge. Instead they
focus on inferring what the expert “must have known” from his or her responses to the
cases. Based on the elicitation, the knowledge engineer infers underlying structures among
the objects rated or recalled (Olson & Rueter, 1989; Dhaliwal & Benbasat, 1989). The typ-
ical indirect methods are multidimensional scaling, Johnson hierarchical clustering, gen-
eral weighted networks, repertory grid analysis, and inductive learning.

All the these methods are used to identify domain objects and draw relationships
among the objects. They can make up for the weaknesses of direct methods when the expert
has difficulty expressing his or her knowledge. However, their revealing capabilities are
more limited (Olson & Rueter, 1987). They can only illuminate particular aspects of the
relationships among the objects in the domain of expertise, but are hard to use to illumi-
nate the inferences the expert is using. In addition, they involve assumptions about the form
of the underlying representation, whether it is physical space, lists, networks, or tables, etc.
For example, multidimensional scaling assumes that data have come from stored represen-
tations of physical n-dimensional space (Olson & Rueter, 1987). Probably their important
use in knowledge acquisition is to create data for structured interviews (Greenwell, 1988).

Methods of active knowledge engineer role: As indicated by the method name, a
knowledge engineer plays an active role in knowledge acquisition. The following methods
are discussed in the literature (Boose, 1989; Greenwell, 1988).

l Participant observation: A knowledge engineer acts an apprentice or otherwise par-
ticipates in the expert’s problem-solving process. This would help the knowledge
engineer to better understand the process and the knowledge.

l Teachback interview: A knowledge engineer explains some concepts or reasoning
behind a particular process to an expert. This method is suitable to validate and to
improve the knowledge engineer’s understanding of the elicited knowledge.

l Tutorial interview: An expert delivers a lecture to a knowledge engineer. This
method is more suitable at the initial stage of the KA process.

Prototyping methods: Prototyping is an approach for developing a “quick and dirty”
version of an ES (i.e., the first working ES. It has also proved to be a powerful tool for
elicitation of further knowledge (Greenwell, 1988). Welbank (1983) states that it is useful
to get a system working as soon as possible. It keeps the expert interested and acts as focus
for eliciting knowledge. When using this method, the expert acts as a user to run a num-
ber of examples to test the prototype (i.e., the first working system). During this process,
the system weaknesses can be more easily detected and the knowledge base can be extended.
Pfeifer (1988) argued that a prototype should be completed as early as possible, since prob-
lem areas can frequently be pinpointed at this stage and it is much cheaper to detect or cor-
rect problems early in the development life cycle.

Automatic tools: Knowledge acquisition is a very complex and costly cognitive and
human interaction process. Besides the problems of the expert’s introspection and articu-
lation ability, communication between knowledge engineer and expert might be another
problem. Thus, researchers have tried to reduce or eliminate the work load of knowledge
engineers. This has resulted in the growth of automatic elicitation techniques. Numerous
tools have been developed in recent years (Boose, 1989). They have had great impact on

54 H.-L. YANG

the “indirect” or analysis component of KA by reducing the tediousness of performing such
analysis or by greatly augmenting the type of analysis possible (Benbasat & Dhaliwal, 1989).
From the view of knowledge elicitation, at their present level of development, these sys-
tems are little more than intelligent word processors with a powerful user interface and
graphical capabilities (Greenwell, 1988).

However, some tools do have certain capability to capture expert knowledge to main-
tain and extend its knowledge bases. For example, TEIRESIAS (Davis, 1976) can support
interactive knowledge transfer. If the expert is not satisfied with a diagnosis made by the
system, he or she can interact with the system to modify rules or add new rules. TEIRE-
SIAS is able to decide whether a new rule is complete and, if the rule seems not, to pose
correct questions to the expert. In this sense, TEIRESIAS can support the transfer of
knowledge from an expert to the system and maintain the entire knowledge base complete
under the control of the human expert (Pfeifer, 1988). Similarly, other tools (e.g., ID3,
ACES; Boose, 1989) based on machine learning can help KA.

Multiple expert KA methods: The knowledge to be acquired may be distributed across
a group of experts. Multiple expert KA presents major problems because experts may dis-
agree on the use of concepts and vocabulary, and this disagreement may be tacitly caus-
ing confusion. These problems sometimes can be relieved by the appropriate management
of the KA process (Greenwell, 1988). The following methods are recommended by some
researchers (Greenwell, 1988; Boose 1989; Shaw & Gaines, 1989): Delphi method, brain-
storm (e.g., Crawford slip method), consensus decision taking (e.g., voting, conflict res-
olution), normative group techniques (knowledge engineer leads the expert group to discuss
the problem and search for the best solutions).

General/application problem solving methods: Some methods focus on eliciting
knowledge for specific tasks (e.g., debugging, diagnosis, etc). Some other methods focus
on eliciting knowledge for general tasks (e.g., heuristic classification or heuristic construc-
tion) (Boose, 1989; Shaw & Woodward, 1989).

4. DISCUSSION-ARE METHODS DIFFERENT FOR DSS AND ES DEVELOPMENT?

Based on the methods described in Section 3.2, this section tests the presented hypoth-
eses: subsection 4.1 tests Hypothesis I and subsections 4.2 and 4.3 test Hypothesis II.

4.1 The common methods for DSS and ES development
As discussed before, in ES development, there should also be a user information

requirement stage in addition to the stage of knowledge acquisition from experts. In the
user information requirement stage, all traditional information requirement determination
methods can be applied to both systems. Besides, all the following methods can be applied
to DSS information requirement determination and ES knowledge acquisition with differ-
ent skills and/or in different contexts. Therefore, Hypothesis I is rejected.

Interviews and questionnaires. Both methods can be applied to knowledge/informa-
tion acquisition for ES and DSS developments. However, in ES development it is expected
that more skills are needed in conducting interviews and building questionnaires (e.g., crit-
ical incident questioning strategy; Welbank 1983). This is because the knowledge engineer
of an ES would try to understand the expert’s mental model in order to have a dense rep-
resentation of the whole problem-solving process and expertise, and because experts usu-
ally have difficulty expressing expertise (Shaw & Gaines, 1989).

Brainstorming. Brainstorming can be applied in DSS development to generate a large
number of alternative decisions. It can also be applied in ES development (e.g., Crawford
slip method; Boose, 1989).

Group consensus methods (e.g., Delphi method). In DSS development, the Delphi
method can be used to obtain “best” judgmental estimate of variables that are difficult or
impossible to estimate quantitatively. It can also be implemented as a “model” mechanism
to get the group decision in a group DSS. In ES development, the Delphi method can be
applied to gather knowledge from multiple experts independently (Boose, 1989).

Information/knowledge acquisition 55

Deriving information/knowledge from an existing system. In DSS development, if
there is an existing system in a similar organization or described in textbooks (handbooks
or industry studies), users and analysts can choose that existing system as an anchor and
adjust the requirement from it. A similar situation may also occur in ES development.

Evolutive and adaptive design approaches. In DSS development, because users have
difficulty pre-specifying their decision support needs without a concrete system to which
they can react, and because the decision support needs of users change frequently, the evo-
lutive (i.e., the progressive design of a DSS going through multiple, minimum length of
cycles) and adaptive design approaches have been advocated to obtain users’ requirements
(Davis, 1982; Meador & Rosenfeld, 1986). Similarly, in ES development, a prototype sys-
tem can act as an aid to further knowledge elicitation (Welbank, 1983), although it has some
disadvantages (e.g., scaling-up problems, mixing specification and implementation details)
(Twine, 1989). The embedded knowledge acquisition process in Hawkins’ negotiation cycle
of expert-client interaction (elicitation /modelling /advice /query) can be thought of as an
adaptive approach in response to clients who play active roles in this “social process”
(Gaines, 1989; Shaw & Gaines, 1989).

Observation and protocol analysis. In ES development, by watching the expert work,
the knowledge engineer can discover the objects, relationships, and inferences that the
expert is using (Welbank, 1983; Olson & Reuter, 1987). It can also be applied in DSS devel-
opment to watch the decision maker making decisions. A close cousin of simple observa-
tion is protocol analysis. In ES development, the knowledge engineer can ask the expert
to “think out loud” while performing the task. As discussed before, in DSS development,
verbal protocol analysis can provide knowledge about how to design both generic and
domain-specific models. It can be used to determine how users interpret various human-
computer interface functions and what makes these functions valuable. It is also useful in
evaluating decision-making support, especially for acquiring feedback in an iterative design
approach (Todd & Benbasat, 1987).

Methods of active knowledge engineer roles. These methods (e.g., participant obser-
vation, teachback interview, and tutorial interview) are useful in ES development (Boose,
1989). In principle, they can also be applied in DSS development, although system ana-
lysts might seldom play such active roles, partially because managers in organizations may
dislike such methods for political reasons.

Event analysis. In DSS development, events as the identifiable activities in a decision-
making process are coded in a map with a time dimension. This can also be used in ES
development to record and analyze what the expert does in a map.

Participant analysis. In DSS development, a system analyst needs to identify a num-
ber of characteristics of the participants in a decision-making process, such as their orga-
nization positions, in order to support their decision-making processes (Bahl & Hunt, 1984).
Similarly, in ES development, the knowledge engineer can also identify the characteristics
of expert(s) (e.g., the cognitive style) in order to select the best elicitation method or judge
which expert has more reliable knowledge.

Decision-making process and content analysis. In DSS development, the decision-
making process and content analysis provide a framework to identify various factors that
define and influence a manager’s behavior through the pre-selection period (e.g., resource,
environmental factors), decision period (e.g., urgency, motivations), and post-decision
period (e.g., time lag, decision impact). It is a task analysis to find out what kinds of sup-
ports a DSS can provide. There is no direct corresponding method for ES development.
However, researchers have also advocated some problem-solving ontologies or generic
structures approach (Chandrasekaran, 1988; Woodward, 1989; Shaw & Woodward, 1989)
to provide a framework to guide the knowledge engineer as to what data to extract, based
on the assumption of the existence of applicable generic problem-solving methods.

4.2 Any methods unique to DSS development?
Section 3.2.1 surveys some IRE methods for DSS: (1) ROMC; (2) asking; (3) deriv-

ing from existing information systems; (4) event analysis; (5) decision participants analy-

56 H.-L. YANG

sis; (6) decision process and contents analysis; (7) CSF; (8) strategy set transformation; (9)
BSP (4 to 9 are under the heading of “synthesis from characteristics of the utilizing sys-
tems”); (10) prototyping; and (11) process tracing methods. Asking includes interviews,
questionnaires, brainstorming, and group consensus, which can also be applied in KA, as
described in Section 4.1. Prototyping is an iterative, evolutive design approach, and can
be used in either DSS or ES system development. In addition, Section 4.1 has discussed
that both IRE and KA can apply all the above methods except for (7), (8), (9), and (1).

Methods to be used for organizational DSSs. There are some methods primarily for
obtaining organization-level DSS requirements (e.g., strategy set transformation, CSF, BSP)
(Davis, 1982; Meador & Rosenfeld, 1986). Turban (1993) states that CSF can be used in
feasibility studies for both DSSs and ESs. However, since ESs are mainly designed for sup-
porting individuals and groups, in a strict sense, these methods used for information
requirement determination in organizational DSS development are not used for ES knowl-
edge acquisition, although they may be thought of as kinds of indirect methods.

ROMC. ROMC is a process-independent method for identifying the user requirement
in a DSS (Sprague & Carlson, 1982). As discussed before, in an ES, the representation of
the whole problem-solving process is needed. ROMC is too “rough” to be used in ES
development.

4.3 Any methods unique to ES development?
Section 3.2.2 surveys some KA methods for ES: (1) direct methods; (2) indirect meth-

ods; (3) methods of the active knowledge engineer role; (4) prototyping methods; (5) auto-
matic tools; (6) multiple expert KA methods; and (7) general/application problem-solving
methods. Direct methods include interviews, questionnaires, observations, and protocol
analysis that can be applied to DSS. Multiple expert KA methods contain brainstorming and
group consensus methods, which can be used as IRE methods in DSS. General/application
problem-solving methods correspond to decision-making process and content analysis in
IRE. Prototyping and methods of active knowledge engineer role can be applied to DSS
too, as described in Section 4.1. The only ones left are (2) and (5).

Indirect knowledge acquisition methods. These indirect methods make different
assumptions about the form of the “underlying representation” and infer what the expert
“must have known” from his or her response. They are useful to reveal the complex rela-
tionships that experts do not know exactly. The knowledge engineer wants to obtain the
high degree of representational homomorphism in terms of structural match and behav-
ioral match between an ES and experts (Benbasat & Dhaliwal, 1989). But this is not the
case for DSSs. In a DSS, we only need a sparse representation of the decision process.
Although it is still possible to apply these indirect methods to organize data or develop a
specific model, it might not have any advantages. However, from another perspective, those
methods used in the development of an organizational DSS can be thought of in nature
as indirect methods, because they serve to identify commonalities and relationships in infor-
mation requirements and usage among the decision areas in an organization.

Automatic tools. Automatic tools are highly related to indirect methods and machine
learning. In DSS, there are three technology levels-specific DSS, DSS generators, and DSS
tools (Sprague & Carlson, 1982; Turban, 1993). DSS generators (e.g., Lotus l-2-3) and
DSS tools (e.g., programming languages) are computer-aided tools to construct a specific
DSS. They cannot be used as an IRE method.

Since there are some methods unique to ES or DSS, Hypothesis II is rejected.

5. CONCLUSIONS

From the preceding discussion, it is concluded that almost all knowledge/information
acquisition methods can be applied to both DSS and ES development, although they may
need different skills or may be applied in different contexts because of involved knowledge
sources and types. However, there are still a few methods that may be not applicable to
both systems (e.g., methods related with organizational DSSs, ROMC, indirect methods,
and automatic tools). Therefore, both extreme Hypotheses I and II are rejected. System

Information/knowledge acquisition 51

developer in both fields (system analysts in DSS and knowledge engineers in ES) can apply
those common methods even though some of the methods originated from the other field.
However, they should also be aware that there are some methods unique to the other sys-
tem, because different system characteristics cause different information/knowledge needs.

DSSs can support individuals, groups, or organizations. Therefore, there are a num-
ber of methods particularly to be applied for developing organizational DSSs. Strictly
speaking, those methods cannot be applied for ES development because ESs do not sup-
port organizations. However, they may be thought of as the IRE methods in DSSs corre-
sponding to indirect knowledge acquisition methods in ESs.

The goal of a DSS is to support the intuition of the decision maker to solve ill speci-
fied, complex, ad hoc, and unique problems. The computer performs the well understood
parts of the problem solving, while users use their goal, intuition, and general knowledge
to formulate problems, modify and control the problem-solving strategies, and interpret
the results. Therefore, a DSS only has a sparse representation of decision process. Those
user requirements can be sufficiently obtained by process-independent methods like ROMC
together with other methods. There would be no advantage in applying indirect knowledge
acquisition methods to DSS development. On the other hand, the goal of ESs is to repli-
cate and replace experts to solve well specified narrow domain problems. A dense repre-
sentation is needed and the system will take the initiative in interaction with the user. Thus,
the knowledge engineer would need to apply indirect methods or automatic tools to acquire
knowledge that even a human expert cannot express explicitly. The “rough” method like
ROMC may not be useful in ES development.

Researchers have observed that in certain problem domains both ESs and DSSs may
have distinct advantages that, when combined, can yield synergetic results (Turban, 1993).
There are a number of ways to integrate ESs into DSSs. One such integrated system is the
expert support system (ESS) (Luconi et al., 1986). For those integrated systems, all the
methods mentioned in this paper are applicable for their development.

Acknowledgement-The author wishes to thank anonymous reviewers for their helpful comments.

REFERENCES

Bahl, H.C., & Hunt, R.G. (1984). A framework for system analysis for decision support systems. Information
& Management, 7, 121-131.

Bahl, H.C., & Hunt, R.G. (1985). Problem-solving strategies for DSS Design. Information & Management, 8,
81-88.

Benbasat, I., & Dhaliwal, J.S. (1989). A framework for the validation of knowledge acquisition. Knowledge Acqui-
sition, l(2), 215-233.

Boose, J.H. (1989). A survey of knowledge acquisition techniques and tools. Know/edge Acquisition, 1(l), 3-37.
Breuker, J., & Wielinga, B. (1987, September). Knowledge acquisition as modelling expertise: The KADS meth-

odology. Paper presented at the 1st European Workshop on Knowledge Acquisition for Knowledge-based
Systems, Reading University.

Byrd, T.A., Cossick, K.L., & Zmud, R.W. (1992). A synthesis of research on requirements analysis and knowl-
edge acquisition techniques. MIS Quarterly, 16(l), 117-138.

Chandrasekaran, B. (1988). Generic tasks as building blocks for knowledge-based systems: The diagnosis and
routine design examples. The Know/edge Engineering Review, 3(3), 183-211.

Davis, G.B. (1982). Strategies for information requirements determination. IBM System Journal, 21(l), 4-30.
Davis, G.B., & Olson, M.H. (1982). Management information systems: Conceptualfoundations, structure, and

development (2nd edition). New York: McGraw-Hill.
Davis, R. (1976). Applications for meta level knowledge to the construction, maintenance and use of large knowl-

edge bases. Report STAN-CS-76-552. Stanford Artificial Intelligence Laboratory, Stanford University, CA.
Dhaliwal, J.S., & Benbasat, I. (1989, October). A framework for the comparative evaluation of knowledge acqui-

sition tools and techniques. Paper presented at the 4th AAAI-Sponsored Knowledge Acquisition for
Knowledge-Based System Workshop, Banff, Canada.

Ericsson, K.A., & Simon, H.A. (1984). Protocol analysis. Cambridge, MA: MIT Press.
Gaines, B.R. (1989). Social and cognitive processes in knowledge acquisition. Knowledge Acquisition, 1(l), 39-58.
Greenwell, M. (1988). Knowledge engineering for expert systems. Chichester: Ellis Horwood Limited.
Keen, P.G.W., & Scott-Morton, M.S. (1978). Decision support systems: An organizational perspective. Read-

ing, MA: Addison-Wesley.
Luconi, F., Malone, T.W., & Scott-Morton, M.S. (1986). Expert systems: The next challenge for managers. Sloan

Management Review, 27(4), 3-14.
Meador, L.C., & Rosenfeld, W.L. (1986). Decision support planning and analysis: The problem of getting large-

scale DSS started. MIS Quarterly, 10(2), 156-177.

58 H.-L. YANG

Naumann, J., & Jenkins, M. (1982). Prototyping: The new paradigm for systems development. MIS Quarferiy,
6(3), 29-44.

Olson, J.R., & Reuter, H.H. (1987). Extracting expertise from experts: Methods for knowledge acquisition. Expert
Systems, d(3), 152-168.

Pfeifer, R., & L&hi, H.-J. (1987). Decision support systems and expert systems: A complementary relationship?
In H.G. Sol et al. (Eds.), Expert systems and artificial intelligence in decision support systems (pp. 41-
51). Dordrecht: D. Reidel Publishing Company.

Pfeifer, R. (1988). Knowledge acquisition and learning. In S. Savory (Ed.), Expert systems in the organization.
Chichester: Ellis Horwood Limited.

Shaw, M.L.G., & Gaines, B.R. (1989, July). Knowledge acquisition: Some foundations, manual methods and
future trends. Paper presented at the 3rd European Workshop on Knowledge Acquisition for Knowledge
Based Systems, Paris.

Shaw, M.L.G., & Woodward, J.B. (1989, October). Mental models in the knowledge acquisition process. Paper
presented at the 4th Knowledge Acquisition for Knowledge Based Systems Workshop, Banff, Canada.

Sprague, R.H. (1980). A framework for research on decision support systems. In G. Fick & R.H. Sprague (Eds.),
Decision support systems: Issues and challenges. Oxford: Pergamon Press.

Sprague, R.H., & Carlson, E.D. (1982). Building effective DSS. Engliewood Cliffs, NJ: Prentice-Hall.
Todd, P., & Benbasat, I. (1987). Process tracing methods in decision support systems research: Exploring the black

box. MIS Quarterly, II(4), 493-512.
Turban, E. (1993). Decision support and expert systems: Management support systems (3rd edition). New York:

Macmillian.
Twine, S. (1989, July). A model for the knowledge analysis process. Paper presented at the 3rd European Work-

shop on Knowledge Acquisition for Knowledge Based Systems, Paris.
Welbank, M. (1983). A review of knowledge acquisition techniques for expert systems. British Telecom Research

Lab, Working Paper.
Woodward, B. (1989, July). Integrating task demands and problem-solving methods to develop useful taxono-

mies for knowledge acquisition. Paper presented at the 3rd European Workshop on Knowledge Acquisi-
tion for Knowledge Based Systems, Paris.

