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a b s t r a c t 

Shelf out-of-stock ( OOS ) is a salient problem that causes non-trivial profit loss in retailing. To tackle shelf- 

OOS that plagues customers, retailers, and suppliers, we develop a decision support model for managers 

who aim to fix the recurring issue of shelf-OOS through data-driven audits. Specifically, we propose a 

point-of-sale (POS) data analytics approach and use consecutive zero sales observations in POS data as 

signals to develop an optimal audit policy. The proposed model considers relevant cost factors, condi- 

tional probability of shelf-OOS, and conditional expectation of shelf-OOS duration. We then analyze the 

impact of relevant cost factors, stochastic transition from non-OOS to OOS , zero sale probability of the 

underlying demand, managers’ perceived OOS likelihood, and even random fixes of shelf-OOS on optimal 

decisions. We also uncover interesting dynamics between decisions, costs, and probability estimates. Af- 

ter analyzing model behaviors, we perform extensive simulations to validate the economic utility of the 

proposed data-driven audits, which can be a cost-efficient complement to existing shelf inventory control. 

We further outline implementation details for the sake of model validation. Particularly, we use Bayesian 

inference and Markov chain Monte Carlo to develop an estimation framework that ensures all model pa- 

rameters are empirically grounded. We conclude by articulating practical and theoretical implications of 

our data-driven audit policy design for retail managers. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The retail store is the last mile of supply chain management

and error-free store execution ensures that the collective efforts

of the whole supply chain pay off. Store execution primarily in-

volves moving goods from the backroom to the shelves such that

products are available to end consumers ( Zondag & Ferrin, 2014 ).

However, in-store logistics are highly labor-extensive and hence

store execution is prone to various errors such as shrinkage, mis-

placement, and faulty transactions ( Chuang & Oliva, 2015 ). Among

documented symptoms of poor store execution, shelf out-of-stock

(shelf-OOS) is a major problem and refers to the case that an item

is in-store (e.g., misplaced or stored in the backroom) but it is un-

available to customers ( Papakiriakopoulos, Pramatari, & Doukidis,

2009 ; Ton & Raman, 2010 ). The retail giant Walmart recently ad-

mitted to a shelf-OOS problem and predicted a $3 billion oppor-

tunity in filling in empty shelves caused by ineffective auditing

and re-shelving operations ( Dudley, 2014 ). Walmart even issued

an urgent memo that demands store managers to improve grocery

performance, which was seriously compromised by non-negligible

shelf-OOS ratios ( Greenhouse & Tabuchi, 2014 ). 

To solve the shelf-OOS problem that plagues end customers,

downstream retailers, and upstream suppliers, store managers of-
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s  

a  

https://doi.org/10.1016/j.ejor.2017.10.059 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
entimes ask store employees to perform shelf audits and fill in-

entory on the shelf. The timing of shelf audits hence has sub-

tantial influence on product availability, customer satisfaction, and

ales performance ( Aastrup & Kotzab, 2010 ). Therefore, numerous

ost-minimization policies have been proposed to assist shelf au-

it decisions. However, those policies often have one/multiple par-

ially observed state variables (e.g., number of periods or transac-

ions since last audit, shelf inventory level), which may undermine

heir practical applicability. In this study, we propose a point-of-

ale (POS) data analytics approach to shelf audit policy design. Our

ecision support model is independent of any particular type of

helf inventory replenishment policies and exclusively based on

OS data. Being widely available, POS data is reflective of cus-

omer demand subject to erroneous store execution. Some retail-

rs have strived to estimate OOS rates from POS data ( Gruen &

orsten, 2008 ). In the age of data analytics, this data-driven mod-

ling choice is deliberate and ensures that the proposed policy is

asy-to-implement. 

Specifically, we keep track of unlikely events (probabilistic

nomalies) in POS or scanned sales data as departures from nor-

al operations and initiate an intervention in a cost-efficient way.

n the context of retail operations, z signals, i.e., consecutive zero

ales in POS data, are deemed as probabilistic anomalies and

trong indicators of shelf-OOS. The use of consecutive zero sales

s signals to trigger shelf audits has been proven useful in prior

https://doi.org/10.1016/j.ejor.2017.10.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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tudies ( Chuang, Oliva, & Liu, 2016 ; Fisher & Raman, 2010 ). Some

anufacturers even infer that if a key item has no selling records

uring a time interval, chances are that the item is not on the retail

helf ( Zondag & Ferrin, 2014 ). In this paper, we develop data-driven

odels that explicitly account for the fact that an observed zero

ale for an item might be attributed to its underlying demand vari-

tion or caused by shelf-OOS. Given the realization of z signals, we

erive the conditional probability of shelf-OOS and the conditional

xpectation of shelf-OOS duration. The derivation considers under-

ying drivers of observed zero sales, accounts for managers’ esti-

ate of OOS likelihood, and serves as the core of our data-driven

udit policy. 

Even though it is possible to include extra state variables such

s system inventory records in the model, inventory records in the

etail sector are largely erroneous ( DeHoratius & Raman, 2008 ).

he proposed policy focuses on maintaining shelf inventory avail-

bility and avoids the use of shelf inventory as a state variable,

hich requires retailers to differentiate shelf inventory records

rom backroom inventory records. Doing so would increase data

equirements and data collection efforts. In fact, data errors are too

ommon to lead to poor decisions as decision makers do not know

ow much inventory they actually have ( Cachon, 2012 ). Even the

tem-level RFID does not guarantee full inventory visibility as tag

eaders (that are imperfect) would result in erroneous shelf inven-

ory records. However, without detecting shelf-OOS caused by ex-

cution errors such as shrinkage and misplacement, retailers will

ot be able to replenish empty shelves and mitigate lost sales even

hen the backroom capacity is sufficient. 

All the afore-mentioned issues create challenges for operations

esearchers to develop simplistic yet applicable audit policies.

ence, for practical considerations we design the audit policy

xclusively based on z signals (i.e., consecutive zero sales) that are

istribution-free and fully observable in POS data. After deriving

he audit policy, our analysis enables retail managers to better un-

erstand the impact of probabilistic factors – stochastic transition

rom non- OOS to OOS , zero sale probability of underlying demand,

nd managers’ perceived OOS likelihood – on audit decisions. We

lso uncover interesting interactions between the probabilistic

actors and other factors (e.g., sales potential, cost). Further, we

onduct simulation experiments to show the applicability and

alidate the utility of the POS data analytics approach. Extensive

imulations uncover scenarios where data-driven shelf audits can

ffectively im prove cost performance and complement existing

helf control systems that are prone to unobservable shelf stock

oss. Particularly, simulation results suggest that when demand

and hence shrinkage) rates increase, shelf audits driven by z

ignals enable retailers to achieve significantly lower system costs. 

While our paper is not the first in the literature that pro-

oses decision support models for retail shelf audits, our study

ontributes to retail operations in two major ways. First, in line

ith Fisher and Raman (2010) and Chuang et al. (2016) , we use

he number of consecutive periods of zero sales as the state vari-

ble in our model. We improve their work by explicitly accounting

or potential causes (i.e., demand variation or shelf-OOS) of real-

zed zero sales, relevant cost factors, and intrinsic sales potential.

oreover, we incorporate the rarely studied random fixes into our

odel. This non-trivial relaxation of modeling assumptions reveals

ntricate dynamics of policy behaviors that are attributed to the

hance of random fixes and carry important implications for shelf

udit decision-making processes. By doing so, we come up with a

robabilistic audit policy that is cost-sensitive and more compre-

ensive. Second, our POS data analytics approach avoids peculiar

ssumptions and utilizes scanned sales observations that are read-

ly available to retailers. We further develop estimation techniques

or key model parameters using maximum likelihood approaches

nd Bayesian inference with Markov chain Monte Carlo methods.
he nature of Bayesian update also addresses the potentially non-

tationary transition matrices in our models. Unlike studies that

ropose decision support models without showing how to estimate

odel parameters, our estimation framework ensures that audit

ecisions are empirically grounded. 

The rest of the paper is organized as follows. Section 2 provides

 succinct summary of relevant literature. Section 3 presents the

esign of a POS data-driven shelf audit policy and analyzes behav-

ors of the proposed policy. Section 4 incorporates random fixes

f shelf-OOS into our policy design and sheds light on the im-

act of random fixes on audit decisions. Section 5 reports a sim-

lation study that quantifies the cost-effectiveness of the proposed

odel. Section 6 presents primary tasks involved in model valida-

ion and estimation. We conclude by discussing key implications of

ur modeling effort. 

. Related literature 

Inventory audits are deemed effective for elevating inventory

ntegrity and product availability, both of which lead to better ser-

ices and sales ( Chuang et al., 2016 ). Prior studies have developed

arious cost-minimization decision support models under different

ypes of inventory operations. Despite their differences in assump-

ions and settings, the common objective of those models is to de-

ermine the optimal timing of inventory audits. Given a re-stocking

olicy, Iglehart and Morey (1972) propose a cycle-count model that

etermines frequency and depth of inventory audits. In a sim-

lar vein, Kumar and Arora (1992) and Sandoh and Shimamoto

2001) , develop models to find optimal frequencies of stock audits

ased on exponential inter-arrival time of inventory errors. Moving

eyond optimal cycle-counting, Kok and Shang (2007) propose a

oint audit and replenishment policy. While afore-mentioned stud-

es model errors that cause OOS as random variables, DeHoratius,

ersereau, and Schrage (2008) take a step forward and apply

ayesian inference to construct probability distributions of inven-

ory level. Using Bayesian inventory records, they develop an in-

entory audit policy based on expected value of perfect informa-

ion. Different from above studies on the timing of internal audits

from retailers’ perspectives), Chuang (2015) develops a periodic

nventory audit policy for external service providers, who (unlike

etailers) have limited/no access to inventory/sales information ex-

ept audit reports. Quantifying the impact of unobserved human

rrors on optimal audit timing also distinguishes his model from

thers. 

Nearly all foregoing studies on audit policy design do not dif-

erentiate store-OOS from the focal issue shelf-OOS in our study.

tore-OOS (i.e., zero inventory holdings in both backroom and

helf) requires placing orderings to upstream suppliers, whereas

helf-OOS is more related to in-store logistics ( Chuang et al., 2016 ).

lso, prior literature tends to view inventory level as a whole.

owever, in the retailing sector, store inventories for SKUs are typ-

cally composed of backroom and shelf inventories. Most retailers

eep track of their inventories at the store level (i.e., the sum of

ackroom and shelf), but do not know the exact amount of items

n the shelf ( Condea, Thiesse, & Fleisch, 2012 ). Consequently, it is

ommon for “freezing” to take place in error-prone store opera-

ions ( Kang & Gershwin, 2005 ). That is, even though retailers have

bundant backroom inventory, they fail to detect shelf-OOS based

n z signals and fill empty shelves before the next auditing and

helving. Our model is unique in that it is designed as a comple-

ent to retailers’ existing shelf inventory audit and replenishment

rather than store-level inventory governed by automatic store re-

lenishment). The POS data-driven audit initiatives are aimed to

itigate the “freezing”, such that on-shelf availability can be max-

mized and lost sales can be reduced. 
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Table 1 

Variables and parameters. 

z Consecutive periods of zero sales p Probability of a zero sale 

OOS An indicator of shelf-OOS ∼OOS An indicator of non-shelf-OOS 

k Cost per audit M Expected per period margin 

m Per unit margin μ+ Mean of zero-truncated demand 

w Transition probability into OOS r Transition probability of staying OOS 

P ( OOS ) Estimate of shelf-OOS likelihood τ Cycle length of shelf inventory control 

s Re-shelving inventory level S Targeted shelf inventory level 

D I.I.D. discrete demand in simulation λ Mean Poisson demand in simulation 

δ Shrinkage rate as % of demand rate T Period length of simulation 
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Few studies in the literature also have the specific focus on

shelf-OOS and propose different models to address this issue.

Papakiriakopoulos et al. (2009) adopt machine learning techniques

to develop heuristic rules for detecting shelf-OOS. While effec-

tive, their methods use more than 10 state variables and data re-

quirements are much higher than our approach. Fisher and Ra-

man (2010) propose a quality control type policy exclusively driven

by POS data. Specifically, store managers just need to monitor the

event of consecutive zero sales and trigger shelf audits for an items

with small probabilities of event occurrence. This simple audit pol-

icy based on z signals has been proven effective in reducing shelf-

OOS through field experiments ( Chuang et al., 2016 ). Our model

that considers extra stochastic elements is a more sophisticated

extension of the Fisher and Raman (2010) policy. Moreover, we ex-

plicitly incorporate into our model cost factors, which are absent

in the two studies ( Fisher & Raman, 2010 ; Papakiriakopoulos et al.,

2009 ) but definitely critical to shelf audit decision-making. 

3. Policy design and analysis 

3.1. Formulation 

We employ z signals to develop a data-driven shelf audit pol-

icy, since runs of zero sales (i.e., the so-called “freezing” scenario)

are shown to be strong indicators of shelf-OOS in both theoretical

( Chuang & Oliva, 2015 ; Kang & Gershwin, 2005 ) and field studies

( Chuang et al., 2016 ; Fisher & Raman, 2010 ). Table 1 summarizes

key model variables and parameters. 

To begin with, we define z as the number of consecutive

periods of zero sales. However, the observed event z is not nec-

essarily a faithful representation of customer demand due to the

unobserved status of a SKU – OOS (i.e., empty shelves) or ∼OOS .

The fact that the realized z is a censored observation makes

interpreting the z signals difficult and creates an extra layer of

complexity for audit policy design. 

The OOS can be viewed as a latent variable that reflects the

underlying status of a SKU. Under a discrete i.i.d. demand process

(e.g., Poisson, negative binomial), which is common in retailing

( Chuang et al., 2016 ; DeHoratius et al., 2008 ), we can consider the

underlying demand for an item in each period (e.g., hour, day) as

a Bernoulli trial with a probability p of a zero sale. First of all, we

derive the likelihood of an OOS conditioning on z consecutive zero

sales, namely P ( OOS | z ). The derivation involves state transition

across z periods. Hence, we need to further define a transition

matrix 

status OOS ∼ OOS 
OOS 1 0 

∼ OOS w 1 − w 

where the parameter w is used to capture the stochastic transition

from ∼OOS into OOS . The matrix is essentially a two-state Markov

chain that governs the status of a SKU between periods. The

parameter w captures store execution equality and is expected

to be higher when transaction errors and shrinkage rates are
ommon. The level of w can also be used to adjust perceived risks

f shelf-OOS. Note that w could be modeled as a function of other

tate variables such as shelf space and time-variant inventory

ecords. However, doing so complicates the model formulation but

lso increases data requirements. State variables like inventory

ecords also typically contain errors ( Chuang et al., 2016 ). Hence,

e deliberately make the transition probability an estimable

onstant for the ease of model formulation and application. We

urther note that the transition matrix could be non-stationary

i.e., w may drift over time). In Section 6 we address the issue

f non-stationarity and develop a Bayesian statistical model that

llows decision-makers to continuously update parameters. 

By the end of each period, the POS record for an SKU is ob-

erved by a store manager who can assess P ( OOS | z ) that is derived

s follows. 

roposition 1. Under a discrete i.i.d. demand process and given that

 consecutive zero sales are observed 

 ( OOS| z ) = 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 
+ (1 − P ( OOS ) ) ( 1 − w ) 

z p z 

roof. Through mathematical induction, it is easy to show that 

 ( z| OOS ) = w 

∑ z−1 

i =0 
[ ( 1 − w ) p ] 

i = w 

1 − [ ( 1 − w ) p ] 
z 

1 − ( 1 − w ) p 
, 

 ( z| ∼ OOS ) = [ ( 1 − w ) p ] 
z 

Hence, 

 (z) = P ( OOS ) · P ( z| OOS ) + P ( ∼ OOS ) · P ( z| ∼ OOS ) 

= P ( OOS ) w 

1 − [ ( 1 − w ) p ] 
z 

1 − ( 1 − w ) p 
+ ( 1 − P ( OOS ) ) [ ( 1 − w ) p ] 

z 
. 

Finally, P ( OOS| z ) = 

P( OOS ) w 

1 −[ ( 1 −w ) p ] z 

1 −( 1 −w ) p 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] z 

1 −( 1 −w ) p 
+(1 −P ( OOS )) ( 1 −w ) z p z 

. �

P ( OOS ) in Proposition 1 is a prior probability estimate that char-

cterizes a store manager’s expectation for any SKU to exhibit

helf-OOS. Note that P ( OOS ) and w can used to capture store man-

gers’ perceived risk of lost sales. Managers could reflect their sub-

ective beliefs about the odds of shelf-OOS by adjusting the two

robabilistic parameters. In Section 6 we will introduce a Bayesian

tatistical model to formally infer those parameters from data. We

urther derive 

roposition 2. Under a discrete i.i.d. demand process, the expected

umber of shelf-OOS periods for a SKU, when z consecutive zero sales

re observed and the item is in the OOS state is 

p ( w − 1 ) 

1 + p ( w − 1 ) 
− z 

( p − pw ) 
z − 1 

roof. Let T denote a random number of shelf-OOS periods when

 consecutive zero sales are observed and the item is in OOS state.

he possible value of T lies in [1, z ]. Based on the two-state Markov

hain defined earlier, we know that 

 ( T = 1 ) = 

w ( ( 1 − w ) · p ) 
z−1 ∑ z w · ( ( 1 − w ) · p ) 

z−t 

t=1 
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 ( T = 2 ) 
w ( ( 1 − w ) · p ) 

z−2 ∑ z 
t=1 w · ( ( 1 − w ) · p ) 

z−t 

. . . 

 ( T = z ) 
w ∑ z 

t=1 w · ( ( 1 − w ) · p ) 
z−t 

here the denominator ensures that probability densities are

roperly scaled and sum to one. By definition E [ T ] is 

z 
 

t=1 

t · P ( T = t ) = 

z ∑ 

t=1 

t · w · ( ( 1 − w ) · p ) 
z−t ∑ z 

t=1 w · ( ( 1 − w ) · p ) 
z−t 

For j < 1 , 
∑ z 

t=1 j 
z−t = 

j z −1 
j−1 

So the expression above reduces to

p( w −1 ) 
1+ p( w −1 ) 

− z 
( p−pw ) z −1 

. �
Propositions 1 and 2 serve as the core of our data-driven shelf

udit policy design. Note that the two propositions rely on p es-

imates from demand observations and hence hold for any i.i.d.

iscrete demand distributions. Let k be the cost of conducting a

helf audit and M denote the expected per-period retail margin for

 particular SKU. Following the principle of balancing cost with and

ithout auditing ( O’Reagan, 1969 ), our policy is defined at a break-

ven point where the cost of auditing ( k ) is less than or equal to

he expected cost of leaving potential shelf-OOS unfixed. Essen-

ially the optimal threshold hinges on “auditing this period” ver-

us “auditing next period”, and activates once the potential loss of

aiting for an additional period becomes large enough. Specifically,

 

∗ is 

 

∗ = min { s ∈ ( 1 , 2 , 3 , . . . · · ·) : k ≤ M · P ( OOS| s ) 
·
(

p ( w − 1 ) 

1 + p ( w − 1 ) 
− s 

( p − pw ) 
s − 1 

)}
(1) 

here z ∗ refers to the number of consecutive zero sales a decision-

aker should tolerate before triggering an audit, and P ( OOS | s ) is

hown in Proposition 1 . In the RHS of the inequality we multiply

he expected per-period margin M by both P ( OOS | z ) and expected

umber of shelf-OOS periods (derived in Proposition 2 ) in order to

stimate expected profit loss over the course of event z . However,

 is a function of the zero sale probability p and other factors.

pecifically, M is the product of per unit margin m and expected

er period demand μ. The latter ( μ) can be written as μ+ ·(1 −p )

here μ+ is the expected zero-truncated demand per period. The
+ can be directly estimated from non-zero POS observations (re-

ardless of assumptions regarding demand distributions) and re-

ects the underlying sales potential of this SKU. As such, the ex-

ected per-period margin M = m ·μ+ ·(1 −p ) explicitly depends on p

nd the optimality condition in ( 1 ) can be re-written as 

 

∗ = min 

{
s ∈ ( 1 , 2 , 3 , . . . · · ·) : k 

m 

≤ μ+ ( 1 − p ) 

·P ( OOS| s ) ·
(

p ( w − 1 ) 

1 + p ( w − 1 ) 
− s 

( p − pw ) 
s − 1 

)}
(2) 

The proposed audit policy in Eq. (2) explicitly strikes the bal-

nce between cost of conducting an audit and cost of leaving po-

ential shelf-OOS unfixed. The cost-balancing ideal of our model

lso matches the need of store managers who launch shelf audits

n a continuous basis due to the recurring nature of shelf-OOS. 

.2. Evaluation 

As shown in Eq. (2) , z ∗ is a function of cost factors ( k , m ), de-

and components ( p , μ+ ), and probability estimates ( w , P ( OOS )).

roposition 3 first uncovers how the cost factors and sales poten-

ial affect policy behaviors. 
roposition 3. The optimal period of consecutive zero sales that trig-

ers an audit ( z ∗) is 

(a) non-decreasing in the audit cost k 

(b) non-increasing in the per-period margin m 

(c) non-increasing in the expected zero-truncated demand μ+ 

roof. The optimality condition in Eq. (2) can be re-written as 

k 

m μ+ ( 1 − p ) 
≤

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 
+ (1 − P ( OOS ) ) ( 1 − w ) 

z p z (
p ( w − 1 ) 

1 + p ( w − 1 ) 
− z 

( p − pw ) 
z − 1 

)
. 

For the two factors in the RHS of the inequality, it is easy to

how that 

d 

dz 

( 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 

P ( OOS ) w 

1 −[ ( 1 −w ) p ] 
z 

1 −( 1 −w ) p 
+ (1 − P ( OOS ) ) ( 1 − w ) 

z p z 

) 

≥ 0 and 

d 

dz 

(
p ( w − 1 ) 

1 + p ( w − 1 ) 
− z 

( p − pw ) 
z − 1 

)
≥ 0 

Ceteris paribus , when k in the LHS of the inequality increases,

 in the RHS needs to be non-decreasing such that the RHS ≥ k .

imilarly, when m / μ+ in the LHS increases, z in the RHS could be

ower or constant (i.e., non-increasing) such that the inequality is

till satisfied. Thus, Propositions 3 (a), (b), and (c) are proved. �

Proposition 3 (a) shows that a high audit cost ( k ) leads to a more

tringent threshold for triggering shelf audits, whereas Proposition

 (b) indicates that a high profit loss ( m ) results in a less stringent

riggering threshold. Proposition 3 (c) implies that audit initiatives

end to be more aggressive when the intrinsic sales potential for

he SKU is higher (a larger μ+ ). The audit policy behaves in an

conomically sensible way. The impact of probability estimates –

 p , P ( OOS ), w ) – on z ∗, however, has limited analytical tractabil-

ty. Instead, we perform a series of numerical studies and come

p with the observation on policy responses to those probabilistic

actors. 

bservation. The optimal period of consecutive zero sales that trig-

ers an audit ( z ∗) tends to be 

(a) non-decreasing in the intrinsic zero sale probability p 

(b) non-increasing in the perceived OOS likelihood ex ante

P ( OOS ) 

(c) non-increasing in the ∼OOS to OOS transition probability w 

Observation (a) implies that an intrinsically high zero sale prob-

bility p makes z signals look less like probabilistic anomalies and

ends to result in a more stringent triggering threshold. Observa-

ion (b) suggests that high shelf-OOS likelihood ex ante ( P ( OOS ))

s likely to lead to a less stringent triggering threshold. Lastly, Ob-

ervation(c) implies that when an item is vulnerable to execution

rrors and more likely to turn into OOS (i.e., high w ), the triggering

hreshold would be less stringent. 

In addition to the first-order effects of model parameters on

 

∗ mentioned in Proposition 3 and Observation above, Figs. 1 and

 below show some interesting dynamics among model parame-

ers. Given fixed estimates of P ( OOS ) and w , Fig. 1 reveals interac-

ion effects between k / m and p under low and high levels of sales

otential ( μ+ ). As shown in the left panel, when p is low (e.g.,

 = 0.1), zero sales are probabilistic anomalies and hence z ∗ re-

ains low while being insensitive to increase in audit cost ( k / m ).

owever, when the chance of zero sales is intrinsically high (e.g.,

 = 0.8), z ∗ remains high and increases with k / m quickly. Consis-

ent with Proposition 3 (c), the right panel shows that z ∗ is overall
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Fig. 1. Effects of k / m and p on z ∗ ( P ( OOS ) = w = 0.05). 

Fig. 2. Effects of P ( OOS ) and w on z ∗ ( k / m = 0.5 and μ+ = 5). 
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much lower given a higher μ+ . That said, we still observe simi-

lar second-order interaction effects between k / m and p described

above. 

Fig. 2 shows effects of P ( OOS ) and w on z ∗ under fixed k / m

and μ+ . The left panel shows weak interactions between P ( OOS )

and w under relatively small zero sale probability ( p = 0.2). The

right panel shows stronger effects of P ( OOS ) and w on z ∗. Con-

sistent with Observations (b) and (c), here z ∗ tends to decrease

given increases in P ( OOS ) and w . Also, compared to z ∗ in the left

panel, z ∗ in the right panel is significantly larger due to higher

zero sale probability ( p = 0.6). A major takeaway is that the ef-

fect of P ( OOS )/ w on z ∗ is largely moderated by p . Taken together,

Figs. 1 and 2 reveal substantial interaction effects among cost fac-

tors and probability estimates, all of which need to be considered

in decision-making processes of shelf audits. 
. Effect of random fixes 

.1. Formulation 

The foregoing analysis assumes that once a SKU falls into the

OS status, it will not be fixed before store management triggers

 shelf audit and replenishment. However, store employees could

andomly walk through the aisles and fix a few shelf stock-outs

 Nachtmann, Waller, & Rieske, 2010 ). Also, some product manufac-

urers may ask external audit associates to step into stores and fix

helf-OOS in order to ensure product availability ( Chuang, 2015 ;

huang et al., 2016 ). To capture the effect of such “random fixes”,

e modify the Markovian transition matrix that governs the status
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f a SKU between periods as 

status OOS ∼ OOS 
OOS r 1 − r 

OOS w 1 − w 

here OOS is the same variable that reflects the underlying status

f a SKU. The parameter r is the probability that a SKU will remain

aulty and 1 −r is the probability that a SKU with empty shelves

ill be fixed by the end of each period. Based on the updated

ransition matrix with a possibility of random fixes, we further

erive 

emma 1. Under an i.i.d. discrete demand process with random fixes

f shelf-OOS, and given that z consecutive zero sales are observed 

 ( z| OOS ) = P ( z − 1 | OOS ) r + P ( z − 1 | ∼ OOS ) w, and 

 ( z| ∼ OOS ) = P ( z − 1 | ∼ OOS ) ( 1 − w ) p + P ( z − 1 | OOS ) ( 1 − r ) p 

 z ≥ 2 . P ( z = 1 | OOS ) = w ; P ( z = 1 | ∼ OOS ) = ( 1 − w ) p. 

For z ≥ 2 , the recursive equations in Lemma 1 can be re-written

n a matrix form 

P ( z| OOS ) 
P ( z| ∼ OOS ) 

]
= 

[
r w 

( 1 − r ) p ( 1 − w ) p 

][
P ( z − 1 | OOS ) 

P ( z − 1 | ∼ OOS ) 

]
. 

Accordingly, we can show that 

P ( z| OOS ) 
P ( z| ∼ OOS ) 

]
= 

[
r w 

( 1 − r ) p ( 1 − w ) p 

]z−1 [
w 

( 1 − w ) p 

]
. 

Given P ( z | OOS ) and P ( z | ∼OOS ) from Lemma 1 , we can derive

 ( OOS | z ) with random fixes. 

roposition 4. Under an i.i.d. discrete demand process with random

xes of shelf-OOS, and given that z consecutive zero sales are ob-

erved 

 ( OOS| z ) = 

P ( OOS ) P (z| OOS) 

P ( OOS ) P (z| OOS) + ( 1 − P ( OOS ) ) P (z| ∼ OOS) 

here P ( z | OOS ) and P ( z | ∼OOS ) are calculated from 

P ( z| OOS ) 
P ( z| ∼ OOS ) 

]
= 

[
r w 

( 1 − r ) p ( 1 − w ) p 

]z−1 [
w 

( 1 − w ) p 

]
roof. Given P ( z | OOS ) and P ( z | ∼OOS ) in Lemma 1 , this is a direct

esult of the Bayes’ theorem and law of total probability. �

When considering random fixes of shelf-OOS, the expected

umber of stock-out periods for a SKU in the OOS state at period z

annot be derived in closed form. Nevertheless, if we consider the

tochastic transition for a SKU across different z periods as a bi-

ary tree , there will be a total of 2 z −1 paths that lead to shelf-OOS

t period z . Let j = 1, 2,…, 2 z −1 denote each path of the binary

ree with probability π j and P ( z | OOS ) in Lemma 1 is essentially
 2 z−1 

j=1 π j . Also, depending on the number of random fixes in path j ,

ach path has a corresponding length of OOS period t j ∈ [1, z ]. Take

 = 3 for instance, there will be a total of 4 paths to shelf-OOS at

eriod 3, and each path has an OOS duration length. Specifically, 

1 = w r 2 , t 1 = 3 

2 = w ( 1 − r ) pw, t 2 = 2 

3 = ( 1 − w ) pwr, t 3 = 2 

4 = ( 1 − w ) 
2 p 2 w, t 4 = 1 
p

Similar to Proposition 2 , when z consecutive zero sales are ob-

erved and the item is in in the OOS state at period z we can com-

ute the expected number of shelf-OOS periods for the SKU under

robable random fixes as 

 

z−1 
 

j=1 

t j ·
π j ∑ 2 z−1 

j=1 π j 

here π j is divided by 
∑ 2 z−1 

j=1 π j such that the conditional prob-

bility densities are properly scaled and sum to one. Accordingly,

e modify the optimality condition of z ∗ with random fixes as 

 

∗ = min 

{
s ∈ ( 1 , 2 , 3 , . . . · · ·) : k 

m 

≤ μ+ ( 1 − p ) · P ( OOS| s ) 

·
2 z−1 ∑ 

j=1 

t j ·
π j ∑ 2 z−1 

j=1 π j 

) 

} 

(3) 

here P ( OOS | s ) is defined in Proposition 4 . The optimality condi-

ion in Eq. (3) has very limited analytical tractability. Therefore, in

he next section we perform a detailed numerical analysis of z ∗ to

etter understand the effect of random fixes on probability esti-

ates and audit policy behaviors. 

.2. Evaluation 

Since P ( OOS | z ) is key to our shelf audit policy, we first assess

he impact of random fixes on the shelf-OOS likelihood condition-

ng on z consecutive zero sales. The left panel of Fig. 3 shows the

mpact of r on P ( OOS | z ) under p = 0.2 and P ( OOS ) = w = 0.05.

hen random fixes are absent (i.e., r = 1), P ( OOS | z ) rises to 1

uickly as z increases. However, when there is a 5% ( r = 0.95)

r 10% ( r = 0.9) chance for an OOS item to be randomly fixed,

 ( OOS | z ) saturates to a point that increases in r and P ( OOS | z )

oes not necessarily converge to 1. A somewhat similar pattern of

 ( OOS | z ) under p = 0.6 and P ( OOS ) = w = 0.05 is shown in the right

anel of Fig. 3 , where a higher possibility of random fixes (i.e., a

maller r ) slows the growth of P ( OOS | z ) in observed z . 

Given the non-trivial impact of r on P ( OOS | z ) shown in Fig. 3 ,

he probability of random fixes (1 −r ) is expected to affect z ∗ as

ell. Fig. 4 shows effects of k / m and p on z ∗ under low/high r

alues and fixed levels of P ( OOS ), w , and μ+ . While the interac-

ion between k / m , p , and z ∗ in both panels of Fig. 4 is consistent

ith the pattern in Fig. 1 , it is obvious that random fixes have sub-

tantial impacts on optimal timing of triggering shelf audits. Com-

ared to the left panel with 10% chance of random chances, the

ight panel shows that z ∗ becomes mostly smaller with only 1%

hance of random fixes ( r = 0.99). This makes sense as the chance

f a SKU being fixed before intervention increases (i.e. r decreases),

ome of the consecutive zero sales observations are more likely to

e attributed to demand variation as opposed to shelf-OOS. Hence,

ecision-makers would be willing to wait longer runs of zero sales

i.e., a larger z ∗). 

Fig. 5 shows effects of P ( OOS ) and w on z ∗ under low/high r val-

es and fixed levels of k / m , p , and μ+ . Similar to findings above,

 

∗ is overall smaller when the chance of random fixes drops (i.e.,

 = 0.98 in the right panel). Nonetheless, it is interesting to note

hat the impact of P ( OOS )/ w seems stronger when the chance of

andom fixes increases ( r = 0.9 in the left panel). For instance, z ∗

eaches its highest value 9 under P ( OOS ) = 0.01 and w = 0.01. This

akes sense as in this particular case an item would be less prone

o shelf-OOS and thus managers can wait for longer runs of con-

ecutive zero sales. To sum up, Figs. 4 and 5 collectively reveal sub-

le dynamics introduced by random fixes in the decision-making

rocesses of retail shelf audits. 
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Fig. 3. Effects of random fixes on P ( OOS | z ). 

Fig. 4. Effects of k / m , p , and r on z ∗ ( P ( OOS ) = w = 0.05 and μ+ = 3). 

Fig. 5. Effects of P ( OOS ), w , and r on z ∗ ( k / m = 1, p = 0.4 and μ+ = 3). 
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To sum up, the foregoing analysis sheds light on the negative

mpacts of ignoring potential random fixes of shelf-OOS. Specifi-

ally, naively assuming r = 1 (i.e., no random fixes) leads to over-

stimation of P ( OOS | z ), and consequently, overestimation of the po-

ential profit loss in the RHS of the optimality condition in Eq. (3) .

s a result, decision-makers tend to take too proactive audit initia-

ives (i.e., smaller z ∗) that may increase wasted audit burdens and

reate more workload for store associates, who are typically busy

ith handling in-store logistics and customer transactions. 

. Simulation experiments 

To assess the cost benefits of the proposed shelf audit policy,

e conduct simulation experiments in which each time period is

n hour . With advances in information technologies, deploying the

roposed POS data monitoring mechanism on an hourly basis is

ractically doable. For instance, Fisher and Raman (2010) report a

ase from Albert Heijn, which uses consecutive hours of zero sales

i.e., z signals) in POS data to detect shelf failures. This time gran-

larity is consistent with retailers that control store inventory for

KUs by days/weeks and control on-shelf inventory by operating

ours. In line with prior studies (e.g., Condea et al., 2012 ) and re-

ailers we work with, we simulate a single-item ( τ , s , S ) shelf in-

entory control policy that assumes the backroom to have suffi-

ient supply. Specifically, for a retail store that on average operates

hours per day, a store associate performs a manual counting be-

ore the store opens. That is, a periodic inspection takes place ev-

ry τ hours, and the shelf has a capacity of S units for this par-

icular SKU. If the on-shelf inventory level reaches or goes below

 threshold s during manual counting, the store associate will pick

roducts from the backroom and replenish the shelf. Under the ( τ ,

 , S ) shelf operations, unobservable shrinkage (i.e., stock loss) of-

entimes occurs and results shelf-OOS within an audit cycle of τ
ours. Hence, we expect the proposed data-driven audits based on

 signals to complement the shelf operations and enhance on-shelf

vailability. Below describes the sequence of events in simulating

he ( τ , s , S ) shelf inventory control for t = 1,…, T periods, where t

s the hour/period index. 

1. For t in 1 to T , when t is on the re-shelving cycle τ of ( τ ,

s , S ) shelf operations, update the counter of shelf audits au-

dit ( t ) = audit ( t −1) + 1. Count the beginning amount of shelf

inventory ( SI ), i.e., beginning SI ( t ). Replenish the shelf to S

and update beginning SI ( t ) if beginning SI ( t ) < = s . When t is

not on the cycle τ , update the counter of shelf audits au-

dit ( t ) = audit ( t −1) and set beginning SI ( t ) = ending SI ( t −1). 

2. Demand ( D ( t )) for hour t arrives. Given beginning SI ( t ),

sales ( t ) and shrinkage ( t ) take place. The sales quantity

( sales ( t )) in hour t is 

D ( t ) i f D ( t ) ≤ beginning SI ( t

Round 
(
beggining SI ( t ) 

D ( t ) 
D ( t ) + shrinkage ( t ) 

)
) otherwise. 

3. Update ending SI ( t ) = beginning SI ( t ) −sales ( t ) −min( beginning

SI ( t ) −sales ( t ), shrinkage ( t )). After that compute cumulative

lost sales −cum_loss ( t ) = ( D ( t )- sales ( t )) + cum_loss ( t −1). 

4. When sales ( t ) = 0, update the counter of consecutive zeros

sales z ( t ). If z ( t ) > = z ∗, update the counter of shelf audits au-

dit ( t ) = audit ( t ) + 1 and trigger a shelf audit (reset the count

z ( t ) to 0). Replenish ending SI ( t ) to S and update ending SI ( t )

if ending SI ( t ) < = s . 

5. After T hours of operations, we compute the cost per period

in each simulation run 

k · audit ( T ) + m · cum _ loss ( T ) 

T 
. 

Step 1 above follows the ( τ , s , S ) shelf inventory audit and re-

lenishment policy in Condea et al. (2012) , whereas steps 2 and 3
ollow Kang and Gershwin (2005) who model shrinkage as unob-

erved sales in inventory systems. Step 4 characterizes extra shelf

udit initiatives triggered by z signals, and finally, step 5 returns

ost performance. Note that holding costs are negligible and absent

n step 5, since backroom inventory is assumed to be sufficient and

table for brevity. 

We assume that hourly demand D follows a Poisson distribu-

ion with mean λ ( Condea et al., 2012 ; Fisher & Raman, 2010 ), and

hrinkage follows a Poisson distribution with its mean parameter as

% of λ ( Kang & Gershwin, 2005 ). The mean demand parameter λ
lso determines p and μ+ for our z ∗ audit policy. The parameter δ
aptures different types of invisible shelf stock loss including em-

loyee theft, customer theft, spoilage, etc. We set profit margin per

nit sold m = 1 and perform the simulation for 10 0 0 runs under

= 10%, and T = 1080 hours. 

For the simulation analysis, we test different levels of λ and

ost per audit k . To determine parameter values, we consult with a

ig-box retailer regarding its in-store logistics and interview store

anagers. Based on operating practices in our research site, we set

= 15 and examine ( s = 12, S = 24) under low demand ( λ = 1),

 s = 36, S = 60) under medium demand ( λ = 4), and ( s = 60,

 = 96) under high demand ( λ = 7). Those parameters are empiri-

ally grounded as opposed to analytically optimized due to prac-

ical considerations in the field. From store associates we learn

hat τ is primarily affected by in-store capacity, whereas the target

helf inventory level S is a function of numerous factors. Arguably,

f a retailer has excess labor capacity to sustain a much smaller

and/or abundant shelf space to sustain a much larger S for an

tem (given the same demand rate), chances are that shelf OOS will

e absent and no extra shelf audits (e.g., z ∗) will be ever needed.

owever, in reality many retail stores cannot afford small τ due to

nderstaffing ( Chuang et al., 2016 ), whereas S is limited and con-

trained by shelf space, merchandising purposes, assortment proto-

ols, and supplier contracts. Thus, first line managers have limited

egrees of freedom in reducing τ or augmenting S. Moreover, un-

er limited shelf space, for each item some managers deliberately

ower ( s , S ) in order to enhance product variety and create scarcity

ffects to stimulate demand. Consequently, the odds of shelf OOS

or a SKU increase due to inflexible τ and bounded S . Our audit

nitiatives driven by zero sales signals exactly respond to the issue

nd aim to improve on-shelf availability. Following the field work

escribed above, for each run we test four shelf control policies: 

Policy 1 (P1) : ( τ , s , S ) shelf control. 

Policy 2 (P2) : ( τ , s , S ) shelf control and z ∗( P ( OOS ) = w = 0.01). 

Policy 3 (P3) : ( τ , s , S ) shelf control and z ∗( P ( OOS ) = w = 0.05). 

Policy 4 (P4) : ( τ , s , S ) shelf control and z ∗( P ( OOS ) = w = 0.10). 

Policies 2, 3, and 4 differ in their perceived odds of shelf-OOS,

nd the ones with higher w and P ( OOS ) (e.g., P3, P4) are more

ikely to trigger extra shelf audits in the presence of z signals.

hese three policies add shelf audits driven by z signals onto ( τ ,

 , S ) shelf control that already has a periodic counting cycle of

hours. While those POS data-driven audits would incur extra au-

iting costs, the reduced lost sales may outweigh the costs. For

implicity we assume r = 1 (i.e., no random fixes) for policies 2, 3,

nd 4. 

Fig. 6 shows the average cost per period (averaged over 10 0 0

uns) of policies 1–4 in each of the tested scenarios. Note that the

imulation results are qualitatively similar under other realistic pa-

ameter settings. As expected, the average cost of all policies in-

reases with cost per audit k . The left panel suggests that under

 low demand rate ( λ = 1), the more active P3 and P4 result in

lightly higher system costs on average. With that said, the exist-

ng ( τ , s , S ) shelf control policy and the relatively conservative P2

chieve nearly identical cost performance, whereas the latter (P2)

elps improve on-shelf availability through triggering extra shelf
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Fig. 6. Cost performance of different policies. 
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audits ( z ∗). The middle and right upper panels show that when de-

mand rates are medium ( λ = 4) and high ( λ = 7), the extra shelf

audits substantially improve cost performance. Even though the

most active P4 performs worst in the low demand case, it has the

best performance in nearly all of the remaining cases (except the

case k = 1.75 and λ = 4). On the other hand, the best-performing

P2 under low demand ( λ = 1) is outperformed by the less con-

servative P3/P4 when demand rates ( λ) increase (especially under

high demand λ = 7), indicating the value of data-driven audit ini-

tiatives. 

The simulation results shown in Fig. 6 suggest that for slow-

moving items (with low λ and low shrinkage δ), the extra au-

dits triggered by z signals result in comparable average cost per

period. When demand (and hence shrinkage) rates increase, the

audits driven by z signals enable retailers to achieve much bet-

ter cost performance, by correcting shelf failures unfixed within

the re-shelving cycle of the ( τ , s , S ) shelf control. As a matter of

fact, the simulation study excludes other potential execution errors

(e.g., misplacement, cluttered layout) that harm store operations,

and hence the benefits of extra audits could be under-estimated.

Nevertheless, the simulation still corroborates the economic value

of the proposed shelf audit policy, which can be a cost-efficient

complement to existing periodic shelf audit and replenishment op-

erations. 

6. Estimation and implementation 

After obtaining an understanding of model behaviors (in

Sections 3 and 4 ) and assessing the cost benefits of the proposed

model (in Section 5 ), here we detail two major tasks – estimation

and implementation – that are critical to model validation. The first

task is aimed for empirically deriving estimates of key model pa-

rameters. The second task is focused on examining decisions con-

structed from the model and efficacy of decisions. Even though the

two tasks may not be exhaustive, they have covered the core pur-

poses of our decision support model. Finishing the tasks will be

a crucial premise for the POS data analytics approach to be em-

ployed in practice. 
For the estimation , suppose a store manager has n observa-

tions: ( X 1 , z 1 ),…,( X n , z n ), where X i = 1 if OOS , X i = 0 if ∼OOS ,
and z i denotes consecutive zero sales in POS data, for i = 1, 2,…, n .
The first approach – maximum likelihood estimation (MLE) – is
quite straightforward as we can write a joint log-likelihood func-

tion L ( w, ˆ p , ̂ P ( OOS ) ) as 

n ∑ 

i =1 

I ( X i = 1 ) log 

⎛ 

⎜ ⎝ 

̂ P ( OOS ) w 

1 −[ ( 1 −w ) ̂ p ] 
z i 

1 −( 1 −w ) ̂ p 

̂ P ( OOS ) w 

1 −[ ( 1 −w ) ̂ p ] 
z i 

1 −( 1 −w ) ̂ p 
+ 

(
1 − ̂ P ( OOS ) 

)
( 1 − w ) 

z i ˆ p z i 

⎞ 

⎟ ⎠ 

+ 
n 
 

i =1 

I ( X i = 0 ) log 

⎛ 

⎜ ⎝ 

(
1 − ̂ P ( OOS ) 

)
( 1 − w ) 

z i ˆ p z i 

̂ P ( OOS ) w 

1 −[ ( 1 −w ) ̂ p ] 
z i 

1 −( 1 −w ) ̂ p 
+ 

(
1 − ̂ P ( OOS ) 

)
( 1 − w ) 

z i ˆ p z i 

⎞ 

⎟ ⎠ 

here I () is an indicator function, and the factor inside log() is

 ( OOS | z ) (from Proposition 1 ) for I ( X i = 1 ) and P ( ∼OOS | z ) for I ( X i =
 ). The two estimates ( ̂ P ( OOS ) , ˆ p ) can be derived before perform-

ng MLE. The former ( ̂ P ( OOS ) ) can be estimated by calculating the

umber of OOS events relative to the number of past audit ini-

iatives. The latter ( ̂  p ) can be estimated by computing the ratio

f total number of observed zero sales to the number of periods

lapsed. The ratio needs to be multiplied by (1 − ̂ P ( OOS ) ) to re-

over the intrinsic zero sales probability under ∼OOS . Finally, one

ust needs to find ˆ w = argmax 0 ≤w ≤1 L ( w, ˆ p , ̂ P ( OOS ) ) through nu-

erical maximization of the function L . This MLE protocol is appli-

able to the case with random fixes of shelf-OOS, where the log-

ikelihood function is similar to the one above except that P ( OOS | z )

nd P ( ∼OOS | z ) inside log() are from Proposition 4 (with random

xes). In this case, the goal of numerical optimization is to find

 ̂  w , ̂  r ) = argmax 
0 ≤w,r≤1 

L ( w, r, ˆ p , ̂ P ( OOS ) ) . 

One may argue that the MLE approach is predicated on pre-

erived estimates of ( p , P ( OOS )) that do not fully account for un-

ertainty in the two parameters. Hence, we propose an alternative

ayesian estimation approach that is more sophisticated yet com-

utationally more intensive. First of all, we define prior distribu-

ions for ( w , p , P ( OOS )): 

w ∼ f ( ·) 
p ∼ g ( ·) 

 ( OOS ) ∼ h ( ·) 
The three prior distributions can be any parametric distribu-

ions that reflect a manager’s belief ex ante . Since ( w , p , P ( OOS ))

ange between (0, 1), one could adopt beta or uniform priors. Dis-

ributional parameters of f (·) , g(·) , and h (·) depend on managers’

ubjective beliefs and previous observations. Given the priors, we

an derive full conditional distributions known to a certain propor-

ionality for ( w , p , P ( OOS )): 

 (w | X , z, p, P ( OOS ) ) ∝ f ( ·) 
n ∏ 

i =1 

P ( X i | z i , w, p, P ( OOS ) ) 

P (p| X , z, w, P ( OOS ) ) ∝ g ( ·) 
n ∏ 

i =1 

P ( X i | z i , w, p, P ( OOS ) ) 

P (P ( OOS ) | X , z, w, p) ∝ h ( ·) 
n ∏ 

i =1 

P ( X i | z i , w, p, P ( OOS ) ) 

(4)

here X and z refer to the vectors of observations ( X 1 ,

 ),…,( X n , z n ). P ( X | z , w, p, P ( OOS )) is P ( OOS | z ) and P ( ∼OOS | z ) (from
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roposition 1 ) for the i th pair of observations. Given the three

ull conditional distributions in ( 4 ), we can apply the Metropolis-

astings-within-Gibbs sampler ( Hoff, 2009 ) – a popular Markov

hain Monte-Carlo (MCMC) algorithm – to construct the poste-

ior distributions. Take w for instance, the sampled w 

(s ) transits

o w 

( s +1 ) in the following way: 

1. Define a proposal distribution J(w | w 

(s ) ) 

2. Sample a proposal value w 

∗ from J(w | w 

(s ) ) 

3. Compute the acceptance ratio φ = 

J( w 

(s ) | w 

∗) P ( w 

∗| X, z,p,P ( OOS )) 

J( w 

∗| w 

(s ) ) P ( w 

(s ) | X, z,p,P ( OOS )) 

4. Let w 

( s +1 ) = 

{
w 

∗ with probability min ( φ, 1 ) 

w 

(s ) with probability 1 − min ( φ, 1 ) 

For the proposal distribution J(·) , one can employ a random

alk proposal ( Brooks, 1998 ) to initialize the Bayesian simulation.

he acceptance ratio φ is based on the prior f (·) and the full con-

itional of w . The Monte-Carlo sampling for p and P ( OOS ) are done

ith their respective priors and full conditionals in a similar fash-

on. After S iterations, the sequences ( w , p , P ( OOS ) ) are expected to

orm a stationary Markov Chain and constitute the posterior dis-

ributions that we look for. The simulation convergence (desired

arkovian behaviors) – irreducible, aperiodic, and recurrent – can

e evaluated by standard metrics for MCMC (e.g., stationarity and

o stickiness). The posterior means/modes of ( w , p , P ( OOS ) ) serve

s robust estimates of ( w , p , P ( OOS )) to which optimal decisions are

ensitive. The parameter r (in the case with random fixes) can also

e estimated by the Bayesian methodology with a little modifica-

ion (i.e., an addition prior for r and P ( OOS | z ) from Proposition 4 as

pposed to Proposition 1 ). Moreover, the Bayesian method above is

articularly valuable to practical implementation of the data-driven

udit policy, since in reality the two Markov chains in Sections

.1 and 4.1 could be non-stationary. That is, parameters w and r in

he two transition matrices may change over time. The nature of

ayesian update – constantly refine prior beliefs and posterior es-

imates using latest data – allows decision-makers to continuously

pdate their estimates of both ( p , P ( OOS )) and ( w , r ) that govern

arkov chains. 

After empirically deriving estimates of probabilistic parameters

 w , r , p , P ( OOS )) (from either MLE or Bayesian estimation), cost fac-

ors ( k , m ), and zero-truncated mean μ+ (that can be estimated by

omputing sample mean of non-zero POS observations), the pro-

osed shelf audit policy can be implemented in actual operations.

o begin with, a decision-maker needs to select one out of the two

ecision support models (i.e., with or without random fixes). To

o so, he/she can use the estimated values of L ( ̂  w , ˆ p , ̂ P ( OOS ) ) and

 ( ̂  w , ̂  r , ˆ p , ̂ P ( OOS ) ) to derive a likelihood ratio test (a χ2 test with

f = 1) for H 0 : r = 1 (no random fixes). If no significant evidence

s found to reject H 0 : r = 1, it will be safe to go for the first model

n Section 3 . 

The last element of implementation is to validate effectiveness

f actual audit decisions. Based on the outcomes of n audit initia-

ives, managers can quickly learn how many audits fix shelf-OOS

 b ) and how many audits turn out to be false alarms ( n −b ). A high

 / n indicates that the selected model (with or without r ) is valid

nd effective. On the other hand, a low b / n would be a strong indi-

ator of overly sensitive audit triggers. The assessment of b / n will

ive managers a clear idea of economic benefits (in terms of the

umber of fixed stock-outs) and operational feasibility. In either

igh or low b / n , a manager is supposed to use observed audit out-

omes to regularly re-estimate model parameters ( w , r , p , P ( OOS ))

using the estimation method shown earlier), in addition to con-

tantly examining decisions constructed from the model and effi-

acy of decisions, such that the model will be valid in its practical

se. 
. Concluding remarks 

All parties in a retail supply chain need to realize that shelf-

OS and the consequent low product availability undermines not

nly operational but also financial performance. The prevalence

f OOS forces retailers to occasionally perform manual audits to

nhance product availability. Even though RFID-enabled automatic

ounting is an attractive alternative to manual audits ( Zhou,

009 ), a complete deployment of item-level RFID is still hard to

chieve for many retailers. When done properly, the old-fashioned

helf audits can be efficacious (reducing shelf-OOS), efficient (done

conomically), and effective (elevating sales) ( Chuang et al., 2016 ).

owever, shelf audit decisions need to be made in an evidence-

ased and cost-informed fashion. Store managers usually look for

OS evidence from POS records but do not have a formal optimal

riterion for triggering audit initiatives. In response to managers’

eed for improving shelf audit decisions, our paper presents a

OS-data analytics approach for managers who aim to fix the

ecurring issue of shelf-OOS through manual audits. 

Our data-driven audit policy only uses consecutive zero sales

bserved directly in POS data as the state variable and imposes

o peculiar assumptions on replenishment policies. We avoid us-

ng system inventory level as a state variable because inventory

ecords in retailing are largely inaccurate ( Chuang & Oliva, 2015 ;

eHoratius & Raman, 2008 ). The model is simple and practically

asy in the sense that it just takes relevant cost factors, conditional

robability of shelf-OOS, and conditional expectation of shelf-OOS

uration as inputs. That said, the model is also complex and theo-

etically sophisticated as it considers intrinsic sales potential, zero

ale probability of demand, stochastic transition from non- OOS to

OS , perceived OOS likelihood, and even random fixes of OOS . In

abor-intensive retail operations, store employees could fix some

OS when walking through the aisles and seeing empty shelves.

espite increasing model complexity, the incorporation of random

xes into shelf audit policy design distinguishes our work from

rior studies and makes our modeling effort better reflect reality. 

The proposed likelihood framework in Section 6 also greatly en-

ances the empirical base of our decision model. While analyti-

al modeling approaches ensure cost optimality, parameters of an-

lytical models may not be entirely observable or estimable, and

ence heuristic approaches are seemingly more useful for support-

ng shelf audit decisions ( Papakiriakopoulos et al., 2009 ). We ad-

ress this issue by showing how to apply the conditional prob-

bility to classical MLE and derive parameter estimates. Further,

e demonstrate the use of Bayesian and MCMC methods to tackle

ncertainty in unobservable model parameters. Being able to es-

imate stochastic failures ( w ) and random fixes ( r ), both of which

ave potential non-stationarities, is critical to decision quality be-

ause ignoring those factors would bias P ( OOS | z ) estimates as well

s decisions resulting from the model. Bayesian inference has been

dopted by operations researchers to infer demand parameters

 Hill, 1997 ) and inventory level ( DeHoratius et al., 2008 ) in or-

er to improve replenishment decisions. However, Bayesian hier-

rchical model is rarely applied due to its computational com-

lexities, which are less of an issue nowadays due to recent ad-

ances in sequential Monte-Carlo methods. Our paper shows a

ompelling example of using Bayesian methods to develop a sta-

istically grounded decision support model. This venue is promis-

ng as the complementarity between statistical computing and op-

imization modeling would enable operations researchers to better

everage data in models. 

In an attempt to validate the cost-efficacy of monitoring

helf-OOS and activating audits based on z signals, we conduct

imulation experiments in addition to numerical studies on model

ehaviors. Simulation results show that decoupling shelf audit

olicy design from replenishment reduces model complexity with-
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out harming policy applicability. Even though there are instances

where the data-driven audits would result in slightly higher aver-

age costs, in most of the tested cases the proposed model would

substantially improve cost performance. The simulation study

verifies that our modeling effort based on irregular anomalies

(i.e., consecutive zero sales) can be used to run alongside retailers’

regular operations (i.e., periodic shelf audit and replenishment) in

a cost-effective fashion, especially for non-slow moving items. In

a nutshell, the data-driven model for shelf audit decisions is easy

to understand, well parameterized, and consistent with the re-

quirements of a good ‘decision calculus’ ( Little, 2004 ). Being inde-

pendent of any inventory replenishment policies (e.g., EOQ, base-

stock), our POS data analytics approach potentially can be applied

to most retailing contexts where shelf-OOS is an outstanding issue.
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