International Journal of Production Economics 204 (2018) 135-147

Contents lists available at ScienceDirect

International Journal of Production Economics

journal homepage: www.elsevier.com/locate/ijpe

An inventory replenishment system with two inventory-based substitutable | M)

Check for

products KT

Qin-hua Pan®, Xiuli He", Konstantina Skouri¢, Sheng-Chih Chen®*, Jinn-Tsair Teng"®"

@ Department of Economics and Finance, School of Economics and Management, Tongji University, Shanghai, PR China

® Department of Business Information Systems and Operations Management, Belk College of Business, University of North Carolina at Charlotte, Charlotte, NC 28233, USA
€ Department of Mathematics, University of Ioannina, Greece

d Master's Program of Digital Content and Technologies, College of Communication, National ChengChi University, Taipei 11605, Taiwan, ROC

© Graduate Institute of Development Studies, National ChengChi University, Taipei 11605, Taiwan, ROC

f Department of Marketing and Management Sciences, Cotsakos College of Business, The William Paterson University of New Jersey, Wayne, NJ 07470, USA

& Department of Business Administration, Chaoyang University of Technology, Taichung, Taiwan, ROC

ARTICLE INFO ABSTRACT

Keywords:

Inventory system
Substitutable products
Stock-dependent demand
Optimality

In a supermarket, two mutually substitutable products with the same price are usually arranged one next to the
other such as Coke and Pepsi colas, Campbell and Progresso soups, Breyer and Friendly ice creams, etc. It is
evident that a large pile of products (e.g., colas, soups, baked goods, fruits, vegetables, etc.) displayed in a
supermarket often induces customers to buy more because of its visibility, variety, and freshness. Hence, high
inventory of one product provides consumers various choices, and makes this product preferable. In short, the
demand for one product is positively influenced by its displayed stock level while negatively impacted by the
displayed stock level of the other product. With the demand being stock-dependent, it may be profitable to
maintain high stock level at the end of the replenishment cycle. The common inventory assumption of zero-
ending inventory is extended to non-negative ending inventory. Hence, we first propose an inventory model with
two inventory-based substitutable products to determine the optimal replenishment time and the ending in-
ventory levels for both products in order to maximize the total annual profit. We then demonstrate that the total
annual profit is strictly pseudo-concave with respect to the decision variables, which reduces the search for the
global maximum to a local optimum. We also use simple economic interpretations to explain theoretical results.
Furthermore, the theoretical results reveal that the optimal replenishment time is whenever one of two sub-
stitutable products is sold-out. Finally, numerical examples and sensitivity analyses are presented to highlight
several managerial implications.

1. Introduction

The study of product substitution has recently gained considerable
attention in the literature, as it contributes to the success of companies'
decisions regarding material/product planning, pricing and inventory
control. According to Shin et al. (2015) there are three types of sub-
stitution mechanisms. The first type is assortment-based substitution. In
this type the customer voluntarily chooses a substitute, triggered by the
fact that the substitute is newly added in the assortment. For example,
newly baked doughnuts (or newly arrived vegetables) are more at-
tractive to the customer than existing stale doughnuts. The second type
of substitution mechanism happens if the demand for a specific product
could not be satisfied, so that the demand may be fulfilled by a

substitute product. This is inventory-based substitution. Likewise, the
customer prefers a large pile of fresh fruits more than a small pile be-
cause of better selection and visibility. In the third substitution me-
chanism, the customer's behavior is driven by a change in the price of
substitutable product. This type of substitution mechanism is price-
based substitution. For instance, the customer buys an on-sales product
from a specific store instead of a near-by store simply because of its
lower price.

A variety of conventional inventory models, including periodic-re-
view, economic order quantity (EOQ) models, and newsvendor models
have been appropriately adapted to manage substitutable products.
McGillivray and Silver (1978) first explored items with identical cost
and a fixed substitution probability, and obtained the optimal order
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quantity by using simulation and heuristics. Parlar and Goyal (1984)
studied the same problem and demonstrated that the total expected
profit is concave, which implies there is a unique optimal solution.
Parlar (1988) extended the single-player model to a two-player com-
petitive market, and showed the existence of Nash equilibrium for two
substitutable products with stochastic demands. Ernst and Kouvelis
(1999) expanded the substitutable-demand pattern from no shortages
to allow for shortages. Rajaram and Tang (2001) examined the sub-
stitution effect on order quantities as well as on expected profits.
Netessine and Rudi (2003) analytically confirmed the numerical results
of Rajaram and Tang (2001). Nagarajan and Rajagopalan (2008) pro-
vided the optimal policies for an inventory model with two sub-
stitutable products whose demands are negatively correlated. Hsieh and
Wu (2009) modeled a supply chain in which two suppliers sell two
substitutable products to a common retailer who faces random demand
for those two products. Maity and Maiti (2009) studied an inventory
model for deteriorating and substitutable multi-items with stock de-
pendent demand. Gurler and Yilmaz (2010) proposed a model for two
substitutable products in which the retailer is allowed to return a por-
tion or all of the unsold products to the manufacturer for some credit.
Stavrulaki (2011) established the demand stimulation and substitution
effect when demand is stochastic. Krommyda et al. (2015) built an
inventory problem in which demand is determined and satisfied with
two mutually substitutable products. Recently Shin et al. (2015) pre-
sented a comprehensive taxonomy of the literature on the planning
involved with substitutable products.

Levin et al. (1972) argued that large piles of consumer goods dis-
played in a supermarket will lead customers to buy more. Similarly,
Silver and Peterson (1985) noted that sales at the retail level tend to be
proportional to the amount of stock displayed. A variety of inventory
models have thus been proposed to quantify this phenomenon in ex-
ploring the optimal inventory policies. Baker and Urban (1988) pro-
posed specifying the demand pattern as a power function of displayed
stock level. Taking a different approach, Mandal and Phaujdar (1989)
specified the demand as a linear function of displayed stock level. Re-
cently, a large number of mathematical models for stock dependent
demand rate, under several assumptions, have been proposed such as
Goyal and Chang (2009), Chang et al. (2010), Hsieh and Dye (2010),
Yang et al. (2010), Dye and Hsieh (2011), Teng et al. (2011), and Wu
et al. (2014, 2016), Chen et al. (2016), and Feng et al. (2017). Readers

Ordering and pricing decisions under revenue sharing, return policy, and combination of revenue sharing and return policy

Production lot sizes for deteriorating multi-items

Order quantities for both products

Order quantities for both products
Replenishment cycle time and ending inventory levels for both products

Order-up-to-levels by a heuristic approach

Order quantities for both products
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Order quantities solved by a service rate heuristic
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variables, and functions accordingly.
Parameters:

p; Profit per unit for Product i (i = 1 or 2), in dollars.

h; Holding cost per unit per year for Product i (i = 1 or 2), in dollars.
A Total ordering cost per order for both products, in dollars.

U Maximum total shelf space for both products, in units.

Decision variables:

E; Ending inventory level for Product i (i=1 or 2) in units
T Replenishment cycle time in years with T > 0.

Functions:

D;(t) Demand rate for Product i (i = 1 or 2) at time t, in units.
I;(t) Inventory level for Product i (i = 1 or 2) at time ¢, in units.
Q; Order quantity for Product i (i = 1 or 2), in units.

II (Ey, E,, T) Total annual profit for both products, in dollars.

For convenience, the asterisk symbol on a variable denotes the op-
timal solution of the variable. For instance, T*is the optimal solution of
T. Next, we propose some necessary assumptions in order to build the
mathematical model.

2.2. Assumptions

A large pile of products (e.g., Coke Colas, Campbell soups, vege-
tables, fruits, etc.) displayed in a supermarket often induces more sales
and profits due to its visibility, freshness, or variety. In the literature,
Levin et al. (1972) observed that “large piles of consumer goods dis-
played in a supermarket will lead customers to buy more.” Likewise,
Silver and Peterson (1985) also noticed that sales at the retail level tend
to be proportional to the amount of stocks displayed. Therefore, we
assume that building up stocks has a positive impact on demand.

In a supermarket, the retailer usually arranges two mutually sub-
stitutable products with the same price next to each other (e.g., Coke
and Pepsi colas, Campbell and Progresso soups, Breyer and Friendly ice
creams, Colombo and Yoplait yogurts, etc.). In general, the demand for
both products is very steady. In addition, high inventory of one product
provides consumers various choices and makes this product preferable.
In addition, we assume that the percentage of stale items is negligible.
Hence the model is suitable for the following two categories (i) products
with a long shelf life (e.g., colas, soups, over-counter medicines, etc.) or
(ii) products with a short shelf life but high demand (e.g., seasonal
vegetables, fruits, daily baked goods, etc.). As a result, we assume as in
Krommyda et al. (2015) that the demand rate D;(t) for Producti (i = 1
or 2) at time t is a function of the instantaneous stock levels I, (¢) and
L(t) given as:

Di(t) =a; + by(t) = bL(t) >0; 0<t<T, a,by, b, >0, (D
and
Dy(t) = ay — bii(t) + bo(£) 2 0; ap, by, b, 20, 0<¢<T. 2)

When the demand is dependent on the amount of displayed stock, it
may be profitable to keep a high stock level. In contrast to the classical
zero ending inventory, we assume as in Urban (1992) that the ending
inventory may be zero or positive.

A retailer sells two mutually substitutable products, say Products 1
and 2. At time 0, the retailer has E; (i = 1 and 2) units from the previous
cycle, and receivesQ; (i = 1 and 2) units of Product i. Hence, at the
beginning of the replenishment cycle, the retailer has on-hand in-
ventory of E;+Q; (i =1 and 2) units for Product i. During the time
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interval [0, T], the inventory level for both products is gradually de-
pleted by the stock-dependent consumption rate. The replenishment
cycle ends at time T when the ending inventory for Product i (i = 1 and
2) is E;. At that time a new order for both products is placed and hence a
new replenishment cycle is repeated again.

Most retailers have limited shelf space. Hence, we assume that the
maximum shelf space for both products is U.

3. Model formulation and solution

Based on the above assumptions, the inventory levels for Products 1
and 2 at time t during the time period [0, T] are governed by the fol-
lowing two differential equations:

dn (1)

=1 =-Di(t) = —a; — b (t) + b,L(t); 0<t<T
dt 1 1(6) a 14 (6) 2L (1) 3)
and
an(t) _ .,
——~> =L=-D(t)=—a, + biL;(t) — b,L(t); 0<t<T,
dt 2 HO) @ 14 (8) 2L (1) 4)

with the boundary conditions:

L(T) = By, L(T)=E, h(0)=E +Q, L(0)=E;+Q, and 4(0)

+L(0) < U. )
Notice that D;(t) + D,(t) = a; + a, ,forall 0 <t < T. Hence, It is clear
that Ql + Qz = ((11 + az)T, and thus

L)+ L(O0)=E+E+Q+Q=E+E+(a+a)T<U. (6)

Solving the differential equations (3) and (4) with the boundary
conditions L (T) = E; and L(T) = E,, we obtain

L(t) = ebr+b)(T-D) biEi — bE | b — ab, (@1 + a)by (T - 1)
by + b, (by + by)? b, + b,
by(E1 + E))  ab, — ayb,
by + b, (b + b’ )
and
L(t) = eGrbaT=0 byE,—biEy | ayb, — aib, (@ + )by (T - 1)
b + b, (b1 + by)? by + b,
+ bi(Er + E;) @b, — albl.
by + b, (b1 + by)? ®

To ensure the demand rate D;(t) for i = 1 or 2 is not negative over
time t, we get

_ by — a;b (@, + a)b,
D t:e(b1+b2)(Tt)bE_bE+all L0 >0,
1() [11 2L b1+b2 b1+b2
(C)]
and
Dy () = etr+02T-0| p g _p E, + @b, — ab, (a1 + ax)by > 0.
b, + b, b, + b,
(10)
Combining (9) and (10), we obtain
_ (al + a2)b1 < e(b1+b2)(T—[) szz—blEl _ a1b1 - azbz
bi+b, b, + b,
w, forall 0 <t<T.
by + b, (11)

Since 0 < e®1+0)(T=0) < o1+b)T for a]l 0 < t < T, we can reduce
(11) to
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_@ta)b _ gumyr|p g g - @b abs (@ + a)by
by +by, PN b4 b, | T b+ by

Hence, to ensure the demand rate is not negative, the following
condition must be satisfied:

Eiiﬂ&l%Wﬂﬁ<[mEzbml ﬂﬁ—igﬁ]

by + b,

Applying 1,(0) =

b1E1—bE

E; + Qp and L(0) =

by + b,
(a1 + )b, o~ (b1+b)T

b, + b, (12)

E; + Q,, we get
(a1+a2)baT

ba(E1+E) _ ambi—azby _

Q, = eb1+b2)T
b1 +b2

= [e(b1+b2)T —

and

byE 2 b1E1

a1by —azb
(b1+ b2)?

|

bi+b2 by +b2 (by + b2)?

b1E1 —byEp
b1+by

arby —azby
(b1+b2)?

B

(a1+ap)bpT
b1+ b2

13

(@m+aT | bi(E1+E) _ abp—aib

— pb1+b2)T
Q=c¢ [ b1 +b2

= [e1+b2T

—E
by +by 2

apzby —arby
(b1 +b2)?

(b1+b2)? by +by (b1+b2)?

|

azby —a1by ]

byE 2 b1E1
b1+ by

(@ +a)h T
b1+ by

14)

Hence, the inventory holding cost for Product 1 per replenishment

cycle is

b1E1— byEx

T
hy f L(t)dt
0

aiby —azby (a1 +a2)by (T - by (E1+ Ep)

t) +

T
=mf {e<bl+bz><r z)[
arby —azby

0
(b1+b2) }dt
- hl{[
|

biE —

b1+ by

b1+ b2

byEy
(b1+b2)?

by(E+E)

] + b1+ by b1+ by

(b1 + b2)?

ab—azby
(b1+b)?

(a1 +a2)bz 1

(1+b2)T _
] le U+ S

J7]

arby —azby
(b1+b2)?

(15)

Similarly, the inventory holding cost for Product 2 per cycle time is

bE ,— b1y
(b1 +b2)?

-+
/|

b1(E1 + E;)
b1+ by

azby — a1b
(b1+b2)?

_ azby — ajby
(b1 +b2)?

T
h, [ L(t)dt
0

(a1+a2)b1

(b1+b2)T _
][e U+ ooy

Jr}.

(16)

Consequently, the total annual profit IT (E;, E,, T) is given as

T T
Il ELE, T) = %{P1Q1 +p,Q—A—hfL)dt - hzflz(t)dt}
0 0

T

+p, [ [e(b1+b2)T — 1]

- [ [e(bl+b2)T —

bay(E1+Ep)
+ 2
b1+ b2

—hy [e(b1+b2)T

bi(E1+Ep)

+ b1+ b2

[
|
[

1 {pl [ [e(b1+b2)T —

b1E1 — byE>
bi+by

1][

[ byE ,— b1Ey

b1+ b2
1][

_ abi—aby
(b1+b2)?

1][

azb2 —aiby
(br+b2)?

arby —azby ]

(a1+a2)baT ]
(b1 + b)?

bi+by
(@1+a2)b1T
b1+ by ] A

azby —a1by
(b1+b2)?

b1E1 — b2Ep
(b1 + b2)?

J7]

byE ,— b1Ey
(b1 +b2)?

J]}

(a1 +a2)by
2(b1+b2)

a1b1 —azba
(b1 +b2)?

(a1+az)by
2(b1+b2)

azby —a1by
(b1+b)?

a7
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Thus, the optimization problem here is

Maxp, g, 711 (Ey, Ep, T) (18)

subject to:
_ @t b wr g _pp, - Gb= @b
b1 + b2 bl + b2
< (a1 + a)by ~(brtbo)T
by + b,
Ei+E+(q+a)T<U,

E > 0E,>0,and T > 0.
For convenience, we define
-+ hy

@=h PRt T

(19)
and
Wy = b2h1 + b]”lz >0 (20)

Taking the first-order partial derivatives of (17) with respect to E;
and E,, and rearranging terms, we get:

[ By, Es, T) _ by |37 1| 0y

aEl b1 + bz T b1 + b2 - 21
and
OJ[ By, Ex, T) _ by [ eO00T 11y

3E, by + b, T bi+b, (22)

Consequently, if w; > 0,then K; > K;,and K; < 0. Otherwise, we have
K; < Ky,and K; < 0.Thus, we have the following three possible cases: (1)
(wy>0and K; < 0)or(w; <0and K, < 0)(2)w; > 0and K; > 0 and (3)
w; <0 and K; > 0. Let us discuss them separately.

It is important to understand the meanings of K; and K, before we
derive theoretical results. The simple economic interpretations of Kj
and K, are as follows. Utilizing the Taylor series expansion of
e®1+22T 5 1 4 (b; + b,)T, and simplifying terms, we get

(b1+b2)T _
K = biw; | et 1w ~ by, — W,
b, + b, T b, + b, b, + b,
=b (P1 2 - h,
and
— (b1+b2)T _
K = byw, | e 1w ~ —byw, — W,
by + b, T by + b, b, + b,
=b(p, —p) — o

We know from (1) and (2) that a unit increase in inventory of
Product 1 increases not only the inventory cost byh;, but also the sales
of Product 1 by b;units while reducing the sales of Product 2 by b;units.
Hence, K; represents the profit received from a unit increase in in-
ventory of Product 1. As a result, if K; < 0, then building up inventory
of Product 1 is not profitable; and vice versa. Similarly, by using the
same analogous argument we know that if K, < 0, then building up
inventory of Product 2 is not profitable; and vice versa.

Case 1. (w; > 0 and K; < 0) or (w; £0 and K, <£0)
In this case, both K; and K, are less than or equal to zero. We can
easily obtain the following results.

Theorem 1. If (w; >0 and K; <0) or (w; <0 and K; < 0), then the
optimal values for ending inventory levels, E;, Eo, are either

Ef=0and Ej = max{o [albl — ab,

1
" by(by + by)

—(a + az)b1€7(b1+b2)T]},
(23)
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or

1 .
Ef = max{0, —————[ayb, — a1by — (a3 + ap)bye=Or+02T| L E* =0
1 { bl(b1+b2)[22 1by — (o »)b, ] 2

(24)

Proof. See Appendix A.

A simple economic interpretation of Theorem 1 is as follows: Since
both K; < 0 and K, < 0, then building up inventory of Product 1 or 2 is
not profitable. Hence, the ending inventory level for Product 1 or 2
should be as low as possible (i.e., the ending inventory level reaches 0
or the boundary constraint in (12)). From Theorem 1, the optimal va-
lues for E; and E, are one of the following three solutions:

(i) Ef =0 and E; =0,

(li) El* =0 and EZ* = [a1b1 - Clzbz - (a1 + az)ble_(b“'bZ)T] /
[b2(b1 + b2)] > 0,
or
(iii) Ef = [ayby — ayby — (a1 + ap)bye®1+02T] / [by (b + by)] > 0 and
Ej=o0.

For simplicity, we discuss the first case only. The reader can easily
obtain similar results by using the same analogous argument for the other
two cases. Substituting E; =0 and E; = 0 into (17), and simplifying
terms, we get

a1by —azbs

(b1 + b2)? b1+ by

IT, () = %{pl[

[e®@1+6DT — 1] + M]

azby —a1by (b1+b2)T (a1 +a)b1T
=== |eP1TP2 — ] — | -A
+p2[(b1+bz)2 [ I+ b1+ b
ab1 —axby (@+a)by gy

[ebr+bT _ 7] 4

—hl[
_hz[

:;{wl[

+ bap; +b
+ (a1 + a2)(b2p, 1P2)T
b1+ b2

ajby1 — axby T ]

(b1 + b2)?
T]}

_ @@+a)gy
2(b1 + b2) T A

)

Theorem 2. Hl (T) in (25) is strictly pseudo-concave in T, and hence there
exists a unique optimal solution T*.
Proof. See Appendix B.

(b1 +b2)3 2(b1+b2)

@by —a1by
(b1 + ba)?

(@1+a)bipp
2(b1+b2)

azba —arby 1o (by+b2)T _
G428 1 1+

@by = azba 1 o(by+b2)T _
(b1 + ba)? le 1]

a1b1 — axby

= B

(25)

The first-order condition for the optimal solution T, of [T, (T)
without (6) and (12) is:

eb1+62)T _ 1

wy(a + @)
2(by + b))

aby — ayb,
b, + b,

Telb1+b2)T _ T>?+A=0

(26)

Applying Theorem 2 and the two conditions in (6) and (12), we
get T* = Tif T satisfies both (6) and (12). If T in (26) does not satisfy
(6) or (12), then the optimal solution for T; is on the boundary point.
Since E; = 0 and E; = Oin this case, we can reduce (6) and (12) to
(m+a)T<U, and  — (@ + a)bie®*IT < —(a1b; — a;b,) <
(a1 + ay)bye=®1+bIT | respectively. Thus, we have the following re-

sults:
. U 1 (a1 +a2)b1 —
If a;by — a;b, > 0, andT; > mln{almz, 55 [m]} =1,
then T* = L.

If ;b — ayb, =0, and Ty > U/(a; + ), then. T* = U/(q; + ay).

. b
If albl - azbz <0, and T > mln{ blibz ln[w]} =L,

azby —ajby

a+ay’
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then T* = L,.
Next, we discuss the case of w; > 0 and K; > 0.

Case 2. w; > 0 and K; > 0
In this case, K; > 0 and K, < 0. We can derive the following results.

I}

(27)

Theorem 3. If w; > 0 and K; > 0, then the optimal

aby — a;by

Ef = min{U — (g + )T, b
1

L (@ + ap)e-troT —

and E; = 0.

Proof. See Appendix C.

A simple economic interpretation of Theorem 3 is as follows: From
the facts K; > 0 and K; < 0, we know that building up inventory of
Product 1 is profitable although it is not profitable for Product 2.
Consequently, the ending inventory level for Product 1 should be as
high as possible (i.e., the ending inventory level reaches one of the two
upper bounds of (6) and (12)). Meanwhile, the ending inventory of
Product 2 should be 0.

Substituting

Ef = min{U —( + a)T, bﬁl-ibz[(al + llz)ef(b”bZ)T - alblb;fqbz]} and

E; = 0 into (17), and rearranging terms, we have

b Ef
bi+by

aby—azby
(b1 +b2)?

w2(a1 + a2) o
2(b1 + b2)

] [e(b1+b2)T —-1] -

IL(1) = ;{wl[

(a1 + a2)(b2py + b1py) T+ (- hy) aby—azby o

—A+ b1 +by (b1 + ba)?

5
- COZ—T}
b1+ b2 (28)

Theorem 4. [, (T) in (28) is strictly pseudo-concave in T, and hence there
exists a unique optimal solution T*.

Proof. See Appendix D.
The first-order condition for the optimal solution T, of [T, (T)
without (6) and (12) is:

_ @+, (b+b)T _ % 4 abi—asby | (by+b)T (1
biw; b1+ [e 1T + w | b Ef + oibr |© T 5
b1Ef arby — azby a+a g
@ ] T A=0
+ o [ by +by (b1 +b2)? T 2oyl T

(29)

Applying Theorem 4 and the two conditions in (6) and (12), we
obtain T* = T, if T, satisfies both (6) and (12). If T, in (29) does not
satisfy (6) or (12), then the optimal solution for 7 is on the boundary
point. Consequently, we have the following results:

. (U-E

If by — a;b, > 0, and T, > m1n{a1+a12, blibz ln[ ]} =L,

then T* = L;.
then
]} = Ly,

(a1 +az)by
a1by —azbz

If a1b1 - a2b2 =0, and
T = U/(a1 + az).
. U-—Ef 1
If a1b1 — azbz <0, and Tz > mln{al+a2, b1+ by [
then T* = L.

Finally, we discuss the case of w; < 0 and K; > 0.

T > (U - EN/(a + @),

(a1+a2)ba
azby — a1b

Case 3. w; <0and K, >0
In this case, K; > 0 and K; < 0. Using the same analogous argument
as in Case 2, one can derive the following results.

Theorem 5. If w; < 0 and K, > 0, then the optimal

Ef=0,and E; = min{U — (a1 + )T, b;
1

[

[(al + ap)e~tr+bIT

a by — a,b
4+ ah )

b, (30)
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Proof. See Appendix E.
A simple economic interpretation of Theorem 5 is as follows: We
know from K; < 0 and K, > Othat building up inventory of Product 1 is
not profitable although it is profitable for Product 2. Therefore, the
ending inventory level for Product 1 should be as low as possible (i.e.,
0) whereas the ending inventory level of Product 2 should be as high as
possible (i.e., it reaches one of the two upper bounds of (6) and (12)).
Combining the results in Theorems 1, 3, and 5, we know that the
optimal replenishment time is whenever one of two substitutable pro-
ducts is sold out. As a result, the optimal replenishment policy is easy to
implement and understand.
Substituting  E{ =0

and E = min{U —(a; + @) T,

_1
bitba
[(a1 + ay)e~Gr+b)T 4 ’”blb;zazbz]} into (17), and rearranging terms, we
have

—byE}
b1+ b2

a1by —azba
(b1 + ba)?

w2 (a1 +a2) 72
2(b1 + b2)

][e(b1+b2)T —1]-

I (D) = %{wl[

arby —azxby T

_ (a1 + a2)(b2py + b1py) _
A+ — 2T+ (h — hy) (b1+b2)?

b1+ by

£
- CUZ—T}
b1+ b2 (31)

Theorem 6. .
H3 (T) in (31) is strictly pseudo-concave in T, and hence there exists a
unique optimal solution T*.

Proof. See Appendix F.
The first-order condition for the optimal solution T; of H3 (T)
without (6) and (12) is:

@A+, (b1+b)T _b,EF 4 @bi—aby | i+by)T(p 1
bzwl b1+ bs [e 1] T+ w1 b2E2 + b1+ bs e T b1+ bs
—b2E3 arbi —azby a+a o
9] T°+A=0
T o [ b1+b; (b1 + b2)? 226irby L T

(32)

Applying Theorem 6 and the two conditions in (6) and (12), we

have T* = T; if T; satisfies both (6) and (12). If T; in (32) does not satisfy

(6) or (12), then the optimal solution for T; is on the boundary point.
Hence, we have the following results:

. JU-E3 1 (a1 +a2)by _
If ayby — a;b, > 0, and T > mln{al+a2, 5 ln[m]} = Ls,
then T* = Ls.
If albl - azbz =0, and T3 > (U - E;)/(al + (12): then-

T = U/(a1 + az).

. (U-E
If a;by — a;b, < 0, and T32m1n{al+a22, blibz [ ]}ELﬁ,
then T* = Lg.

In the next section, we provide a couple of numerical examples to
illustrate theoretical results as well as to gain managerial insights.

(a1 +a)by
azby —aiby

4. Numerical examples

In this section two numerical examples are presented along with
their sensitivity analysis from which managerial insights are drawn.

Example 1. The first example refers to products that have symmetrical
profits and holding costs, i.e. p, = p,,and h; = h,. For this example, the
following data are used: @ = 200, a, = 400,b; =3, b, =6, p, =25,
D, =25 h=5h=5 A=250, and U= 500. One can easily obtain
that w; = 0,. K3 = —5,and K; = —5. The unique optimal solution (using
Theorems 1 and 2) is:

E} =20.73, E} =000, T*
IT* = 14,296.45.

012, QF=1822, QF=5281, and

The demand rates and the inventory levels for Products 1 and 2 are
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shown in Figs. 1 and 2, respectively. The graphical representation of
II(E,, E;, T* = 0.12) is given in Fig. 3, which is a concave function in E;
and E,. Similarly, the graphical representation of
II(E{ = 20.73, E; = 0, T) is shown in Fig. 4 as a strictly pseudo-concave
function in T.

Example 2. For the second example, the following data are used:
a; =200, a, =400b; =3, b=6, p, =25 p, =20, h =5h =4,
A =50, and U= 500. One can easily obtain that w; = 4.89 > 0,
K > bi(p, — p,) — =10 > 0,and K, < 0. By using Theorems 3 and
4, the unique optimal solution is as follows:

Ef = 8580, E}=000, T*=014, Q =71.32, Qi =11.89,
IT* = 13,581.20.

The graphical representation of the optimal II*with T* = 0.14, is
given in Fig. 5, which reveals that the total annual profit is a concave
function in E; and E,. Similarly, the graphical representation of the
optimal IT*with E; = 85.80, and E; = 0.00 is shown in Fig. 6, which
reveals that the total annual profit is a strictly pseudo-concave function
in T.

and

Using the data in Example 2, the sensitivity analysis on the optimal
solution is carried out with respect to each parameter in the appropriate
unit. The computational results are given in Table 2. From these results,
the following insights are gained:

1. Product 1 is the dominating product. Hence, the total annual profit
IT*is extremely sensitive to the variation of p,, and then a;. It is
obvious that an increase in a;, a, by, by, p;, or p, increase IT*.
However, an increase in hy, hy, or A reduces IT*.

. An increase in p; causes decreases in Q;, Q;, and T* while causing an
increase in Ey'. By contrast, an increase in p, causes increases in Qy',
Q;, and T* but causes a decrease in E;'.

. An increase in q; or a, elevates Q;, Q;, and IT* while reducing T*. A
simple economic interpretation is as follows: From (1) and (2), a;is
the number of customers for Product 1 who are not influenced by
displayed stocks. Therefore, an increase in a; implies demand for
Product 1 increases, which in turn increases both order quantity Qy,
and total annual profit IT*while decreasing replenishment cycle
time T*.

. A higher value of b; causes a higher value of Q; while lowering
values of Q;" and E;*. However, a higher value of b, causes the op-
posite reactions.

. The higher the holding cost h; or h,, the lower the order quantity Q;*
or Q5. In contrast, the higher the ordering cost A, the higher the
order quantity Q; or Q;.

. An increase in U increases Q;, E;', T*, and IT*while decreasing Q;. If
Product 1 is the dominating product, then an increase in shelf space
U elevates order quantity Q;, and ending stock level E;* for Product
1, and thus increases both replenishment cycle time T* and total
annual profit IT*.

. Conclusions

As the standard of living continues to improve, consumers become
more health conscious. Hence, it is very important for retailers better to
manage substitutable products. To reflect the fact that the amount of
on-hand stocks stimulates the demand rate, we have proposed an in-
ventory model with two inventory-based substitutable products in
which the demand for one product is positively influenced by its own
stock level while negatively influenced by the stock level of the other
product. In addition to maximizing profit, we have generalized the
traditional ending-inventory level from zero to non-negative. Then we
have derived the optimal reorder interval and ending-stock levels for
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Demand rate

600+ — — = Product 1
—— Product 2
500
400
300
200 —— =TT
100 —=—T
=" 1 . 1 1 I i L Time
0.02 0.04 0.06 0.08 0.10 0.12
Fig. 1. Demand rates of Products 1 and 2 for Example 1.
Inventory level
50} — — - Product 1
‘ —— Product 2
! 1 1 1 1 1 Time
0.02 0.04 0.06 0.08 0.10 0.12

Fig. 2. Inventory levels of Products 1 and 2 for Example 1.

14290}
Total Profit 14280

14270%

0.0

Fig. 3. Graphical representation of IT (E;, E,, 0.12)
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Total profit
Optimal value
R

14000

13000 /

12000

11000

10000 Time

0.00 0.02 0.04 0.06 0.08 0.10
Fig. 4. Graphical representation of IT (20.73, 0, T)
13500
Total Profit 10
13000

70

. 80
Ending Inventory 1

S Ending Inventory 2

90 0

Fig. 5. Graphical representation of IT (E;, E, 0.14)

both products to maximize total annual profit. We have demonstrated
that the total annual profit is strictly pseudo-concave with respect to the
decision variables, which simplifies the search for the global solution to

Total profit
Optimal value
14000

12000

11000

10000
0.00

Time

0.02 0.04 0.06 0.08 0.10

Fig. 6. Graphical representation of IT (85.80, 0, T)
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a local optimum. In addition, we have shown that one of the two ending
stock levels must be zero due to the substitution effect. Furthermore, we
have used common sense to explain theoretical results. Finally, we have
provided numerical examples and sensitivity analyses to illustrate the
problem and highlight managerial implications.

Opportunities for future research are plentiful. For example, price is
a major factor that impacts demand according to traditional marketing
and economic theory. Hence, the proposed model can be expanded by
considering pricing strategies for both products. Since most firms in the
UK and US offer their products on various short-term interest-free loans
(i.e., trade credit or credit term), we may generalize the present model
by taking trade credit into consideration such as in Skouri et al. (2011),
and Mahata (2012). Finally, we could incorporate coordination policies
such as advertising, trade credit, etc., among members of the supply
chain (e.g., the supplier, the retailer, and the customers) into the cur-
rent model as well.
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Table 2

Sensitivity analysis for Example 2.
Parameter @1 K Ky Qf Q5 Ef Ej T* -
a; = 100 4.89 26.96 —67.93 65.00 11.71 91.74 0.00 0.15 11,149.48
a; = 200 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
a; = 300 4.89 22.81 —59.62 77.16 12.04 80.26 0.00 0.13 16,018.48
a; = 300 4.89 26.96 —67.93 65.00 11.71 58.41 0.00 0.15 11,316.15
a = 400 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
az = 500 4.89 22.81 —59.62 77.16 12.04 113.59 0.00 0.13 15,851.82
by=2 4.88 15.08 —64.25 85.81 10.52 145.76 0.00 0.16 13,397.90
by=3 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
by=4 4.90 34.11 —62.67 61.50 12.63 57.44 0.00 0.12 13,619.73
by=4 4.86 19.81 —37.08 69.33 12.47 80.63 0.00 0.14 13,576.38
by = 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
by =8 4.91 30.65 —99.07 73.43 11.40 90.31 0.00 0.14 13,586.74
p; =25 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
p; =30 9.89 42.71 —99.42 51.74 6.46 94.51 0.00 0.08 16,204.66
p; =35 14.89 59.55 —133.10 41.57 4.22 100.21 0.00 0.08 18,902.13
p, =10 14.89 59.55 —133.10 41.57 4.22 100.21 0.00 0.08 12,902.13
py, =15 9.89 42.71 —99.42 51.74 6.46 94.51 0.00 0.10 13,204.66
p, =20 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
h = 5.11 27.61 —65.23 72.50 12.26 85.36 0.00 0.14 13,821.01
h= 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
= 4.67 21.54 —61.09 70.35 11.59 86.17 0.00 0.14 13,341.58
hy = 4.67 24.72 —-61.45 73.88 12.70 84.86 0.00 0.14 13,598.79
hy = 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
hy = 5.11 24.04 —64.80 69.11 11.21 86.65 0.00 0.13 13,566.53
A =30 4.89 19.76 —53.51 55.63 7.43 92.56 0.00 0.11 13,745.55
A =50 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
A=70 4.89 29.49 -72.97 84.19 16.16 81.47 0.00 0.17 13,450.32
U =100 4.89 15.41 —44.83 24.81 15.10 60.09 0.00 0.07 12,720.50
U = 300 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
U =500 4.89 24.52 —63.04 71.32 11.89 85.80 0.00 0.14 13,581.20
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Ifw; > 0 and K; < 0, then K, < Kj < 0. We know from (21) and (22) that IT (E;, E,, T)is a non-increasing function in both E; and E,, which implies

the optimal solution lies on the boundary conditions.
If E; = 0, then we know from (12) that

_ (al + az)bl e_(b1+b2)T < szz_ albl - azbz
b, + b, b, + b,

Rearranging and simplifying terms, we have

Ey; > ——————[a;by — ayby — (ay + ay)be~ 14027
Z_bz(b1+b2)[11 by — (@ )by ]

Hence, if E; = 0, then

1
Ef = max40, ————[a1b; — axb, — (a1 + ay)bye~G1+02)T
s = masfo, LT - b - @ apbe]

Likewise, if E; = 0, from (12) we get

ab; — ab, < (a1 + ap)b, (b1 +b2)T
by+b, ~ b+b ’

— blEl —

(A1)

(A2)

(A3)

(A4)

Multiplying by negative one on both sides, and simplifying terms, we obtain

1

E > —————|ab, — a1by — (a4 + ay)bye~P1+02)T
1_b1(b1+b2)[22 1by — (o )b, ]

Similarly, if E; = 0, then
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1
Ef = max{0, ———[a,b, — a1by — (a4 + ap) bye~ 014027
= manfo, L[ b - @ e} »
This completes the Proof of Theorem 1.
Appendix B. Proof of Theorem 2
Applying (25), we define
£(T) = wl{albl - azlzz [e(b1+bz)T _ 1]} _ wy (a1 + a) T2_ A4 (a1 + @) (bop, + blpz)T + (- hy) ab, — azlzz
(b1 + by) 2(by + by) by + b, (b + by) (B1)
and
§(M)=T. (B2)
Taking the first-order and second-order derivatives of f,(T) with respect to T, and rearranging terms, we derive
, _ a1bi — a2b2 (b1 +by)T (a1 + a2) (a1 + a2)(b2py + b1py)
f1(T)_w1[ bi+by elbrrbD ]_ b1 +by T+ b1+b12
_ arby —azxby
=) (B3)
and
"(T) = w;(a;b; — axb e(b1+b2)T_M.
1() 1(a1by ,bs) by + b, (B4)
By using (12), we get
(a1 + a)bie®+8IT > ;b — ayb,. (B5)
Substituting (B5) into (B4), applying (20), and simplifying terms, we obtain
()
"(T) < (g + @) | by — <0
A £ (@ 2)(11 b1+b2) (B6)

By applying the fraction concave function (e.g., see Cambini and Martein (2009, p.245), we know that [T, (T) = f,(T)/g,(T) is strictly pseudo-
concave in T, which completes the Proof.

Appendix C. Proof of Theorem 3
If w; > 0, then K, < 0. From (22), we know that IT (Ey, E,, T)is a decreasing function in E,, which implies the optimal E; = 0. However, K; > 0,

which implies that IT (E;, E,, T)is an increasing function in E;. Consequently, from (6) and (12), the optimal solution E;" lies on the boundary point
which satisfies the following two constraints:

Ei+(@+a)T<U, (C1)
and
biE; + aby — ayb, < (a1 + a)by e~ (b1 +b2)T,

bi+b, = bi+b, (C2)

Combining (C1) and (C2), and simplifying terms, we derive

Ef = min{U —(m + a)T, ﬁ[(ul + ay)e~O1+bIT M]}

by (C3)
This completes the Proof.
Appendix D. Proof of Theorem 4
Let us assume E; = U — (a; + a)T first, and then. E;' = bl+1——bz [(a1 + ay)ebro)T _ alblb;lazbz].
If Ef = U — (a; + a)T, then applying (28), we define
_ bhi[U-(a+a)T] | abi—aby |1, by+b)T _ 7 _ @2(@+a2)m)
(D) = wl[ b1 +by (b1 + b2)? ][e ' 1] 2(b1 + b2)
_ (a1 +a2)(b2py + b1py) _pyabi-mby  U—(a+a)T
A+ b1+ by T+ (hl hZ) (b1 + b2)? 2 by + by (D].)
and
&M =T. (D2)

We have Hz (T) = f41(T)/g,(T). Taking the first-order and second-order derivatives of f,, (T) with respect to T, and rearranging terms, we derive
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(= —blwlﬁ[eﬂ’ﬁbzﬁ -1+ C‘)l[bl[U —(a; + a)T] + M] elbi+b)T _ @2@ta) p

b1+ by b1+ b2
(a1 + a2)(b2p; + b1py) arb; — axby
+ b+ b2 + (= h) s — 22 (U = 2(a + a)T] (D3)
and
" (T) = —2(a; + @by, e® 7 4 (by + bz)wl[bl[ — (@ + a)T] + %]ewﬁbzﬂ
wz(a1 +az)
+ b1+b2 (D4)
By using (12), we get
b _
(g + ax)by e~B1+b)T > b[U = (¢ + a)T] + ab; — a;b, .
by, + b, b, + b, (D5)
7 (T) £ =2(ay + a2)byw,e®1 8T + (a; + )by + %
_ (1+b)T _ 17 _ @2
(@ + az){blwl [2e®r+02 1 b1+bz}' (D6)
Utilizing the Taylor series expansion that 2e®1+227 — 1 = 1 + 2(b; + by) T + (by + b,)*T? + ..., we get:
O 1 b Loy + b)T + L0y + BT + by + b T
=1+ (b + + (b + + (b + +
(b + b)T 2 6 2 24 1T (D7)
It is clear from (D6) and (D7) that
2eb1+b2)T _ w
= b+ b)T (D8)
and
. b (b1+b2)T _
M <@+ aZ){blwl[ze(beZ)T —1- blasz} <=+ aZ){bll-:ulllz [%] B blcsz}
= —(a+a)K <0 (D9)

Consequently, by applying the fraction concave function (e.g., see Cambini and Martein (2009, p.245), we prove that [T, (T) = f,,(T)/g,,(T) is
strictly pseudo-concave in T.

Next, we discuss the other case in which E; = [(a1 + ay)e~ (10T _ M]

L
bi+by b

Similarly, let us define

_ @+abioir, _p+byT] _ @+ tlz)cuz (a1 + a2)(b2py + b1py)
Jo(T) == o Lo = oy [T — AT b1+ b2 T
arby — azby 253 (b1+b))T _ @ b1 —azby ]
+ (= )T — [(al +a)e b (D10)
and
8,(T)=T. (D11)

Then we get Hz (T) = f,,(T)/gy,(T). Taking the first-order and second-order derivatives of f,,(T) with respect to T, and rearranging terms, we
obtain

/ (a1 + ap)byay o~ (b1+b)T _ (a1 + @)y (a1+ a2)(b2py + b1p) _ aib1 —axby
[ (T) = by +by b1+b T+ b1+b2 + (= h) (b1 +b2)?

[(a1 + ay)e-rtbdT _ M] + 2T (g + ay)e-Gr+b2T

e bz)2 b1 b1+b (D12)
and
" - _ —(b1+b)T _ (@t @)y | 21+ @)@ (b1 +b)T _ —(b1+b2)T
7w (T) = —(a1 + a)byw;e vt T brany (a; + ap)w, Te
_ —(b1+b2)T @ (@1 +a)®2 (b +by) T [ b1 +b2)T _
(a1 + ap)e (blwl b1+b2) b1+ ba [e 1]
_ —(b1+b) T, _ (W4 @02 (b1 +b)T [o(b1+b)T _ 1] — ~(b1+b2)T
() + ;e K bvb, © [e 1] — (a1 + ap)w, Te <0. (D13)

Likewise, applying the fraction concave function (e.g., see Cambini and Martein (2009, p.245), we demonstrate that H2 (T) = £,,(T)/g,(T) is
strictly pseudo-concave in T. This completes the Proof.

Appendix EProof of Theorem 5

If w; < 0, then K; < 0. We know from (21) that IT (Ey, E,, T)is a decreasing function in E;, and hence the optimal E;" = 0. However, K, > 0. From
(22) we know that IT (E;, E,, T)is an increasing function in E,. Therefore, from (6) and (12), the optimal solution E lies on the boundary point which
satisfies the following two constraints:

Ey+ (g +a)T< U, (ED)
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and

amb, — qb, < (a1 + @p)b, —(b14+b)T
by+b, ~— b +b, ' (E2)

b2E2_

Combining (E1) and (E2), and simplifying terms, we derive

by — a;b
E; = minjU — (g + a)T, 1 [(al + ay)e~ 10T 4 M] .
by + b, b, (E3)
The proof is complete.
Appendix F. Proof of Theorem 6
From Theorem 5, the optimal E; has two possible solutions:
El=U-(m+a)T,
or
oL (g 4 aetritr 4 b1 = @b
We prove the first case only because the Proof of the other case is similar to that in Appendix D. From (31), we define
_ —bz2[U—(a1+a2)T] arby —azba (b1+b2)T _ _ @@+a)
L) = [ b1+ by + (by +b2)? ] [e®ro 1 2(b1 + b2)
(a1 + az)(bapy + b1py) _ abi—aby U—(m1+a)T
— A+ 7b1+b2 T+ (h,l h.z) (b1+b2)2 T (925} b1+ b2 T
(F1)
and
&(T)=T. (F2)
Taking the first-order and second-order derivatives of f;(T) with respect to T, and rearranging terms, we have
’ by —azb. ¢ )
FIT) = byeoy BE2[elrtbaT — 1] 4 wl[—bz[U — (@ + a)T] + %]eww - earar
(a1 + a2)(b2py + b1p;) _ abi—aby @ _
+ 7[)1 +by + (hl hz)i(bl b2 b1+ ba [U 2(a1 + az) T] (F3)
and
T(T) = 2(a + a2)bra @927 4 (by + by)an [—bz[U —(a +a)T] + %]e(b”hﬁ
w2(a1 +a2)
b1+ by (F4)
By using (12), we get
aby — ayb, (a1 + a)b, _
- b[U = (a1 + a)T] + > — e~ (b1+b2)T,
(U — (@ + &)T] by + b, by + b, (F5)
Substituting (F5) into (F4), utilizing w; < 0, and simplifying terms, we obtain
Fi(T) < 2(a + a)bye®+P2T — (a1 + ay)bra0, + %
— (b1+b2)T _ w2
=(m + az){bzwl[Ze 1+52 1] + b1+b2} (F6)
Applying the result from (D8) into (F6), we have
" b (b1+b2)T _ 1
f3 (T) < ((11 + aZ){bzwl [2e(bl+b2)T - 1] + bl“sz} < (al * aZ){blz«ngz I:ef] + blcizbz}
= —(a+a)K, <0 (F7)

Consequently, by applying the fraction concave function (e.g., see Cambini and Martein (2009, p.245), we prove that [ [, (T) = f;(T)/g;(T) is
strictly pseudo-concave in T. This completes the Proof of Theorem 6.
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