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運用時間轉換 Lévy 過程探究資產報酬

波動度不對稱及最適投資組合理論
Elucidating Asymmetric Volatility in Asset
Returns and Optimizing Portfolio Choice

Using Time-Changed Lévy Processes

陳正暉 Chen Zheng-Hui*

國立政治大學金融學系
National Chengchi University

廖四郎 Liao Szu-Lang
國立政治大學金融學系

National Chengchi University

摘　要

本研究顯著地發展時間轉換 Lévy 過程在最適投資組合的運用性。在連續 Lévy 過程模型設定

下，槓桿效果直接地產生跨期波動度不對稱避險需求，而波動度回饋效果則透過槓桿效果間接地發

生影響。另外，關於無窮跳躍 Lévy 過程模型設定部分，槓桿效果仍扮演重要的影響角色，而波動

度回饋效果僅在短期投資決策中發生作用。最後，在本研究所提出之一般化隨機波動度不對稱資產

報酬動態模型下，得出在無窮跳躍的資產動態模型設定下，擴散項仍為重要的決定項。

關鍵詞：最適投資組合、隨機波動度、時間轉換 Lévy 過程、槓桿效果、波動度回饋效果、波

動度不對稱

Abstract

This study significantly extends the applicability of time-changed Lévy processes to the portfolio
optimization. The leverage effect directly induces the intertemporal asymmetric volatility hedging demand,
while the volatility feedback effect exerts a minor influence via the leverage effect under the pure-
continuous time-changed Lévy process. Furthermore, the leverage effect still plays a major role while the
volatility feedback effect just works over the short-term investment horizon under the infinite-jump Lévy
process. Based on the proposed general stochastic asymmetric volatility asset return model, we conclude
that the diffusion term is an essential determinant of financial modeling for index dynamics given infinite-
activity jump structure.

Key words: Optimal portfolio choice, stochastic volatility, time-changed Lévy processes, leverage
effect, volatility feedback effect, asymmetric volatility
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Elucidating Asymmetric Volatility in Asset
Returns and Optimizing Portfolio Choice

Using Time-Changed Lévy Processes

1. Introduction

The focus of asset price modeling has shifted to a framework based on

non-Gaussian distribution to alleviate problems in underestimating the

frequency and magnitude of extreme events, namely, crashes and booms.

Particularly, many early empirical evidences have fundamentally shaken

assumptions made by the diffusion model, for instance, Mandelbrot (1963) and

Fama (1965).

Among these non-Gaussian specifications, asymmetric volatility and fat

tail are relevant considerations with regard to asset allocation decisions.

Campbell et al. (1997, Chapter 12) explained asymmetric volatility in terms of

the leverage and volatility feedback effects. The leverage effect proposed by

Black (1976) claimed that a negative equity return reduces the leverage firm

value and thus increases the risk of holding equity, thus increasing volatility

risk. Additionally, the volatility feedback effect proposed by Campbell and

Hentschel (1992), Bekaert and Wu (2000) and Wu (2001) advocated that it

should be satisfied if return volatility behavior involves persistent clustering,

in which case a shock in either direction enhances the anticipated increase in

volatility and increase the required rate of return for holding stocks, and

furthermore, reduces the asset price to enable higher future returns. Kraus and

Litzenberger (1976) demonstrated that investors with the power utility favor

positive over negative skewness. Therefore, the leverage and volatility

feedback effects significantly influence optimal portfolio choices when asset

return has asymmetric volatility.

The finance literature has extensively explored the setting of Lévy density,

for instance, Variance Gamma (VG) was presented by Madan and Seneta (1990)
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and extended to skewness by Madan et al. (1998), CGMY was adapted by

Geman et al. (2001) and Carr et al. (2002), and exponential dampened power

law was proposed by Wu (2006). While the literature documents evidence

supporting the superior fitting ability of Lévy processes, room remains for

Lévy processes related to financial modeling.

Time-changed Lévy process is widely utilized due to its probabilistic

tractability. Furthermore, asset price can be considered the outcome of

interaction among several economic variables. The Lévy process accelerated

by an increasing stochastic time is cautiously selected to match the features

existing in different financial markets (e.g. Mo and Wu (2007), Carr et al.

(2003) and Carr and Wu (2007)).

Carr et al. (2003) discussed stochastic volatility in relation to the pure-

continuous asset price model in three homogeneous Lévy processes, including

normal inverse Gaussian (NIG) presented by Barndorff-Nielsen (1998), VG,

and CGMY, in the form of a stochastic time change independent of the original

Lévy processes. Besides stochastic volatility, the instantaneous rate of

stochastic time change, a solution to the CIR mean-reverting square root

stochastic process, is offered to promote volatility clustering, but without the

leverage effect.

Cvitanić et al. (2008) denoted risky asset price dynamics as a pure-jump

stochastic process in which underlying uncertainty is described via the state-

dependent Lévy density for a VG model. The variation of state-dependent

Lévy density is fully captured by the state variable followed in the form of a

CIR mean-reverting square root stochastic process to investigate the portfolio

optimization for investors facing higher moments. However, the research of

Cvitani  et al. did not directly invoke stochastic time changes; rather they

simply randomized the intensity of the jump structure, namely, transforming

the constant Lévy density into a varying one. Hence some interesting findings

may be sacrificed.

In comparison to those of Carr et al. (2003), present study enhances a
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Brownian motion with drift subordinated by a pure-continuous increasing

stochastic process, an integral of a solution to the CIR stochastic process, such

that the time-changed Lévy process is associated with the state variable. In

contrast with Cvitanić et al. (2008), we provide another infinite-jump asset

return model obtained by directly applying a one-sided jump process to

randomize the clock in which a Brownian motion with drift is run.

However, few studies have investigated the implications of asymmetric

volatility, particularly for leverage and volatility feedback effects, in relation

to optimal portfolio choices. Research on the performance of time-charged

Lévy processes in optimal portfolio choice still remains immature. This study

attempts to fill this gap and enrich the literature.

The primary contributions of this work are as follows: First, this study

proposes two distinct exponential time-changed Lévy processes with

asymmetric volatility for risky assets. Second, this study numerically examines

the economic implications of leverage effect and volatility feedback effect for

optimizing portfolio. Finally, we adopt the perspective of econometric analysis

to apply the proposed general stochastic asymmetric volatility asset return

model by calibrating them to S&P500 index returns. To resolve the difficulties

in getting an analytical expression for probability density function, this study

employs spectral GMM estimation (Chacko and Viceira (2003)) to estimate the

parameters of the general asset return model.

The rest of the paper is organized as follows: Section II reviews some

essential results of Lévy processes and time-changed Lévy processes, and

further proposes two distinct exponential time-changed Lévy processes with

asymmetric volatility for risky assets. Section III presents a rigorous

formulation of the problems associated with optimizing portfolio choice.

Section IV provides some results for optimal portfolio weights together with

some relevant numerical examples to investigate the implications of

asymmetric volatility. To understand whether the diffusion term provides the

critical effect for financial modeling, Section V assesses the asymmetric

volatility to explore the proposed general asset return model. Section VI
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presents conclusions.

2. Time-Changed Lévy Processes

2.1 Fundamental Properties of Lévy Process

Let (, F, (Fs)t<s<T, P) denote a filtered complete probability space

representing the underlying economic uncertainty. A process )0),((  ttXX

with values in R such that 0)0( X  (almost surely) is termed a Lévy process if

it is right continuous with left limits almost surely and its increments are

independent and time-homogeneous.

From the Lévy-Khintchine formula, the characteristic function of real-

valued Lévy process )(tX  has the form

  ,0)( )(   teeEz ztizX
X

xt

t



where   Ei ,1  denotes the expectation operator under the measure P and

the characteristic exponent x(z), zR, is given by

dxxizxezziz x

izx

x )()11(
2

1
)( 1}0{

2     R

(x)dx is termed the Lévy measure. The characteristic triplet (, ,  (x))

denotes the Lévy triplet, where   is the constant drift,   denotes the

constant diffusion coefficient and )(x  describes the arrival rate for jumps of

size x.

2.2 Stochastic Time Changes for Lévy Processes

The mapping )(tTt   can be regarded as the stochastic time change.

Intuitively, the original time t denotes calendar time and the random clock

)(tT  represents business time.
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Clark (1973) was the first researcher to propose stochastically altering the

calendar time in the finance literature. Geman and Ané (1996) and Ané and

Geman (2000) subsequently further elucidated this concept. A growing number

of recent publications and empirical evidences have confirmed the positive

contribution of time-changed Lévy processes by extracting and capturing

features of asset returns in financial markets. Geman (2002) argued that pure-

jump Lévy processes, for instance, CGMY and the hyperbolic motion by

Eberlein and Keller (1995) and Barndorff-Nielsen (1998), possess better fit

than classical diffusion or jump-diffusion models. Recently, Mendoza et al.

(2008) proposed time-changed Markov processes designed for defaultable

stocks.

2.3 Time-Changed Asset Price Processes with Asymmetric Volatility

2.3.1 Pure-Continuous Asset Dynamic Process

This study denotes the process for the risky asset price by )(tS . To model

asset price dynamics, the Brownian motion with drift )(1 tX  and the stochastic

time change )(1 tT  are included as:

 )((exp)0()( 11 tTXStS  ,

where the process )(1 tX  is as follows1:

)()( 11 tWttX 

1  denotes a constant, )0(S  represents the initial asset price, )(tW  is a

standard Brownian motion, and continuous integrated stochastic time change

)(1 tT  is given by


t

dssvtT
0 11 )()(                      (1)

                                                     
1
 Volatility of Brownian motion with drift is captured by the stochastic time change process T1(t). Hence

the volatility term could be omitted.
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where )(1 t  is considered the state variable of the pure-continuous asset price

dynamics, which is unobservable and is a positive quantity.

Following Carr et al. (2003), this study assumes a continuous stochastic

time change and specifies it using the instantaneous activity rate following a

CIR mean-reverting square root stochastic process:

)()())(()( 1111111 tdBtdtttd  

where )(1 tB  denotes a standard Brownian motion independent of another

Brownian motion )(tW 2.

We replace calendar time t of the Brownian motion with drift with the

stochastic time change )(1 tT  to yield the following expression:

))(()())(( 11111 tTWdtTdtTXd                 (2)

The driving noise term ))(( 1 tTW  of the Eqn. (2) can be transformed into

another Brownian motion along the lines proposed by Karatzas and Shreve

(1991, p.174) and Mo and Wu (2007), such that

  )()()( *
11 tdBttTWd 

Hence the percentage return is given as:

)()()(
)(

)( *
11

*
1 tdBtdtt

tS

tdS                  (3)

where 2/11
*
1  . This study assumes that )(* tdB  and )(1 tdB  are two

Brownian motions with constant correlation 1  such that

dttdBtdBE 11
* )]()([  , thus introducing leverage effect into the model.

The introduction of the CIR dynamic process can help capture the

                                                     
2

Furthermore, the parameter 1 is the long-term mean of state variable, while 1 controls the speed with
which 1(t) returns to its long-term mean and the path variability is determined by 1.
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volatility clustering as the required condition for volatility feedback effect,

because the instantaneous activity rate )(1 t  can be considered the

instantaneous variance of the Brownian motion.

Since the integrated stochastic time change is continuous, the asset return

model of Eqn. (3) is also continuous (Geman et al. (2001)).

2.3.2 Infinite-jump Asset Dynamic Process

This study further introduces another way of representing asset prices:

 )(exp)0()( tYStS                        (4)

Economic uncertainty is described by the stochastic process )(tY  satisfying

)()()( 22 tTtZtY                        (5)

where )(2 tT  denotes a stochastic time change, )),(()( 22 tTXtZ 
)()( 22 tWttX  , 2  is a constant drift term, and )(tW  represents a standard

Brownian motion. The coefficient 2  allows for correlation between the Lévy

asset return and changes in volatility3.

The arrival rate of jumps of every positive size x in the pure-jump

stochastic time change )(2 tT  is expressed as follows:

01
1)( 



 x

x

x

ce
x 





with the parameter  1,0 , ,c R+. The condition  1,0  is induced by

the requirement that the stochastic time change )(2 tT  is the subordinating

process.

The parameter c simultaneously controls the intensity of jumps of every

                                                     
3
 For simplicity, we assume that X2(t) and T2(t) are independent. The stochastic volatility and higher

moments are generated by the stochastic time change.



Journal of Financial Studies Vol. 18 No. 2 June 2010 143

positive size x and transforms the time scale of the dynamic processes. The

idea of stochastic intensity of jumps seems to better capture the varying jump

structure (Carr et al. (2002)), and is further utilized for optimizing portfolio

choice by Cvitanić et al. (2008).

Unlike previous studies, rather than indirectly introducing the state

variable into the Lévy density resulting from a stochastic time change, this

study employs a more intuitive approach, which directly introduces the state

variable into the stochastic time change describing the change in economic

information over time, that is,

  )()(),( *
22 xtxt  

where 01
* 1)( 



 x

x

x

e
x 



 , and )(2 t  follows CIR dynamic process:

  )()()()( 2222222 tdBtdtttd  

The introduction of the CIR dynamic process can help capture the

volatility clustering as the required condition for volatility feedback effect,

because the instantaneous activity rate )(2 t  alters the intensity of all positive

jumps simultaneously. Furthermore, to account for the leverage effect in the

asset price dynamics, the second component )(22 tT  in Eqn. (5) is included.

Revisiting the Eqn. (5), this study provides the new Lévy process )(tZ ,

which possesses the following Lévy density:

  )()(),( *
22 xtxt ZZ  

where






 









2

),,(
)( 2

2

2

1

2

1
2* 2 xKe

x

F
x xZ ,
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  4

1

22
22 2

2

2
),,(









F

and K denotes the second kind of modified Bessel function.

Similarly, the Lévy process )(tZ  has zero diffusion and the drift term is as

follows:

  dxxxt Z
x

Z )()( *
12 

The process )(tY  can be established by combining two stochastic processes,

)(tZ  and )(22 tT , which are assumed to be independent. Finally, the Lévy

triplet )),((,,( 22 xt  for the resulting process )(tY  is given by:

  )()(),( *
22 xtxt   ,

)(2
*
22 t  ,

0

wher )()()( *
2

** xxx Z    and       dxxxdxxx Z
x )()( *

2,11,2
*

1
*
2  .

Percentage return is given by

   dtdxtNedtt
tS

tdS x ,),(1)(
)(

)(
22

*
2  






where ),),(( 2 dtdxtN   denotes the Poisson random measure on R R+.4

When the parameter c of the Lévy density of the stochastic time change is

replaced by the instantaneous activity rate )(2 t , the introduction to the CIR

dynamic process can help include the volatility feedback effect. Additionally,

coefficient 2  considers the presence of the leverage effect.

                                                     
4

Its Lévy density, (2(t), x), captures the varying arrival rate of jumps depending on the information of
state variable, which represents the current variation related to trading activity or market volatility.
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3. Investment Opportunity Set and Investor Preferences

This section describes the economic environment in which an investor

with CRRA utility makes portfolio choices involving two tradable assets: one

riskfree asset and one risky asset. We describe the stochastic process for the

riskfree asset )(tP :

dttrPtdP )()( 

where r represents the constant instantaneous riskfree interest rate. The

stochastic process for the risky asset )(tS  has been presented previously, as

follows:

Model 1: Pure-continuous asset dynamic process

)()()(
)(

)( *
11

*
1 tdBtdtt

tS

tdS                   (6)

Model 2: Infinite-jump asset dynamic process

   



 dtdxtNedtt

tS

tdS x ,),(1)(
)(

)(
22

*
2             (7)

Given the investment opportunity, the investor continuously chooses to

invest a fraction )(s  of his funds in the risky asset at each time ,, Tsts 
and attempts to maximize the expected utility from terminal wealth with CRRA

utility.

The aim of the investor is to maximize his expected utility:

 
  )(

),(

TWUE

Tsts

Max it



subject to intertemporal budget constraints, which depend on the model choice:
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  .2,1
)(

)(
)(1

)(

)(
)(

)(

)(
 i

tP

tdP
t

tS

tdS
t

TW

TdW

i

i

i

i 

)(TWi  represents investor’s wealth dynamics under the different model i,

i  1, 2. The investor is endowed with positive initial wealth ).0(iW

4. Optimal Portfolio Choice

4.1 Pure-Continuous Asset Dynamic Process

The budget constraint is given by:

)()()()()(
2

1
)()()()( *

1111
2
111111 tdBttTWrtttrTWTdW  














  .

Following the standard procedure of Merton (1971)5, the value function is

defined as

 
 ))((

),(

Max
),,( 1

1
11

TWUE

Tsts
tWJ t





 .

Using the principle of dynamic programming for jump-diffusion processes, the

following Hamilton-Jacobi-Bellman equation (HJB equation) is obtained,

 
































 




tW

WWW

JJWrrJ

JWJWJ

11

111111

11111111

111111
2

1
2
11

2
1

1

2

1
)(

2

1

2

1
Max

0









     (8)

where 
11

, JJW  and tJ  denote the first partial derivatives of ),,( 11 tWJ  , and so

on for higher derivatives. This equation is solved by guessing (then verifying)
t h a t  t h e  s o l u t i o n  t o  t h e  v a l u e  f u n c t i o n  h a s  t h e  f o l l o w i n g  f o r m :

                                                     
5
 More details about technical conditions of HJB equation can be found in Øksendal and Sulem (2005).
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1)()(1
111 1

1
),,( 


 tBtAeWtWJ 


                (9)

Differentiating the above with respect to 1 , we obtains the following result:

Proposition 1: The optimal portfolio weight )(*
1 t  in the presence of

asymmetric volatility under the pure-continuous stochastic time-changed asset

return model in Eqn. (6) is given by

r

tB

tr

rt
t

)(

)(

)(
2
1

)( 11

1

11
*
1





 







 

 ,　　for all t0      (10)

 tA  and  tB  satisfy the following system of ordinary differential equations:

   0)1(
2

1
)1()())1(()(

2

1
)( 1111111

22
1

' 





   tBtBtB   (11)

              0)1()1()()'( 111  rtBtA  .               (12)

When the asset return dynamics ignore asymmetric volatility and the

stochastic time change is omitted, that is, 1)(1 t  and 01  , the investor

chooses the following portfolio weight as specified by Merton (1971).

Corollary 1: The optimal portfolio weight )(*
0 t  in the absence of asymmetric

volatility under the pure-diffusion stock return model as Merton (1971) is

given by

            
r

r
t







 

 2
1

)(
1

*
0


 ,　　for all 0t             (13)

Using the proposition 1, the optimal portfolio choice is determined via

two strategies. The first strategy in Eqn. (10) is the mean-variance portfolio or

myopic strategy related to the state variable )(1 t  which describes the current
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economic information. The second strategy is the intertemporal asymmetric

volatility hedging demand which directly depends on the leverage effect via the

correlation coefficient 1 , and is indirectly affected by the volatility feedback

effect via )(tB . When correlation 1  is nonzero, the investor can hedge

expected utility against asymmetric volatility risk by taking the second holding.

Additionally, when the correlation 1  is zero, namely, ignoring the leverage

effect, the intertemporal hedging portfolio strategy immediately disappears

regardless of the volatility feedback effect embedded by )(tB .

Similar to those of Liu et al. (2003), “market timing” exists for optimizing

portfolio choice in relation to asymmetric volatility through the dependence on

)(tB .

4.1.1 Numerical Examples

The quantitative analyses for the optimal portfolio choice are performed

using the following selected parameter values: the state variable )(1 t  is set to

be 0.05, r 0.02, 12.5 and  0.08.

Fig.1 illustrates how the leverage effect influences demand for risky

assets for the purpose of hedging against the risk caused by changes in

investment opportunities. For the numerical example, other parameters should

be set besides the parameter 1 . The relative risk aversion coefficient   equals

5, while   equals 15. This work views the optimal portfolio weight as a

function of investor horizon measure in years for four different values of the

correlation coefficient.

Several important features are illustrated. First, the leverage effect is

closely related to the optimal portfolio weights for risky assets. When the

leverage effect is positive, that is, 01  , demand for risky assets increases

with respect to the magnitude of the leverage effect, 1 .
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Figure 1: Optimal portfolio weights for the negative correlation

coefficient 1  (there exists leverage effect).
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Fig.2 plots the optimal portfolio weight as a function of the volatility of

the state variable ( 1 ) for various values of correlation coefficient ( 1 ). Larger

volatility of the state variable enhances the motivation to hold the

intertemporal asymmetric volatility hedging demand against the risk of the

varying investment opportunity given the positive leverage effect.

Figure 2: Optimal portfolio weights with respect to the different levels of

leverage effect (1) and volatility of the state variable (1).
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Fig.3 further presents another viewpoint. Optimal portfolio weight is a

deceasing function of 1  when the economy exhibits a positive leverage effect.

Hence demand for risky assets is proportional to the volatility feedback effect.

This result is consistent with the previous discussion. The leverage and

volatility feedback effects on optimal portfolio choices can be implemented

separately in the present example. The case of large 1  (e.g. 501  ) is

regarded as the model without the volatility feedback effect. As reflected in

Fig.3, we observe that the leverage effect induces intertemporal hedging

demand when the volatility feedback effect is ineffective.

Figure 3: Optimal portfolio weights with respect to the different levels of

volatility feedback effect (1) and leverage effect (1).
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From the above numerical examples, the leverage effect mainly induces

the intertemporal hedging demand. The volatility feedback effect works

indirectly via the leverage effect and then exerts only a minor influence on

asset holding.

4.2 Infinite-jump Asset Dynamic Process

As the preceding section, we propose the following result:

Proposition 2: The optimal portfolio weight )(*
2 t  in the presence of
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asymmetric volatility under the infinite-jump stochastic time-changed asset

return model in Eqn. (7) is given by

    0allfor,0)()()1()1)((1)( *
2

*
2

*
22 



 tdxxteetrt x
r

x    (14)

Proposition 2 indicates that the optimal portfolio weight )(*
2 t  for risky

assets depends on the state variable )(2 t  because of the implicit relationship

shown in Eqn. (14). In contrast to the findings of Benth et al. (2001), namely

that optimal portfolio choice is a fixed fraction of wealth over time, the finding

of Benth et al. can be considered our special case in the situation where the

stochastic time change (implicitly including volatility feedback effect) and

leverage effect are eliminated. In contrast to Cvitanić et al. (2008), present

study builds on previous research ensuring agreement with more stylized facts

by directly transforming the calendar time into the business time, and allowing

for the dependence between the time-changed Lévy process and the state

variable.

For simplicity this study applies the conditional cumulant exponent tK ,

as previously applied by Cvitanić et al. (2008), which is defined as

     dxteuK ux
t ),(1)( 2

The unconditional version is

   )(1)( * dxeuK ux 

The instantaneous variance of percentage returns 
)(

)(

tS

tdS
 is obtained by

  )()1(2)2()( 2
2 tKKt   .

Next, we present the following proposition:

Proposition 3: Assume that the ratio )(/))(( 2
2

*
2 trt    is a constant under

the Model 2 in Eqn. (7), that is,   )(/))(( 2
2

*
2 trt . Then the optimal
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portfolio weight )(*
2 t  is independent of state variable, and satisfies

    0allfor,0)()1()1()(1)1(2)2( **
2 



 tdxxeetKK xx 


  (15)

Proof: Refer to Cvitanić et al. (2008).

From the Eqn. (15), )(*
2 t  is determined without the state variable

information, which describes the randomness of the economic environment.

The independence of the optimal portfolio weight from )(2 t  stems from the

fact that stochastic risk premium, rt )(2
*
2 , is proportional to the

instantaneous rate of variance )(2 t  and the randomness of the Lévy density

under the present study. Similar results are presented in the finance literature,

such as Liu et al. (2003) and Cvitanić et al. (2008). More importantly, the

results claim that the channel for influencing the asymmetric volatility based

on volatility feedback effect is ignored. The leverage effect becomes the only

cause for the intertemporal asymmetric volatility hedging demand, thus

implying that the leverage effect plays a major role for portfolio optimization

in this situation.

4.2.1 Reduced Time-Changed Lévy Process

To extend VG model to more general cases, Carr et al. provided the

following Lévy density with parameters C, G, M, and Y:




















01

01

1

1

)(

xY

xG

xY

Mx

x

Ce
x

Ce

xk

where 0C , 0G , 0M , and 2Y . Based on the derivation of Madan

and Yor (2008), the stochastic time change )(2 tT  related to CGMY is

absolutely continuous with respect to one-sided stable 2/Y  subordinator with

the following Lévy density:
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where 2/Y , 2/1  are two independent gamma variates with unit scale

parameters and shape parameter 2/Y , 2/1  respectively. Next, the above

expectation term can be evaluated, as follows:
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
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
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2
)()2(),,( 2/ hI

and )(zh   is the Hermite function with parameter  .

This study defines a state-dependent Lévy density for the stochastic time

change to reduce the general case, as follows:

  )()(),( *
22 xtxt  
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 . The )(* xZ  can then be replaced by reduced GMY

(state-dependent) Lévy density such as:
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and )()()( *
2

** xxx Z   . For MG  , the rate of exponential decay on

the right of the Lévy density is larger than the left, leading to the fact that large

negative realizations are more likely to appear than large positive realizations,

namely, negative skewness.

From Wu (2006) and Madan and Yor (2008), this work immediately

determines that
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We then obtain the following results:

Corollary 2: When the time-changed Brownian motion with drift follows the

CGMY model derived by Madan and Yor (2008), the optimal portfolio weight

)(2 t  in Eqn. (14) reduces to

 





 .0allfor,)()()1()1)((1 *

2
*
2 trdxxteet xx 



Then

    rdxxeetee xxtt 




  )()1()1)((1)1()0( **
22 


    (16)

4.2.2 Numerical Examples

This subsection illustrates the implications of asymmetric volatility for

optimizing portfolio under the Proposition 3 and the reduced form of the

infinite-jump variation dynamic process.

Figure 4: Optimal portfolio weights for the reduced unsymmetrical

infinite-jump time-changed Lévy process (GMY model)

with respect to the different levels of leverage effect (2).
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Figs.4 shows the decreasing curve of the optimal portfolio weight with

respect to the leverage effect, based on the unsymmetrical time-changed Lévy

process. When the leverage effect exists, hedging demand for risky assets

increases with respect to the magnitude of the leverage effect, 2 . These

results appear compatible with the pure-continuous variation case, despite

signs of skewness in distributions of asset returns.

Fig.5 shows that optimal portfolio weight is inversely proportional to the

value of 2  under the unsymmetrical GMY model. Decreasing 2  does

induce the intertemporal hedging demand. Consequently, the volatility

feedback effect motivates hedging demand for risky assets due to the volatility

clustering embedded in the stochastic time change.

Figure 5: Optimal portfolio weights for the reduced unsymmetrical

infinite-jump time-changed Lévy process (GMY model)

with respect to the different levels of volatility feedback

effect (2).
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According to the numerical examples and discussions, the leverage effect

also induces the intertemporal hedging demand. The volatility feedback effect

just works over the short-term investment horizon. Restated, the leverage effect

plays a major role for portfolio optimization.
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5. Empirical Results.

5.1 The General Stochastic Asymmetric Volatility Model

We denote the asset spot price at time t as S(t). The general stochastic

asymmetric volatility model is proposed as follows:

    )()()(exp)0()( 22221 tTtTXtTWStS            (17)


t

dsstTtWttX
0 11222 )()(),()( 

)(2 tT : State-dependent subordinating Lévy process,

where )(),( 21 tTtT  denote the distinct stochastic time changes as mentioned

before, which are mutually independent.

Formally, this work permits the separate treatment of the pure-continuous

and infinite-jump time-changed Lévy processes to enable the generation of

stochastic asymmetric volatility via both components.

5.2 Data and Model Parameter Estimation

This study uses the S&P 500 index data from January 1, 1980 to June 30,

2008 at two different frequencies, daily and weekly, to estimate the proposed

general stochastic asymmetric volatility asset return model, based on the

spectral GMM estimation proposed by Chacko and Viceira (2003).

Numerous studies have estimated the parameters of the stochastic

volatility model through the characteristic function methods. Particularly,

spectral GMM estimation is particularly suitable for time-changed Lévy

processes because of its direct use of characteristic function without inversion

to recover the density function. Generally, few estimation methods using the

traditional maximum likelihood are easy to be use because no analytical

expression is known for the density function of the time-changed Lévy process,
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as the model presented here. Therefore, to respond to the above difficulty, this

study employs spectral GMM to estimate the parameters of the general

stochastic asymmetric volatility asset return model.

The characteristic functions of the pure-continuous and infinite-jump

stochastic time-changed asset price models are prioritized in calibrating the

general stochastic asymmetric volatility asset return model.

Proposition 4: If the asset percentage return is introduced as Eqn. (6), then

the characteristic function  )(log,;, 1)(log tSztS   satisfies the following

analytic expression:
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Proposition 5: If the asset percentage return is introduced as Eqn. (7), then

the characteristic function  )(log,;, 2)(log tSztS   satisfies the following

analytic expression:
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The results of Propositions 4 and 5 easily lead to the following expression

regarding the conditional characteristic function of the general time-changed

asset price dynamics with asymmetric volatility.

Proposition 6: If the asset price dynamics is given as Eqn. (17), then the

characteristic function  )(log,;,)(log tSztS   satisfies the following analytic

expression:
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With the closed-form conditional characteristic functions as described

above, spectral GMM estimation can be applied in the proposed general

stochastic asymmetric volatility asset return model.

Table 1: The spectral GMM Estimates of the General Continuous-time

Time-changed Asymmetric volatility Model

Daily Data Weekly DataModel

parameters Estimates SE p-value Estimates SE p-value

 0.811855** 0.036300 0.000000 0.942102** 0.014586 0.000000

 82.615909** 30.721756 0.007179 66.147332** 15.646848 0.000025

2 0.767493** 0.367373 0.036729 0.754793 0.461611 0.102236

1 -0.348467** 0.004590 0.000000 -0.434598** 0.133070 0.001116

2 0.829387** 0.371334 0.025543 0.772264* 0.412224 0.061210

1 63.253463** 0.538977 0.000000 48.152096** 20.409658 0.018440

2 74.069214** 10.143394 0.000000 101.865132** 27.397853 0.000208

1 0.539658** 0.058467 0.000000 0.880970** 0.152962 0.000000

2 0.446344** 0.075333 0.000000 0.421849** 0.082872 0.000000

1 0.013523** 0.003640 0.000204 0.057222* 0.033777 0.090460

2 0.078087** 0.022087 0.000410 0.073922** 0.025903 0.004381

* denote an estimate that is significant at 95% level.

** denote an estimate that is significant at 90% level.

Table 1 lists the model parameter estimates, together with their standard

errors (SE) and p-values. This table clearly indicates that stochastic

asymmetric volatility and infinite-jump structure need to be included to

describe the asset return. The coefficients for the pure-continuous and infinite-

jump time-changed components are statistically significant in daily frequency

and are almost statistically significant in weekly frequency. This work

evidently rejects the assumption that index dynamics lack a diffusion term, an

assumption that may be present in the dynamics of individual assets. The
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estimation results demonstrate that the diffusion term is an essential

determinant of financial modeling in situations where involve infinite-activity

jump structure affecting asset returns.

The empirical findings of this study resemble those of Huang and Wu

(2004) in that the diffusion term is necessary for the time-changed Lévy

process model when generating dependence on the diffusive state variable.

Meanwhile, our findings promote the belief that the diffusion term in the asset

return model is still required if one state variable follows a pure-jump process

and the correlation between asset return and changes in volatility is

established.

6. Concluding Remarks

This investigation proposes two distinct exponential time-changed Lévy

processes involving asymmetric volatility, the pure-continuous and infinite-

jump asset dynamic processes. Essentially, this work can be considered a

combination of the extension of mean-reverting stochastic volatility model

developed by Carr et al. (2003) and the concept of state-dependent Lévy

density proposed by Cvitanić et al. (2008).

Regarding economic implications, we first conclude that based on the

pure-continuous time-changed Lévy process the leverage effect directly

induces the intertemporal asymmetric volatility hedging demand while the

volatility feedback effect works indirectly via the leverage effect and then

exerts a minor influence on asset holding. Simply put, the leverage effect

theoretically dominates the volatility feedback effect when engaging in

situations involving asset price modeling with asymmetric volatility.

Based on the infinite-jump time-changed Lévy process, we then conclude

that the leverage effect also induces the intertemporal hedging demand.

Otherwise, the volatility feedback effect just works over the short-term

investment horizon.
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Empirically, the general asset return model concludes that the diffusion

term is an essential determinant when modeling index dynamics with infinite-

activity jump structure. The results of present study are inconsistent with those

of Carr et al. (2002), suggesting that the introduction of asymmetric volatility

into asset return dynamics is probably one of causes of the contradiction, even

though it is recently believed that the index return processes appear to have

efficiently diversified away any diffusion risk. Furthermore, individual asset

return may involve a diffusion component. Consequently, present study also

has implications to enhance the findings of Carr and Wu (2004) from a

viewpoint of theoretical modeling of asset returns.
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