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Abstract

This research employs the Ornstein Uhlenbeck position process as an
alternative underlying stochastic process for stock prices in markets where
frictional elements are present. We derive a analytical formula for call option
prices together with the hedging parameters in closed-form. We conduct
sensitivity analysis to explore how this pricing model differs from the
traditional Black-Scholes. Our numerical results suggest that, the impact of
the frictional elements in the long term would actually be less significant. Our
numerical results also show that when the underlying asset stock is highly
volatile, the presence of frictional elements in the market would in fact
amplifies the deviation in option prices between our model and that of the
traditional Black-Scholes model.

Keywords: option pricing, Ornstein Uhlenbeck position process
JFL classification:

                                                          
* Department of Money and Banking, National Chengchi University.



On Option Pricing with Ornstein-Uhlenbeck Position Process174

1. Introduction

The option pricing model of Black-Scholes (1973) makes the assumptions of a
frictionless market with no taxes, transaction costs, or limits on borrowing,  lending
and short selling. In addition, the risk-free rate and variance of the return on the stock
are assumed to be constant. While Geometric Brownian motion has long been used to
characterize the behaviour of stock price movements, in the real world stock price
movements can subject to frictional elements, in particular the existence of taxes,
transaction costs, and price-limit constraints directly calls for alternative stochastic
processes that are adequate for capturing such impacts. In this article, we propose using
the Ornstein-Uhlenbeck position process as an alternative stochastic process to
characterize the behaviour of stock prices subject to frictions. Based on the martingale
pricing method, we derive a closed-from formula for European call prices under such
assumption, and provide in-depth analysis for the theoretical of this process. As an
application, we consider the pricing of options in the Taiwan Security Exchange (TSE)
market where stock prices are subject to price-limit constraints. The stock prices
generated by Ornstein-Uhlenbeck position process have some properties consistent with
the characteristics of the prices with the imposition of price limits.

Existing literature on the impacts of frictional elements on option pricing is
substantial. Cox & Ross (1976) relax the assumption of a geometric Brownian motion
for the underlying stock price movements, and consider the CEV (constant elasticity of
variance) process as an alternative. While both arithmetic and geometric Brownian
motion can be shown to be special cases of the CEV diffusion process, Cox and Ross
was motivated by Black’s (1976) observation that volatility appears to be inversely
related to underlying asset price movements.

Cox and Rubinstein (1985) allow for an instantaneous conditional volatility of
stock returns to be a deterministic function of the stock price levels. The stochastic
volatility models of Hull and White (1987), and Scott (1987) consider more general
patterns of conditional volatility in similar spirits to the development of time series
models such as GARCH and ARCH. The observation that stock returns are leptokurtic
leads Merton (1976) to consider the underlying asset price movements are a jump
diffusion process.

In dealing with transaction costs, Leland (1985) tackles this issue and derives a
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closed form solution resembling the Black-Scholes formula in the presence of
proportional transaction costs. Merton (1990) formulates the problem in a discrete-time
one-period setting while Boyle and Vorst (1992) further extends Merton’s framework to
multi-periods.

Goldenberg (1986) makes the observation that there exists non-zero correlation
among future prices in markets where friction elements, such as transaction cost and
price limits are present, and suggests using Ornstein-Uhlenbeck position process to
model the future prices. Using the geometric Brownian motion as the model for
underlying asset prices means that asset returns are independent and can vary with
infinite velocity within an infinitesimal time interval, while future prices in markets
with price constraints can only vary in a bounded range, and the employment of
Ornstein-Uhlenbeck position process closely captures such feature.

In this article, we assume the Ornstein Uhlenbeck position process as the stock
price driving process in markets where price limits are present. We derive a theoretical
option pricing model subject to this assumption. We investigate the behavior of the
stock prices in markets with the imposition of price limits and find that the employment
of Ornstein Uhlenbeck position process is more consistent with the characteristics of
stock price movements than that were otherwise assumed to follow a geometric
Brownian motion. Close-form formulae are derived for the European calls, and the
hedging parameters to allow for actual hedging practices.

The structure of this paper is organized as follows: Section 2 introduces the
Ornstein Uhlenbeck position process and discuss its distributional features; In section 3,
we derived a closed form formula of European call options when the stock prices are
governed by the Ornstein Uhlenbeck position process, together with the relevant
hedging parameters; Section 4 draws direct comparison between this option pricing
model and the traditional Black-Scholes model; Section 5 considers the empirical
application of our theoretical model to the case of Taiwan Securities Exchange market
where price limit constraints are presents. Section 6 concludes this paper.

2. Sample path properties of the Ornstein-Uhlenbeck
position process

Following Doob (1942) who applies modern probability theory to the analysis of
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Ornstein Uhlenbeck position process. We identify the distributional properties of
Ornstein Uhlenbeck position process through the following theorem:

Theorem: Let ( ) ( )u t t−∞ < < +∞ be a one-parameter family of chance variables,
determining a stochastic process with the following properties.

1. The process is temporally homogenous

2. The process is a Markov process

3. If s, t are arbitrary distinct numbers, u(s), u(t) have a (non-singular) bi-variate
Gaussian distribution.

Define m and 2
0σ  by

[ ]( )m E u t=         [ ]{ }22 ( )E u t mσ = − (1)

Then the given process is one of the following two types.

(A) If 1 2 3 ...... nt t t t< < < < , the random variables 1 2, ,.....t t tnv v v are mutually

independent Gaussian variables.

:

(B) (O. U. process) There exist a friction coefficient β>0. If 1 2 3 ...... nt t t t< < < < ,

the random variables 1 2, ,.....t t tnv v v  have an n-variate Gaussian distribution with common

 mean m, variance 2
0σ  and covariance as:

2
0[( )( )] t s

t sE u m u m e βσ − −− − =  (2)

where in Case (A) the existence of white noise is considered as a generalized stochastic

process; Case (B) defines the statistical features of an Ornstein Uhlenbeck process.  In

above definition, each time-slice of an Ornstein Uhlenbeck process is Gaussian distributed

with mean m  and variance 2
0σ ,  and correlation exists between these Gaussian

distributions. Correlation is decreasing with an increasing time interval and is denoted by

the coefficient β . In Case (B) we can observe a well defined velocity of asset price

approaching Brownian motion and it is subject to a central elastic restoring force which

represent frictional elements in the trading environment. The Ornstein Uhlenbeck position
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process can be show to be a solution of the Langevin Equation:

t t tdu u dt dBβ= − + (3)

where tB  is a nonstandard Brownian motion process with variance 2
02 tσ β .

Ornstein Uhlenbeck position process ( )x t  is defined by the integral of ( )u t :

 0 0
( )

t

t tx x x u s ds= − = ∫ (4)

where the expected value, variance, and the covariance of the process are as following:

[ ]

[ ]

0
2

| | 0
20 0 0 0

[ ( )]                                                                                          (5)

2[ ( ) ( )] ( 1 )                    (

t

t

t t t t s s t
t

E x E u s ds mt

V x E u s u s dsds e dsds e tβ βσ β
β

′− − −

= =

′ ′ ′= = = − +

∫

∫ ∫ ∫ ∫

[ ]
( )( ) ( )( )

2 1 2 1

2 1 2 1 1 1
( 2 1) ( 2 1)2 2

6)

( )( ),
2 1 2 1 1 2 1

                                                                                                                    

s s t t

t t s s
s s t t

e e e ex x x x
e s s e t t

β β β β

β β
ρ

β β− − − −

− −
− − =

− + − − + −

                (7)
1 2 1 2where s s t t< ≤ <

Since an Ornstein Uhlenbeck process is a solution to the Langevin Equation. By equation (3)

and (4), we can express the Ornstein Uhlenbeck position process ( )x t directly as:

( )

0

1 1( ) (0) (0) [1 ] ( ) 
t t tex t x u e dB

β
β τ τ

β β

−
− −−

= + + −∫ (8)

where ( )dB τ is a non-standard Brownian motion with variance 2
0 2 tσ β  and mean zero.

We must note some interesting features of the variance of the Ornstein Uhlenbeck

position process. As the time interval t  tends to infinity, 0te β− → . The variance is
proportional to the time variable t, resembling the behaviour of the variance of an

arithmetic Brownian motion. On the other hand, when the time interval t  tends to zero,

we can express te β−  as 211 ( )
2

t tβ β− + , so that the variance approaches 2 2
0 tσ , which

is less than the volatility of an arithmetic Brownian motion (c.f. Cox and Miller, 1965).

This tells us that the volatility of the Ornstein-Uhlenbeck position process resembles

txΔ

][ txV Δ

][ txE Δ
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that of an arithmetic Brownian motion in the long term, but less in magnitude in the

short term.

Under the risk-neutral measure, the stock price movements can then represented as:

2

2
2

              

~ (0, )
2 ( 1 )

t

t

dt

dS rdt dx
S

dx N v

where v e dtβ

σ

β
β

−

= +

= − +

          (9)

where t tdx u dt= , and tx is the integral of Ornstein-Uhlenbeck process u(s). We derive

the expected value, variance, and correlation of TS  in the following.

( )

( )

[ ]

( )

2 2

2 2

2

2

2
2

22 4 2 2

2
2

1ln ( )
2

2

1

2 1

3 0 as dt 0

2( ) 1

T t t

t

dt
t

dt
t

t t t t t

dt
t

d S rdt dx dx

vr dt dx
dt

r e dt dt dx
dt

where

E dx e dt

V dx E dx E dx V dx E dx

so that dx e dt

β

β

β

σ σ

σ σ

σ β σ
β

β
β

β
β

−

−

−

= + −

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠
⎡ ⎤

= − − + +⎢ ⎥
⎣ ⎦

⎡ ⎤ = − +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − → →⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − +

(10)

Solving the stochastic differential equation (10) gives us:

( )

2 2

2
0

2
2

*  
2 1

T
vr T x
T

T

T

S S e

v e T

σ σ

β β
β

⎛ ⎞
− + Δ⎜ ⎟⎜ ⎟

⎝ ⎠

−

=

= − +
                  (11)
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So the expected stock price, variance, and correlation are found to be:

[ ]

[ ]

2 2

0

2

0 2

ln ln                                                                                               (12)
2

2ln ln ( 1 )                                                 

T

T
T

vE S S r T
T

V S S e Tβ

σ

σ β
β

−

⎡ ⎤
− = −⎢ ⎥

⎣ ⎦

− = − +

[ ]
( )( ) ( )( )

2 1 1 2

2 1 2 1 1 1
( 2 1) ( 2 1)2 2

                                 (13)

( )( )ln ln ,ln ln
2 1 2 1 1 2 1

                                                                      

s s t t

t t s s
s s t t

e e e eS S S S
e s s e t t

β β β β

β β
ρ

β β

− −

− − − −

− −
− − =

− + − − + −

                                                                        (14)
1 2 1 2where s s t t< ≤ <

From the above derivation, we know that the volatility of the log price differences
inherits the property of the Ornstein Uhlenbeck position process, which approaches the
volatility of Brownian motion as T is large and less in magnitude as T is small. Besides,
the correlation of log stock price differences decreases as the distance of these two
increments increases. As the correlation approaches zero, the underlying asset returns
becomes independent, and approach that otherwise generated by a Brownian motion.

3. Option pricing in Ornstein Uhlenbeck position process

Goldenberg (1986) leads us to consider in above section the Ornstein Uhlenbeck
position process as a dynamic description of the undelrying asset prices in a frictional
market. In this section we proceed under the martingale valuation framework to derive
a closed form formula for the price of European call options under a risk neutral
probability measure when Ornstein Uhlenbeck position process is used.

We define the final payoff of a European call option as:

(0, )T TC Max S K= −                (15)

and the risk-neutral value of the call at initial time can be expressed as:
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[ ]

[ ]

2 2

2 2

2 2

( )
2

0

2
0

2
0

*

* [ ]

*

                                           

T

T

T

T

rT Q
T S K

vr T xrT Q T
A

v T xrT rT Q rT Q
A A

v T xQ rT Q
A A

C e E S KI

e E S e KI

e S e E e I Ke E I

S E e I Ke E I

σ σ

σ σ

σ σ

−
>

− + Δ−

− + Δ− −

− + Δ −

⎡ ⎤= −⎣ ⎦

= −

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

Twhere A S K= >
22 2 2 2

2

2 2 2 2

2

2 2

2

2

2

2 2

( 0)
22 2

( ) 2 ( )
2

( )
2

( 0)
2

2

2

1 ( )
2

1 ( )
2

1 ( )
2

1 ( )
2

T
T T

T T

T

R
T

T

xv vT x T xQ QvT T
A A t

x v x v
Qv

A t

x v
Qv

A t

x
Rv

A t

Q R
T T

v T xQ T

E e I e I e d x
v

I e d x
v

I e d x
v

I e d x
v

Let x v x

E e

σ σ
σ σ

σ σ

σ

σ
σ

π

π

π

π
σ

Δ −
−− + Δ − + Δ

Δ − +
−

Δ −
−

Δ −
−

− + Δ

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦

=

=

=

Δ − = Δ

∫

∫

∫

∫

[ ]
2 2

2( ) ( )
2

0

2 2
2 20

2 2
0

( )

ln( ) ( )
2( )

ln( ) ( )
2( )

R
T

vr T x vR R T
A AI E I P S e K

S vr T v
K TN

v
S vr T
K TN

v

σ
σ σ

σ σ

σ
σ

σ

− + Δ +⎡ ⎤
= = >⎢ ⎥

⎢ ⎥⎣ ⎦

+ − +
=

+ +
=

[ ]
22 2

2 2
0

( )
2

0

ln( ) ( )
2( ) ( )T

vr T x
T

A

S vr T
K TE I P S e K N

v

σ
σ

σ

σ
− + Δ

+ −
= > =

(16)

)( R
txd Δ

)( Q
txd Δ

)( Q
txd Δ

)( Q
txd Δ
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The closed form formula of European call options is found to be:

2 2 2 2
0 0

0

ln( ) ( ) ln( ) ( )
2 2( ) ( )rT

S Sv vr T r T
K T K TC S N Ke N

v v

σ σ

σ σ
−

+ + + −
= − (17)

where

0

2
2

2

: stock price at the initial time
: exercise price

:  annualint erest rate
number of periods (by year)

2 ( 1 )

 is correlation parameter
 is the parameter

T

S
K
r

v e Tβ β
β

β

σ

−= − +

T:

As mentioned in the previous section, Ornstein Uhlenbeck position process
approaches a geometric Brownian motion that represents log price difference when
either the time-to-maturity tends to infinity or with zero correlation. Here, we analyse
the behaviour of the first two moments of stock returns under respectively an Ornstein
Uhlenbeck position process and a Brownian motion subject to these two conditions. We
first show that when T is large:

2 2

0

2
2 2

0 2

[ln ln ] ( ) ( )
2 2

2[ln ln ] ( 1 )

where ( )  and  are the mean and variance of the log stock price in geometric 
2

Brownian motion.

T

T
T

v VE S S r T r T
T

V S S v e T VT

Vr T VT

β

σ

σσ β
β

−

− = − → −

− = = − + →

−

2 2
2 2

2

2

The above two relations will hold when:
2 2( 1 )

                                                     
2

Tv e T T VT

V

βσ σσ β
β β

βσ

−= − + → =

=

                    (18)
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2

2

To facilitate direct comparisons with Brownian motion, let the parameter  

be a function of ( , ), where  is the instaneous variance of the log price
differences represented by a geometric Brownian 

V V

σ

σ β
motion.

As the time-to-maturity approaches infinity:

2 2 2 2
0 0

0

0 0

0

ln( ) ( ) ln( ) ( )
2 2( ) ( )

1 1ln( ) ( ) ln( ) ( )
2 2       ( ) ( )

rT

rT

S v S vr T r T
K T K TC S N Ke N

v v
S Sr V T r V T
K KS N Ke N

VT VT

σ σ

σ σ
−

−

+ + + −
= −

+ + + −
→ −

which confirms the fact that European call values under the Orstein Uhlenbeck position

process converges to the Black-Scholes theoretical call values as T is large.

Similarly, when the correlation coefficient ρ  approaches zero, β  then becomes

infinite, and with 2

2
Vβσ = , we then have

2
2 2

2
2 1( 1 ) ( )

T
T ev e T V T VT

β
βσσ β

β β

−
− −

= − + = + →

This implies that the mean and variance of the log price differences under the Ornstein

Uhlenbeck position process will approach that of a Brownian motion:

2 2

0

2
2 2

0 2

[ln ln ] ( ) ( )
2 2

2[ln ln ] ( 1 )

T

T
T

v VE S S r T r T
T

V S S v e T VTβ

σ

σσ β
β

−

− = − → −

− = = − + →

Therefore, as the correlation coefficient ρ  approaches zero, we see that European call

values under both processes coincide:

2 2 2 2
0 0

0

0 0

0

ln( ) ( ) ln( ) ( )
2 2( ) ( )

1 1ln( ) ( ) ln( ) ( )
2 2       ( ) ( )

rT

rT

S v S vr T r T
K T K TC S N Ke N

v v
S Sr V T r V T
K KS N Ke N

VT VT

σ σ

σ σ
−

−

+ + + −
= −

+ + + −
→ −
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To conclude, when 2

2
Vβσ = , in both cases when the time-to-maturity is long

enough or the correlation is zero, the Ornstein Uhlenbeck position process approaches a

Brownian motion with mean ( )
2
Vr T− and varianceVT  We therefore rewrite the closed

form of European call values as

0 0

0

( 1 ) ( 1 )ln( ) ( ) ln( ) ( )
2 2( ) ( )

( 1 ) ( 1 )

T T

rT

T T

S SV e T V e Tr T r T
K T K TC S N Ke N

V Ve T e T

β β

β β

β β
β β

β β
β β

− −

−

− −

− + − +
+ + + −

= −

− + − +

(19)

where:

0 : stock price at the initial time
: exercise price

:  annualint erest rate
number of periods (by year)
 is correlation parameter

 is instaneous variance of log stock price in geometric Brownian motion

S
K
r

V

β
T:

There are six parameters in the option pricing model. Except the parameter β , which
stands for the level of correlation, the other five parameters would affect the option value in
the same directions as they were in the Black-Scholes option pricing model.

In the following, we derive the hedging Greeks of the option pricing model:

Delta:

0

( 1)

( 1 )ln( ) ( )
21 0

( 1 )

T

T

Delta N d

S V e Tr T
K Twhere d

V e T

β

β

β
β

β
β

−

−

=

− +
+ +

= >

− +

   (20)
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Gamma:

0

1 ( 1) 0    
( 1 )

( 1) ( 1)

T

Gamma n d
VS e T

where n d N d

β β
β

−

= >

− +

′=

(21)

Vega:

2

*

Let V *

( 1 )( 1) 0          
TC e TSn d

β

σ

β
σ β

−

=

∂ − +
= >

∂

(22)

Rho:

( 2) 0rTCRho TKe N d
r

−∂
= = >
∂

 (23)

Theta:

0( ) [ ( 1) (1 ) ( 2)] 0T rTC CTheta S n d e Kre N d
t

βσ
τ β

− −∂ ∂
= = − = − − + <
∂ ∂

 (24)

1
2

0
1( 1) * [ ( 1 )] [ [1 ]] 0
2

T T TC V VOmega S n d e T e Teβ β ββ β
β β β

−− − −∂
= = − + − − >
∂

(25)

4. How our Model Contrasts the Black-Schole Model

As mentioned previously, the Orstein Ulenhbeck position process will reduce to a
geometric Brownian motion with zero stock correlations or an infinite the time-to-
maturity. In this section, we first explore how the theoretical option prices under the
assumption of an Orstein Ulenhbeck position process differ from that were derived
under the geometric Brownian motion assumption as in the Black-Scholes model by
varying the level of asset correlations and the time to maturities. We assume throughout
this section that the initial stock price and exercise price of the call option are both 50.
Annual interest rate is 5%, and the annual variance is 50%.
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In Table 1 and Table 2, with the time-to-maturity set to T=10/250, the correlation
among daily stock returns is set to vary from 0.05 to 0.8. Table 1 shows the impact of
different level of correlations on the call value. With an invariant variance of 50%, a higher
correlation would cause the call option to reduce in value. This is understandable since
given a fixed time-to-maturity (T=10/250) a higher level of correlation will directly reduce
the volatility of the underlying asset, and hence results in a reduced call value. In Table 2,
we introduce a difference ratio that is defined as the difference between the theoretical
option prices under the assumption of an Orstein Ulenhbeck position process and the
geometric Brownian motion divided by the Black-Scholes theoretical call value. We show
how the daily correlation affects and the difference ratio, and we find that the difference
ratio becomes larger as the daily correlation increases.

In Table 3 and Table 4, we examine the impact of time-to-maturities on the
difference ration. Correlations between the consecutive-day stock prices are set to vary
from 0.3 onwards for a total time period of twenty days. Table 3 shows that the
difference ratio decreases as the time-to-maturity increases. It suggests that, in markets
where frictional elements are present, the impact of the frictional elements in the long
term would actually be less significant. And in Table 4, we see the difference ratio
exhibits a downward decreasing pattern when both the time-to-maturity and the level of
daily correlation are set to increase.

Table 1  Theoretical option values subject to different levels of correlation

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

daily  orrelation of the return of the stock price

call price O.U model
BS  model
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Table 2  Difference ratio subject to different levels of correlation

0

0.02
0.04

0.06
0.08

0.1

0.12
0.14

0.16

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
correlation

(BS-PL)/BS

Table 3  Difference ratio subject to different time-to-maturities

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
days to maturity

(BS-PL)/BS

The effects of moneyness, interest rates, and volatilities on the differences ratio
are demonstrated in Table 5, Table 6, and Table 7. In Table 5, we assume the moneyness
to range from 0.4 to 1.6, and we find that when the option is deeper in the money, the
difference ratio becomes greater, and vice versa. In Table 6, we range the interest rate
from 1% to 10%, and we find that as the interest rate gets higher, the difference ratio
would reduce. Table 7 varies the variance from 20% to 80%, and shows that when the
variance increases, the difference ratio becomes larger. It implies that if the underlying
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asset stock is highly volatile, the presence of frictional elements in the market would in
fact amplify the deviation in option prices between our model and that of the traditional
Black-Scholes model.

Table 4  Difference ration subject to joint effect to varying time-to-maturities and
asset correlations
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Table 5  Difference ratio subject to different levels of moneyness
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Table 6  Difference ratio subject to different levels of interest rate
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Table 7  Difference ratio subject to different levels of variance
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5. Application: The TSE Market with Price Limit Constraints

In a stock market where daily price limit constraints are present, the higher or
lower price trades will be suspended to the next day. as soon as the price hits the bounds.
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The Taiwn Stock Exchange market is clearly one of such cases where the imposition of
daily price limits directly prevents stock prices form unbounded variation.

In this section, we examine the feasibility of modeling asset price dynamics based
on the Orstein Uhlenbeck process. The stocks in the Taiwan Stock Exchange Corporation
are constrained by daily price limits while their ADRs are traded without limits in Nasdaq.
In order see how they deviates from each other, we define the difference ratios as the
differences between the volatilities of stocks and their respective ADRs devided by the
volatilities of the ADRs. In the following we present our numerical results:

Table 8 The volatilities of the return of the stock price in Taiwan Security
Market and Nasdaq in different measure period

Volatility Daily Weekly Monthly

Stock in TSEC 0.12% 0.57% 2.78%

ADR 0.21% 0.84% 3.91%TSM

difference ratio 43.10% 31.54% 28.99%

Volatility Daily Weekly Monthly

Stock in TSEC 0.12% 0.62% 2.53%

ADR 0.25% 0.93% 4.04%UMC

difference ratio 53.08% 33.26% 37.31%

Volatility Daily Weekly Monthly

Stock in TSEC 0.14% 0.79% 2.92%

ADR 0.23% 0.99% 2.76%ASX

difference ratio 38.69% 20.60% -5.77%

Our results above show that the difference ratio declines as the time interval
increases, and the difference between both volatility levels of the two markets is further
enlarged when the time interval increases. Our results suggest that Geometric Brownian
Motion could vary with an infinite velocity in an infinitesimal time interval, and its
increments are mutually independent, and these two properties clearly differ from the
behavior of stock prices that we can observe when price limits are present. In addition,
short-term volatilities of the stock returns when price limits are present are less than that
otherwise without price limit constraints. In a stock market with price limits, delayed
price discovery effect directly implies that daily stock prices could in fact be correlated,
and as the observed time interval increases, the delayed price discovery effect becomes
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lower. The Ornstein-Uhlenbeck position process closely captures such effect. When the
upper/lower price limits are frequently hit, the delayed price discovery effect further
prevails, this would reflect in higher correlation effects among daily stock prices. On the
other hand, when the upper/lower limits are rarely hit, the impact of the delayed price
discovery effect is in fact insignificant, which implies that correlation effects among
stock prices are likely to be negligible, and the market is efficient. When the correlation
coefficient approaches to zero, stock prices that were generated by the Ornstein-
Uhlenbeck position process would coincide with that generated by Brownian motion.

6. Conclusion

Ornstein Uhlenbeck position process is the integral of Ornstein Uhlenbeck process,
and it has some interesting properties. This process incorporates a description for the
correlation among underlying assets. And it approaches a Brownian motion in the long
run. In this paper we consider this process as the dynamic description for asset price
movements subject to frictions. We derive a closed form formula for the European call
value under the risk neutral measure, together with the hedging Greeks. We conduct
sensitivity analysis to explore how this pricing model differs from the traditional
Black-Scholes. We introduce a difference ratio that is defined as the difference between
the theoretical option prices under the assumption of an Orstein Ulenhbeck position
process and the geometric Brownian motion divided by the Black-Scholes theoretical
call value. We find that the difference ratio becomes larger as the daily correlation
increases, and the difference ratio decreases as the time-to-maturity increases. It
suggests that, in markets where frictional elements are present, the impact of the
frictional elements in the long term would actually be less significant. Our numerical
results also show that when the underlying asset stock is highly volatile, the presence of
frictional elements in the market would in fact amplify the deviation in option prices
between our model and that of the traditional Black-Scholes model.
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