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OPTIMAL MULTIPERIOD ASSET ALLOCATION: MATCHING
ASSETS TO LIABILITIES IN A DISCRETE MODEL
Hong-Chih Huang

ABSTRACT

Investment and risk control are becoming increasingly important for finan-
cial institutions. Asset allocation provides a fundamental investing principle
to manage the risk and return trade-off in financial markets. This article
proposes a general formulation of a first approximation of multiperiod asset
allocation modeling for institutions that invest to meet the target payment
structures of a long-term liability. By addressing the shortcomings of both
single-period models and the single-point forecast of the mean variance ap-
proach, this article derives explicit formulae for optimal asset allocations,
taking into account possible future realizations in a multiperiod discrete
time model.

INTRODUCTION

Pension funds and life insurance with investment guarantees appear in various pen-
sion plans and product designs. These options increase the obligations of the fund
owner to participants, making the question of whether the fund assets are sufficient
to cover the liability an important issue for both pension fund managers and insur-
ers. Changing environments, including demographic aging and low interest rates in
the global financial market, have also created financial crises for pension funds and
insurers. In this environment, the application of asset liability management (ALM)
techniques to deal with pension fund or insurance guarantees is gaining increasing
attention. For example, fund managers often use ALM to determine their asset allo-
cation. In general, these fund managers establish a target portfolio return that they
wish to maintain; when their portfolio’s actual return drifts from this target, fund
managers must rebalance the asset allocation to reduce tracking errors. Therefore,
fund managers need to determine when or whether to rebalance the portfolio, based
on the trade-off between the return and the risk. If the portfolio is not rebalanced,
it may lose risk controls and deviate toward an unintentionally large percentage of
higher-risk assets or inefficient allocations.
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Asset allocation, which represents an essential part of the ALM technique, entails
several factors, such as deterministic or stochastic, single-period or multiperiod, and
anticipative or adaptive. Mean variance (MV) optimization is the most popular quan-
titative methodology; it is a deterministic, single-period approach. Markowitz’s (1952)
modern portfolio theory involves a model of investor behavior in an MV framework,
with which he shows that the best investment strategy results from maximizing the
expected return and reducing a certain level of variance. Portfolio selection in ALM
was early proposed by Wise (1984a, b, 1987a, b) and Wilkie (1995). Sherris (1992)
produces a more general approach to portfolio optimization and demonstrates that
the optimal investment strategy can be found by maximizing the investor’s utility
function.

The MV approach contributes substantially to the development of the portfolio se-
lection technique, but it suffers two key problems because of its deterministic and
single-period character. First, the deterministic approach is a single-point forecast,
though the change in the “real optimal asset allocation” according to current market
conditions may differ greatly from historical average returns. Because an MV op-
timization approach depends heavily on predictions of the expected return, which
involve volatility and cross-correlation of the assets, the approach can be very sensi-
tive to a single-point forecast. Small changes in the asset forecasts can shift a portfolio
to extreme solutions (Black and Litterman, 1991). To solve this problem, the ap-
proach would need to include a stochastic environment for determining optimal asset
allocations.

In general, the scenario portfolio selection process considers various return scenarios
with their corresponding probabilities. Thus, scenario-based maximization or Monte
Carlo simulations could enable fund managers to imagine more likely outcomes.
Instead of depending on a single-point forecast, which is actually a single scenario,
portfolio managers could provide a set of plausible scenarios and use this variety of
market conditions to obtain the optimal portfolio selection, using scenario analysis
and stochastic optimization (Mulvey and Vladimirou, 1989; Koskosidis and Duarte,
1997; Horneff, Maurer, and Stamos, 2008; MacDonald and Cairns, 2009).

Second, a single-period model may not applicable for long-term investments, and
multistage models might provide superior performance (Berger and Mulvey, 1996;
Consigli and Dempster, 1998; Klaassen, 1994, 1998; Mulvey and Ziemba, 1995; Mulvey
and Shetty, 2004). A single-period strategy implies that the portfolio mix should
realign to reflect the constant proportion of assets over the whole period. In contrast,
a multiperiod strategy means that the portfolio mix could realign to reflect a different
proportion of assets. For a short-term liability, if there are not strong reasons for the
expected return and covariance matrix to differ in a future period compared with the
current period, the MV approach performs well. However, for a long-term liability, it
may not be suitable to retain the same proportions for the whole period. Therefore, it
seems worthwhile to extend current research from what is effectively a single-period
portfolio selection model to a multiperiod model with periodic reallocations of assets.

Theoretical formulae for portfolio selections for a single period appear in the previ-
ous literature (Sherris, 1992; Wise, 1984a, b, 1987a, b; Wilkie, 1985; Sharp and Tint,
1990; Blake, Cairns, and Dowd, 2001, 2003; Horneff et al., 2008; Zhu, 2007). How-
ever, problems of asset allocation, analyzed mathematically for a multiperiod model,
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rarely exist in discrete models because multiperiod asset allocation solutions are
much more complicated than those for a single period. Two theoretical approaches to
deal with the problems of multiperiod asset allocations use continuous-time models.
The first employs stochastic control, also called control theory, as used by Merton
(1969, 1971). Various articles deal with asset allocation problems using stochastic con-
trol theory (Devolder, Princep, and Fabian, 2003; Menoncin and Scaillet, 2006; Josa-
Fombellida and Rincon-Zapatero, 2004, 2006; Delong, Gerrard, and Haberman, 2008;
Hainaut and Devolder, 2007; Ngwire and Gerrard, 2007; Emms and Haberman, 2007;
Chiu and Li, 2006; Moore and Young, 2006; Yang and Zhang, 2005; Gerrard,
Haberman, and Vigna, 2006; Liu and Yang, 2004; Steffensen, 2004; Emms and
Haberman, 2008). To find the explicit solution for the value function, this method
must solve the nonlinear, partial differential Hamilton–Jacobi–Bellman (HJB) equa-
tion, the most difficult task associated with the stochastic optimal control approach.

Alternatively, Cox and Huang (1989, 1991) propose an approach for complete markets
that relies on Lagrange multipliers. This martingale method frequently appears in
research into the optimal design and asset allocation of a pension fund or life insurance
policy (Boulier, Huang, and Taillard, 2001; Deelstra, Grasselli, and Koehl, 2003, 2004;
Hainaut and Devolder, 2007; Z. Wang, Xia, and Zhang, 2007; N. Wang, 2007; Yang
and Zhang, 2005; Grasselli, 2003); it provides a partial differential equation that can
be easier to solve than the HJB equation.

Both methods offer advantage because they are stochastic, adaptive, and multiperiod.
However, they generally require well-designed assumptions to obtain closed-form
solutions. Thus, it can be difficult to capture real-world features, and the models are
not flexible enough to apply to practical problems.

Furthermore, impressive progress in computational methods that enables the solu-
tion of large-scale problems efficiently and reliably (Lustig, Mulvey, and Carpenter,
1991; Bixby et al., 1992; Levkovitz and Mitra, 1993; Mulvey and Ziemba, 1995) and
increasing numbers of publications about stochastic programming (SP) for ALM
(Consigli and Dempster, 1998; Dempster and Thompson, 1999; Dempster, Evstigneev,
and Schenk-Hoppe, 2003; Mulvey and Shetty, 2004; Yu, Ji, and Wang, 2003; Huang,
Hsieh, and Liu, 2008) suggest a general-purpose modeling framework for captur-
ing real-world features. However, to solve SP problems with an optimization search
method, such as genetic algorithm or evolution, requires significant reductions.

Specifically, a stochastic programming model uses an event tree to discern the key
random variables, and each node of that event tree leads to multiple successors that
model the revelation of information progressively over time. The SP approach deter-
mines the optimal decision for each node, given information available at that point.
A complete path from the root node to a leaf defines a single realization of a set of
random variables. In other words, each path in the multistage approach represents
a scenario, with its own optimal asset allocation. In such an adaptive model, unlike
an anticipative one, uncertainty information is partially available before the decision,
so optimization occurs in a learning environment. To apply SP to financial optimiza-
tion, the researcher must construct event trees with asset returns but also make the
underlying return distributions of the SP approach discrete, with few nodes. If the
researcher fails to do so, the computational effort to solve a multistage SP model
can exceed acceptable bounds; the decisions expand exponentially with time. Fewer
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nodes that describe the return distribution, however, could cause approximation er-
ror. If the event tree includes more nodes, to reduce the approximation error, the
optimization model becomes intractable because of the enormous number of deci-
sion variables and significant time required to complete the multistage problems,
regardless of the available computational power. The optimization model also cannot
always obtain a global optimal solution; rather, different sets of initial variables may
produce different, locally optimal solutions.

Moreover, both the anticipative and adaptive models represent special forms of
stochastic methods. The anticipative model is static; the decision does not depend
in any way on future observations of the environment. We adapt the concept of an
anticipative model and develop a first approximation of an analytical solution of mul-
tiperiod asset allocation in a discrete model. Although this approach is not an adaptive
model—as are the stochastic control, martingale, and SP multistage approaches, for
which one scenario determines one optimal asset allocation—it can include a large
number of simulations (e.g., 4,000 simulations of asset returns and liabilities over
10 years) and thus find realistic asset returns, as well as possible future realizations,
to obtain a first approximation of a multiperiod asset allocation. In other words, with
4,000 simulations, a portfolio manager will face 4,000 equal-probability scenarios of
10 years of asset return predictions. The obtained optimal first approximation of asset
allocation minimizes the average tracking error of ALM.

In turn, the main contribution of this article is our construction of a theoretical for-
mulation of optimal asset allocations for a multiperiod asset-liability model, which
enables us to overcome the shortcomings of both the single-period model and the
single-point forecast of the MV approach. In addition, we address the time-consuming
and local minimum solutions that occur when the model includes large simulations
of future asset returns. This asset allocation formula is flexible and can be applied to
any stochastic investment return model. We adopt stochastic simulation to create a
representative set of equal-probability plausible scenarios of future returns by choos-
ing an investment return model. Each simulated scenario addresses a liability in the
optimization process.

The rest of this article is organized as follows: In the second section we provide a
brief introduction to the concept of ALM and its application for dealing with a long-
term liability. We also describe the payment structures for various types of liabilities.
The third section features our construction of an asset model and the formulae for
optimal asset allocations for multiperiod ALM. In the fourth section, we show how
the model achieves risk and return trade-offs for various long-term liabilities, incor-
porating thousands of simulations of asset returns. The fifth section further addresses
optimal asset allocations when short selling and borrowing are prohibited. Finally,
we draw key conclusions in the sixth section.

ASSET LIABILITY MATCHING AND GUARANTEE

Asset Liability Matching
Maximizing terminal wealth and asset liability matching are the two most common
objective functions for applying asset allocations. Utility functions can help maxi-
mize an investor’s terminal wealth; they generally assume that an investor is risk
averse and seeks to maximize the utility of terminal wealth, using the criteria of
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optimal consumption and savings (Dhaene et al., 2005; Devolder, Princep, and Fabian,
2003; Moore and Young, 2006; Battocchio and Menoncin, 2004; N. Wang, 2007; Yang
and Zhang, 2005; Korn, 2005; Zhu, 2007). Whether the assets are enough to cover
liabilities is the more important issue for the pension fund manager and insurer, es-
pecially when they provide a guaranteed product. Therefore, fund managers might
use the ALM technique to make asset allocation decisions (e.g., Wise, 1984a, b, 1987a,
b; Wilkie, 1985; Sherris, 1992, 2006; Delong, Gerrard, and Haberman, 2008). Gener-
ally, two criteria evaluate ALM risk: the tracking error of ultimate surplus and the
asset liability ratio. The former is the difference between the accumulated asset cash
flows and the accumulated liability cash flows at a fixed time horizon. The objective
function to incorporate this criterion can be expressed as follows:

Min E[(F (n) − L(n))2]. (1)

The asset–liability ratio aims to reach:

F (n)
L(n)

→ 1. (2)

We further extend Equations (2) to (3) by setting the asset liability ratio as quadratic.

Min E

[(
ln

F (n)
L(n)

)2
]

= Min E[(ln F (n) − ln L(n))2]. (3)

From a risk management perspective, a fund deficit is more important than a sur-
plus in practice because of insolvency considerations. Compared with Equation (1),
Equation (3) penalizes deficits (when L(n) > F(n)) more for a given liability, which
makes it more focused on downside risks. For example, for a given liability L(n) =
100, F(n) = 20, and F(n) = 500 contribute the same tracking errors in Equation (3), but
in Equation (1), the same tracking features occur when F(n) = 20 and F(n) = 180 for a
given liability L(n) = 100. That is, Equation (3) provides a suitable objective function
for liability matching when we prefer a larger surplus to a deficit.

Guarantees With General Long-Term Liability
We use ALM to address the asset allocation decision for a general long-term liability
with an investment guarantee. The nature of fund liabilities depends on the form of
the guarantee and relates directly to the asset allocation decision. Two categories of
guarantees exist: a multiperiod guarantee and a maturity guarantee. To illustrate the
relationships of multiperiod asset matching with various liabilities, we investigate
the two categories of guarantee, with their specific payment structures, separately.

Multiple-Period Guarantee. For multiple-period guarantees, we consider four types
that are common for long-term liabilities, which we refer to as Types A1–A4, as well
as one type of guarantee often found in equity-linked insurance products, which we
denote a Type B guarantee.
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Type A1: L(n) = (1 + r )n.

This annual constant guarantee is the simplest form used in pension funds.

Type A2: L(n) =
n∏

t=1

{1 + inflation rate (t)}.

This Type A2 payment is subject to the retail price index (RPI) guarantee each year.
The limited indexation of the pension liability (LPI), introduced in the 1990 Social
Security Act in Great Britain, is as follows:

LPI(n) =
n∏

t=1

min{1 + r , 1 + inflation rate (t)}.

Most guarantee programs do not allow for negative growth, so we can extend the LPI
liability.

Type A3: L(n) = Max

(
1,

n∏
t=1

min{1 + r , 1 + inflation rate (t)}
)

.

We further extend Type A3 to Type A4 as follow.

Type A4: L(n) =
n∏

t=1

max{1 + r , 1 + inflation rate (t)}.

Type B: L(n) =
n∏

t=1

max{1 + r , 1 + b × equity return rate (t)}.

Finally, Type B is the payment structure for a life insurance product with an annual
guarantee. In the general form for this type of payment structure, payments increase
with the index of equity return rate, subject to a participating rate b and an annual
guarantee rate r.

Maturity Guarantee. A maturity guarantee commonly applies to unit-linked products
in Great Britain. The policyholder receives the maximum amount of the guarantee
(G(n)) or the actual account value (F (n)) at the maturity date (n). If G(n) is greater
than F (n), the insurer experiences a guaranteed liability. The guaranteed liability
represents the difference between the guaranteed and the actual account value. We
denote the maturity guarantee liability for a unit-linked contract as Type C liability,
defined as L(n) = max{0, G(n) − F (n)}.
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DERIVATION OF AN ANALYTIC SOLUTION FOR OPTIMAL ASSET ALLOCATIONS

To establish an analytic solution for the multiperiod asset allocation problem with
a closed-form solution, we ignore some practical assumptions, such as transaction
costs.

Asset Dynamics
We project the future dynamic of the asset return using Wilkie’s (1995) investment
model to illustrate the numerical results. We generate multiple scenarios of future
returns using Monte Carlo simulations.1 We also consider the standard asset classes
used by pension or insurance funds, such as short-term bonds, consols, index-linked
gilts (ILG), and equities. Short-term bonds and consols serve important roles in pen-
sion or insurance investment. Equity offers a good asset for wage-related liability,
because of its strong returns and inflation protection in the long term. The ILGs,
introduced in Great Britain in the early 1980s, have coupon and redemption values
linked to the RPI.

In order to evaluate the asset value of the portfolio at different dates, we define

Pkj : proportion held in asset type j at the kth rebalance, where j = 1 is short-term
bonds; j = 2 is consols; j = 3 is ILGs; and j = 4 is equities.

Tk : time at the kth rebalance.

F(0) : total initial asset holding.

F(Tk) : total asset value at the time of the kth rebalance.

F(n) : total asset value at the end of the term.

Zj (Tk) : accumulated return of asset type j at the time of the kth rebalance.

Thus, the value of the total asset at maturity date after r times of rebalancing is

F (n) ≈ F (Tr ) exp

⎡
⎣ 4∑

j=1

Pr j ×
n∑

S=Tr +1

ln
(

Zj (S)
Zj (S − 1)

)⎤
⎦ ,

= F (0)
r∏

i=1

4∏
j=1

(
Zj (Ti+1)

Zj (Ti )

)Pi j

, (4)

where T1 = 0 and Tr+1 = n.

1 These scenario sets are large enough to represent highly unlikely market swings adequately.
Using plausible equal-probability predictions of future returns for each asset, we can find a set
of optimal asset allocations in each period at the beginning of the term and thus accumulate
enough funds to afford the payment required at maturity.
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Theoretical Formula of Optimal Asset Allocations for Dynamic Hedging
Appropriate diversification and asset allocation of the portfolio provide the most
popular strategy for ensuring the asset is as close as possible to the liability at the
maturity date. The rebalancing function essentially attempts to align the portfolio’s
return with the target return. To simplify the calculation of the optimal rebalancing
proportions (Pi j ) and the initial asset holding (F(0)), we first define the annual asset

returns as ki j = Zj (Ti+1)
Zj (Ti )

. According to Equation (4), we can express the accumulated
asset value at the maturity date as follows,

F (n) = F (0)
r∏

i=1

4∏
j=1

(ki j )Pi j .

By taking the logarithm of the asset value at the maturity date, we have

lnF (n) = lnF (0) +
r∑

i=1

4∑
j=1

Pi j ln ki j

= lnF (0) +
r∑

i=1

⎛
⎝ 3∑

j=1

Pi j ln ki j + (1 − Pi1 − Pi2 − Pi3) ln ki4

⎞
⎠

× (Pi4 = 1 − Pi1 − Pi2 − Pi3).

We can now rewrite Equation (2) as

OBJ = Min

⎡
⎢⎣E

⎛
⎜⎝

⎡
⎣lnF (0) +

r∑
i=1

⎛
⎝ 3∑

j=1

Pi j (ln ki j − ln ki4) + ln ki4

⎞
⎠ − lnL(n)

⎤
⎦

2
⎞
⎟⎠

⎤
⎥⎦ . (5)

In attempting to find the initial asset holding and the regular rebalancing proportions
on certain dates that will meet the criterion of ALM at maturity, we work out the
optimal solution of the P vector, or

P = (ln F (0), P11, P12, . . . , Pr3)T .

To obtain the solutions for this vector, we first must arrange the parameters of the P
vector from Equation (5) as follows,

Vj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln k( j+1
3 )1 − ln k( j+1

3 )4 j = 2, 5, . . . , 3r − 1

ln k( j
3 )2 − ln k( j

3 )4 j = 3, 6, . . . , 3r

ln k( j−1
3 )3 − ln k( j−1

3 )4 j = 4, 7, . . . , 3r + 1

,

where V1 = 1, because the parameter of ln F(0) is a constant.
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Next, we must calculate the first and second moments of the asset returns (Vj ). To
express the necessary formula in a user-friendly manner, we define some notations:

ω(i , j) = Cov(Vi , Vj ) where i , j = 1, 2, . . . , 3r + 1,

� = (ω(i , j))3r+1
i , j=1,

KL(n) = ln L(n) − (ln k14 + ln k24 + · · · + ln kr4),

ω = Var (KL(n)),

�0 = E(KL(n)),

� =

⎛
⎜⎜⎜⎜⎝

1
E(V2)

.

.

E(V3r+1)

⎞
⎟⎟⎟⎟⎠ , and

� =

⎛
⎜⎜⎝

Cov (1, KL(n))
.

.

Cov (V3r+1, KL(n))

⎞
⎟⎟⎠ .

Thus, we can rewrite the objective function of Equation (5) as follows:

OBJ = PT�P − 2PT� + θ (PT� − �0)2.

To obtain the optimal values of the allocations, we take the derivatives of the objective
function,

∂OBJ
∂ P

= 2�P − 2� + 2θ��T P − 2θ�0�,

where ∂OB J
∂ P = 0. We then obtain the optimal asset allocation on specific dates with

an initial asset holding, as follows:

P̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln F (0)

P̂11

P̂12

P̂13

P̂21

.

.

P̂r1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (� + θ�(�)T )−1(θ�0� + �). (6)
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Note this analytical solution does not consider fat-tailed distributions or multiple
possible regimes or correlations that might change over time.

Using Equation (6), we can derive a first approximation of the optimal multiperiod
asset allocation at the beginning of the term. However, if future economic conditions
change by the next valuation date, our proposed method generates a new set of
simulations with different initial values, according to the current conditions. We can
revise the optimal asset allocation for the rest of the periods, until maturity, using
the same Equation (6) but new simulations of the return predictions. For example, if
we consider an investment strategy for a 10-year target payment structure, we find
a first approximation of a 10-year optimal asset allocation in the start of the term
using Equation (6). If the economic situation has changed 3 years later, we generate
new simulations of future 7-year predictions using the current initial conditions. The
optimal investment strategies for the rest of the 7-year period at the end of year
3 depend on the revised simulations. Furthermore, we can take account of future
observations and calculate the rest periods of optimal multiperiod asset allocations
every year again; the solutions of the asset allocations should be similar to those of
dynamic methods.

NUMERICAL ILLUSTRATION AND ANALYSIS

In this section, we generate 4,000 ten-year Monte Carlo simulations using the Wilkie
(1995) investment model. Therefore, we obtain 4,000 equal-probability scenarios that
provide a satisfactory representation of the next 10-year potential return outcomes.
With these scenarios, we apply Equation (6) to obtain the optimal asset allocation
for various payment structures, as we introduced in the second section. We first
investigate the efficiency of ALM with a dynamic hedging approach by comparing
two investment strategies: buy and hold versus annual rebalancing. The efficiency
comparison uses tracking errors as a measure, and we provide these tracking errors
for a Type A liability in Table 1.

Multiperiod asset allocation investment strategies significantly improve ALM. When
we reduce the tracking error for the Type A1 payment structure from 0.006065 to
0.003120, for a reduction rate of approximately 49 percent, the corresponding reduc-
tion rates for Types A2, A3, and A4 are 38 percent, 21 percent, and 25 percent, respec-
tively. If the assumptions that drive our simulations are valid, the multiperiod asset
allocation approach is better than the single-period approach. In addition, Equation
(6) provides effective asset allocation information for the multi-period approach.

TABLE 1
Tracking Errors of Asset Liability Matching, Buy and Hold and Annual Rebalancing
Investment Strategies, 10-Year Payment Structures

A1 A2 A3 A4

Buy and hold 0.006065 0.004333 0.008275 0.007899
Annual rebalancing 0.003120 0.002684 0.006503 0.005926

Note: Tracking error is the difference between the accumulated fund and the target liability.
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FIGURE 1
Comparisons of Optimal Asset Allocations Among Liabilities, Types A1–A4
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Note: Line 1 is the asset allocation for Type A1, line 2 is the asset allocation for Type A2, and so
forth.

The patterns of asset allocations for various types of payment structure appear in
Figures 1–3. We first analyze the asset allocation pattern for the Type A1–A4 payment
structures. According to Figure 1, a constantly increasing liability (i.e., A1) identi-
fies consols as the most important asset, whereas equity is the least important. For
example, at the beginning of the 10-year term, nearly 70 percent is invested in con-
sols, 20 percent in short-term bonds, and the rest in ILGs and equities. This finding
is intuitive because the volatility of equity is much higher than that for the rest of
the assets. In addition, we gradually switch the proportion of assets from consols to
short-term bonds to reduce the liquidity risk. For A2, the inflation-increasing liability,
ILGs are the most important assets. Similar to Type A1, the assets switch from ILGs
to short-term bonds to meet the liability. At the beginning of the term, almost all asset
holdings are invested in ILGs only. Again, these results meet our intuitive expecta-
tions because matching entails the selection of assets that most closely resemble the
liability cash flows, whereas portfolio selection involves the selection of assets that
attain an optimal level of risk.

The payment structures of Types A3 and A4 combine the payment structures of
A1 and A2. The asset allocation patterns for A3 and A4 are quite similar, and the
investment proportions for each asset fall between those in Types A1 and A2. The
main difference is that A4 features a larger initial asset holding than A3, since A4
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FIGURE 2
Comparisons of Asset Allocations Among Different Participating Rates
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Notes: The graphs indicate 20%, 50%, 80%, and 100%, respectively, with a constant annual
guarantee rate of 5% for Type B liability. Lines 1–4 show the asset allocation for a participating
rate of 100%, 80%, 50%, and 20%, respectively, with an annual guarantee rate of 5% for Type B
liability.

reflects the maximum amount between Type A1 and Type A2, whereas A3 is the
minimum.

In Figure 1, for the Type A1 liability, we set the constant increase rate at r = 5 percent.
If we change the rate of increase from 5 percent to 6 percent, we obtain exactly the
same asset allocations but different initial total asset holdings because the optimal
asset allocations rely on the distributions of the liability cash flows. Different constant
liabilities have the same distributions of cash flows but unique sizes of liabilities. In
other words, the optimal asset allocations for any constantly increasing liability are
the same; however, a larger constant liability demands the investment of more money.

Type B is the equity-link liability, with participating rate b and annual guarantee
rate r. We set the guarantee rate at r = 5v and determine how the asset allocation
changes with the participating rate b in Figure 2. The higher the participation rate,
the higher the proportion held in equities and the lower the proportion held in short-
term bonds, consols, and ILG.s. For example, if the participating rate b = 100%,
more than 50 percent consists of equities during the term, with 30 percent consols
at the beginning, gradually switching to short-term bonds. In this case, ILGs are the
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FIGURE 3
Comparisons of Asset Allocations Among Different Annual Guarantee Rates
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Notes: The figures depict 20%, 0%, 5%, and 10%, respectively, with a constant participating rate
of 80% for Type B liability. Line 1 shows the asset allocations for guarantee rates of 20% with
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B liability, and line 4 shows the asset allocations for guarantee rates of 10% with a constant
participating rate of 80% for Type B liability.

least important assets, because liability combines a constant increase r = 5 percent
and equities. Again, consols and short-term bonds are most important for a constant
liability. If the participating rate decreases, the volatility of the liability also declines.
In other words, liability is similar to a constant. Therefore, consols and short-term
bonds are more important in the portfolio. For example, if the participating rate b =
20 percent and r = 5 percent, we invest most of the assets in consols and short-term
bonds because most liabilities will be 1.05 during the 4,000 simulations.

In Figure 3, we depict the impact of a different guarantee rate on the asset allocation.
If we fix the participating rate (b = 100 percent), from Figure 3, we find that the
higher the annual guarantee rate, the lower the proportion of equities held, and the
higher the proportion of short-term bonds, consols, and ILGs held in the portfolio
because there is a higher probability of a constant liability (1 + r). If the participating
rate b = 80 percent and the annual guarantee rate r increases from −20 percent to
10 percent, the proportion held in short-term bonds, consols, and ILG increases
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TABLE 2
Comparisons of Asset Allocations Between Different Economic Scenarios for 10-Year
Payment Structures of Type A2 Liability

Short-Term
Bonds Consols

Index-Linked
Gilts Equities

Time\Asset Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1st year −2.1% 34.5% −1.1% −8.4% 103% 54.4% 0.2% 19.6%
2nd year −2.8% 37.8% −1% −14.6% 101% 53.2% 0.7% 18.7%
3rd year 2.2% 43.8% −1% −14.5% 98% 52.9% 0.7% 17.8%
4th year 2.8% 46.4% −2.1% −14.5% 98.5% 51.7% 0.8% 16.4%
5th year 4.3% 50.1% −2.4% −15.7% 97.4% 50.2% 0.8% 14.8%
6th year 7.4% 54.5% −3% −16.4% 94% 47.7% 1.6% 12.2%
7th year 13.6% 55.4% −10% −15.8% 93.9% 47.8% 2.4% 12.6%
8th year 21.2% 57.2% −11% −19.9% 88.3% 46.1% 2% 12.6%
9th year 38.2% 66% −23% −24.6% 81.8% 45.9% 3% 12.7%
10th year 61.1% 84.7% −32.1% −41.2% 67.4% 57.3% 3.6% 9.3%

between 5 percent and 10 percent, whereas the proportion of equities decreases be-
tween 15 percent and 20 percent on average. For example, if the annual guarantee
rate is 10 percent, more liabilities are equal to a constant (1.1) during 4,000 simulation
liabilities. The portfolio thus consists of close to 40 percent of consols at the beginning
of the term and 40 percent of short-term bonds at the end of the term; the proportion
of equities decreases from 68 percent to 53 percent during the term.

The numerical results are almost entirely driven by the underlying assumptions
about market behavior. Different assumptions would lead to different results, so to
investigate changes in the asset allocations due to different underlying assumptions
of the investment return model, we perform another set of 4,000 simulations, in
which the average of inflation is half of Wilkie’s (1995) original assumptions. We refer
to these low inflation assumptions as case 2 and compare the result with those based
on the original assumption (case 1). The impact of the two different investment model
assumptions on the asset allocation, as we show in Table 2, is notable. The portfolio
includes more short-term bonds and equities and fewer ILGs in case 2 compared with
case 1, because ILGs have smaller returns when inflation is lower. Thus, the portfolio
contains fewer ILGs if the inflation rate relates strongly to the return on ILGs.

Asset allocation is a critical issue for ALM, as are asset selections. Table 3 lists the
comparisons of asset allocations for four assets (case 1) and three assets (case 3).
The asset allocations between cases 1 and 3 are quite different, including more
short-term bonds and equities and no ILGs. Case 1 obtains a greater average in-
vestment return (i.e., 8.9 percent vs. 8 percent in case 3) and lower tracking error (i.e.,
0.2 percent vs. 6 percent in case 3). In other words, without ILGs in the portfolio, track-
ing error increases by 30 times, and investment return simultaneously falls. Correct
asset selections are critical for ALM.

Return and risk measurements are critical issues in the ALM problem. For example, in
a defined-benefit pension plan, the cost of maintaining the plan can be evaluated as the
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TABLE 3
Comparisons of Asset Allocations Between Different Assets of Portfolio Selections for
10-Year Payment Structures of Type A2 Liability

Short-Term
Bonds Consols

Index-Linked
Gilts Equity

Time\Asset Case 1 Case 3 Case 1 Case 3 Case 1 Case 3 Case 1 Case 3

1st year −2.1% 64.4% −1.1% 4.4% 103% 0% 0.2% 31.2%
2nd year −2.8% 69.9% −1% 0.6% 101% 0% 0.7% 29.5%
3rd year 2.2% 79.8% −1% −10.3% 98% 0% 0.7% 28.6%
4th year 2.8% 92.5% −2.1% −20.3% 98.5% 0% 0.8% 27.8%
5th year 4.3% 95% −2.4% −22.2% 97.4% 0% 0.8% 27.3%
6th year 7.4% 95.3% −3% −23% 94% 0% 1.6% 27.7%
7th year 13.6% 102.8% −10% −30.6% 93.9% 0% 2.4% 27.8%
8th year 21.2% 105% −11% −31.9% 88.3% 0% 2% 26.8%
9th year 38.2% 110.5% −23% −36.4% 81.8% 0% 3% 25.1%
10th year 61.1% 114.7% −32.1% −38.7% 67.4% 0% 3.6% 24%

TABLE 4
Residual Information About Type A1 Liability

Pr(F(n) > L(n)) = 49.9%

Surplus Residuals Deficit Residuals

μ σ CVar(95%) CVar(90%) μ σ CVar(95%) CVar(90%)

0.0547 0.0457 0.1452 0.1165 −0.0514 0.0388 −0.1252 −0.1063

expected discounted value of contribution. The risk measurement can be probability
of making a large contribution, likelihood of a bankruptcy over the planning period,
or related worst-case events (Mulvey et al., 2008). Various metrics apply to returns
and risks over multiple periods, such as measuring risk as a function of a related
probability distribution. Take Type A1 as an example: we obtain an optimal asset
allocation through Equation (6), on the basis of a set of 4,000 ten-year simulations.
We can then adapt these simulation data to calculate the difference between the
accumulated assets and liabilities (residuals) and verify the match to the asset liability.
We depict the entire distribution of the residuals in Figure 4, which reveals that the
asset liability matching is good in this case; most residuals are close to 0 (tracking
error is 0.003). We also find that the tail of the surplus (positive residuals) is longer
than that of deficits (negative residuals).

We calculate additional return and risk information in Table 4. Specifically, the prob-
ability that accumulated assets will be greater than liabilities is 49.9. As we also see
from Table 4, surpluses are slightly greater than deficits, especially for the tail dis-
tribution (the CVaR(95%) of surplus is 0.1452, whereas the CVaR(95%) of deficit is
−0.1252).
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FIGURE 4
Distribution of Residuals (F(n)−L(n)) of Type A1 Liability
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Notes: Y axis shows the number of simulations, and X axis depicts the value of the residuals
(F(n)−L(n)).

CONSTRAINTS OF SHORT SELLING AND BORROWING

Because short selling and borrowing might not be allowed in practice, we discuss op-
timal asset allocations when they are prohibited. We formulate the objective function
and constraints as follows.

min
A(0),pi j

m∑
k=1

{
ln

[
F (k)(n)

] − ln
[
L(k)(n)

]}2,

subject to
4∑

j=1

Pi j = 1 and 0 ≤ Pi j ≤ 1 with ∀i = 1.2 . . . r , ∀ j = 1 . . . 4,
(7)

where ln[F (k)(n)] = ln F (0) + p11 ln k(k)
11 + p12 ln k(k)

12 + . . . . . . pr ,4 ln k(k)
r ,4

= ln F (0) +
r∑

i=1

4∑
j=1

Pi j ln k(k)
i j .

Short shelling and borrowing constraints prevent the closed-form solutions of optimal
asset allocations, as in Equation (6). We use optimization software, such as MATLAB,
to solve Equation (7). By using MATLAB optimization software, we can obtain exact
same solutions as the solutions obtained from Equation (6). We need to short the
consols during the period and hold more ILGs and short consols to meet the liability
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at the maturity date for Type A2. With the constraint 0 ≤ Pi j ≤ 1, we find that all
the negative values become 0 when we apply optimization software; therefore, the
portfolio cannot include so many short bonds near the end of the term because we
cannot short the consols.

We adopt optimization software to solve Equation (7) and obtain optimal (global)
solutions without demanding too much computing time because we simplify the
solution as a quadratic programming problem. This simplification makes it easy to
adopt optimization software to obtain global solutions. If we solve Equation (1) using
optimization software directly though, we confront two issues. First, it would take
much longer to obtain solutions—more than 6 hours if we were to consider large
numbers of asset return simulations or many decision variables. Second, we might
obtain local optimal solutions, because different “optimal” solutions likely emerge
when we set different initial values. However, the solutions for Equations (5) and (7)
are very similar. In Equation (7), in contrast to Equation (5), we consider the constraints
of prohibitions on short selling and borrowing, such that the main difference entails
the negative values obtained from Equation (5) becoming 0 in Equation (7). In turn,
Equation (6) provides a set of better (closer) initial values. To save time and still obtain
the global solution, we should adopt initial values close to the solution obtained from
Equation (6) to search the optimal asset allocation for Equations (7) or (1). That is, the
best strategy applies Equation (6) to search optimal asset allocation first, then uses it to
obtain a global solution of optimal asset allocation quickly, regardless of the number
of decision variables or economic simulation data. However, if the solutions return
negative values and the practice of shorting assets is not allowed, we would need
to use optimization software to solve Equation (7). We can use the solution obtained
from Equation (6) as the initial value to search for the optimal asset allocation.

CONCLUSIONS

Existing investigations of the MV approach to a single-period asset liability matching
challenge tend to include static portfolio optimization models, such as Markowitz
MV allocation, which are short-sighted and can require radical portfolio rebalancing,
unless severely constrained by intuition. However, this standard implementation
also includes only one period, which means that it cannot capture the multiperiod
nature of the problem. We instead adapt an anticipative model and develop an initial
approximation of an analytical solution of multiperiod asset allocation in a discrete
model. This theoretical formulation of the optimal asset allocation can overcome
the shortcomings of both the single-period model and the single-point forecast of
the MV approach. In addition, we address the problems of time-consuming and local
minimum solutions when the model includes large simulations of future asset returns
with theoretical formulae. By adapting large numbers of asset return simulations,
our proposed analytical solution can determine realistic asset return features and
take into account all possible future realizations to obtain a first approximation of
a multiperiod asset allocation. Thus, this model offers the optimal asset allocation
without demanding too much computing power and avoids the disadvantages of
being highly sensitive to the single-point forecast and the necessities of a normal
assumption of returns.
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Specifically, we note that among the 651 continental European funds surveyed by
Mercer, bonds remain the dominant asset class, reaching €423 billion, though the
equity allocation has increased (i.e., 40 percent to 42 percent in 2006). However, in the
United Kingdom, equity represents the main asset in pension funds, even as these
funds decline (from 68 percent to 2003 to 61 percent in 2007). In the United Kingdom,
the average allocation to bonds was 36 percent in 2007. Thus, the debate about the
proper level of risk in pension plans persists; some economists argue that far more
capital should go to bonds, in a strategy known as liability-driven investing (LDI).
Although LDI seems similar to an insurance framework, its liabilities can depend on
various factors, including inflation shifts, changes in the workforce, and so on. That
means that implementing LDI is expensive. Other institutional investors thus believe
equities are the essential ingredient for long-term investors because their returns
depend on the economy’s long-term growth. As even this brief summary reveals, the
debate shows no signs of being resolved soon. In this article, we aim to derive an
analytical solution to the ALM problem. We use the Wilkie (1995) investment model
to illustrate our numerical results, which reveal that the nature of the guarantee
type has a strong relationship with the asset allocation decisions. We know that
matching relates to the selection of assets, which most closely resemble liability cash
flows, whereas portfolio selection pertains to the selection of assets that will reach
an optimal level of risk. Thus, we conclude that consols are the most important asset
in the portfolio for constant liability (A1), ILGs are the most important for inflation-
increasing liability (A2), and equities are the least important assets for both Type A1
and A2 liabilities because equity volatility is much higher than that for the rest of the
assets, and the nature of the liabilities is much different. For any constant liability,
we obtain exactly the same asset allocations for each asset, except for different initial
investment amounts. In addition, the higher the return we aim for, the higher the
proportion of risky assets we must hold. To reduce liquidity risk, we would gradually
switch the proportion from risky assets to riskless assets, nearer the maturity date.
The numerical results thus are almost entirely driven by underlying assumptions
about market behavior. Different assumptions in the investment model certainly will
lead to different results. We adopt different model assumptions to investigate the
impact of these optimal asset allocations; we also investigate the importance of asset
selection and find that it is critical for choosing suitable assets for ALM.

In this research, we have emphasized the derivation of an analytic solution for mul-
tiperiod ALM based on simulations. Pension and insurance guarantees have become
popular in many countries, partly as a result of pension reforms and customer needs,
which increase the importance of ALM for the pension fund and the insurer. This
investigation does not address a specific complicated pension or insurance liability;
doing so would require the consideration of many more issues, such as transaction
costs and contribution strategies. It also can be difficult to cash match over time
because future liabilities depend on uncertainties, including inflation, the size and
composition of the workforce, and so on. Although we do not discuss a specific
pension or insurance liability, our research successfully derives an analytic solution
for the multiperiod asset allocation, using combinations of scenario-based and MV
approaches in a discrete model. The advantage of the proposed analytic solution is
that it is much easier to provide good insights into practice-based issues. Our pro-
posed methodology also offers a viable alternative to practitioners. Several issues
remain to be investigated in further studies to support efforts to apply this model to
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real-world problems, such as incorporating the downside risk in ALM or considering
more practical liabilities or assumptions.
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