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Abstract 
 

In this paper, we investigate jump spillover effects between five energy (petroleum) futures. In 

order to identify the latent historical jumps of each energy futures, we use a Bayesian MCMC approach 

to estimate a jump-diffusion model on each energy futures. We examine the simultaneous jump 

intensities of pairs of energy futures and the probabilities that jumps in crude oil (and natural gas) cause 

jumps or usually large returns in other energy futures. In all cases, we find significant evidence of jump 

spillover.  
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I. Introduction 

There is strong evidence that jumps (price spikes) play an important role in the 

continuous diffusion process for asset price. Such models, which allow for the presence of 

jumps, are often referred to as event risk models. A number of recent theoretical studies 

analyze the impact of event risk on strategic asset allocation (Liu et al. (2003), Wu (2003)), 

on option pricing and its ability to explain the observed volatility smiles (Pan (2002), Eraker 

et al. (2003)), on calculations of risk measures such as value-at-risk (VaR) (Duffie and Pan 

(2001), Gibson(2001)). Recently, Asgharian and Bengtsson (2006) employ such an event 

risk model to study jump spillover effects between a number of country equity indexes. 

They use a Bayesian approach to estimate a jump-diffusion model on each index and find 

significant evidence of jump spillover. 

The recent dramatic spikes in energy prices (in particular oil) that peaked in summer 

2008 (see Figure 1) has greatly magnified the importance of understanding and managing 

risk in these markets. Observers of energy futures markets have long noted that energy 

futures prices are very volatile and often exhibit jumps during news event periods. The main 

purpose of this paper is to estimate an event risk model for a number of energy (petroleum) 

futures contracts (crude oil, natural gas, heating oil, gasoline and fuel oil) in order to identify 

the latent historical jump times of each energy futures which we then use to quantify the 

degree of jump spillover between the different futures contracts. We focus on two forms of 
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jump spillover. First, we calculate the simultaneous jump intensities for pairs of energy 

futures contracts and we test whether or not these simultaneous jump intensities are 

significant. Second, we perform an analysis of conditional jump spillover to examine to 

what extent jumps in a specific energy futures increase the probability of jumps in other 

energy futures, or in a weaker form, cause unusually large negative returns in other energy 

futures. 

To identify the historical jump times, we estimate a univariate jump-diffusion model 

with stochastic volatility on each energy futures contract. The model, which falls into the 

class of affine jump-diffusion models proposed by Duffie, Pan, and Singleton (2000), is 

referred to as the stochastic volatility with correlated jumps (SVCJ) model and it assumes 

that jumps in returns and volatility arrive simultaneously and that the jump sizes are 

correlated. The primary reason for estimating such a relatively complex model, instead of 

simply looking at, say the historically largest price movement of each index, is that in this 

way we can separate extreme returns that are actual jumps from large diffusive returns 

simply caused by periods of high volatility2. Including jumps in volatility allows for the 

rapid changes in volatility empirically found by, for instance, Bates (2000), Duffie, Pan, and 

Singleton (2000), Pan (2002), and Eraker, Johannes, and Polson (2003), and prevent 

estimated jump times from clustering. One reason for the relatively limited amount of 

                                                       
2 Our approach does not require us to specify a priori or arbitrary what qualifies a return as extreme, since this 

is determined in the estimation. 
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empirical research on event risk is that the complexity of the models makes estimation 

comparatively difficult. Standard methods such as unconstrained maximum likelihood (ML) 

and the generalized method of moments (GMM) are, if applicable at all, intractable. 

A relatively new approach based on Markov chain Monte Carlo (MCM) methods is 

used for the estimation of event risk models. The MCMC method to estimate stochastic 

volatility models was proposed by Jacquier, Polson, and Rossi (1994) and the method was 

extended to models with jumps in returns and volatility by Eraker, Johannes, and Polson 

(2003)3. MCMC methods are particularly attractive for application in our model for several 

reasons. First, MCMC is a unified estimation procedure which simultaneously estimates 

both parameters and state variables. It also estimates the latent processes of the model – the 

jump times, jump sizes and the future volatility path4. Second, MCMC methods account for 

estimation and model risk. It also allows the researcher to quantify model risk, the 

uncertainty over the choice of model through the computation of Bayes factor. 

Our empirical results show strong evidence for the existence of jump spillover. The 

estimated simultaneous jump intensities are in general significantly larger than the 

corresponding intensities under the null hypothesis that the different energy futures’ jump 

processes are independent of each other. Most interestingly, however, we find that the 
                                                       
3  Other methods that have been used to estimate models with stochastic volatility and jumps include, for 

instance, the efficient method of moments (EMM) of Gallant and Tauchen (1996), simulated maximum 
likelihood (SML), the Spectral GMM (SGMM) of Chacko and Viceira (2003), and the implied-state GMM 
(ISGMM) of Pan (2002). 

4  Jacquier, Polson, and Rossi (1994) find in simulations that MCMC outperforms GMM and QMLE in 
estimation of stochastic volatility models, and Anderson, Chung and Sorensen (1999) find that MCMC 
outperforms EMM. 
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historical sample correlations between the energy futures are not good measure to capture 

the jump spillover effects. This implies that the dependence between the jump processes of 

the different energy futures returns is quite different from the dependence between returns 

that are not jumps, implying for instance the mean-variance investors who use these 

correlations to form portfolios may have little protection against event risk. We also look at 

the sizes of the simultaneous jumps and find that they can be positive or negative and, in 

general, larger (in absolute terms) than the sizes of the energy-futures-specifics jumps. This 

implies that both good and bad news (or events) cause jump spillover. 

In our analysis of conditional jump spillover from crude oil futures (and natural gas 

futures) to other energy futures, we also find strong evidence of jump spillover. A large 

majority of the estimated conditional jump spillover probabilities are significantly larger 

than the corresponding probabilities under the null hypothesis of independent jump 

processes. 

The structure of the rest of the article is organized as follows: Section II presents the 

event risk model and the estimation method. Section III contains the empirical results, which, 

in addition to the analysis of jump spillover, includes a discussion on the estimated 

parameters and latent variables. The Appendix interprets the model accuracy through the 

comparison of Bayes factors. Section IV concludes. 
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II. Event Risk and Econometrics Model 

The SVCJ model assumes that the logarithm of five energy (petroleum) futures price i, 

Fi,t, i = 1,2,…, 5, solves the stochastic differential5 

, , ,
, ,

, , , , ,

ln( )
( )

i t i i t i t
i t i tV V

i t i i i t V i i t i t

d F dW
dt V dN

dV V dW
μ ξ

κ θ σ ξ

ϒ ϒ

−
−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

             (1) 

Where t- is the point in time that closest precedes time t; ,i tdW ϒ  and ,
V

i tdW  are standard 

one-dimensional wiener processes with instantaneous correlation iρ ; Ni,t is a one- 

dimensional Poisson process with constant intensity λi; and ,i tξ ϒ  and ,
V
i tξ  are jump sizes. 

The jump size of futures volatility, ,
V
i tξ , is assumed to be exponentially distributed with μV,i, 

and to allow for the return and volatility jump sizes to be correlated, ,i tξ ϒ  is assumed to be 

conditionally normally distributed with conditional mean μΥ ,i +ρJ,i ,
V
i tξ  and standard 

deviation ,iσϒ . The correlation between the diffusive terms is allowed for in order to capture 

the important leverage effect between return and volatility. Typically this correlation is 

expected to be negative, which induces negative skewness in returns [see Das and Sundaram 

(1999)]. In what remains of this section, we will drop the subscript i. 

This specification nests many of the popular models used for option pricing and portfolio 

allocation applications. Without jumps, λ=0, (1) reduces to Heston’s (1993) square-root 

                                                       
5  An alternative model specification would be the stochastic volatility with independently arriving jumps 

(SVIJ) model, which also falls into the general class of models proposed by Duffie, Pan, and Singleton 
(2002). The SVIJ model assumes different processes for returns and volatility. We choose to work with the 
SVCJ specification in this article since in an event risk study it simplifies the analysis, and if there are indeed 
jumps in volatility, it is in some sense more intuitive to assume that major events affect both return and 
volatility rather than to assume that some events affect only returns and some events affect only volatility. 



7 
 

stochastic volatility model, the SV model. Bates’ (1996) SVJ model has normally distributed 

jumps in returns, 2~ ( , )Nξ μ σϒ
ϒ ϒ , but no jumps in volatility. Duffie, Pan, and singleton 

(2000) introduced the models with jumps in volatility. The SVIJ model has independently 

arriving jumps in volatility, ~ exp( )V
Vξ μ , and jumps in returns, 2~ ( , )Nξ μ σϒ

ϒ ϒ . The SVCJ 

model has contemporaneous arrivals, V
t t tN N Nϒ = = , and correlated jump sizes, 

~ exp( )V
Vξ μ  and 2~ ( , )V V

JNξ ξ μ ρ ξ σϒ
ϒ ϒ+ . In the Appendix, we interpret the 

computation of Bayes factors, which offer a summary of the evidence provided by our data 

in favour of our SVCJ model accuracy. 

To estimate the SVCJ model with MCMC, Equation (1) is discretized over a time 

interval ∆ using an Euler discretization6. The time discretization generates a much simpler 

conditional distribution structure and allows the use of standard MCMC techniques. The 

discretization interval is, since the data in our empirical study are daily, equals to one day 

(∆=1) and the discretized version of the model is7 

1 ,1
1

1 ,1(1 )
t i tt

t tVV
t t i tV t

V J
V V

μ ξε
α β ξσ ε

ϒϒ
+ +

+
+ +

⎛ ⎞ϒ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,                       (2) 

                                                       
6  An advantage of our approach is the ability to formally incorporate prior information. The need for this is not 

unique to our approach, but is common in estimating models with jumps. Honore (1998) shows that without 
prior parameter restrictions, a time discretization of Merton’s (1976) jump-diffusion model generates an 
unbounded likelihood function. Moreover, the prior contains information about both the parameters and the 
structure of the latent process: the stochastic specifications of the jump size, jump times, and volatility. This 
reinforces the link between parameters and model specification that is often heuristically used to motivate the 
presence of jumps. Typically, jumps are described as large, but infrequent movements in returns. This is a 
form of prior information as the parameters are assumed to induce in frequently but relatively large 
movements, as opposed to frequent but small jumps. 

7 The need for continuous-time process to be discretized is a drawback of the MCMC method in the sense that 
it can potentially introduce discretization biases when low-frequency data are used, However, in a simulation 
study, Eraker, Johannes, and Polson (2003), show that the biasesin MCMC estimates are very small for daily 
returns.  
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Where 1 1ln( / )t t tF F+ +ϒ =  is the log return; J=1 indicates a jump arrival which occurs with 

probability λ; the drift parameters of the volatility process have been rewritten so that 

kα θ=  and kβ = − ; and 1tε
ϒ
+  and 1

V
tε +  are standard normal stochastic variables with 

correlation coefficient ρ. 

The MCM method for inference and parameter estimation is a Bayesian and 

simulation-based estimation method. This approach has at least four advantages over other 

estimation methods: (1) MCMC provides estimates of the latent volatility, jump times, and 

jump sizes; (2) MCMC accounts for estimation risk; (3) MCMC methods have been shown 

in related settings to have superior sampling properties to competing methods; and (4) 

MCMC methods are computationally efficient so that we can check the accuracy of the 

method using Bayes factors.  

While traditional methods treat parameters and latent variables as unknown constants, 

the Bayesian approach is to treat them as random variables. The foundation of Bayesian 

analysis is the joint distribution of the parameters and the latent variables conditional on the 

data. This joint conditional distribution, referred to as the posterior distribution, is derived 

via Bayes’ rule as  

 ( , , , , ) ( , , , , ) ( , , , ) ( )V V Vp V J p V J p V J pξ ξ ξ ξ ξ ξϒ ϒ ϒΘ ϒ ∝ ϒ Θ Θ Θ ,         (3) 

Where ϒ is a T 1 vector of observations; , , ,VV J ξ and ξ ϒ are vectors of latent futures 

volatilities, jump times, return jumps sizes, and volatility jump sizes, respectively; and Θ is 
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a vector of parameters. The first term on the right-hand side of Equation (3),

( , , , , )Vp V J ξ ξ ϒϒ Θ , is the likelihood of the data; the second term, ( , , , )Vp V J ξ ξ ϒ Θ , is the 

(prior) distribution of the latent variables conditional on the parameters; and the last term, 

( )p Θ , is the prior distribution of the parameters. The Bayesian parameter point estimates of 

the parameters and the latent variables are typically taken as their posterior means. While 

knowledge about the normalizing constant is not required, the prior distribution of the 

parameters has to be specified independently of the data by the researcher (the prior 

distribution of the latent variables, conditional onΘ , is specified by the model assumptions.). 

It can be thought as a natural way to impose nonsample information, if there is any, and to 

impose stationarity and nonnegativity where it is needed. If there is no nonsample 

information to be imposed, the prior is usually choosen so that it is as uninformative as 

possible－typically with a very large variance over the relevant parameter space, which is 

what we do in this article. 

The posterior distribution of Equation (3) is extremely complex and nonstandard, with 

no existing closed-form solution. Consequently simulation-based methods have to be used to 

explore it. MCMC methods generate a sequence of draws ( ) ( ) ( ) ( )
1{ , , , }j j V j j M

jV ξ ξ ϒ
=Θ , which 

is a Markov chain with equilibrium distribution equal to the posterior distribution. Using this 

generated sample from the posterior distribution, the point estimates of Θ , , , ,VV J ξ and 
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ξ ϒ are then simply given by their posterior sample means.8 

In this article we are particularly interested in estimating the latent historical jump times 

J of each index. The point estimate of J is 

( )

1

1ˆ
M

j

j

J J
M =

= ∑ . 

It is important to note that this estimate will, unlike the “true” vector of jump times, not be a 

vector of ones and zeros. Rather, element ˆ, tt J , is the posterior probability that there was a 

jump at time t. Following Johannes, Kumar, and Polson (1999), a natural and simple 

approach to construct from Ĵ , the vector of jump times, is to assert that a jump has occurred 

if the estimated jump probability is sufficiently large; that is, greater than an appropriately 

chosen threshold value l, so that 

*
ˆ1 ,ˆ
ˆ0 .

t
t

t

if J l
J

if J l

⎧ >⎪= ⎨
⎪ ≤⎩

                                               (4) 

In our empirical study we chose l so that the number of inferred jump times divided by the 

number of observations－the implied jump intensity－is consistent with the estimated jump 

intensity λ. For simplicity and for consistently, we follow Asgharian and Bengtsson (2006) 

and use the same value of l for all futures and we choose l=0.1702, since this is the value 

that turns out to minimize the average distance between the implied jump intensities and the 

                                                       
8 The details on the MCMC algorithm used to estimate the SVCJ model Equation (2) (3) can be found in 

Asgharian and Bengtsson (2006) and further details on the theory behind MCMC methods can be found in 
Johannes and Polson (2004). They are omitted to save space, but are available upon request. 
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actual estimated jump intensities. 
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III. Empirical Results 

In this section we present and analyze our empirical results. After a presentation of the 

data, we provide a short discussion on the parameter and the latent variable estimates. Then 

follows the analysis of jump spillover between pairs of energy futures contracts. 

1. Data Description 

In this study, we examine jump spillover for five contracts from the European energy 

futures markets. The contracts are on crude oil futures, natural gas futures, heating oil 

futures, gasoline futures and fuel oil futures, all of which are traded on the ICE futures 

Europe. The data are between September 29, 2006 and October 29, 2008 and all data are 

from Datastream. The daily log return of each futures contract is  

1log( / )t t tY F F −= , 

where tF is the settled futures price at date t. Descriptive statistics for the data can be found 

in Table 1.9 Figure 1 shows price trends for five energy futures corresponding to the 

analyzed period and indicates that the oil price have mainly fluctuated relative to other four 

energy prices. From these prices we calculated log-returns and volatilities and plot them in 

                                                       
9 It can be argued that the effects of differences in market opening hours can be avoided, for example, weekly 

data. However, lower frequency data would smooth out the effects of jumps and invalidate the assumption 
that at most one jump can occur per discretization interval. A better alternative would instead be to use higher 
frequency data, such as hourly returns, in order to really find out when in the day the jumps have occurred 
and how fast they are transmitted across borders. Unfortunately, high-frequency datasets that go back 
sufficiently long in time are hard to obtain for more than perhaps international equity indexes. Consequently, 
our best alternative is to use daily data, taking into account in our analysis that differences in market opening 
hours are present. 
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Figure 2. Figure 2 also shows the probabilities of jumps, downside jumps and upside jumps. 

2. Estimated Parameters and Latent Variables 

The MCMC estimates for the parameters of SVCJ model and for the different energy 

futures contracts are presented in Table 2. 

Since this article is focused on the analysis of jumps, we begin by examining the 

estimated unconditional average sizes of jumps in returns, which for each energy futures 

equals J Vμ ρ μϒ + . The values for crude oil, natural gas, heating oil, gasoline and fuel oil are, 

respectively, 2.3263, 4.8152, 2.0413, 2.4158, 2.6474. Thus, the futures that has the largest 

(in absolute terms) unconditional average size of jumps in returns is natural gas, closely 

followed by fuel oil and gasoline. The futures that has the smallest unconditional average 

size of jumps in returns is heating oil, closely followed by crude oil. The estimate of Jρ , 

which measures the dependency between the size of jumps in returns and the size of jumps 

in volatility, is positive (negative) for natural gas, heating oil and gasoline (crude oil and fuel 

oil). 

The parameter λ, which is the arrival intensity of jumps, is estimated at values between 

0.0853 for natural gas and 0.1118 for heating oil. So jumps in the heating oil market are 

approximately 1.5 times more frequent than jumps in the natural gas market. 

Although it has no direct connection to jumps, it might be interesting to look at the 

estimated correlation coefficient ρ between diffusive shocks to return and volatility for each 
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futures. This parameter is, negative for all futures and significantly. Unlike the equity market 

evidence, the energy futures prices exhibit very little leverage effect. As expected, the jump 

correlation coefficients ρJ are positive for natural gas, heating oil and gasoline. 

Figure 2 shows, together with the historical log returns and volatilities, the estimated 

jump probabilities for up jumps and down jumps for the crude oil, the natural gas, the 

heating oil, the gasoline and the fuel oil. The estimated jump probabilities appear to be 

clustered during periods of high volatility. The relatively high jump intensity of heating oil 

compared to that of, for example, the natural gas is illustrated by the relatively large number 

of days with high jump probabilities. Looking at the estimated futures volatility paths in 

Figure 2, it is interesting to see that the futures volatilities appear to be quite correlated.  

The lower triangular part of Table 3 shows the sample correlation matrix of the 

estimated futures volatility changes, , , 1
ˆ ˆ , 1, 2,..., ,i t i tV V t T−− = for all future contracts 

1,2,...,5.i = The correlation coefficients are all positive and the largest correlation is between 

the crude oil and the heating oil, while the smallest correlation is between crude oil and 

natural gas. A potentially important issue is whether or not the presence of jumps make 

biased estimates of correlation coefficients between futures volatility changes as well as 

between returns. The upper triangular part of Table 3 shows the correlation matrix of the 

futures volatility changes filtered from the estimated jump components ξ ,
V J ,  , 1,2,...,5i =

and 1,2,...,t T= . In all ten possible cases we find out that the correlation decreases when the 
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futures volatilities are filtered from jumps which implies that models that do not include 

jumps in volatility may overestimate correlation between futures volatilities. A similar 

pattern is present also in returns.  

Table 4 shows, in the lower triangular part, the correlation matrix of returns and, in the 

upper triangular part, the correlation matrix of returns filtered from the estimated jump 

components ξ , J ,  , 1,2,...,5i = and 1,2,...,t T= . In all ten possible cases, filtering the 

returns from jumps decreases the sample correlation. 

3. Jump Spillover 

In this section we use our estimates of the latent historical jump times to analyze jump 

spillover effects. We first look at the simultaneous jump intensities between pairs of energy 

futures. Then we examine the conditional jump spillover probabilities that jump in a specific 

futures cause jumps or unusually large returns in other futures. Finally, we take a brief look 

at the average latent jumps sizes of the simultaneous jumps that from the basis of our 

analysis of jump spillover. 

3.1 Simultaneous jump intensities 

We start our study of jump spillover by taking a look at the simultaneous jump 

intensities between pairs of energy futures. We calculate the simultaneous jumps intensity 

of two energy futures in a straightforward manner simply as the number of identified 

simultaneous jumps divided by the number of overlapping observations. The simultaneous 
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jump intensity of a specific futures with itself is what we refer to as the “implied jump 

intensity”; that is, the number of jump times divided by the number of observations－a 

number that should be roughly consistent with the respective estimate of λ in Table 2. 

Table 5 reports the estimated simultaneous jump intensities and whether the estimated 

values are significant at the 95% (*) or 99% (**) level. The significance levels are obtained 

by testing if the estimated intensities are greater than what they would be under the null 

hypothesis that the different futures’ jump processes are completely independent. Under the 

null hypothesis, the simultaneous jump intensity of two futures is estimated simply as the 

product of the futures’ implied jump intensities. For example, the simultaneous downside 

jump intensity of the crude oil and the natural gas under the null hypothesis is equal to 

0.1031 multiplied by 0.1289. 

An initial observation is that the estimated simultaneous jump intensities are generally 

quite significant, which is evidence of the existence of jump spillover. 

3.2 Conditional jump spillover probabilities 

Next we look at the conditional spillover probability that, given a jump in a chosen 

benchmark futures, other futures jump on the same or on the following day－denoted by 

same-day (conditional) jump spillover and next-day (conditional) jump spillover. We 

examine two cases for the choice of benchmark futures: (1) crude oil, (2) natural gas. 

Table 6 shows the estimated same-day and next-day (conditional) jump spillover 



17 
 

probabilities. The same-day jump spillover probability for a specific futures contract is 

estimated as the number of simultaneous jump times with the benchmark futures divided by 

the number of jump times of the benchmark futures. The next-day jump spillover probability 

is calculated in the same way, but by using instead the number of jumps that occur on the 

day after jumps in the benchmark futures. The table also shows which of these estimated 

probabilities are significant at 95% or 99% level. The significance levels are obtained by 

testing for quality of the estimated spillover probabilities with the corresponding 

probabilities under the null hypothesis of independent jump process. Under the null 

hypothesis, the same-day and next-day jump spillover probabilities of a futures are both 

estimated as the number of identified jumps divided by the number of observations. The 

results show that all the estimated probabilities are significant. 

To analyze a weaker form of jump spillover, we look at the conditional probabilities that 

jumps in the benchmark futures merely result in unusually large returns in other futures and 

not necessarily jumps. For simplicity, we define an unusually large return as a return 

belonging to the lower decile of the historical returns of each energy futures. These 

probabilities are estimated in the same fashion as above, and we again test if they are greater 

than the corresponding probabilities under the null hypothesis of independence between the 

benchmark jumps and the unusually large returns. 

The result for this type of jump spillover is shown in Table 7. It is easy to see that almost 



18 
 

all values for the same-day jumps are considerably larger than the corresponding values in 

Table 6 and, at the same time, almost the same pattern as above in terms of spillover and 

significance is present. 

3.3 Size of simultaneous jumps 

Finally, it might be interesting to look also at the estimated latent jump sizes of the 

identified simultaneous jumps in returns on which we base our simultaneous jump 

intensities. The element in row i and column j of Table 8 shows the average size of the 

jumps in futures i that are simultaneous with jumps in futures j, calculated as 

* *
, , ,1* *

, ,1

1 ˆˆ ˆ
ˆ ˆ

T
i t i t i tT t

i t i tt

J J
J J

ξ ϒ
=

=

∑
∑

,  

where ,î tξ ϒ ,t=1,2,…,T are the estimated latent sizes of jumps in returns for futures i. 

Consequently, the diagonal elements of the table are equal to the average latent jump sizes of 

the different futures. For example, the average latent size of all the jumps identified in the 

crude oil is equal to -1.3876% for downside jump and 1.7791% for upside jump, whereas 

the average size of the subset of the jumps in the crude oil that are simultaneous with jumps 

in the natural gas is equal to -1.1117% for downside jump and 1.5449% for upside jump. 
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IV. Conclusion 

In this paper we examine jump spillover effects between a number of energy (petroleum) 

futures. Our contribution is twofold: First, we fit a stochastic volatility jump-diffusion model 

to each individual futures and compare features of the different futures such as jump 

frequencies and jump magnitudes. This analysis is motivated by the fact that the most 

previous empirical research on event risk models have focused mostly on the equity markets 

and little is known about the impact of jumps in energy markets. Second, we look at jump 

spillover effects between energy futures. This is the central issue of the article, and to our 

knowledge, it has not been analyzed by previous studies. 

To identify the historical jump times of different energy futures, we use the SVCJ model. 

This model helps us to separate out returns that are related to sudden unexpected events 

(jumps) from large diffusive returns caused by periods of high volatility without the need to 

make any a priori assumptions on what is an extreme return and what is not, as this 

determined in the estimation. We estimate the model with the MCMC method of Eraker, 

Johannes, and Polson (2003) and Asgharian and Bengtsson (2006).The advantage of this 

method compared to most other methods is that it makes it possible to estimates the latent 

processes of the model－in particular the jump times, jump sizes and futures volatility paths. 

Our study of jump spillover begins with an analysis of the simultaneous jump intensities 

of pairs of energy futures. We find that these intensities are generally quite significant, 
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which is evidence of the existence of jump spillover. 

We end our study of jump spillover by looking at the conditional probabilities that 

jumps in crude oil and natural gas cause jumps or large price movements in other energy 

futures. The results show that the estimated spillover probabilities are all significant. We also 

find that these estimated conditional jump spillover probabilities are also generally 

significantly larger than what they would be under the null hypothesis of no jump spillover. 
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Appendix: Bayes Factor and Model Comparison 

Model risk arises from the uncertainty over selecting a model specification. As 

mentioned above, the SVCJ nests other popular continuous-time model, such as SV, SVJ and 

SVIJ. Consistent with our Bayesian approach, a natural statistical criterion for resolving this 

uncertainty is computing Bayes factors. Bayes factors offer a summary of the evidence 

provided by the data in favour of one statistical model. More importantly, they account for 

parameter uncertainty and impose a penalty for lack of parsimony (higher dimension)10. 

Consider two competing models M1 and M2. Using Bayes theorem, it is straight-forward to 

show that the Bayes factor B12 (in favour of model M1) is the ratio of posterior to prior odds, 

which is equal to the ratio of the marginal likelihoods: 

1
12

2

( )
( )

p r M
B

p r M
=  , 

where the marginal likelihood of model M1 is defined as: 

1 1( ) ( , )p r M p r M d
θ

θ θ= ∫  

       1 1( , ) ( )p r M M d
θ

θ π θ θ= ∫ . 

It is important to note that the marginal likelihood is an averaged (not a maximized) 

likelihood. This implies that the Bayes factor is an automatic “Occam’s Razor” in that it 

                                                       
10 For a review and computation of Bayes factors, see Kass and Raftery (1995) and Johannes and Polson 

(2002). 
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integrates out parameter uncertainty11. Furthermore, the marginal likelihood is simply the 

normalizing constant of the posterior density and (suppressing the model index for 

simplicity) it can be written as: 

( ) ( )
( )

( )
f r

p r
r

θ π θ
π θ

= , 

Where ( )f r θ is the likelihood, ( )π θ the prior density, ( )rπ θ the posterior density,θ is 

evaluated at the posterior mean estimate. Since θ  is drawn in context of MCMC sampling, 

the posterior density ( )rπ θ  is computed using the technique of reduced conditional MCMC 

runs of Chib (1995) and Chib and Jeliazkov (2001). 

To assess the information provided by a Bayes factor, it is useful to consider twice its 

natural logarithm so as to be on the same scale as likelihood ratio statistics. To make the 

interpretation more familiar, Panel A of Table A1 presents the range of the values of 2ln(B12) 

that constitute evidence in favour of model M1. Finally, note that model comparisons based 

on Bayes factors are asymptotically equivalent to evaluations based on the Schwartz (or 

equivalently the BIC) criterion. 

In Table A1 we rank the in-sample performance of the models according to the Bayes 

factors. The key input to this criterion is the calculation of the marginal likelihood. 

Therefore, Table A1 gives us a distinct statistical perspective on performance because the 

                                                       
11 Occam’s Razor is the principle of parsimony, which states that among two competing theories making the 

exact same prediction, the simpler one is best. 
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marginal likelihood is computed in a way that integrates out parameter uncertainty and 

imposes a penalty for lack of parsimony (higher dimension). Panel A of Table A1 presents 

the range of Bayes factors that constitute evidence in favor (or against) a given model. The 

results reported in Panel B of Table A1 indicate two clear patterns in ranking the models: (i) 

SVCJ and SVJ are always better than SV for all energy futures; and (ii) SVCJ is better than 

SVJ for all energy futures. The former result emphasizes the importance of the jump element 

in model specification. The latter result supports our assertation that jumps between different 

energy futures are actually correlated. 

 

Table A1 The model comparison by Bayes Factors 

 

Panel A: Interpreting Bayes factors 

2ln(B12) B12 Evidence against model M2 

  

0-2 1-3 Not worth more than a bare mention 

2-6 3-20 Positive 

6-10 20-150 Strong 

>10 >150 Very strong 

Panel B: Bayesi factors 2ln(B12) 

 Crude oil Natural gas  Heating oil Gasoline Fuel oil 

SVCJ vs. SV 123.61 108.74 97.08 170.77 145.59 

SVJ vs. SV 107.22 88.04 74.38 119.26 101.60 

SVCJ vs. SVJ 
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Table 1 Descriptive statistics of returns 

Description statistics of the energy futures returns included in this study. The data consist of daily percentage log 

returns for each energy futures contract from September 29, 2006 to October 29, 2008. The mean returns and 

standard deviations have been annualized through multiplication by 252 and 252 , respectively. 

 

Crude oil Natural gas Heating oil gasoline Fuel oil 

 Mean  0.008609  0.018049  0.024316 -0.007428  0.011620 

 Median  0.164406 -0.30808  0.000000  0.192988  0.000000 

 Maximum  8.242577  34.40974  7.664302  6.747177  8.004271 

 Minimum -10.94552 -13.62917 -9.019634 -11.50368 -12.21918 

 Std. Dev.  2.173236  4.531974  2.132602  2.482446  2.148959 

 Skewness -0.459732  2.042574 -0.252806 -0.631543 -0.873541 

 Kurtosis  5.495041  14.20782  4.108804  4.670400  8.062012 

 Observations  543  543  543  543  543 
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Table 2 Parameter estimates for five energy futures 

The MCMC estimates of SVCJ model parameters for the futures of crude oil, natural gas, heating oil, gasoline and fuel oil. Also reported are the posterior standard errors and 

the posterior confidence intervals for each parameter. 

 

1. Crude Oil 

Mixed jumps Downside jumps Upside jumps 

Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI 

μ -0.3745 1.5838 (-3.4790, 2.7299) -3.5652 2.2975 (-8.0712, 0.9420) 2.831 2.7037 (-2.4699, 8.1304) 

θ 3.8856 1.2721 (1.3921, 6.3789) 6.3834 1.9551 (-2.5518, 10.2183) 3.1924 1.0981 (-1.0402,5.3448) 

κ 0.1404 0.1374 (-0.1289, 0.4097) 0.0984 0.1551 (-0.2056, 0.4024) 0.1768 0.1748 (-0.1659, 0.5188) 

σV 0.2245 0.0586 (0.1096, 0.3394) 0.2097 0.0673 (0.0778, 0.3416)  0.2304  0.0735 (0.0863, 0.3745) 

ρ -0.0057 0.3802 (-0.7510, 0.7389)  -0.0019 0.5743 (-1.1240, 1.1281) 0.0131 0.5784 (-1.1212, 1.1468) 

μV 0.3180 0.1127 (0.0971, 0.5389)  0.2745 0.5454 (-0.7941, 1.3432) 0.3487 0.6853 (-0.9940, 1.6922) 

μY 2.3289 2.1018 (-1.7902, 6.4487) 2.5385  2.6933 (-2.7395,7.8204) 2.0261 2.3512 (-2.5807, 6.6319) 

σY 1.1288 1.2032 (-1.2289, 3.4870) 1.1212  1.8515 (-2.5082, 4.7486) 1.0913 1.5164 (-1.8809, 4.0631) 

ρJ -0.0081 0.1517 (-0.3054, 0.2892) -0.1093 0.178 (-0.2402, 0.4581)  0.0934 0.1863 (-0.2721, 0.4590) 

λ 0.1079 0.1586 (-0.2030, 0.4188) 0.0999 0.1929 (-0.2782, 0.4790)  0.1115 0.1878 (-0.2570, 0.4801) 

 

 

 

 

 

 

 

 



28 
 

2. Natural Gas 

Mixed jumps Downside jumps Upside jumps 

Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI 

μ 2.3274 2.2255 (-2.0308, 6.6891) -4.7755 2.8056 (-10.2708, 0.7217) 9.4744 2.5358 (4.5018, 14.4402) 

θ 2.4085 1.2492 (-0.0402, 4.8570) 2.934 1.7848 (-0.5607, 6.4319)  1.7867 1.2135 (-0.5921, 4.1602) 

κ 0.0649 0.1379 (-0.2054, 0.3352)  0.0730  0.1359 (-0.1934, 0.3394) 0.0542 0.1951 (-0.3280, 0.4372) 

σV 0.1115 0.0496 (0.0143, 0.2087) 0.1084 0.0546 (0.0014, 0.2154) 0.1102  0.0645 (-0.0162, 0.2366) 

ρ -0.0052 0.3830 (-0.7560, 0.7448)  -0.0057 0.5758 (-1.1232, 1.1341) -0.0045 0.5836 (-1.1482, 1.1390) 

μV 0.1373 0.0234 (0.0914, 0.1832) 0.1512 0.0271 (0.0981, 0.2043)  0.1180 0.0291 (0.0610, 0.1750) 

μY 4.8117 1.7935 (1.2870, 8.3291)  3.0247 2.0994 (-1.0904, 7.1402)  6.4063 2.2052 (2.0807, 10.7273) 

σY 0.9988 1.0630 (-1.0850, 3.0821) 0.9608 1.7691 (-2.5095, 4.4297) 0.9969  2.2221 (-3.3607, 5.3518) 

ρJ 0.0257 0.0560 (-0.0841, 0.1355) -0.0802 0.0299 (-0.0216, 0.1388) 0.1305 0.1046 (-0.0745, 0.3355) 

λ 0.0853 0.1525 (-0.2136, 0.3842) 0.0931 0.1762 (-0.2520, 0.4381) 0.074 0.1898 (-0.2981, 0..4460) 
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3. Heating Oil 

Mixed jumps Downside jumps Upside jumps 

Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI 

μ -0.1621 1.2206 (-2.5540, 2.2301) -3.0562 2.3589 (-7.6820, 1.5692) 2.7384 2.2506 (-1.6704, 7.1520) 

θ 3.8170 1.2774 (1.3131, 6.3209) 4.9132  2.1607 (0.6827, 9.1520) 2.5683 0.9052 (0.7942, 4.3421) 

κ 0.1451 0.1253 (-0.1005, 0.3907) 0.1288 0.1791 (-0.2220, 0.4801) 0.1557 0.1697 (-0.1769, 0.4883) 

σV 0.2382 0.0614 (0.1179, 0.3585)  0.2325  0.0730 (0.0894, 0.3756) 0.2344  0.0745 (0.0884, 0.3804) 

ρ -0.0026 0.2813 (-0.5538, 0.5487) -0.0026 0.5778 (-1.1302, 1.1352)  0.0078 0.5775 (-1.1240, 1.1402) 

μV 0.3461 0.4134 (-0.4640, 1.1559)  0.3371 0.5808 (-0.8012, 1.4750)  0.3412 0.6514 (-0.9361, 1.6182) 

μY 2.0375 1.3770 (-0.6611, 4.7359)  2.1328 2.4926 (-2.7483,7.0192) 1.8607 1.7723 (-1.6128, 5.3309) 

σY 1.1918 1.1301 (-1.0232, 3.4068) 1.1288 1.6944 (-2.1902, 4.4518) 1.2072 1.738 (-2.1956, 4.5830) 

ρJ 0.0110 0.3645 (-00.7031, 0.7250) -0.0754 0.6846 (-1.2660,1.4172) 0.097 0.4302 (-0.74608, 0.9402) 

λ 0.1118 0.1172 (-0.1179, 0.3415) 0.1055  0.1894 (-0.2657, 0.4769)  0.1136 0.1879 (-0.2551, 0.4820) 
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4. Gasoline 

Mixed jumps Downside jumps Upside jumps 

Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI 

μ -0.6708 1.0202 (-2.6703 1.3289), ) -4.1004 2.2866 (-8.5801,0.3792) 2.7855 2.082 (-1.3009, 6.8718) 

θ -2.3268 2.0945 (-6.4301, 1.7797) -9.2494 2.9225 (-14.9806,-3.5210) 4.6889 2.1045 (0.5607, 8.8091) 

κ 0.1332 0.1168 (-0.0957, 0.3621) 0.0950 0.1446 (-0.1884, 0.3784) 0.1661  0.1838 (-0.1940, 0.5260) 

σV 0.2223 0.0569 (0.1108, 0.3338) 0.1881 0.0595 (0.0715, 0.3047)  0.2476 0.0771 (0.0965, 0.3987) 

ρ -0.0158 0.2805 (-0.5660, 0.5339) -0.0194  0.5762 (-1.1101,1.1490) -0.0116 0.577 (-1.1420,1.1192) 

μV 0.3151 0.4397 (-0.5471, 1.1768) 0.2344 0.1277 (-0.0159, 0.4847) 0.3832 0.9277 (-1.4350, 2.2014) 

μY 2.4122 2.0537 (-1.6086, 6.437) 2.9346 2.8794 (-2.7102, 8.5806) 1.7933  2.0495 (-2.221, 5.8108) 

σY 1.1512 1.2803 (-1.3582, 3.6608) 1.0668 1.7814 (-2.4206, 4.5586) 1.1895 1.7714 (-2.2794, 4.6590) 

ρJ 0.0116 0.2767 (-0.5309, 0.5538) -0.1116 0.1603 (-0.2026, 0.4258)  0.1344 0.5039 (-0.8533, 0.1220) 

λ 0.1078 0.1268 (-0.1407, 0.3563)  0.1004  0.1965 (-0.2848, 0.4860) 0.1109  0.1799 (-0.2421, 0.4629) 
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5. Fuel Oil 

Mixed jumps Downside jumps Upside jumps 

Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI Posterior mean Posterior std. dev. Posterior 95% CI 

μ -0.8019 1.0330 (-2.8270, 1.2231) -4.451 2.8063 (-9.9489,1.0487) 2.8793  2.0730 (-1.1792, 6.9428) 

θ -0.3325 1.0365 (-2.3639, 1.6988) 6.4848 2.1003 (2.3728, 10.6019) -7.1366 2.0674 (-11.1908,-3.0802) 

κ 0.1083 0.1206 (-1.1281, 0.3447)  0.0864 0.1261 (-0.1608, 0.3336) 0.1259  0.1874 (-0.2409, 0.4928) 

σV 0.2117 0.0586 (0.0968, 0.3266) 0.1766  0.0633 (0.0525, 0.3007) 0.2384 0.0774 (0.0867, 0.3901) 

ρ -0.0048 0.2759 (-0.5458, 0.5360) -0.0046  0.5720 (-1.1160, 1.1262)  0.0141 0.5703 (-1.1043, 1.1320) 

μV 0.2852 0.1991 (-0.1052, 0.6748) 0.2027 0.1835 (0.1569, 0.5622) 0.3562 0.5345 (-0.6910, 1.4042) 

μY 2.6524 1.1895 (0.3212, 4.9837)  3.1954 1.0185 (1.1992 ,5.1921) 2.0034 1.8364 (-1.6010, 5.6017) 

σY 1.1762 1.0819 (-0.9443, 3.2966) 1.0701 1.7845 (-2.4324, 4.5703) 1.2353 1.7721 (-2.2432,4.7107) 

ρJ -0.0176 0.1268 (-0.2661, 0.2309) -0.1252 0.6769 (-1.2010, 1.4522) 0.0907 0.2035 (-0.3082, 0.4901) 

λ 0.0981 0.1074 (-0.1124, 0.3086) 0.086  0.1876 (-0.2824, 0.4539)  0.1062  0.1901 (-0.2661, 0.4790) 
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Table 3 Sample correlation matrix for futures volatility changes and for futures volatility changes 

filtered from jump components 

Below the diagonal is the sample correlation matrix of the estimated futures volatility changes, 

, , 1
ˆ ˆ , 1.2....5, 1,2,..., .i t i tV V i t T−− = = Above the diagonal is the sample correlation matrix of the estimated futures 

volatility changes filtered from the estimated jump components 

                      ξ ,
V J ,

1 ( ) ( )
, ,1

( ) , 1,2,...,5, 1,2,...,M V j j
i t i tj m

M m J i t Tξ−
= +

= − = =∑ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Sample correlation matrix for returns and for returns filtered from jump components 
Below the diagonal is the sample correlation matrix of log returns; 

, , 1, 2,...,5, 1, 2,..., .i t i t Tϒ = = Above the 

diagonal is the sample correlation matrix of log returns filtered from the estimated jump components 

              ξ , J ,
1 ( ) ( )

, ,1
( ) , 1, 2,...,5, 1, 2,...,M j j

i t i tj m
M m J i t Tξ− ϒ

= +
= − = =∑ . 

 Crude oil Natural gas  Heating oil gasoline Fuel oil 

Crude oil 0.1017 0.8987 0.8416 0.6819 

Natural gas 0.1207 0.1 0.0087 0.0913 

Heating oil 0.9135 0.1134 0.8022 0.6501 

gasoline 0.8543 0.0178 0.8208 0.5733 

Fuel oil 0.7174 0.1011 0.6757 0.6215 

 

 

 

 

 

 

 Crude oil Natural gas  Heating oil gasoline Fuel oil 

Crude oil 0.0019 0.813 0.7055 0.7288 

Natural gas 0.0115 0.0648 0.0819 0.0419 

Heating oil 0.8412 0.0667 0.6804 0.7047 

gasoline 0.72491 0.0857 0.7145 0.6528 

Fuel oil 0.7581 0.0446 0.7224 0.67016 
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Table 5 Estimated simultaneous jump intensities 

Estimated simultaneous jump intensities between pairs of energy futures. For two given futures, the intensity 

is estimated as the number of simultaneous jumps divided by the number of overlapping observations. For a 

single futures, the intensity is simply the number of jump times divided by the number of observations. (**) 

denotes a one-side significance at 99% level and (*) denotes a one-side significance at 95% level. The left 

(right) of (.,.) denotes the simultaneous downside (upside) jump intensities. 

 

Crude oil Natural gas Heating oil Gasoline Fuel oil 

Crude oil (0.1031 , 0.1178) 

Natural gas ( 0.0203** , 0.0037**) (0.1289 , 0.035) 

Heating oil (0.0902** , 0.0847**)  (0.0331** , 0.0018**) (0.1657 , 0.1031) 

Gasoline (0.0737* , 0.0718*) (0.0147** , 0.0000*) (0.0828** , 0.0700**) (0.1123 , 0.1344) 

Fuel oil (0.0442** , 0.0645**) (0.0092* , 0.0036*)  (0.0445** ,  0.0497**) (0.0450** , 0.0516**) ( 0.0534 , 0.1271)
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Table 6 Conditional jump spillover probabilities 

Estimated jump spillover probabilities from chosen benchmark energy futures to other energy futures. For a given nonbenchmark energy futures, the jump spillover 

probability is estimated as the number of the futures jumps that occur, depending on which is meaningful, either simultaneously as or on the day following a benchmark 

futures jump, divided by the number of jump times of the benchmark futures. (**) denotes a one-side significance at 99% level and (*) denotes a one-side significance at 95% 

level. 

 

  

Benchmark 

Crude oil Natural gas 

Same-day Next-day Same-day Next-day 

   jump 
Downside 

jump 

Upside 

jump 
jump 

Downside

jump 

Upside  

jump  
jump 

Downside

jump 

Upside 

jump 
jump 

Downside  

jump 

Upside 

 jump 

Crude oil － － － － － － 0.2360** 0.1571** 0.1579** 0.2247* 0.1429** 0.1053** 

Natural gas 0.1917** 0.1964** 0.0313** 0.1667** 0.1262** 0.0156** － － － － － － 

Heating oil 0.7917** 0.875** 0.7188** 0.3583** 0.3928** 0.2813** 0.2697** 0.2571** 0.1053** 0.2360** 0.2143* 0.0526** 

Gasoline 0.6583** 0.7143** 0.6094** 0.3250** 0.2857** 0.2500** 0.2921** 0.1714** 0.0526** 0.2809** 0.1571** 0.0526* 

Fuel oil 0.4917** 0.4286** 0.5469** 0.2833** 0.2321** 0.3125** 0.1685** 0.0857** 0.2105** 0.1685** 0.0714* 0.1053** 
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Table 7 Conditional probabilities of Spillover from Jumps to Return 

Estimated probabilities that jumps in the chosen benchmark energy futures translate into unusually large negative returns in other energy futures. We define an unusually large 

negative return of given futures as a historical return that belongs to the lowest decile of that futures dataset. For a given nonbenchmark futures, the probability is estimated as 

the number of the futures unusually large negative returns that occur, depending on which is meaningful, either simultaneously as or on the day following a benchmark 

futures jump, divided by the number of jump times of the benchmark futures. (**) denotes a one-side significance at 99% level and (*) denotes a one-side significance at 95% 

level. 

 

   

Benchmark 

Crude oil Natural gas 

Same-day Next-day Same-day Next-day 

    jump  
Downside 

 jump 

Upside 

 jump 
jump  

Downside

 jump 

Upside 

 jump 
 jump  

Downside

 jump 

Upside 

 jump 
jump  

Downside

 jump 

Upside 

 jump 

Crude oil － － － － － － 0.2809** 0.2286** 0.3684** 0.2135** 0.2000** 0.2105** 

Natural gas 0.2167** 0.2632** 0.1852** 0.1583** 0.0313** 0.1563** － － － － － － 

Heating oil 0.8250** 0.8947** 0.8148** 0.6583** 0.2969** 0.3125** 0.2697** 0.3714** 0.2632** 0.2360** 0.1857** 0.1053** 

Gasoline 0.7000** 0.7368** 0.7778** 0.5250** 0.2969** 0.2813** 0.3258** 0.2286** 0.1579** 0.3034** 0.1286** 0.1053* 

Fuel oil 0.4917** 0.4737** 0.5926** 0.3000** 0.1563** 0.1563** 0.2135** 0.1857** 0.3158** 0.1685** 0.1000** 0.1579** 
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Table 8 Average Jump Sizes of Simultaneous Jumps 

Average estimated latent sizes of simultaneous jumps in returns. Element i j i, j=1,2,…,5 is the average size of the jumps in futures i that are simultaneous with jumps in 

futures j and is calculated as * * * *
, , , , ,1 1

ˆˆ ˆ ˆ ˆ/T T
i t j t i t i t j tt t

J J J Jξ ϒ
= =∑ ∑ , where ,î tξ ϒ , t=1,2,…,T, are the estimated latent sizes of jumps in returns for futures i. The left (right) of (.,.) denotes 

the simultaneous downside (upside) jump intensities. 

(downside , upside)  Crude oil Natural gas  Heating oil gasoline Fuel oil 

Crude oil (-1.3876 , 1.7791) (-1.1117 , 1.5449) (-1.1573 , 0.5677) (-0.8862 , 0.5183) (-0.3754 , 0.6932) 

Natural gas (-1.3238 , 1.3617) (-1.6501 , 3.2665) (-1.3218 , 2.5912) (-1.7991 , 0.4085) (-2.3616 , 0.8670) 

Heating oil (-0.7726 , 0.3206) (-1.0496 , 0.5787)  (-1.2048 , 0.5408) (-0.7795 , 0.3482) (-0.2004 , 0.3126) 

gasoline (-1.2962 , 0.3568) (-0.7503 , 1.2056) (-1.4214 , 0.2974) (-1.6715 , 0.5556) (-0.7156 , 0.4336) 

Fuel oil (-0.8420 , 0.6568) (-0.0320 , 1.7562) (-0.8396 , 0.4950) (-0.884 ,0.5856 ) (-1.1442 , 0.9818) 
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Figure 1 The Price of five energy futures 
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Figure 2 Log-returns, Volatilities, and the Probabilities of Jumps for Five Energy Futures 
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Figure 2(a): Crude Oil 
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Figure 2(b): Natural Gas 
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Figure 2(c): Heating Oil 
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Figure 2(d): Gasoline 
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Figure 2(e): fuel oil 
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