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In this article, we propose a process-based definition of big data, as opposed to the
size- and technology-based definitions. We argue that big data should be perceived as a
continuous, unstructured and unprocessed dynamics of primitives, rather than as points
(snapshots) or summaries (aggregates) of an underlying phenomenon. Given this, we
show that big data can be generated through agent-based models but not by equation-
based models. Though statistical and machine learning tools can be used to analyse
big data, they do not constitute a big data-generation mechanism. Furthermore, agent-
based models can aid in evaluating the quality (interpreted as information aggregation
efficiency) of big data. Based on this, we argue that agent-based modelling can serve
as a possible foundation for big data. We substantiate this interpretation through some
pioneering studies from the 1980s on swarm intelligence and several prototypical agent-
based models developed around the 2000s.

Keywords: Big data; swarm; prediction markets; information aggregation; agent-based
models; abduction

1. Introduction

Few developments have garnered the imagination and attention of researchers and the
public alike in recent years in the way big data has. The scale of data becoming available for
academic and commercial research has been growing exponentially since the beginning of
the 2000s and this has opened many possibilities, concerns and speculations. This big data
phenomenon has enjoyed a sweeping reach across different disciplines ranging from particle
physics to history, and from epidemiology (Howe et al., 2008) to economics (Einav &
Levin, 2014; Varian, 2014). Despite the brouhaha, however, there is relatively little research
devoted to the ontological nature of big data, methodological aspects and its epistemological
possibilities (and the associated boundaries). These questions need to be addressed in order
to gain a deeper understanding of big data and to harness its potential.

The term big data is often used alongside the term ‘computational social sciences’, pos-
sibly due to the important role that data mining and computational tools play in organizing,
processing and analysing high-dimensional, often unstructured data. The popularity of the
term big data is however more recent in comparison to the inception of computational social
science (CSS) as an independent research field. For instance, consider the authoritative four-
volume collection of articles (Gilbert, 2010). We find 66 influential papers in the field of
CSS, published all the way from the 1960s to the beginning of the twenty-first century. These
articles include some of the pioneering papers that exemplify the field of CSS. However,
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in these four volumes, one fails to find explicit references to what is now known as the
big data phenomenon. The articles in Gilbert (2010) begin with agent-based models and
end with a methodological part and much of the attention is devoted to addressing various
issues related to model-building, such as verification, validation and principles related to
agent-based modelling. However, there is a noticeable change that occurred in the literature
developing since the late 2000s, (i.e. roughly in the years after the survey by Nigel Gilbert),
where big data is explicitly included as an essential part of CSS (Cioffi-Revilla, 2014).
Some scholars even identify CSS predominantly with big data (Alvarez, 2016; Lazer et al.,
2009).1 This shift in focus also places little emphasis on agent-based modelling and its role
in CSS.2

Some early and well-cited examples (Epstein, 2007; Epstein & Axtell, 1996) and other
classic contributions in the area of CSS are collected in Gilbert (2010).3 In this collection,
CSS is mainly characterized as the employment of a new kind of model, known as the
agent-based model, for simulating and understanding a variety of social phenomena.4 The
theoretical underpinnings of these models are traced back to John von Neumann’s work on
the theory of automata and the later contributions by John Conway and Stephen Wolfram.
These initial efforts and later studies (Schelling, 1971) attempt to better understand the nature
and functioning of the physical universe and social systems through a class of computational
models. These models can be seen as providing a fundamentally different and novel way
to view how various aggregate patterns can be generated bottom-up from individual-level
phenomena. More importantly, they attempt to distinguish their generation process from
the conventional equation-based models. Hence, the essence of agent-based modelling can
thus be seen as a new way of thinking about the ‘data-generation process’, instead of data
per se, regardless of its size or granularity.

It may be argued that the nature of the data-generation process in social systems has
remained largely unchanged. However, since the late 2000s, mainly due to the developments
in information and communications technology (ICT), there have been remarkable advances
in the areas of data-collection and data-archiving processes. A variety of data which can
only be imagined or artificially generated and analysed in CSS have now become viable
and available in reality for social scientists to work with. These developments in CSS can
be seen as providing a new momentum and possibly enable it to broach new frontiers which
were previously not possible. As mentioned earlier, this development has, intentionally or
otherwise, shifted the attention of the scholars from data generation to that of data and
its practical uses. This trend is best exemplified in the use and abuse of the term ‘data-
driven science’, with little focus on underlying theories or even being ‘theory-free’. This
unfortunate shift has also managed to confine CSS to a subject that merely engages in data
mining or knowledge discovery. Given this, we can ask whether big data is a mere neologism
or is there something genuinely novel about it?

Despite the exponential growth in the number of research articles on this subject, there
is little research to understand this big data phenomenon from ontological, epistemological
and methodological perspectives. Neither is there a systematic effort to search for possible
theoretical foundations, especially from the viewpoint of the social sciences. This paper is
an attempt to fill this gap. First, the paper highlights that the existing definitions of big data
in the literature do not provide sharp ontological boundaries to distinguish it from other
forms of data. We propose and adopt a process-based definition and argue that big data
should be perceived as a continuous, unstructured and unprocessed dynamics of primitives,
rather than points (snapshots) or summaries (aggregates) of an underlying phenomenon.
Second, by focusing on the data-generation aspect of agent-based models and based on our
definition, we demonstrate that they are capable of generating big data. In fact, it is the only
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model that can generate big data to the best of our knowledge. Third, in so far as social
phenomena can be viewed as resulting from the actions of individuals and their interactions,
we argue that the quality of big data generated in the social sciences needs to be assessed
based on its information aggregation efficiency (along the lines of the Hayek hypothesis
(Hayek, 1945; Smith, 1982)). To this end, we show that agent-based models provide a way
to achieve this goal through two different examples. Finally, based on its ability to generate
big data, its power to be able to ‘speak’ to big data and its ability to serve as an abductive
tool for knowledge discovery, we propose that agent-based models can provide a possible
foundation for big data.

There are important relevant issues concerning this theme, and the social sciences in
particular, that we do not address in this paper due to space limitations. These include
some of the frontier work on causal inference in the context of machine learning (Athey
& Imbens, 2016) and the ethical aspects associated with big data. For similar reasons, we
do not discuss engineering-related concerns or provide a detailed review of any specific
statistical method or machine learning tools that are used in the analysis given that ours is
a more general argument about method, i.e. how explanations are made. The rest of this
paper is organized as follows. Section 2 proposes a process-based definition of big data.
Section 3 shows how agent-based modelling fits this operational definition of big data using
two pioneering studies on swarm intelligence. In Section 4.2, we consider the notion of
information aggregation in this context and its relation to addressing the quality of big data.
We use prediction markets as an example, and show how the quality of big data can be
evaluated through an agent-based model, viz. the agent-based prediction market.

2. What is big data?

In order to understand what is novel about the big data phenomenon, we need to have a
clear idea about how it differs from our prior understanding of data. To do so, we break this
query into three sub-questions, much in the Kantian mode.5 We ask (a) what is big data,
(b) what can we know from big data and (c) how can we know from big data? Essentially,
these are questions of the ontology, epistemology and methodology of big data, respectively.
Concerning the ontological question, we need to identify characteristics that define big data
and features, if any, that clearly distinguish big data from other forms of data; in other
words, we need a clear definition of big data. At the risk of being flippant, in this article we
refer to other forms of data as ‘small data’ for the sake of simplicity. The origins of the term
Big Data have been traced to the period roughly around the turn of the twenty-first century
(Diebold, 2012). Despite rapid developments over the years, a clear and comprehensive
definition of big data still remains elusive.

Let us start with a prominent definition of big data in the literature in terms of the 3Vs:
volume, velocity and variety. The volume aspect calls attention to the magnitude of the
data, which has been continuously increasing over time. Velocity refers to the frequency
with which data are generated, the time taken to harness this data and the speed at which
we can analyse data. The rapid growth of hand-held devices, internet users and increased
computing power has resulted in the availability of real-time or near-real-time data which
are ready for analysis. Variety, on the other hand, indicates the diversity in the data types
that are available. In addition to the structured, tabular or rectangular data, big data is said to
include non-traditional, semi-structured and unstructured data in the form of text, images,
video, audio and different types of metadata.6 Other attempts to distinguish the novelty of
the big data phenomenon focus on the technologies and the compendium of fast developing
techniques that enable the storage and processing of high magnitudes of data. The relative
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focus of the technology-based definition is not on magnitude, but on methods that facilitate
the extraction of insights that can help in decision-making and prediction.7 In particular, its
novelty is attributed to the use of statistical and machine learning techniques for data mining
(or sometimes referred to as big data analytics). These include text analytics (for example,
natural language processing and sentiment analysis), audio, video analytics, social media
analytics and predictive analytics.8

However, neither the definition based on magnitude (3Vs) nor the one based on tech-
nologies provides a clear ontological boundary to distinguish big data from small data.
For instance, the exponential growth of data has been a continually occurring phenomenon
through the years since systematic data collection started. What is considered as big today
is almost surely on its way to becoming relatively small in the years to come. Similarly,
high-frequency data has been a familiar term among scholars studying financial markets
at least since the mid-1980s (Bansal, Gallant, Hussey, & Tauchen, 1995; Taylor, 1987).
Similarly, variety also fails to account for the novelty of big data given that non-conventional
sources of data such as text and videos, as we will see in Section 3, have long been
employed for analysing various phenomena much before the term big data became popular.
Attempts to distinguish characteristics like volume, velocity and variety in such definitions
invariably suffer from context specificity: they are relative to a certain time and the state
of technology, and therefore lack the ontological clarity that we seek.9 What about the
technological and tools-oriented view of novelty associated with big data? They too suffer
from the above-mentioned shortcomings. More specifically, data mining tools ranging
from statistical learning, regression analysis, tools inspired from machine learning, natural
language processing, computational intelligence tools such as fuzzy logic, neural networks,
genetic algorithms, instance-based learning, reinforcement learning and so on had been
developed long before the mid-1990s or even before.10 It is also worth recalling that the
idea and techniques associated with data mining had already been developed during the days
of data warehousing (Kantardzic, 2003). Therefore, the techniques and tools utilized by big
data analytics alone fail to explain what constitutes big data and the associated novelty.11

While we do not intend to add a new definition of big data in this paper, we adopt a
relatively neglected definition in the literature. The definition which we follow is motivated
by the director of the United Nations Global Pulse project, Robert Kirkpatrick (2014):

Global Pulse is interested in trends that reveal something about human well-being, which
can be revealed from data produced by people as they go about their daily lives (sometimes
known as ‘data exhaust’). Broadly speaking, we have been exploring two types of data in the
Pulse Labs. The first is data that reflects ‘what people say,’ which includes publicly available
content from the open web, such as tweets, blog posts, news stories, and so forth. The second
is data that reflects ‘what people do,’ which can include information routinely generated for
business intelligence and to optimize sales in a private sector company. An example of ‘what
people do’ data is anonymised mobile phone traffic information, which can reveal everything
from footfall in a shopping district during rush hour to how a population migrates after a
natural catastrophe. (Kirkpatrick, 2014, p. 4)

Our concern in this section is to define and understand the nature of big data and its usage
in the realm of the social sciences. Given this focus, we define big data as follows: big data
is, in a given spatio-temporal domain, the continuous archive of whatever people said, did
and even thought. In other words, it is a microscopic and dynamic view of human activities.
Though this definition may seem narrow, it provides a clear ontology for big data.12 What
follows from this definition is the realization that big data is nothing new; so long as there are
human activities in a society, there is big data, whether or not we record, store and analyse it.
However, it can be argued that, in the past, one did not have adequate technology to archive



366 S.-H. Chen and R. Venkatachalam

a substantial proportion of this data. With the remarkable advancements in recent years in
information, communication and digital technology (ICDT), data have become ‘big’ as our
communication activities concerning leisure and commerce have moved to the Internet.
These in turn have moved into our phones, cars and even our glasses. These activities
and a substantial portion (by no means complete) of social life can now be recorded and
quantified in a way that would have been hard to imagine just a decade ago. Given this, it is
understandable that some definitions place a great emphasis on the technological aspects,
which makes the realization of big data possible. The shortcomings of these definitions lie in
the fact that they blur the line between the intended phenomenon that they strive to capture
(or target) and the tools which allow us to reach this target or capture the phenomenon.13 To
make this point clear, in Section 3, we qualify our definition by bolstering this claim with
some pioneering studies on swarm intelligence long before the current state of ICDT.

Following this definition, what actually makes big data novel for us is not its ontological
aspect, but rather its epistemological aspect. Alternatively, the novelty is not its existence
but our awareness of its existence. This awareness of big data certainly broadens our
perception of what we traditionally understand as data along the lines of Euclidean geometry
(rectangular data) to the possible non-Euclidean manifestations (images and voices). A
number of prominent definitions of big data attempt to try to capture the novelty of this
generalization. Novelties certainly imply several non-trivial extensions to our understanding
and concepts to embody them.14 Big data in this framework can be simply seen as a
continuous, structured or unstructured, unprocessed dynamics of primitives rather than as
points (snapshots) or summaries (aggregates) of an underlying phenomenon. Note that our
definition of big data eschews physical size constraints and the volume criterion that appears
in the 3V or 5V characterization is not required. It is more general since it circumvents any
temporal and context specificities that plague other definitions. However, if we instead
consider how much people said, did and thought, these are a function of their actions and
interactions with the number of objects in their environment. In this case, our definition of
‘big’ data is naturally big if a large group of people are being considered, vis-à-vis a smaller
group. Formally, if the number of objects in a specific spatio-temporal domain is N , then
we may expect that the size of ‘big’ data will grow in O(N ).15 Since in most contexts to
which big data are applied come with an N that is large enough, our definition automatically
implies a non-trivial size.

In a nutshell, by emptying out technological and physical essentials in various defini-
tions, we hope to have characterized big data through a concise definition. This, however,
does not mean that the technologies which help access big data are unimportant or that they
should be taken for granted. It is quite the contrary. Neither does it imply that we should
assume away the psychological and cognitive effects associated with being exposed to big
data as a decision-maker. We simply distinguish them as being causes for or consequences
of big data, and not big data per se. In the following section (Section 3), we give two
illustrations, both of which fit the big data research paradigm in the view of our definition.
They address methods of big data research, how they produce explanations and outline how
we can engage with big data. It is important to note that these studies were conducted in the
1980s, i.e. two decades before the advent of the big data era. This further bolsters the claim
that our definition is not bound by technological and physical (size) concerns.

3. Two studies on swarms

In this section, we look at two pioneering studies which investigated collective behaviour
exhibited by different species. First, we look at the contributions by Brian Partridge and his
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colleagues (Partridge, 1981) in the field of marine biology, who studied schooling behaviour
among different fish species. Outlining their novel methodological approach, we argue that
the data collected from their experiments is in fact big data, along the lines in which it
is defined in Section 2. Second, we examine another strand of research initiated by Craig
Reynolds in his Boid project (Reynolds, 1987) to understand collective motion among birds,
animals and fish through computer simulations.16 Based on these studies, we outline and
argue how agent-based modelling can be seen as a possible foundation for big data.

3.1. Schools of fish

Collective behaviour exists in various animal societies, for instance, swarming and flocking
among birds, synchronized flashing among fireflies, schooling and shoaling among fish
and herding behaviour among various animals, to cite a few. The possible motivations
and the mechanics behind such behaviour have fascinated researchers for long and still
continue to do so (Bonabeau, Dorigo, & Theraulaz, 1999; Ballerini et al., 2008a, 2008b;
DeLellis et al., 2014; Katz, Tunstrøm, Ioannou, Huepe, & Couzin, 2011; Partridge, 1981).
Brian Partridge made one of the pioneering contributions on how groups of animals can
sometimes move, act and make decisions as though they were a single super unit. He
was studying the Atlantic Pollock (Pollachius virens, also known as Saithe), a species
of fish that exhibits schooling behaviour, with the aim of shedding light on the structure
and function of schools (Partridge, 1981, 1982). For this, it was critical to know how
synchronization and co-ordination are achieved among different individuals in a school. To
develop a comprehensive understanding of how the school stayed together and moved as a
unit, Partridge and his team came up with a new technique, which later turned out to have a
profound impact in the study of swarming behaviour among various animals. In contrast to
the earlier attempts, they realized the importance of following every individual member of
the school, continuously observing them, and more crucially, [t]he importance of looking
at the interactions between members of schools instead of merely sampling school structure
at discrete intervals (Partridge, 1981, p. 314).

Subsequently, they ventured to record the three-dimensional positions and identify
interactions among each and every individual fish in a freely swimming school (of around
20–30 members) which was continuously observed over a period of time. The fish were
allowed to swim freely in a large doughnut-shaped tank at the University of Aberdeen in
Scotland and their movements were filmed. While the fish were swimming, the experimenter
lay on a rotating gantry above the tank and followed the movements of the school, providing
commentary on the relative positions of the individuals.17 After filming, Partridge and his
team painstakingly measured the relative positions of the individual fish in more than 12,000
frames of film. They carefully studied various correlation measures between different fish,
their relative positions, velocities and so on. Through a detailed analysis of this dynamic
stream of data, his team discovered key empirical rules that permitted the school to move
as a unit. These rules were that the Pollock: (a) ‘match changes in both swimming direction
and speed of their neighbours but correlations are greater for swimming speed’ and (b)
‘simultaneously match the headings and swimming speeds of at least their first two nearest
neighbours within the school. (Partridge, 1981, p. 313)’.

Their mode of analysis may seem rudimentary by modern standards. However, it is
worth noting that these behavioural rules discovered among Atlantic Pollocks, expressed in
slight variations, are believed to underlie many complex group movements, from schools of
fish to flocks of birds, swarms of insects and crowds of humans. Although their method of
data collection is quite labour-intensive, the innovation in terms of the method introduced
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by Partridge has been followed even in the recent past (Katz et al., 2011). It has also been
adopted to study flocking behaviour among birds (Ballerini et al., 2008a, 2008b; Hayes,
2011), for instance, using stereoscopic photography. Similarly, long-distance navigation
patterns among homing pigeons are obtained in a similar manner by attaching lightweight
GPS devices to collect high-resolution spatio-temporal data (Nagy, Ákos, Biro, & Vicsek,
2010).

It is fairly easy to see the connection between the nature of the data generated in
these studies and what we refer to as ‘big data’ in the social sciences. The decentralized,
unstructured and continuous nature of the data stream which is generated is, in fact, the
hallmark of what we have come to understand as big data. It is squarely within the scope
of the process-based definition that was presented in the previous section. In the context
of human societies (as opposed to fish in the case of Partridge), big data can be thought of
as an archive of whatever people did, said or even thought. As we have seen, Partridge’s
data allow us to get as close as possible to see how agents (fish) interact and how collective
dynamic patterns emerge at the macroscopic level. Even though the rules they found are
simple, the data analysis involved in selecting among competing behavioural assumptions
may be non-trivial and extremely time-consuming.

A data-driven approach to unearth behavioural rules from high volumes of data has been
argued as the essence of the big data approach.18 There have been remarkable improvements
in the methods that are used to learn statistical patterns from the data, which has advanced
the correlation methods that Partridge had employed. Machine learning algorithms such as
the Isometric mapping algorithm (ISOMAP) have been employed to study various aspects
of collective behaviour (DeLellis et al., 2014) from video data. However, these statistical
and machine learning algorithms do not in themselves delineate the ontological aspect of
big data, but rather only help facilitate the analysis as tools often do. We argue that although
Partridge carried out his work almost 35 years ago, the data that he obtained can be regarded
as big data from an ontological standpoint. Attempts to discover empirical patterns from
continuous observations of unprocessed dynamics of primitives, however, can surely be
increased in sophistication (often referred to as big data analytics) using machine learning
techniques and tools from computational intelligence. However, the approach as a whole
remains conceptually and qualitatively similar to the one employed by Partridge.

3.2. Flocks of birds

Craig Reynolds made another important innovation in terms of the method used to
understand swarming behaviour. Partridge’s seminal work and other studies in that tra-
dition uncovered important behavioural rules underpinning schooling behaviour by careful
experimentation, collecting big data and by employing data mining. By contrast, Reynolds
resorted to simulations for understanding the aggregate motion among birds (Reynolds,
1987). He programmed artificial birds, bird-oids or boids, which were then simulated and
each boid could be tracked. Reynolds assumed that flocks emerged as a result of interaction
among the individual boids. He employed a distributed behavioural model, comprising the
following behavioural rules for the boids (Reynolds, 1987, p. 28): (i) collision avoidance,
(ii) velocity matching with the neighbouring boids (in the same direction) and (iii) flock
centering or cohesion. Based on these simple rules, Reynolds was able to demonstrate that
flocking behaviour resulted even when boids were moving randomly to begin with. In other
words, the local interaction among boids which followed the above mentioned behavioural
rules was shown to spontaneously generate flocks.
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Figure 1. Agent-based simulation of big data.

Although Reynolds simulated flocks of birds (boids), the same model can be readily
applied to simulating schools fish and other forms of collective behaviour. This marked an
important breakthrough in thinking about bottom-up, local, interaction-based computational
models for studying collective behaviour and the eventual structure of the flocks and the
schools started to be viewed as an ‘emergent’ behaviour. His animation approach laid the
foundation for almost all the subsequent advances in understanding complex, collective
behaviour through simulations. Reynold’s Boids project can even be considered as a primer
on agent-based modelling since the design of agents and their behavioural rules constitute
the starting point of the latter. In fact, Reynolds (1987) has been regarded as one of the
precursors of what has come to be known as computational social sciences (Gilbert, 2010).

Each boid can be tracked and data on the behaviour of each boid (what it ‘did’) are
continuously generated throughout the simulation. In other words, there are agent-level data
which provide a microscopic view of the simulated system. It is worth further examining
these two methods to deal with big data put forward by these two pioneering studies on
swarms. In the case of Partridge, big data was obtained through observing a phenomenon
and the behavioural rules were derived using statistical methods. By contrast, Reynolds’
study, which is a precursor to the modern day agent-based models, generated big data based
on given behavioural rules that were assigned to individual boids. This is shown in Figure 1.

Agent-based models can thus generate big data as defined in Section 2, and can take into
account local interactions. Although behavioural patterns were inferred through statistical
methods in the study by Partridge, it should be noted that there was no guarantee that these
exact behavioural rules, when followed by the agents in a system, would lead to the observed
collective behaviour at the macroscopic level. In addition, not all observed statistical
patterns may be relevant, but only a selective subset of them need to be incorporated
into an explanatory hypothesis. It is here that Reynolds’ simulation approach employing
agent-based models becomes important. It acts as a means to validate or corroborate the
insights obtained via experiments, surveys or detailed observations. Similarly, alternative
behavioural rules can be easily tested as potential explanations for the phenomenon. Thus,
they outline a scope for detailed computational experiments to evaluate different theories.
The logic behind this combined activity of hypothesis generation (for explanatory purposes)
and its validation (through simulations) can be seen as abductive reasoning.

3.3. Abduction and Agent-based models

Abduction, or retroduction, is a form of inferential reasoning in the philosophy of science that
is distinct from deduction and induction. Abductive reasoning was championed by Charles
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Sanders Pierce, who in turn was influenced by Kant. Deductive reasoning involves inference
about a particular object based on the knowledge of characteristics of the population to which
that object belongs, in other words, a top-down logic. Inductive reasoning, on the other hand,
proceeds to infer characteristics of a population based on the characteristics of a sample, a
bottom-up logic. Peirce distinguishes abduction from these two modes of reasoning:

Abduction is the process of forming an explanatory hypothesis. It is only logical operation
which introduces any new idea; for induction does nothing but determine a value, and
deduction merely evolves the necessary consequences of a pure hypothesis.
Deduction proves that something must be; Induction shows that something actually is opera-
tive; Abduction merely suggests that something may be. (Peirce, 1903, 5.172)

Although induction and abduction are both ampliative forms of reasoning (unlike deduc-
tion), they cannot be reduced to each other and they also differ in their targets or aims. While
the target of induction is inference about a future course of events (beyond the observations
at hand), abduction aims to infer explanations of observed events (Schurz, 2008). Thus,
explanatory concerns are at the heart of abduction. In recent times, abduction has been
largely identified with the notion of Inference to the Best Explanation (IBE). However,
there is an important distinction between the Peircean view of abduction and the views of
those like Peter Lipton who identify abduction as IBE: while the Peircean focus is on the
process of generating an explanatory hypothesis, IBE involves both hypothesis generation
and its evaluation (Campos, 2011).

Abductive reasoning has also garnered the attention of economic methodologists and
other social scientists in the past (Lawson, 2003, 2006; Mabsout, 2015; Simon, 1977).19

Agent-based modelling can be understood as a form of abductive inference if we take
a bird’s-eye view of the underlying process20: one starts with a surprising observed fact
or phenomena that is to be explained; explanatory hypotheses about behavioural rules of
individual agents and their rules of interaction are abductively selected among competing
explanations; this hypothesis is then evaluated through multi-agent simulations to see
whether it may be sufficient to explain the phenomenon in question.

A few points are worth noting here: (i) Even if behavioural rules may be based purely
on statistical facts, eventual hypothesis selection is not trivial. The precise form that a
hypothesis takes involves selecting a subset or a specific combination among these statistical
facts (usually with some error-prone additions to them) that a modeller considers relevant to
constitute an explanation. (ii) Agent-based modelling is more akin to abduction understood
as ‘inference to the best explanation’ where hypothesis selection and its evaluation are
both combined. However, the notion of best explanation ought to be seen as the ‘lovelist’
explanation and not strictly as the ‘likeliest’ explanation (Campos, 2011). (iii) Discovery
through agent-based simulations showcases how researchers often go back and forth using
different tools and techniques (method) to produce explanatory insights (epistemology).
This can be clearly seen in the example discussed above to explain how schools and flocks
emerge. (iv) The implicit process of arriving at a plausible (not necessarily true) explanation
to the explanandum through trial and error simulations involves computationally experi-
menting with plausible hypotheses via heuristic search. The choice among several such
potential explanations is in turn often disciplined by the criteria of parsimony. This process
of discovery as problem-solving itself can be seen as abductive reasoning.

Returning to Partridge’s approach, it should be noted that it has an obvious counterpart
in the field of behavioural finance. It is similar to the approach employed in the early
findings concerning fundamentalists and chartists in the financial markets, which was based
on the analysis of the data from different kinds of surveys, such as questionnaires and
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telephone interviews, with financial specialists, bankers, currency traders and dealers (Allen
& Taylor, 1990; Frankel & Froot, 1990). These behavioural rules are obtained as statistical
abstractions, which since then have been utilized and extensively experimented with in the
literature on agent-based financial markets.

In conclusion, given their ability to generate and speak to big data, agent-based models
can serve as a foundation for big data analysis. Since agent-based simulation can generate big
data, it is interesting to see whether and how the big data thus generated can be meaningfully
related back to the big data obtained from laboratory, natural and field experiments. The
two approaches are in fact complementary: experimental and statistical methods can offer
us a window into underlying behavioural rules, and the use of agent-based models can
regenerate the same phenomena at various levels and help identify the sufficient (and
possibly necessary) behavioural rules.

4. Quality, not just quantity

Big data is often characterized in terms of its quantity (volume). However, the feature of
critical importance is its quality. In this section, we examine the issue of identifying the
quality of information embodied in big data; in other words, the reliability of knowledge
about social phenomena that is inductively inferred through statistical aggregation. In a
variety of situations ranging from health care and education to migration and elections,
data are pooled together and often aggregated or fused from diverse sources (Einav &
Levin, 2014). One of the advantages of big data and machine learning tools allegedly stems
from its efficiency in terms of information aggregation. In this context, several questions
arise: How efficient is information aggregation resulting from big data methods compared
to other aggregation mechanisms such as markets? Are there limits to such information
aggregation? Does bigger data necessarily imply better information or knowledge? Do vast
amounts of micro-level information pooled from diverse sources necessarily guarantee a
superior collective opinion, i.e. the ‘wisdom of crowds’?

The issue of information aggregation is discussed in detail in the literature on the
Hayek hypothesis (Smith, 1982). In the spirit of Hayek (1945), we ask whether there
exist mechanisms that can help pool and aggregate knowledge that is dispersed among the
individuals in a society, better than markets do. Big data tools that employ developments
in computational intelligence can be viewed as a potential candidate for such a mecha-
nism. This essentially boils down to addressing whether developments in computational
intelligence can overcome the problems that might plague a central planner in theory. Such
a possibility is intimately related to the central issue of the socialist calculation debate.
Massive amounts of data from social media platforms and blogs are now easily available for
analysis. This, in conjunction with increased computational power, developments in natural
language processing, sentiment analysis and computational intelligence, is perceived as a
promising avenue to effectively aggregate information, for instance, in the case of elections.

Cass Sunstein addresses this issue in response to the claim by Richard Posner that blogs
had the ‘potential to reveal dispersed bits of information’ and rightly cautions about any
misplaced celebrations (Sunstein, 2008). Opinions shared in social media, blogs and twitter
are often subjective and the tacit dimension of knowledge still persists, these being both
examples of limitations which are harder to overcome. More importantly, there is no equiva-
lent of a coordination device here like prices in the markets as in Hayek’s example. The lack
of an effective coordinating device would mean that there is no guarantee that the incentives
and actions of the players can be appropriately aligned in a dynamic context, and these are
thus prone to both noise and the possibility of manipulation. Chen and Venkatachalam (2017)
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argue that despite notable improvements in computational intelligence, there are inherent
limitations to price discovery, and more broadly to information aggregation.21

Using the example of prediction markets and online reviews, we further illustrate the
potential issues concerning the quality of big data. We also show how agent-based models
can help answer questions regarding the quality of big data, wherein quality is interpreted
as the efficiency of information aggregation. Based on the underlying characteristics of
an agent-based model, such as the number of agents, learning or meta-learning behaviour,
network structure, personal traits, preferences and cultures (social norms), it is possible to
capture the information aggregation process. It is also possible to examine the extent to
which micro-level properties are inherited by ‘big data’ at the aggregate level.

4.1. Online reviews

The accumulation of massive volumes of data can be seen as an inevitable consequence
of the developments in communications technology, the proliferation of hand-held devices
and the World Wide Web. This phase of evolution of the World Wide Web that enables users
to generate data and for others to use this data is popularly referred to as Web 2.0. We will
refer to the economy that operates in the background of these developments as the Web
2.0 economy. In order to understand the behaviour of agents in the Web 2.0 economy, it
is necessary to pay attention to the structure of their social networks, nature of their local
interactions and learning within those networks. Similarly, psychological factors influencing
an agent’s attention given the vast amounts of information are important. Traditionally,
equation-based models have proved to be inadequate in dealing with such challenges given
the dynamic nature of learning and the presence of recursive feedback effects, but more
importantly, due to their weakness in modelling local interactions in social networks. We
argue that agent-based models can provide the necessary theoretical tools to understand
such user-generated big data.

Let us consider some familiar, everyday situations like choosing a restaurant or buy-
ing earphones. We often turn to user-initiated, user-supplied data that are aggregated in
the form of online customer reviews which reveal information concerning the quality of the
product in question. We review a contribution made by Vriend (2002) to demonstrate the
possibility of assessing the quality of information aggregation through agent-based models.
Though customer review reports can help consumers acquire more information regarding
the quality of a product, an increasing accumulation of reviews can result in information
overload for those analysing them. To understand how consumers utilize information and
the consequences of their behaviour which feed back into the system, a model that uncovers
the underlying data-generation process is necessary. Agent-based modelling can cater to
this need and Vriend (2002) is one of the earliest examples in this direction. In fact, Vriend
(2002) can be viewed as a contribution to understanding the Web 2.0 economy and as an
agent-based study of big data.

While exploring to make an informed choice, a digital-savvy consumer in the Web 2.0
economy is often bombarded with a large pile of diverse online reviews. These are often
uploaded through established platforms by users who may have experienced the product.
When this size of such information is overwhelmingly large, as it often is, consumers may
need to resort to a set of behavioural rules. These rules can guide them in the process
of search, the decision to stop searching, processing the collected information and finally
making a decision. By focusing on the decision mechanisms, Vriend studied a diverse set of
rules such as: following the others, trying to replicate or to avoid the experiences of others
and also random behaviour. While these rules are fast and frugal (Gigerenzer, 2007), they



Journal of Economic Methodology 373

do involve different intensities of information processing. In investigating the information
aggregation efficiency and the behavioural rules employed by heterogeneous agents in a
population, Vriend asks: (a) Would this decentralized information processing be able to
distinguish products with superior quality from those that are inferior? and (b) Regardless
of the efficiency achieved, how well did these rules generally perform?

Vriend considers a society in which a finite number of consumers are repeatedly offered
a binary choice. Each time the choices given are different (novel) so that there are no past
experiences upon which individual learning can be based. In other words, each consumer
is ‘forced’ to learn from others, i.e. the experiences of the previous users. In each period,
of these two choices, there is always one that is relatively superior to the other. To analyse
whether and how path dependence may occur in the presence of such social learning, Vriend
also set up a series of check points.22 At these checkpoints, the two choices are essentially
identical. Therefore, it is expected that the society as a whole should show no excessive
preference for either product. However, it turns out that such unbiasedness is merely one
possible outcome. His simulations show that there are other outcomes, for instance, one
product gets kicked out or almost kicked out by the other. This provides evidence of a
possible path-dependence and lock-in effects. Hence, dynamic learning processes can result
in self-organization towards a specific set of rules and that will not be unbiased when the
society returns to the checking periods.

However, does a society distinguish and adopt a superior-quality product (service)
during regular (i.e. non-checking) periods?23 In Vriend’s simulation model, the classifier
system performs well by constantly increasing the correct discrimination frequency from
50 to 80%, which can be attributed to the wisdom of the crowds. Under this system, 80% of
consumers make a right pick. But the improvements plateau out at 80% and the remaining
20% of consumers suffer from inferior decisions in each period. This result is based on
the long-window moving average and hence it does not give finer details concerning the
frequency of wrong decisions in each individual period. While the majority may not make
mistakes in the long term, they do make mistakes in many single periods.24 This is a
good example where increasing the volume of data does not automatically guarantee an
increased aggregation efficiency. The quality of these choices in the aggregate can therefore
be assessed only by having a window into the data-generation process and a platform to
(computationally) experiment with diverse behavioural rules. Agent-based models can thus
be used to understand the behaviour of a decision-maker situated in the era of user-generated
Big Data. This enables us to assess the quality of information aggregation under various
behavioural rules. In these cases, agent-based models can be seen as employing a form
of abductive reasoning, aiming to generate new hypotheses that provide explanations in
ways distinct from deduction and induction (Chen & Kao, 2016, see pp.130–134). It is also
fairly straightforward to see parallels of this approach with the studies on swarms described
earlier, concerning inference in the presence of dynamic behaviour and experimenting with
counterfactuals.

4.2. Prediction markets

We now return to the skeptical observations made by Sunstein (2008) about the ability of
blogs, more generally, non-market platforms, to effectively aggregate dispersed information
in the absence of effective co-ordination devices like prices. What if we could construct
mechanisms in which such coordination devices are built in? Prediction markets are one
such example, where deliberations among groups are disciplined by the incentive structure
(Sunstein, 2006, chapter 4) to reveal the true information or expectation that they hold. In
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these markets, agents trade contracts whose payoffs depend on the future outcomes that
are yet unknown. Private information is reflected in terms of the trading prices. When
these uncertain events in question are a function of expectations or private information
held by diverse agents, as in the case of elections for instance, mechanisms relying on
predictions made by groups (rather than on individuals with partial knowledge) can prove
to be effective.25 They are believed to increase the accuracy of forecasts of various social
phenomena compared to more traditional forecasting methods (Arrow et al., 2008; Wolfers
& Zitzewitz, 2004).

For these prediction markets to be superior, their relative information aggregation
efficiency ought to be greater than that of the traditional channels. How can we deter-
mine this? Predictions arising from different aggregation platforms can be contrasted with
actual outcomes to assess the relative information aggregation efficiency of the former.
For example, in the case of elections, outcomes based on both market (prediction markets,
political futures markets) and non-market (polls and social media) sources can be compared
with actual outcomes of the elections (Berg, Forsythe, Nelson, & Rietz, 2008; Erikson &
Wlezien, 2008; Huberty, 2015; Rothschild, 2015). The underlying assumption behind the
promise of prediction markets is linked to the efficient market hypothesis.26 However, as
in real financial markets, there is evidence to suspect the ‘efficiency’of the prediction market
in practice as well.As noted by Wolfers and Zitzewitz (2004, pp. 117–119), agents do behave
in ways that violate rationality assumptions in these markets. We also observe that prediction
markets are not always accurate. More recently, they failed to predict the outcome of U.S.
elections by a wide margin. In such situations, we need models that can help us understand
the reasons behind the shortcomings of prediction markets and the quality of the data that
they generate by pooling in information from many participants. The underlying factors
associated with the success or failure of information aggregation need to be understood. In
other words, why and how they succeed or fail, not just that they do. Note that these markets
are capable of generating not just high-frequency data, but big data according to our earlier
definition in Section 2.

Let us consider an agent-based model of an information platform, specifically, an agent-
based prediction market (Bothos, Apostolou, & Mentzas, 2010; Chie and Chen, 2015a,
2015b; Jumadinova & Dasgupta, 2000; Klingert & Meyer, 2010; Othman, 2008; Othman
& Sandholm, 2010; Yu & Chen, 2011). These models show a potential way to assess the
quality of predictions emanating from actual prediction markets. They are populated by
virtual agents who interact in the market place. Their behaviour and topology of network
interactions are based on a number of economic and social variables inspired from the
literature. For instance, studies have considered utility functions (Wolfers & Zitzewitz,
2006), beliefs, learning behaviour, wealth distribution (Manski, 2006) and also social
networks (Cowgill, Wolfers, & Zitzewitz, 2009) in their model construction.27 Such a set-up
provides a versatile environment for experimenting with various behavioural assumptions
concerning learning and how they lead to speculative bubbles and ultimately examine the
quality of actual predictions. The dynamics of such agent-based prediction models can be
matched to the dynamics of the actual prediction markets. Although the current models are
relatively simple, they do show potential to help us understand the success and failures
of these predictions markets. Some early models interpret prediction markets in terms of
the distribution of beliefs of traders and, in doing so, they rest upon the equilibrium price
or the Walrasian equilibrium price (Manski, 2006; Wolfers & Zitzewitz, 2006).28 This
interpretation offers a static view.29 However, agent-based models can potentially promise
more: they can relate the dynamics of spread, volatility or depth observed in the prediction
market to the plausible economic and social characteristics of the markets.
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4.2.1. Big data and financial markets

Another research area in which large amounts of data are available is the study of financial
markets. The ability of financial markets to aggregate information, scarcity and expectations
among different individuals has been analysed in great depth. In the mainstream literature
on finance, markets are perceived to be efficient in aggregating dispersed information
concerning different assets. Furthermore, the asset prices are believed to provide a complete
reflection of all necessary and relevant information. The trading prices are seen as reflecting
the fundamental value associated with an asset. This view has been challenged in the past,
both on theoretical and empirical grounds. Many puzzles concerning financial markets still
remain open and the connection between rationality, efficiency and predictability in the
broader context has been hotly debated to the present time. The structural analogy between
the example of online reviews and financial markets and the possibilities for a breakdown
in efficiency is relatively straightforward. In so far as social behaviour is perceived as
a result of interaction among heterogeneous individuals, agent-based models provide a
powerful tool to understand the dynamic processes underpinning such phenomena. Agent-
based computational finance is a relatively mature field compared to other areas in which
agent-based modelling has been employed. Agent-based financial models view financial
markets as being comprised of interacting heterogeneous groups of learning and boundedly
rational agents.30

Challenges to the efficient market hypothesis in the past have been mounted both
from behavioural finance and agent-based financial markets.31 Studies have argued that
there can be persistent deviations from the so-called fundamental values in the presence
of news. These can be seen as external shocks to expectations held by agents. Under
certain assumptions concerning learning behaviour (imitation and herding, for instance)
and psychological biases, it has been shown that there can be price changes resulting in
bubbles, despite any changes to the fundamentals (De Grauwe & Grimaldi, 2006; Shiller,
1981). Agent-based modelling of financial markets has also shown that price movements
can occur even in the absence of news (Hommes, 2006; LeBaron, 2006), provided that there
is constant interaction among agents. The research on financial market efficiency can be
viewed as an attempt to understand the causes of potential changes in investor sentiment
in the market, and how these changes in turn affect different variables like price, volatility,
stock-market returns and trading volume. What is the significance of this mode of behaviour
in the age of big data?

Financial markets generate high-frequency, dynamic data and this can, in principle,
be obtained at the level of an individual and hence naturally is a candidate for big data.
News announcements, learning and interaction among agents are both shown to be capable
of having an impact on prices in the financial markets. Investor sentiment can be shaped
as a result of interaction among agents in social networks, based on sharing actual texts.
With the advent of social media, researchers now have a window to understand how the
sharing of news and discussion among agents on social media platforms can possibly
shape investor sentiment and its evolution. In particular, perception of news and discussion
among agents can be seen as processes to develop a context, which in turn impacts our
expectations. Consequently, there is an impact on the price of assets. For instance, the
growth of social medium networks and, consequently, the increased interaction among
agents, may enhance or deteriorate market efficiency, for example, due to herding. Recent
empirical studies have attempted to measure investor sentiment from textual data on social
media (known as sentiment analysis) and analysed their relation to stock market variables
and their predictability (Bukovina, 2016; Kim & Kim, 2014; Siganos, Vagenas-Nanos, &
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Verwijmeren, 2014). However, in addition to empirical evidence, models describing how
the investor sentiments emerge from such textual data are needed. Although this area of
research is still in its infancy, agent-based models can be extended to incorporate textual data
through modifications to agent-design to equip them with text-analysing capabilities. Thus,
agent-based models have the potential to incorporate evolving modes of social interactions
and non-standard forms of data.

5. Concluding remarks

Existing definitions in the literature view big data in terms of its size or based on tech-
nological concerns. In this article, we departed from this and adopted a process view that
distinguishes its ontology from other forms of data. The importance of this distinction lies in
the fact that data are no longer just about points, snapshots or sampling segments of a social
phenomenon; it is about the entire dynamic process of individuals in a specific spatio-
temporal domain. We argued that although engineering, and technological concerns are
important in harnessing the potential of big data, they do not capture its novelty. Similarly,
tools used for data mining and statistical analysis also do not sufficiently distinguish big data
from other forms of data. Based on this view, we argued that agent-based modelling provides
a possible foundation for big data by being able to act as a data-generation process for the
observed data, and as an abduction tool for examining or evaluating the features which
we observed from big data, such as the quality of big data, as we show in the agent-based
prediction markets (Section 4.2).

If we acknowledge this process-based definition of big data, the need for a joint research
programme between agent-based modelling and big data is quite evident. Although agent-
based models often generate big data, researchers in this community do not tend to store,
retrieve and reuse the data, partly because of the associated demands on memory, but also
due to the relative lack of awareness concerning the use of machine learning to handle it. The
data which can potentially keep track of the movements of each and every individual agent
in the model, on what the agent did, ‘said’, or ‘thought’, are often removed before the next
iteration, leaving behind summary statistics such as prices and volumes alone. This is rather
unfortunate. One may argue that individual-level data may not be important in all contexts,
which may seem reasonable. If individual-level data or more generally phenomena are not
important, what is the raison d’être of agent-based models in such a context? However,
research in the area of agent-based modelling has shown that changes at the individual level
can have a non-trivial impact at the aggregate level. Even though alternatives to agent-based
models that are implicitly underpinned by individual interaction are available – such as the
mean-field and other statistical mechanics models, or random particle systems – they are
attractive only if our concern is restricted exclusively to the mesoscopic or macroscopic
part of the society in situations where aggregation irons out the effects of local interaction
and heterogeneity.

The real issue, however, is not about when individuals gain importance and when they
do not. Instead, it is the general lack of the awareness that agent-based models do generate
big data and using tools from data mining to exploit the data generated by these models.
Earlier, Chen and Yu (2010) suggested that agent-based modelling can serve as a knowledge
discovery and data mining tool for formulating economic theory. They use an agent-based
model of double auction markets, modified from the original Santa Fe Double Auction
Tournament, as an illustration to show how a theory of optimal procrastination as a strategic
behaviour of auctioning can be discovered by markets purely composed of artificial agents.
They note:
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It may not surprise us to see that these autonomous agents eventually beat all these programmed
agents, but it is difficult to perform an in-depth analysis of the discovered bargaining strategies
given these complex surroundings. Maybe a challenging task for the future would be to
introduce novel data mining or text mining techniques to this large database so as to know
more of the ‘mental process’ of these autonomous agents. (Chen & Yu 2010, p. 170; Italics
added)

As we have tried to argue, there is a potential synergy between big data and agent-based
models. The latter can act as a foundation to understand the knowledge embodied by big
data and the analytic tools developed to harness large data-sets. This, in turn, can enhance
the analysis of big data from the agent-based models themselves. In our opinion, it is only
a matter of time before it becomes necessary to exploit this synergy.
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Notes
1. Some of these works have also included humanities (digital humanities and computational human-

ities) under the larger umbrella of CSS. Cioffi-Revilla (2014) introduces the work of the pioneers
in what came to be known as CSS and points to the work by Charles Osgood (1916–1991) on
the semantic differential model of human mind and the work by David Heise on affective control
and the project Magellan. Their pioneering work laid the foundations for corpus linguistics and
facilitates the task of automatic information extraction.

2. Among many recent publications, Cioffi-Revilla (2014) is a notable exception, which attempts to
give a more balanced treatment on both subjects, agent-based modelling and big data, while only
a chapter (his Chapter 3) is given on the latter, and is mainly from the viewpoint of data mining
and automatic information extraction.

3. For a detailed survey on agent-based models, see Gilbert (2008) and Tesfatsion and Judd (2006).
4. For a discussion on the different varieties in which agents are modelled in this tradition, see Chen

(2012).
5. In his monumental work Critique of Pure Reason, Immanuel Kant breaks down his inquiry into

human reason in the form of three questions.

‘All interest of my reason (the speculative as well as the practical) is united in the following
three questions: 1. What can I know? 2. What should I do? 3. What may I hope?’ [A805/B833]

6. Some argue for including more Vs in broadening this characterization such as veracity, vincularity
and value. For a more comprehensive survey and discussion see Kitchin and McArdle (2016).



378 S.-H. Chen and R. Venkatachalam

7. For surveys of the definitions of big data, the reader is referred to Gandomi and Haider (2015),
Kitchin and McArdle (2016), and Ward and Barker (2013).

8. See Gandomi and Haider (2015, Section 3) for a detailed description of each of these categories.
9. Note that the 3V characteristics used to describe big data can also be applied to the description

of different forms of conventional data since each V listed here is just a matter of degree. Kitchin
and McArdle (2016), who undertake a study of 26 data-sets from different areas, note that there
is notable diversity among them and that not all of them fulfill all the generally perceived criteria.
They conclude that velocity and exhaustivity are more important.

10. For instance, neural networks have been around at least since the seminal work by McCulloch
and Pitts (1943) and instance-based learning methods such as K-nearest neighbours (KNN) can be
traced back to the 1960s. See Chen, Kao, and Venkatachalam (2017, pp. 301–305).

11. Perhaps one could argue that the combination of these two elements could possibly provide the
necessary ontology. However, it would be unsatisfactory since the problems of context specificity
still remain.

12. A similar view is put forward by Kitchin (2014, p. 2): ‘Big Data is characterized by being generated
continuously, seeking to be exhaustive and fine-grained in scope, and flexible and scalable in its
production. Examples of the production of such data include: digital CCTV; the recording of retail
purchases; digital devices that record and communicate the history of their own use (e.g. mobile
phones)... clickstream data that record navigation through a website or app; measurements from
sensors embedded into objects or environments; the scanning of machine-readable objects such as
travel passes or barcodes; and social media postings. These are producing massive, dynamic flows
of diverse, fine-grained, relational data’.

13. An analogy would be the existence of bacteria or viruses independent of microscopes, gold being
independent of alchemies or a moon being independent of spaceships. In a similar vein, big data
should be conceptualized and defined as independent of ICDT.

14. Using big data, one may hope (even if unsupported by evidence concerning possibility) to un-
derstand what people need, think, intend to do and, in the extreme case, hope for a complete
or a comprehensive understanding of the dynamics of streets, markets, families or even society.
Regardless of our scepticism about such a possibility, we do not need to augment the above
definition of big data with such possible emotional or affective consequences.

15. O(N ) is read as ‘big order of N ’, for example, a multiple of N . However, it can also grow even
faster, depending on how interactions happen and depending on the physical or mental constraints
of the agents, such as attention (Simon, 1971). Therefore, in general, the size of ‘big’ data can
grow in O( f (N )), where f is determined by various constraints imposed on interactions.

16. At the time of carrying out the Boid project, Reynolds did not know of Partridge’s work.
17. A more detailed description of this arrangement can be found in Partridge (1981, 1982).
18. There is often an implicit assumption that there is no need or role for a priori theory. However,

Partridge cannot be judged guilty of such a naive methodology since his choice of observations
and analysis is very much informed by the existing theories.

19. In particular, Simon (1977) in which his disagreement with Popper on whether there is a logic
behind scientific discovery is relevant. Simon argues that hypothesis generation, and not testing,
is the most valuable scientific activity and in his view scientific discoveries are problem-solving
situations. This act of hypothesis generation (or law discovery) is abductive according to Simon.

20. Peirce (1903, 5.189) describes the form of abductive inferences as follows: ‘The surprising fact,
C, is observed; But if A were true, C would be a matter of course; Hence, there is a reason to
suspect that A is true’. Halas (2011) provides a reformulation of this definition in the context of
agent-based modelling as follows: ‘An unexplored emergent phenomenon of some complex social
system is observed and agent-based model of corresponding complex system is then constructed.
If multi-agent simulations lead to growing of the emergent phenomena, then there is a reason to
suspect that assumptions of the model are correct’.

21. See Ruths and Pfeffer (2014) for the limitations of using social media data to understand behaviour.
22. Specifically, along his 25,000-period simulation, Vriend used multiples of 500 periods as the check

points.
23. This is a simplified case in which one product is objectively superior to the other. This is differ-

ent from determining the quality of the restaurant, which may involve subjective factors and a
proportion of agents with specific tastes.

24. This can be viewed as the simultaneous existence of the wisdom of crowds and the stupidity of
herds.
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25. Although prediction markets can operate for sporting events like football, the outcomes of those
events are strictly not a function of the expectations held by the agents alone. Election outcomes
are an example of the latter.

26. Wolfers and Zitzewitz (2004, p. 108): ‘Much of the enthusiasm for prediction markets derives
from the efficient markets hypothesis. In a truly efficient prediction market, the market price will
be the best predictor of the event, and no combination of available polls or other information can
be used to improve on the market-generated forecasts’.

27. In the context of prediction markets, Cowgill et al. (2009) illustrated that the embedded social
network topology can cause a wave of optimism and hence a potential bias from the information
aggregation. See also Chie and Chen (2015b).

28. Wolfers and Zitzewitz (2006) provides one of the most significant results in the prediction market
literature: prediction market prices approximate the central tendency of the distribution of beliefs
of traders, the so-called the market’s beliefs. However, discovering the central tendency does not
directly imply forecasting accuracy. On the one hand, it depends on how well-informed the traders
are (the proportion of informed traders or marginal traders). The issue becomes harder when the
probability of the occurrence of the event is not exogenous, but endogenously determined by beliefs
held by the agents themselves. So, even though the market does aggregate opinion most of the
time, it may fail to foretell what will happen in future.

29. However, some recent progress has been made towards the dynamic interpretation of prediction
markets (Frongillo, Della Penna, & Reid, 2012).

30. A comprehensive survey of this approach, even if it is dated, can be found in LeBaron (2006).
31. Behavioural finance attributes limits to arbitrage and cognitive biases among agents as reasons

to doubt the efficiency of the market. Agent-based financial models have largely stuck to more
conventional representations of agents, although this gap has narrowed in the past few years.
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