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Abstract. We study effects of lane changing rules on multilane highway traffic using the Nagel–
Schreckenberg cellular automaton model with different schemes for combining driving lanes (lanes used
by default) and overtaking lanes. Three schemes are considered: a symmetric model, in which all lanes
are driving lanes; an asymmetric model, in which the right lane is a driving lane and the other lanes are
overtaking lanes; a hybrid model, in which the leftmost lane is an overtaking lane and all the other lanes
are driving lanes. In a driving lane, vehicles follow symmetric rules for lane changes to the left and to the
right, while in an overtaking lane vehicles follow asymmetric lane changing rules. We test these schemes for
three- and four-lane traffic mixed with some low-speed vehicles (having a lower maximum speed) in a closed
system with periodic boundary conditions as well as in an open system with one open lane. Our results
show that the asymmetric model, which reflects the ”Keep Right Unless Overtaking” rule, is more efficient
than the other two models. An extensible software package developed for this study is free available.

1 Introduction

Transport phenomena arise in a wide variety of many-
particle systems, ranging from vehicular traffic to physical
or biological systems, such as fluid flow, molecular motor
transport and more. Among all theoretical transport
models, the totally asymmetric simple exclusion process
(TASEP) is the most widely applied paradigm for trans-
port of interacting particles [1]. The TASEP consists of
particles moving unidirectionally on a one-dimensional
lattice with the constraint that at any given time every
lattice site can be occupied at most by one particle.
The Nagel–Schreckenberg (NaSch) cellular automaton
model [2], a standard model for the simulation of highway
traffic, can be regarded as an extension of the TASEP in
which the maximum speed of particles (vehicles), accel-
eration and random deceleration are introduced to mimic
some basic phenomena in highway traffic, such as spon-
taneous formation of congestion. The flexibility of the
NaSch cellular automaton approach allows one to gener-
ate various versions of the model to study different aspects
of traffic problems. While many results are known for
the single-lane model [1,3], there remains much scope for
further study on multilane generalizations. For example,
in multilane traffic models different types of the lane-
changing rules can lead to considerably different results;
therefore, one expects that lane-changing rules in real
traffic can have significant impact on traffic flows.
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A large number of lane-changing rules have been con-
sidered in many previous studies to reproduce various
empirically observed phenomena (see [3–8]). Instead of
proposing new decision-making rules and criteria for lane
changes, here we focus on effects of different arrangements
of lanes on multilane highway traffic. We present an exten-
sible C++ package (available in [9]) for implementing the
multilane NaSch model with a set of tunable parameters
and conditions, including the number of lanes (any posi-
tive integer), lane-changing rules, boundary conditions of
each lane, and more. The significance of this package is its
user-definable settings for the individual lanes. Using this
software package we consider three types of lane arrange-
ments implemented on the NaSch model with more than
two lanes, corresponding to three different lane-changing
models: (1) the symmetric model, in which overtaking is
allowed on the left and also on the right in all lanes; (2)
the asymmetric model, in which the right lane is used by
default and overtaking has to be on the left; and (3) the
hybrid model, in which the leftmost lane is the overtaking
lane while the other lanes are treated as in the symmet-
ric model. The hybrid model describes multilane highway
traffic observed in many countries where only the lane
closest to the median strip is designed for overtaking and
overtaking on the right is not considered to be a driving
offense. By comparing the traffic flow at a fixed num-
ber density of vehicles in closed systems and the average
velocity in open systems, we demonstrate that for het-
erogeneous traffic consisting of different types of vehicles
(fast and slow vehicles), the asymmetric model is more
efficient than the other two models. Here and throughout
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the paper, we consider “right-hand traffic”, for “left-hand
traffic” implemented such as in the UK and Japan “left”
and “right” have to be interchanged.

The paper is organized as follows. In Section 2, we
briefly describe the software package and outline the lane
changing criteria as well as observables used in our study;
in Section 3 after defining the models we show results for
various quantities in closed and open systems separately in
two subsections. We conclude in Section 4 with a summary
and discussion of future prospects.

2 Program description

The models underlying the software is the NaSch model, a
cellular automaton with parallel update dynamics, i.e. the
vehicles are picked up in parallel for updating at each time
step. Here, we recall the definition of the NaSch model [2].
A lane is divided into L cells; at a given time each cell is
empty or occupied at most by one vehicle with a discrete
speed, up to a maximum value: v ∈ {0, 1, · · · , vmax}. The
update scheme on a single lane consists of four actions in
a time step t→ t+ 1:

A1 Acceleration: the velocity of any vehicle that is not at
the maximum velocity vmax is increased by one unit
(measured in cells/time step):

v → min (v + 1, vmax) . (1)

A2 Deceleration: if the distance (in units of cells), d,
between a vehicle we are looking at and the vehi-
cle in front of it is smaller than its current velocity
v, the velocity is reduced to d to avoid a collision,
i.e.,

v → d, if d < v . (2)

A3 Random braking: the velocity of all vehicles that
have v ≥ 1, is decreased randomly by one unit with
probability p.

A4 Moving: each vehicle is moved forward to the cell
according to its velocity determined in A1–A3.

In the original NaSch model, the randomization parameter
p in A3 is chosen to be a constant; there is also a gener-
alization, the so-called velocity-dependent randomization
(VDR) model [10], in which the probability p depends on
the velocity of the vehicle, p = p(v). We have included
these two versions in the package.

For a multilane model, two types of lanes are intro-
duced: overtaking lanes and driving lanes (default lanes),
depending essentially on whether criteria for changing the
lane to the left and to the right are symmetric. Here,
lane changing is implemented as a sideways move to
the neighboring lane, while forward movement is imple-
mented in single-lane updates (A1–A4) on each lane after
possible lane changing of each vehicle is considered, i.e.
one time step consists of lane changing and single-lane
updates. In general, there are two types of lane-changing

criteria [11]: incentive criteria and safety criteria. Follow-
ing reference [11,12], we include the following incentive
criteria in our program:

LC1 Incentive criterion: the distance to the vehicle ahead
in the same lane is smaller than a certain length:
d < `.

LC2 Incentive criterion: the distance to the vehicle ahead
in the target lane is larger than a certain length:
dtarget > `target.

The safety criteria included in the program are [4,11]:

LC3 Safety criterion: the target cell is not occupied or
there is no “scheduling conflict”, which happens e.g.
in a three-lane (sub-)system when a vehicle from
the left lane and a vehicle from the right lane are
considered to go to the same cell in the middle lane.

LC4 Safety criterion: the distance to the vehicle behind
in the target lane is larger than a certain length:
d−target > `−target.

These four rules are applied to change to the left lane both
from an overtaking lane and from a driving lane. In an
overtaking lane, which is for overtaking vehicles only, one
should return to the right driving lane after the overtaking
maneuver; thus, only the safety criteria (LC3 and LC4)
are considered for changing from an overtaking lane to the
right lane. On the other hand, the criteria LC1–LC4 are
all required for changing from a driving lane to the right
lane, that is, the lane-changing rules for a middle driving
lane do not depend on the direction of the lane-changing
maneuver. If the criteria with respect to a driving lane
both for changing to left and to right are satisfied, we
choose the target lane based on the size of the gap (the
distance to the vehicle ahead) in the left (denoted by dl)
and right (dr) lane:

– Change to left if dl > dr.
– Change to right if dr > dl.
– Change to left or right with equal probability if
dr = dl.

Note that there have been a variety of lane-change criteria
suggested in the literature, which can be easily adapted in
the code. In this paper, we use the choices of the parame-
ters `, `target, `−target in the criteria LC1, LC2 and LC4 as
suggested in reference [12] and set: ` = min(v + 1, vmax),
`target = d and `−target = vmax.

The program contains a set of adjustable parameters,
including the number of the lanes, the number of cells per
lane, the type of each lane (an overtaking lane or a driv-
ing lane), types of vehicles (depending on their maximum
velocities), braking probabilities, lane-changing probabil-
ities, time steps and the number of samples. In addition,
each lane can be chosen to be closed with periodic bound-
ary conditions or open; open lanes and closed lanes can be
combined in an arbitrary order into a multilane system.
For an open system, the entry rate is an additional input
parameter.
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A number of quantities are measured in the simulation,
such as the average velocity of vehicles defined as

v =
1
T

1
N

T∑
t=1

N∑
m=1

vm(t) , (3)

for N vehicles in T time steps, and the flow:

J = ρv , (4)

where ρ is the number density of vehicles, given by

ρ =
N

nL
(5)

on an n-lane road of length L. The observables are col-
lected for the whole system and also for each individual
lane; in the latter case n = 1 and only vehicles appearing
in the lane that we are looking at are considered, e.g. the
density in the lane i:

ρi =
Ni

L
. (6)

We also distinguish the observables between different
types of vehicles in heterogeneous traffic. The results are
given as functions of density for a closed system, and as
functions of entry rate for an open system. The code also
includes a parallel mode for using Message Passing Inter-
face (MPI) to distribute different values of the variables
to multiple processors.

3 Hybrid multilane highway models

Lane-changing rules in two-lane traffic are in general
divided into two categories: symmetric and asymmet-
ric [11,12]. This classification can be generalized to models
with more than two lanes. For example, a multilane sys-
tem consisting entirely of driving lanes corresponds to
a symmetric lane-changing model. An asymmetric lane-
changing model in our program can be made up with a
driving lane for the far right lane and overtaking lanes for
all other lanes, or equivalently, it is constructed entirely
with overtaking lanes (see Fig. 1). Here, we also consider
a case (a hybrid model) in which only the far left lane is
the overtaking lane while the other lanes are driving lanes;
this simple generalization, which differs from an asymmet-
ric model when more than two lanes are considered, can
be regarded as one minimal model that mimics highway
rules implemented mainly outside of Europe, such as in
the US or in many countries of the Asia-Pacific region.
We are not aware of any previous studies on the same
hybrid model as we consider here.

Below we discuss our results for closed systems with
periodic boundary conditions and for open systems with
one open lane separately in two subsections.

(a)

(b)

(c)

Fig. 1. The models: (a) three-lane closed systems with peri-
odic boundary conditions (PBC) in the traveling direction; (b)
four-lane closed systems; and (c) four-lane open systems in
which the right lane has two open ends and the other lanes
have PBC. In each panel (a), (b), and (c) the figures from
left to right correspond to the asymmetric model, the hybrid
model, and the symmetric model, respectively. The red lanes
are overtaking lanes and the gray lanes are driving lanes.

3.1 Closed systems

First we consider closed systems with two types of vehicles
characterized by two different maximum forward velocities
vsmax = 3(cells/time step) and vfmax = 5, in which 25% of
the vehicles are of slow type. We focus on the case with
velocity-dependent stochastic braking probabilities p:

p(v) =
{

0 for v = vfmax ,

p0 for v < vfmax .
(7)

This choice of p(v) corresponds to the so-called “cruise-
control limit” in which fast vehicles at maximum allowed
speed move deterministically [13]. In the simulations per-
formed, each density value for a system of length L = 1024
was simulated using at least T = 50.000 time steps and
the results were recorded after the first 10.000 steps. In
addition, each data point is averaged over at least 100
samples.

Figure 2 shows the fundamental diagrams for flow(J)-
density(ρ) relations in three- and four-lane traffic with
three types of lane-changing rules, where results both
for the VDR case with p0 = 0.5 (see Eq. (7)) and for
the case with a velocity-independent braking probabil-
ity p(v) = p′, ∀v are included. In all these cases, with
increasing density one finds a transition from a free-flow
region at low density into a jammed region at high den-
sity, separated by the peak of traffic flow. The diagrams
suggest that different lane-changing rules have a stronger
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Fig. 2. Fundamental diagrams for three-lane traffic (upper
panel (a), (b)) and four-lane traffic (lower panel (c), (d)) on
a road of length L = 1024. The black, red, and blue curves
indicate data for the asymmetric, hybrid, and symmetric lane
change models, respectively. Two types of randomization in
braking are considered: VDR type defined in equation (7) with
p0 = 0.5 (left panel) and a velocity-independent braking proba-
bility p′ = 0.5 (right panel). The traffic flows for the three lane
change models differ in the free-flow region, in which the flow
for the asymmetric model is the highest, showing the advantage
of this model over the other two models.
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Fig. 3. Flow-density diagrams for fast vehicles (subfigures (a),
(c)) and slow vehicles (subfigures (b), (d)) in three different
lane change models with velocity-dependent stochastic brak-
ing: p0 = 0.5 for v < vf

max. The traffic flow of fast vehicles in
the asymmetric model is overall highest, while the flow of slow
vehicles in this model is lower than the other two models.

influence on the dynamics in the free-flow phase (close to
the maximum of the flow) than in the jammed region;
the asymmetric model, showing a higher flow in the free-
flow phase, is the most efficient among three different
lane-changing rules while the symmetric model is the
least efficient. The advantage of the asymmetric model
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simulation setup as in Figure 3.
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Fig. 5. Lane usage for each lane in three-lane (left panel) and
four-lane (right panel) traffic with the same simulation setup
as in Figure 3.

over the other two models with respect to traffic flow is
mainly contributed by the fast vehicles, as we can see in
Figure 3. Slow vehicles, on the other hand, have lower
average speed (i.e. smaller traffic flow at a given density)
in the asymmetric model than the other two models.

In our program, various quantities are also measured
with respect to each lane. For example, Figure 4 shows the
flow-density relations for the individual lanes in three- and
four-lane traffic for the VDR case with p0 = 0.5. We notice
that there are qualitative changes in the flow-density rela-
tions for certain lanes, such as the middle lane of the
hybrid model, in which an inflection point appears on the
right side of the flow maximum. The similar feature has
been discussed in previous studies on metastable states in
one-lane NaSch model with VDR [10,14].

Another interesting quantity for understanding effects
of different lane-changing rules is the lane usage (defined
as Ni/N for the i-th lane), shown as a function of density
in Figure 5. We observe large occupancy of the right
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lane (b) traffic with the same simulation setup as in Figure 3.
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Figures 2a and 2c, i.e. the boundaries between a free-flow
region and a jammed phase.
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lane in the low-density regime (the free-flow region) of
the asymmetric model and the right-lane usage remains
higher than the other lanes when decreasing with grow-
ing density approaching ρ ≈ 0.9, which reflects the Keep
Right Unless Overtaking rule. In the hybrid model, the
occupancy of the middle lane (or in the middle left lane
in four-lane traffic) dominates at low densities, which is
contributed by lane changes from the right side and also,
in particular, from the leftmost passing lane as required
by the rules; interestingly, there is a lane-usage inversion
between two “slow lanes” of the three-lane model when
the density becomes larger than ρ ≈ 0.2. Unlike the other
models, the lane usage in the symmetric model is evenly
distributed over all lanes except for a small enhancement
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Fig. 8. Flows (left panel) and lane usage (right panel) of the
individual lanes in open systems with four lanes.

in the middle lane(s) in the low-density limit. From the
lane usage characteristic along with the flow-density dia-
grams of the individual lanes (Fig. 4), we summarize two
observations as follows: (i) non-concavity occurs in the
flow-density relation of the lane which exhibits a sharp
decay of usage; (ii) the associated densities of the non-
concavity region are those where the sharp decay of lane
usage takes places.

Note that although the strategy of the asymmetric
model implies a Keep Right Unless Overtaking rule, using
the lane-changing criteria described in LC1–LC4 will not
avoid “undertaking” (i.e. passing on the right) in free traf-
fic flow, which is prohibited by driving regulations in some
countries. There are non-vanishing occurrences of under-
taking for all ρ > 0, as shown in Figure 6. Nevertheless,
the fraction of undertaking in the free-flow phase of the
asymmetric model is considerably smaller than the frac-
tion in the other two models. The increasing undertaking
frequency at high densities reflects more symmetric lane
usage in congested traffic.

3.2 Open systems

Now we turn to open systems. Here, we consider systems
which consist of a multilane part with periodic boundary
conditions and a lane on the rightmost side with open
ends, serving as on- and off-ramps (see Fig. 1c). It has
been known for single-lane NaSch models that rules for
injection and removal of vehicles have significant impacts
on the traffic flow [15–20]. Here for our multilane model
we focus on the following strategies for vehicle injection
and removal, that are incorporated into the single-lane
updates and lane changes at each time step:

1. Injection strategy: with probability α a vehicle with
initial velocity v = 1 is inserted into site j = 0 if the
site is not occupied.

2. Removal strategy: if a vehicle moves out of the
right lane from the open end at j = L − 1 by the
NaSch rules (A1–A4), we remove the vehicle with
probability β = 1.
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Fig. 9. Space-time diagrams of four-lane open systems using α = 0.95 and L = 1024. Panels (a), (b) and (c) are models with
the asymmetric, hybrid and symmetric lane changing rules, respectively. From left to right: the left lane, the middle left lane,
the middle right lane and the right lane with two open ends. In each model, 25% of vehicles entering the system are of slow
type with a maximum allowed speed vs

max = 3 and 75% of vehicles are of fast type with vf
max = 5. In the figure, a black pixel

represents a vehicle at a speed v < 5 and white pixels are vacancies or vehicles at the highest speed v = 5. The data were
collected over the last 1024 time steps in total 105 steps.

The other parameters used for the simulation, such as
types of vehicles and braking probabilities, are the same
to the choices used for the closed systems; in particu-
lar, a VDR rule in the cruise-control limit (Eq. (7)) with
p0 = 0.5 for stochastic braking is applied, and two dif-
ferent values of the maximum allowed speed: vsmax = 3
and vfmax = 5 are assigned to vehicles that enter the sys-
tem, in which 25% of the vehicles are of slow type. We
obtained observables at different entry rates (α) and used
more than 105 time steps for each entry rate. The three
types of lane-changing rules (asymmetric, hybrid and sym-
metric) discussed above are considered here too. For the
asymmetric model, we set a default lane left adjacent to
the open lane so that the criteria for changing back to the
open lane are the same in all three models.

We graph average velocities and flows as functions of α
for three different lane-changing models with four lanes in
Figure 7. In comparison, the velocity in the asymmetric
model is overall higher, showing the advantage of the
asymmetric lane-changing rules. All traffic flows saturate
to constant values at high entry rates, where the flow of
the asymmetric model is slightly larger than the other
two models.

To analyze traffic behavior in each lane, in Figure 8
we show simulation data for traffic flow and lane usage
in the individual lanes, plotted against the entry rate.
We observe that the flows in the lanes with high usage
fraction (e.g. the middle right lane in the asymmetric
model and the middle left lane in the hybrid model)
exhibit non-monotonic behavior before they converge

to constant values at larger α; this is similar to what
one observes in the flow-density diagrams of the closed
systems shown in Figure 4.

As a visual demonstration of the effects of lane-changing
rules, typical space-time diagrams for the three different
rules in the phase with α = 0.95 are shown in Figure 9.
The diagram for the asymmetric model shows small fluctu-
ations in the two right lanes and low usage of the leftmost
lane, while the plots for the hybrid and symmetric lane-
changing rules exhibit traffic jams that persist for a long
time in all lanes.

4 Summary and outlook

We have studied traffic flows on multilane highways with
three different combinations of driving lanes and over-
taking lanes. Lane-changing rules distinguish between a
driving lane and an overtaking lane in the way that in
a (middle) driving lane one makes lane changes to the
left and to the right in symmetric manner, while in an
overtaking lane vehicles obey asymmetric rules for lane
changes. Using lane-changing criteria based on look-ahead
distances we simulated three- and four-lane highway traf-
fic in closed systems with periodic boundary conditions
as well as in open systems with on- and off-ramps. Our
results show that for heterogeneous traffic the asymmet-
ric model with the rightmost lane as a driving lane and
all the other lanes as overtaking lanes, which mimics the
Keep Right Unless Overtaking rule, is more efficient than
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the other models in which lane-usage is almost equally
distributed in all lanes.

We have developed an extensible software package for
our study and make it publicly available for further
applications. In addition to the observables considered in
this paper, the code covers measurements of the order
parameter, correlations, and relaxation time as defined in
references [21,22], which makes it also useful for the study
of jamming transitions and dynamic phase transitions in
related models [23–26].

The authors acknowledge support from the Ministry of Science
and Technology (MOST) of Taiwan under Grants No. 104-
2112-M-004-002 and 106-2112-M-004-001.
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