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Abstract 
In this paper, the stock index S&P 500 is used to 
test the predicting performance of genetic program­
ming (GP) and genetic programming neural networks 
(GPNN). While both GP and GPNN are considered uni­
versal approximators, in this practical financial applica­
tion, they perform differently. GPNN seemed to suffer 
the overlearning problem more seriously than GPj the 
latter outdid the former in all the simulations. 

1 Introduction and Motivation 

In this paper, we compare the prediction perfor­
mance between evolutionary artificial neural net­
works (EANNs) and genetic programming (GP). 
EANNs can be regarded as a subset of the function 
space defined by GP, i.e., SpaceEANN ~ Spacecp. 
To exemplify this set relation, an artificial neural 
network (ANN) and its corresponding LISP tree 
representation are depicted in Figures 1 and 2. 
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Figure 1: A 1-3-1 ANN Architecture. 

Figure 2: The LISP Tree of ANN(1-3-1). 

While this paper only considers feed forward 
ANNs, this illustration can be easily extended to 
the case of recurrent ANNs. The interested reader 
is referred to [3]. 

The ANN in Figure 1 is a 1-3-1 architecture, i.e., a 
single input-output node and one hidden layer with 
three hidden nodes. The input for the ANN is de­
noted by X. The transfer function of the hidden 
nodes and output node are given in Equations (1) 
and (2), 

hi = Gi(ai x X), i = 1,2,3 (1) 

3 

0= F(2)bj x hj )), (2) 
j=1 

where ai and bj are weights. In a typical appli­
cation, Gi can be the identity function and F the 
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sigmoid function, the Gaussian basis function or 
the Gaussian kernel function. Generally speaking, 
in the EANN literature, choice of these functions 
should be automatically determined [3]. 

Since each ANN can be coded as a LISP tree, 
EANNs can also be implemented with GP. In fact, 
there has been a growing interest in using GP to 
evolve the ANN architecture over the last two years 
[3]. The difference between GPNN and GP lies 
in the search space. The search space defined by 
GPNN is a network architecture space with addi­
tional syntactic restrictions imposed upon the orig­
inal GP search space. From the perspective of 
approximation theory, these two search spaces are 
asymptotically equivalent, i.e., 

lim SpaceGP(d) ~ lim SpaceGPNN(d) , (3) 
d-too d-too 

where d denotes the maximum depth of the LISP 
tree. In other words, if there is no limit set upon 
the depth of the tree, then these two search spaces 
are approximately equivalent in the sense that both 
GP and GPNN are universal approximators. How­
ever, in practice, the upper limit of d always exists. 
Take Koza [4] as an example; d was set to be 17 
in most of the applications. Therefore, in applica­
tion, it is very likely that SpaceGP(d) is not the 
same as SpaCeGPNN(d), and neither is a subset of 
the other. Even if they are the same, the differ­
ence in representation (syntax) may cause these two 
learning schemes to have such different dynamics 
that their performance will differ. Therefore, while 
GPNN provides EANN research with a promising 
technique, many genetic programmers are still quite 
reserved about GPNN. 

Since the GP-GPNN equivalence issue is difficult 
to solve analytically, and since ANNs have been ex­
tensively used in financial engineering, it is desir­
able to have an empirical exploration of this issue 
based on financial applications. Motivated by this 
equivalence question, we conducted two series of ex­
periments of predicting stock returns. Each series 
is composed of ten simulations. The first series of 
experiments were carried out by using GP, and the 
second by GPNNs. 

2 Simulation Design 

The data used in this study is inherently difficult to 
predict. Such 'inherent difficulty' is made precise via 
the minimum description length (MDL) principle. 
The MDL principle is applied to daily returns of 
the S&P 500 index to identify highly unpredictable 

subsets of samples with size 200. Details of this 
procedure are well documented in Chen and Tan 
[1]. Daily observations of the S&P 500 index from 
1/2/1953 to 9/9/1994 are used to create percentage 
returns. The MDL methodology is applied to this 
whole dataset of percentage returns and the subset 
period 1/3/92 to 10/16/92 is chosen. This subset 
is further decomposed into the in-sample set and 
post-sample set in the ratio of 10 to 1. 

To implement genetic programming, the program 
GP-Pascal is written in Pascal 4.0 by following the 
instructions given in [3]. The chosen parameters to 
run GP-Pascal are given in Table 1. % and RLOG 
appearing in the function set are the protected di­
vision function and the protected natural logarithm 
function respectively [3]. In this paper, all simu­
lations conducted are based on the terminal set, 
which includes the ephemeral random floating-point 
constant R ranging over the interval [-9.99, 9.99] 
and the rate of return lagging up 10 periods, i.e., 
Rt-l, ... Rt-10. To escape local optima, the muta­
tion rate is set to be 0.2. In addition, elite operator 
is "on" and is to keep the best-so-far program to 
the next generation. 

The fitness criterion Mean Absolute Percentage 

Table 1: Tableau for GP Parameters. 



Gen 
GP GPNN 
MAPE MAPE 

50 1.008918 1.292107 

Figure 3. The Predicting Performance Comparison 
between GP and GPNN : Gen 50 
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Figure 4. The Predicting Performance Comparison 
between GP and GPNN : Gen 100 

~ ... 
~ ! t- ... : · .. : .... :h··~····:·~···:···~· .. t 

2 3 4 5 6 7 8 9 10 

1.001633 1.812707 r-______ ..... N'-':wT ..... h""e ..... N'--th ....... S""im ... u,..,l,..,at..,io ... n'--___ ----., 
1.000016 1.356968 I --+- GP -- • - . GPNN I 
1.000816 1.815196 

150 1.008748 1.369779 
1 3.6597 

1.00191 4.02578 
1.01299 2.644374 

1.001158 2.645544 
1.020601 2.495246 
1.038312 1.488896 

Figure 5. The Predicting Performance Comparison 
between GP and GPNN : Gen 150 
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Figure 6. The Predicting Performance Comparison 
between GP and GPNN : Gen 200 
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Table 2: Tableau for EANN Parameters. 
I t'opulatlOn ::ilze 1\10 
I Number of mput 11 
nodes 
Wmdow SIze 3 

, Learnmg rate selt adaptmg 
I t;rror tolerance selt adaptmg 
I Momentum rate selt adaptmg 
I Output processmg nonjmear but hxed 
I Network model genetica 

Error (MAP E) is defined as follows: 

(4) 

where m is the sample size and Ri is the prediction 
value of R i . The choice of the mean absolute per­
centage error as the fitness function is attributed to 
[5], who suggested a modified form of MAPEs as the 
most appropriate measure satisfying both theoreti­
cal and practical concerns while allowing meaningful 
relative comparisons. 

Based on those control parameters, multiple runs 
of simulations were executed. For each of the sim­
ulations, the MAPE is calculated for the in-sample 
period and the post-sample period. The results of 
the post-sample MAPEs of generations 50, 100, 150 
and 200 under each simulation are exhibited in Fig­
ures 3-6. 

As to the implementation of EANNs, there are 
lots of different encoding strategies, including ge­
netic algorithms, evolutionary programming, and 
genetic programming. In this paper, we follow 
Wong [6] to encode ANNs and use NeuroForecaster 
4.2 to conduct the experiments. The controlled pa­
rameters to run EANNs are given in Table 2. No­
tice that the node transfer function is exogenously 
given and is fixed. As a comparison, the results of 
the post-sample MAPEs of generations 50, 100, 150 
and 200 under each simulation are also depicted in 
Figures 3-6. 

3 Simulation Results and 
Conclusions 

From Figures 3-6, we can see that GP's performance 
is uniformly superior to GPNN's for all generations. 
Moreover, by comparing Figures 3-4 with Figures 
5-6, it is interesting to note that GPNN suffers the 
over fitting problem more seriously than GP. These 

results indicate that presence or absence of the ANN 
architecture can make a difference in implementing 
GP driven search. In this typical financial engineer­
ing application, imposing the ANN architecture did 
not bring anything good. It remains to be investi­
gated whether it is helpful to make automatic the 
determination of node transfer functions. 
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