
Evolutionary Artificial Neural Networks and Genetic Programming: A
Comparative Study Based on Financial Data

S.-H. Chen and C.-C. Ni
Department of Economics, National Chengchi University,

Taipei, Taiwan 11623
E-mail: chchen@cc.nccu.edu.tw.g2258503@grad.cc.nccu.edu.tw

Abstract
In this paper, the stock index S&P 500 is used to
test the predicting performance of genetic program­
ming (GP) and genetic programming neural networks
(GPNN). While both GP and GPNN are considered uni­
versal approximators, in this practical financial applica­
tion, they perform differently. GPNN seemed to suffer
the overlearning problem more seriously than GPj the
latter outdid the former in all the simulations.

1 Introduction and Motivation

In this paper, we compare the prediction perfor­
mance between evolutionary artificial neural net­
works (EANNs) and genetic programming (GP).
EANNs can be regarded as a subset of the function
space defined by GP, i.e., SpaceEANN ~ Spacecp.
To exemplify this set relation, an artificial neural
network (ANN) and its corresponding LISP tree
representation are depicted in Figures 1 and 2.

output layer

hidden layer

input layer

Figure 1: A 1-3-1 ANN Architecture.

Figure 2: The LISP Tree of ANN(1-3-1).

While this paper only considers feed forward
ANNs, this illustration can be easily extended to
the case of recurrent ANNs. The interested reader
is referred to [3].

The ANN in Figure 1 is a 1-3-1 architecture, i.e., a
single input-output node and one hidden layer with
three hidden nodes. The input for the ANN is de­
noted by X. The transfer function of the hidden
nodes and output node are given in Equations (1)
and (2),

hi = Gi(ai x X), i = 1,2,3 (1)

3

0= F(2)bj x hj)), (2)
j=1

where ai and bj are weights. In a typical appli­
cation, Gi can be the identity function and F the

G. D. Smith et al., Artificial Neural Nets and Genetic Algorithms
© Springer-Verlag Wien 1998

398

sigmoid function, the Gaussian basis function or
the Gaussian kernel function. Generally speaking,
in the EANN literature, choice of these functions
should be automatically determined [3].

Since each ANN can be coded as a LISP tree,
EANNs can also be implemented with GP. In fact,
there has been a growing interest in using GP to
evolve the ANN architecture over the last two years
[3]. The difference between GPNN and GP lies
in the search space. The search space defined by
GPNN is a network architecture space with addi­
tional syntactic restrictions imposed upon the orig­
inal GP search space. From the perspective of
approximation theory, these two search spaces are
asymptotically equivalent, i.e.,

lim SpaceGP(d) ~ lim SpaceGPNN(d) , (3)
d-too d-too

where d denotes the maximum depth of the LISP
tree. In other words, if there is no limit set upon
the depth of the tree, then these two search spaces
are approximately equivalent in the sense that both
GP and GPNN are universal approximators. How­
ever, in practice, the upper limit of d always exists.
Take Koza [4] as an example; d was set to be 17
in most of the applications. Therefore, in applica­
tion, it is very likely that SpaceGP(d) is not the
same as SpaCeGPNN(d), and neither is a subset of
the other. Even if they are the same, the differ­
ence in representation (syntax) may cause these two
learning schemes to have such different dynamics
that their performance will differ. Therefore, while
GPNN provides EANN research with a promising
technique, many genetic programmers are still quite
reserved about GPNN.

Since the GP-GPNN equivalence issue is difficult
to solve analytically, and since ANNs have been ex­
tensively used in financial engineering, it is desir­
able to have an empirical exploration of this issue
based on financial applications. Motivated by this
equivalence question, we conducted two series of ex­
periments of predicting stock returns. Each series
is composed of ten simulations. The first series of
experiments were carried out by using GP, and the
second by GPNNs.

2 Simulation Design

The data used in this study is inherently difficult to
predict. Such 'inherent difficulty' is made precise via
the minimum description length (MDL) principle.
The MDL principle is applied to daily returns of
the S&P 500 index to identify highly unpredictable

subsets of samples with size 200. Details of this
procedure are well documented in Chen and Tan
[1]. Daily observations of the S&P 500 index from
1/2/1953 to 9/9/1994 are used to create percentage
returns. The MDL methodology is applied to this
whole dataset of percentage returns and the subset
period 1/3/92 to 10/16/92 is chosen. This subset
is further decomposed into the in-sample set and
post-sample set in the ratio of 10 to 1.

To implement genetic programming, the program
GP-Pascal is written in Pascal 4.0 by following the
instructions given in [3]. The chosen parameters to
run GP-Pascal are given in Table 1. % and RLOG
appearing in the function set are the protected di­
vision function and the protected natural logarithm
function respectively [3]. In this paper, all simu­
lations conducted are based on the terminal set,
which includes the ephemeral random floating-point
constant R ranging over the interval [-9.99, 9.99]
and the rate of return lagging up 10 periods, i.e.,
Rt-l, ... Rt-10. To escape local optima, the muta­
tion rate is set to be 0.2. In addition, elite operator
is "on" and is to keep the best-so-far program to
the next generation.

The fitness criterion Mean Absolute Percentage

Table 1: Tableau for GP Parameters.

Gen
GP GPNN
MAPE MAPE

50 1.008918 1.292107

Figure 3. The Predicting Performance Comparison
between GP and GPNN : Gen 50

1 2.558425 ~

0.99877 1.984527 ~

1.002416 1.424301 ,..,,; f { ; ... : .. ":- -. '~"':'" ':--' ':'" ~ _. -i
1.007977 1.23407
1.019065 1.774092 2 3 4 5 6 7 8 9 10
1.202154 1.945665
1.001401 1.980485 r-_______ N_:_Th_e_N_-_th_S_im_ul_att_·o_n ____ ----.,

0.999696 1.201444 I --+- GP --. - . GPNN I

1.005213 1.241057
100 1.008026 1.221301

1 2.291675
0.99877 1.571851

1.002416 1.424301
1.00608 1.184122

1.019395 1.894853
1.039181 1.225833

3

Figure 4. The Predicting Performance Comparison
between GP and GPNN : Gen 100

~ ...
~ ! t- ... : · .. : :h··~····:·~···:···~· .. t

2 3 4 5 6 7 8 9 10

1.001633 1.812707 r-______ N'-':wT h""e N'--th S""im ... u,..,l,..,at..,io ... n'--___ ----.,
1.000016 1.356968 I --+- GP -- • - . GPNN I
1.000816 1.815196

150 1.008748 1.369779
1 3.6597

1.00191 4.02578
1.01299 2.644374

1.001158 2.645544
1.020601 2.495246
1.038312 1.488896

Figure 5. The Predicting Performance Comparison
between GP and GPNN : Gen 150

6

~ ~ 1.·········· .• -. -'.h .. -. -. _ .' . · h i ~ 0 ' , , , , ! --f ,
2 3 4 5 6 7 8 9 10

1.000334 1.429968 N : The N-th Simulation
1.000016 2.828882 I.------+---G-P--"-'-'-' ~ """-.,.,, • ..,..""'. -G-PN-N------.,I

1.001625 2.755031
200 1.008878 3.005329

1 3.695376
0.99197 4.018836

1.017207 0.966569
0.998223 2.181985

1.02005 2.147918
1.038935 3.499633
1.000271 4.837395

1.000018 2.31551 I
1.022788 3.575092

Figure 6. The Predicting Performance Comparison
between GP and GPNN : Gen 200

~ : 1-..... h... . . .•.. ' . '.... . . -1
<2 ' .. -.-.. ..
~ 0 ' , -,..-., , , , ,

2 3 4 5 6 7 8 9 10

N : The N-th Simulation
--+-GP . -. - . GPNN

399

400

Table 2: Tableau for EANN Parameters.
I t'opulatlOn ::ilze 1\10
I Number of mput 11
nodes
Wmdow SIze 3

, Learnmg rate selt adaptmg
I t;rror tolerance selt adaptmg
I Momentum rate selt adaptmg
I Output processmg nonjmear but hxed
I Network model genetica

Error (MAP E) is defined as follows:

(4)

where m is the sample size and Ri is the prediction
value of R i . The choice of the mean absolute per­
centage error as the fitness function is attributed to
[5], who suggested a modified form of MAPEs as the
most appropriate measure satisfying both theoreti­
cal and practical concerns while allowing meaningful
relative comparisons.

Based on those control parameters, multiple runs
of simulations were executed. For each of the sim­
ulations, the MAPE is calculated for the in-sample
period and the post-sample period. The results of
the post-sample MAPEs of generations 50, 100, 150
and 200 under each simulation are exhibited in Fig­
ures 3-6.

As to the implementation of EANNs, there are
lots of different encoding strategies, including ge­
netic algorithms, evolutionary programming, and
genetic programming. In this paper, we follow
Wong [6] to encode ANNs and use NeuroForecaster
4.2 to conduct the experiments. The controlled pa­
rameters to run EANNs are given in Table 2. No­
tice that the node transfer function is exogenously
given and is fixed. As a comparison, the results of
the post-sample MAPEs of generations 50, 100, 150
and 200 under each simulation are also depicted in
Figures 3-6.

3 Simulation Results and
Conclusions

From Figures 3-6, we can see that GP's performance
is uniformly superior to GPNN's for all generations.
Moreover, by comparing Figures 3-4 with Figures
5-6, it is interesting to note that GPNN suffers the
over fitting problem more seriously than GP. These

results indicate that presence or absence of the ANN
architecture can make a difference in implementing
GP driven search. In this typical financial engineer­
ing application, imposing the ANN architecture did
not bring anything good. It remains to be investi­
gated whether it is helpful to make automatic the
determination of node transfer functions.

4 Acknowledgements

Research support from NSC grant No.85-2415-H-
004-001 is gratefully acknowledged. The authors
are grateful to two anonymous referees for helpful
comments. This is a short version of the full paper
with the same title.

References

[1] S.-H. Chen and C.-W. Tan. Measuring Randomness
by Rissanen's Stochastic Complexity: Applications
to the Financial Data, pages 200-211. World Scien­
tific, 1996.

[2] S.-H. Chen and C.-H. Yeh. Bridging the gap be­
tween nonlinearity tests and the efficient market hy­
pothesis by genetic programming. In Proceedings of
the IEEEIIAFE 1996 Conference on Computational
Intelligence for Financial Engineering, pages 34-39.
IEEE Press, 1996.

[3] A. 1. Esparcia-Alcazar and K. C. Sharman. Evolv­
ing recurrent neural network architectures by genetic
programming. In Proc. Genetic Programming 1996
Conference. Stanford, CA, U.S.A., July 28-31 1996.

[4] J. Koza. Genetic Programming: On the Program­
ming of Computers by Means of Natural Selection.
The MIT Press, Cambridge, MA, 1992.

[5] S. Makridakis. Accuracy measure: Theoretical and
practical concerns. International Journal of Fore­
casting, 9:527-529, 1993.

[6] F. Wong. Neurogenetic computing technology. Neu­
ro Ve$t Journal, 2(4}:12-15, 1996.

