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Abstract. The problem of discovering episode rules from static databases has 
been studied for years due to its wide applications in prediction. In this paper, 
we make the first attempt to study a special episode rule, named serial episode 
rule with a time lag in an environment of multiple data streams. This rule can 
be widely used in different applications, such as traffic monitoring over mul-
tiple car passing streams in highways. Mining serial episode rules over the data 
stream environment is a challenge due to the high data arrival rates and the 
infinite length of the data streams. In this paper, we propose two methods 
considering different criteria on space utilization and precision to solve the 
problem by using a prefix tree to summarize the data streams and then trav-
ersing the prefix tree to generate the rules. A series of experiments on real data 
is performed to evaluate the two methods. 
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1   Introduction 

The progress of technologies including communications and computations has led to a 
more convenient way of life and also brings huge amounts of commercial benefits. 
However, the high speed of communications and powerful capability of computations 
generate data as a form of continuous data streams rather than static persistent datasets, 
raising the complexity of data management. A data stream is an unbounded sequence of 
data continuously generated at a high speed. In such applications as network traffic 
management, sensor network systems and traffic management systems, we may need to 
handle different categories of the data streams. 

Consider a scenario as follows. Roads are connected to each other in real road 
networks. Consequently, certain roads with heavy traffic may cause the other roads to 
be obstructed. Users may be interested in the following rule: when road A and road B 
have heavy traffic, five minutes later, road C will most likely be congested. This kind of 
rules can be applied to navigation systems, helping the users to avoid being blocked up 
in traffic. In the traffic monitoring systems, flow and occupancy of a road detected by 
sensors are employed in qualifying the traffic conditions [2]. The flow of a road is the 
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number of cars passing by a sensor per minute. The occupancy of a zone is a ratio of a 
time interval in which the detection zone is occupied by a car. The collected data of the 
flow and occupancy are divided into several discrete classes [6]. Therefore, different 
traffic conditions can be represented by the different classes of the flow and occupancy. 
For example, if a road is under the condition of low flow and high occupancy, the traffic 
of this road can be qualified as “congested.” Since many roads are simultaneously 
monitored by the sensors in a traffic monitoring system, a continuous multi-streams 
environment is formed. In order to find the rules as discussed above, a new problem of 
finding serial episode rules with time lags over multiple streams is addressed and 
solved in this paper. Different from our approach to design the new online mining 
algorithms, a framework using existing offline mining techniques to find frequent 
episodes from the historic data to monitor the current traffic status and to predict the 
coming traffic in time is proposed in [7]. 

We first introduce the problem of discovering episode rules from the static time se-
ries data [3] [4] [5] [10] [11] [12] in the following. Formally, an episode can be de-
scribed using a directed acyclic graph (DAG). Each node in the graph represents an 
event. Suppose that the nodes A and B are kept in an episode E. If there is an edge from 
A to B, it means that B occurs after A. If there is no edge between A and B, it means that 
the order of the appearances of A and B is not important. The time interval of an oc-
currence of an episode E in the time series data is the interval from the occurring of the 
first event in E to that of the last event in E appearing in the time series. In addition, a 
parameter named time bound is set to limit the duration of the occurrence. This means 
that we only concern about the occurrences of the episode, whose time interval are 
within the time bound. We call these occurrences valid occurrences of the episode for 
the following discussion. The number of valid occurrences of an episode in the time 
series data is counted to determine whether it is frequent, and then from the frequent 
episodes to derive an episode rule. There are two ways of counting the number of valid 
occurrences of an episode, the window-based strategy and the minimal occurrence 
strategy.  

The window-based strategy is to slide a window with a length equaling the time 
bound T over the time series data to compute the total number of the windows con-
taining an episode E. In this strategy, a certain valid occurrence of E may be counted 
more than once due to being contained in the distinct windows. On the other hand, the 
minimal occurrence strategy is to count the number of valid occurrences satisfying the 
following constraint: within its time interval, the other valid occurrences do not exist. 
Given a user-defined threshold, named minimum support, if the number of the windows 
in the window-based strategy or the number of the counted valid occurrences in the 
minimal occurrence strategy of an episode exceeds or equals the minimum support, it is 
defined as frequent. The algorithms proposed in [10][11][12] for finding frequent 
episodes based on the window-based strategy and the minimal occurrence strategy are 
named WINEPI and MINEPI, respectively. In these approaches, only serial episodes 
and parallel episodes are considered. A serial episode is a sequence of events while a 
parallel episode is a set of events. The above methods based on the Apriori algorithm 
[1] are designed only for these two types of episodes because all episodes can be de-
composed into their combinations. Finding frequent episodes is extended to finding 
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episode rules in [11]. An episode rule describes that after an episode occurs another 
episode may occur. Harm et al. define a new episode rule by specifying a time lag 
between these two episodes and propose the MOWCATL approach to find the episode 
rules in multiple sequences [3][5]. The serial rule discussed in [3] is a special episode 
rule restricted to have only two serial episodes. We call it serial episode rules with time 
lags (SERs) in this paper. An SER is represented in a form of X→LY where X and Y are 
serial episodes and L is a fixed time lag. The first serial episode X is defined as the 
precursor of the rule and the second serial episode Y is defined as the successor. The 
rule means that after X occurs, Y will probably occur in L time units later. As mining 
association rules, support and confidence are also used to be the measures of rule in-
terestingness for mining SERs. The support of an SER is the number of the tightest 
interval in which the rule occurs, which is used to express the strength of the rule. The 
confidence of an SER is a conditional probability that the successor of the rule occurs 
within the time lag, given that the precursor occurs. The users can define their own 
interestingness of the rules by giving two thresholds, minimum support and minimum 
confidence. If both the support and confidence of a rule are no less than the minimum 
support and the minimum confidence respectively, the rule is defined as significant. 
Therefore, mining SERs is to return all the significant SERs to the users. 

Refer to the scenario of the traffic prediction which motives us to address this new 
problem of mining SERs over multi-streams. We deal with the multi-streams by as-
suming that the events are generated from n streams with the same fixed sampling rate, 
and all the events generated at the same time form an n-tuple event. Let an itemset be a 
subset of an n-tuple event. The serial episode to be discussed in our problem is then 
defined as a sequence of itemsets. The challenges of solving this problem are described 
as follows. First, enormous amounts of episodes enumerated from the multiple streams 
may overload the memory utilization and incur enormous processing time. Second, in 
order to check whether the delay between the precursor and successor of a rule satisfies 
the time lag of a significant SER, the time intervals within which the episodes occur 
must be recorded. Obviously, as time goes by, the records for storing the time intervals 
of the episodes may use a huge amount of memory space. 

In this paper, we propose a framework for mining significant SERs over multiple 
data streams, which counts the valid occurrences of the serial episodes using the 
minimal occurrence strategy. Different from the previous approaches which only focus 
on finding frequent episodes over event streams [9][13], in this paper, we also combine 
the serial episodes to generate the serial episode rules with time lags. Therefore, not 
only the support counts but also the time information of the occurrences of a serial 
episode need to be efficiently processed. In this framework, a prefix tree is employed to 
store the serial episodes enumerated from the n-tuple event stream. According to the 
considerations of different criteria on space utilization and precision, two methods 
storing different information in the prefix tree are proposed in this paper. Moreover, 
Lossy Counting [8] is applied to the two methods to save the memory required.  

The remainder of the paper is organized as follows. Section 2 introduces the pre-
liminaries and formulates the problem to be solved. The detailed algorithms are de-
scribed in Section 3. The experiment results for evaluating the methods are presented in 
Section 4, and finally, Section 5 concludes this work. 
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2   Preliminaries 

The definitions of the supports and confidences of SERs, the problem formulation, the 
data structure used in the methods, and several observations of SERs are described in 
this section. 

2.1   Problem Formulation 

Consider a centralized system which collects n synchronized data streams denoted as 
DS1, DS2,…, DSn. A data stream in the system is an unbounded sequence of items 
(events). Moreover, the domain of the data in each data stream may be distinct from the 
others. The synchronized data streams mean that the data arrival rate for each data 
stream is consistent, that is, each data stream generates an item at the same time unit. 
Let DSj(i) represent the item arriving at time i and coming from the jth stream. An 
n-tuple event R(i) is defined as a set of items coming from all data streams at time i, i.e. 
R(i) = {DS1(i), DS2(i), …, DSn(i)}. Moreover, an itemset is defined as a subset of an 
n-tuple event. Therefore, a serial episode discussed in this paper is described as an 
ordered list of itemsets, for example S = (I1)(I2), …, (Ik) is a serial episode, where I1, 
I2, …, Ik are itemsets. The following first two definitions follow [11].  

Definition 1: (Minimal Occurrence) Given a serial episode S, a minimal occurrence of 
S can be identified by its time interval. A time interval [a, b] is a minimal occurrence of 
S if it satisfies the following two constraints: 1) S occurs in the time interval [a, b] and 
2) S does not occur in any proper subinterval of [a, b], that is, S does not occur in [c, d], 
where a ≤ c, d ≤ b and the duration of [a, b] > the duration of [c, d]. The duration of [a, 
b] is defined to equal b – a + 1. The set of all minimal occurrences of S is denoted as 
MO(S) = {[a, b]| [a, b] is a minimal occurrence of S}.                                                ■ 

For a minimal occurrence of a serial episode E, if it satisfies the time bound T, it is 
called a valid minimal occurrence of E in the following discussion. 

Definition 2: (Support of Serial Episode) Given a time bound T and a serial episode S, 
the support of S, supp(S), is the number of valid minimal occurrences of S i.e., supp(S) = 
|{[a, b] | [a, b]∈MO(S) ∧ (b – a + 1) ≤ T}|.                                                                   ■ 

Definition 3: (Support of SER) Given serial episode rule R: S1→lag = L S2 with a time 
bound T, where the time lag is equal to L. The support of R representing the strength of 
R and helping to recognize the degree of significance of R is defined as supp(R) = |{[a, 
b] | [a, b]∈MO(S1) ∧ (b – a + 1) ≤ T ∧ ∃ [c, d] ∈  MO(S2) s.t. (d – c + 1) ≤ T ∧ (c − a) = 
L}|.                                                                                                                                 ■ 

Definition 4: (Confidence of SER) The confidence of the serial episode rule R: S1→lag 

= L S2 is a conditional probability that S2 occurs and satisfies the fixed time lag L, given 
that S1 occurs, defined as conf(R) = supp(R) ⁄supp(S1).                                                ■ 

Given four parameters including the maximum time lag, Lmax, the minimum support, 
minsup, the minimum confidence, minconf, and the time bound, T. The problem of 
mining SERs is to find all the SERs, e.g. R: S1→lag = L S2, satisfying the following 
constraints: 1) L ≤ Lmax, 2) supp(R) ≥ N × minsup, where N is the number of the re-
ceived n-tuple events generated from the multiple streams, and 3) conf(R) ≥ minconf. 
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Fig. 1. An example of the 2-tuple events 

Table 1. All parameters for Figure 1 

Lmax Minsup Minconf T 
5 0.2 0.8 3  

 

Table 2. Examples of serial episodes and serial episode rules with time lags 

Serial episodes Minimal Occurrences Support 
(a A)(b B) [1, 2], [6, 7], [11, 12], [13, 14], [18, 19] 5 > 19 × 0.2 = 3.8 
(g G) [5, 5], [10, 10], [15, 15], [17, 17] 4 > 3.8 
Serial episode rules Minimal Occurrences Support, Confidence 

(a A)(b B)→4 (g G) 
[1, 2]→[5, 5], [6, 7]→[10, 10], [11, 12]→[15, 
15], [13, 14]→[17, 17] 

Supp: 4, Conf: 4/5 = 0.8 

Moreover, the calculating of the supports for the serial episodes and the SERs has to 
take the time bound T into account.  

Consider an example as in Figure 1. 19 2-tuple events have been received. All pa-
rameters are given as in Table 1 and some serial episodes, serial episode rules with time 
lags, and their corresponding minimal occurrences are listed in Table 2. The interval [1, 
3] is not the minimal occurrence of (a A)(b B) due to the interval [1, 2] which is a proper 
subset [1, 3]. The support of the serial episode (a A)(b B) is 5 because each minimal 
occurrence of (a A)(b B) are valid. By comparing all the time intervals of the valid 
minimal occurrences of the two serial episodes (a A)(b B) and (g G), the support of the 
serial episode rule R: (a A)(b B) →4 (g G) is calculated. 

2.2   Data Structure of the Methods: Prefix Tree 

Since the serial episodes may have common prefixes, using the prefix tree structure to 
store the serial episodes is more space-efficient. The prefix tree structure consists of the 
nodes with labels and a root without a label. Moreover, each node in the prefix tree 
belongs to a level. The root is at the level 0 and if a node is at the level k, its children are 
at the level k + 1.The node in the prefix tree is used to represent a serial episode. By 
orderly combining all labels of those nodes in the path from the root to the node, the 
serial episode represented by the node can be derived. The label of a node has two 
forms including “X” and “_X,” where X is an item. The node with a label of “X” 
represents a serial episode in which X follows the label of the parent of the node. Al-
ternatively, the node with a label of “_X” represents a serial episode in which X si-
multaneously occurs with the label of the parent of the node. An example of using the 
prefix tree to represent the serial episodes is shown in Figure 2. 

 

Φ

A

_B B

Serial episode (A)

Serial episode
(A)(B)

Serial episode 
(AB)

ΦΦ

AA

_B_B BB

Serial episode (A)

Serial episode
(A)(B)

Serial episode 
(AB)  

Fig. 2. An example of the prefix tree

Table 3. An example for Observation 1 

Streams\Time unit 1 2 3 4 
Stream 1 A A D A
Stream 2 d a a b  
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2.3   Observations of Serial Episode Rules with Time Lags 

Several observations of the characteristics of SERs are described as follows, which are 
used in the methods detailed in Section 3. In order to simplify the display of the fol-
lowing discussion, the terms including S+X and S+_X are first introduced. Given a serial 
episode S, S+X represents a serial episode S followed by X. The last itemset in S+X only 
contains an item, X. Alternatively, S+_X represents another serial episode similar to S. 
The difference between S and S+_X is that the last itemset in S+_X consists of the last 
itemset in S and X.  

Observation 1: Given a serial episode S and a newly arrived item X which is one of the 
items in the current n-tuple event. If we want to know whether S+X has a new minimal 
occurrence, the last two minimal occurrences of S must be checked. 

Consider the data streams shown in Table 3. After the third time unit passed, the 
minimal occurrences of A are [1, 1] and [2, 2], that is, MO((A)) = {[1, 1], [2, 2]}. At the 
fourth time unit, since A and b are generated, MO((A)) becomes {[1, 1], [2, 2], [4, 4]}. 
We focus on the serial episode (A)(b). As can be seen, the new minimal occurrence [2, 
4] of the serial episode (A)(b) is associated with the minimal occurrence [2, 2] of (A). If 
only the last minimal occurrence of A, [4, 4], is considered to join to the minimal oc-
currence [4, 4] of b, the minimal occurrence [2, 4] of (A)(b) will be ignored. Therefore, 
the last two minimal occurrences of (A) should be checked. 

Observation 2: Given two serial episode rules X→L(AB) and X→LA, according to the 
Apriori property [1], supp(X→LA) ≥ supp(X→L(AB)). Therefore, the rule X→L(AB) is 
not significant if the rule X→LA does not satisfy one of the minsup and the minconf. 

Observation 3: Given two serial episode rules (AB)→L(CD) and A→LC, obviously, 
supp(A→LC) ≥ supp((AB)→L(CD)). Therefore, the rule (AB)→L(CD) is not significant 
if supp(A→LC) < supp(AB) × minconf.  

Observation 4: Given a serial episode rule (A)(B)→L(CD) with a time bound T, the 
precursor of the rule has at most T − 1 types, i.e. (A)→p(B), where 0 < p < T. While 
taking the time lag into account, the types of the rules are denoted as 
(A)→p(B)→L−p(CD), where 0 < p < T and L − p > 0. Obviously, the support of 
(A)→p(B)→L−p(CD) must be smaller than or equal to supp(A→pB) and supp(B→L−pC). 
Therefore, supp((A)(B)→LC) ≤ ∑pmin(supp(A→pB), supp(B→L−pC)). Since 
supp((A)(B)→LC) ≥ supp((A)(B)→L(CD)), we infer that the rule (A)(B)→L(CD) is not 
significant if ∑pmin(supp(A→pB), supp(B→L-pC)) < supp(AB) × minconf. 

3   Methods 

Two methods, LossyDL and TLT for finding significant SERs in the environment of 
multi- streams are proposed in this paper. Both of them use the prefix tree structure to 
store the information of the serial episodes. LossyDL keeps all valid minimal occur-
rences for each serial episode in the prefix tree. On the other hand, TLT only keeps 1) 
the last two valid minimal occurrences and the support of each serial episode in the 
prefix tree and 2) the supports of the reduced rules in the additional tables, to be  
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detailed in Subsection 3.2. When the users want the SERs, to LossyDL, the valid 
minimal occurrences of any two serial episodes with enough supports are joined to 
check whether they satisfy the time lag. On the other hand, to TLT, any two serial 
episodes with enough supports will be combined into a candidate rule and then, the 
non-significant rules will be pruned by using the pruning strategies derived from Ob-
servations 2, 3, and 4. Since the prefix tree may increase as the time goes by, Lossy 
Counting [8] is used in these methods to avoid keeping the serial episodes with low 
supports. The detailed operations in LossyDL and TLT are respectively described in 
Subsections 3.1 and 3.2. 

3.1   The LossyDL Method 

The principle of LossyDL is to keep all the valid minimal occurrences of a serial epi-
sode under the prefix tree structure. Therefore, in addition to a label, each node (except 
the root node) of the prefix tree in LossyDL also keeps a duration list which is a set 
used to contain all the valid minimal occurrences in the MO set of its corresponding 
serial episode. The number of the valid minimal occurrences kept in the duration list is 
regarded as the support of the corresponding serial episode. Moreover, in order to avoid 
keeping too many serial episodes with low supports, the principle of Lossy Counting 
[8] is used in LossyDL. Given an error parameter ε, if the number of received n-tuple 
events is divisible by 1/ε⎡ ⎤⎢ ⎥ , for each node, the oldest minimal occurrence is removed 

from its duration list. Moreover, the nodes with empty duration lists are removed from 
the prefix tree. When the users want the mining results, the SERs are generated from 
the prefix tree by comparing the duration lists of any two nodes with enough supports. 
The algorithms of LossyDL are shown in Figures 3 and 4 and explained as follows. 

Input: multi-streams DSs,minsup,minconf,T,Lmax, and 
Output: the prefix tree PT
Variable: a node b, the corresponding serial episode S, and its last two valid minimal occurrences [t11, t12] and [t21, t22]

in the duration list 
1. Create a prefix tree PT with a root node containing 
2. Whenan n-tuple event Ri received from DSs at current time i
3.    for each item X in Ri
4.      for each node b in PT       // bottom-up traversing 
5.         if (i = t22)
6.            if ([t11, i] is a valid minimal occurrence of S+X)
7.                Append it to the duration list of S+X
8.            if ([t21, t22] is a valid minimal occurrence of S+_X)
9.                Append it to the duration list of S+_X
10.        else
11.           if ([t21, i] is a valid minimal occurrence of S+X)
12.               Append it into the duration list of S+X
13. If (the number of received records is divisible by 1/ )
14.    Remove the oldest valid minimal occurrence for each node and remove the nodes with empty duration lists  

Fig. 3. Maintaining the prefix tree in LossyDL 
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Initially, the root of the prefix tree is created. When a new n-tuple event arrives, all 
items in the n-tuple event are sequentially used to traverse the tree. The traversing order 
is bottom-up. The bottom-up traversing order means that the nodes in the high levels 
are traversed before those in the low levels. During the traversing process, the new 
serial episodes may be generated, that is, the new nodes may be created, and the new 
valid minimal occurrences for some serial episodes may be added. Suppose that R(i) is 
an n-tuple event, where i is the current time unit and the item X is contained in R(i). 
When X is processed, two cases need to be considered. Let d be a node corresponding to 
a serial episode S, the last two valid minimal occurrences of S stored in d are [t11, t12] 
and [t21, t22]. When d is visited, (case 1) if t22 is equal to i, [t21, t22] and [t11, i] become the 
candidate occurrences for S+_X and S+X, respectively; otherwise (case 2), [t21, i] is the 
candidate occurrence for S+X. A candidate occurrence of S+X (S+_X) is recognized as 
valid and inserted into the duration list of the node corresponding to S+X (S+_X) if both 
of the last two valid minimal occurrences of S+X (S+_X) are not its proper subinterval 
and moreover, it satisfies the time bound T. Notice that if the node corresponding to S+X 
(S+_X) is not kept in the prefix tree, a new node with a label equal to X is created as a 
child of b. 

Since LossyDL is rooted in Lossy Counting to reduce the memory usage, the 
supports of the serial episodes kept in the prefix tree and the significant SERs obtained 
by LossyDL must be equal to or less than their real supports. Therefore, when the users 
request the mining results, the duration lists of any two serial episodes with their 
supports equaling or exceeding (minsup − ε) × N are checked to see whether any valid 
minimal occurrences of the two serial episodes can be combined to contribute to the 
supports of a SER. Then, for each SER, R: S1→LS2, satisfying the following two con-
straints are returned to avoid the false dismissals: 1) supp(R) ≥ (minsup − ε) × N and 2) 
(supp(R) + εN) ⁄ supp(S1) ≥ minconf. 

An example for maintaining the prefix tree in the LossyDL method is shown in 
Figures 5 and 6. Suppose that the time bound is 3 and after some items were processed, 
the prefix tree is as the left-hand side in Figure 5. At time unit equal to 3, an item B 
contained in the n-tuple event is processed and the maintenance of the prefix tree is 
shown in Figure 6. The nodes in the prefix tree are traversed to be compared with B. 
The bottom-up traversing order is shown as the right-hand side of Figure 5. In Figure 6, 
notice that, [1, 3] is a minimal occurrence of (A)(B)(B), but [1, 3] is not a minimal 
occurrence of (A)(B) because [1, 2] is a proper subinterval of [1, 3]. 

Input: stream size N, minsup, minconf, T, Lmax, and PT
Output: significant SERs 
Variable: a time lag, lag, nodes N1,N2 and their corresponding serial episodesS1,S2
1. for each two nodes N1, N2 in PT
2.  if (supp(S1)  (minsup )×N and supp(S2)  (minsup )×N)
3.    Check the duration lists of N1 and N2
4.    for all lag from 1 to Lmax
5.      Calculate supp(S1 lagS2)
6.      if ((supp(S1 lagS2) + N) ⁄ supp(S1) minconf and supp(S1 lagS2)  (minsup )×N)   
7.         Return S1 lagS2  

Fig. 4. Rule generation of LossyDL 
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[1, 1] [2, 2]
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Φ
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ΦΦ
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[1, 1] [2, 2]

[1, 2]  

Fig. 5. The status of the prefix tree at time 
= 2 and the bottom-up traversing order at 
time = 3 
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Fig. 7. An example of the time lag table T1 Fig. 6. An example of maintaining the prefix tree 
after receiving an n-tuple event at time = 3 

3.2   The TLT Method 

Although Lossy Counting is used to reduce the required memory space for LossyDL, 
the duration list in each node of the prefix tree still needs much memory space. In order 
to avoid keeping almost all the valid minimal occurrences for a serial episode, another 
method named TLT is proposed. A more space-efficient structure, named time lag 
table, is used in TLT to summarize the time positions of the SERs. A time lag table is a 
two-dimension table used to store the supports of the reduced SERs which are SERs 
with their precursors and successors both containing a single item. For example, R: 
A→LB is a reduced SER, if A and B are items. The row and column of a time lag table 
represent the items and moreover, a time lag table with a label of L keeps the supports 
of the reduced SERs with a time lag of L, e.g. the entry TL(A, B) in the table TL keeps the 
support of R: A→LB. An example of the time lag table T1 is shown in Figure 7. 

Instead of keeping almost the whole duration list, each node of the prefix tree in 
TLT keeps only the last two valid minimal occurrences and the support for its corre-
sponding serial episode. Moreover, since the time lag of the significant SERs is at most 
Lmax, such as S1→LmaxS2, some reduced SERs with a time lag at most Lmax + T − 1 
(from the first itemset of S1 to the last itemset of S2) may exist. Therefore, in addition to 
the prefix tree, TLT will also keep Lmax + T − 1 additional time lag tables, named T1, 
T2, …, TLmax + T − 1, which respectively store the supports of the reduced SERs with a 
time lag equal to 1, 2, …, Lmax + T − 1. 

The maintenance of the prefix tree in TLT is similar to that in LossyDL, and 
moreover, Lossy Counting is also employed in removing the nodes with low supports 
in TLT. The last two valid minimal occurrences kept in the node are used as in Los-
syDL to check whether a new valid minimal occurrence for its child node occurs or not. 
If it occurs, the support of its corresponding serial episode kept in the node of the prefix 
tree is increased by one and moreover, the original last two minimal occurrences of its 
corresponding serial episode will also be updated. When the number of the received 
n-tuple events of the data streams is divisible by 1/ε⎡ ⎤⎢ ⎥ , TLT decreases the support of 
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Input: N, minsup, minconf, , Lmax, PT, and a set of time lag tables Ti, i = 1 to Lmax + T  1
Output: significant SERs 
Variable: a time lag, lag, two nodes N1,N2, their corresponding serial episodesS1,S2, the first itemset of S1,

I11, the first itemset of S2, I21, the second itemset of S1, I12, and a temporary variable TempCount
for estimating the support boundary 

1. for each two nodes N1, N2 in PT
2.    if (supp(S1)  (minsup ) × N and supp(S2)  (minsup ) × N)
3.        for all lag from 1 to Lmax
4.           for each item I in I11 and J in I21 
5.              Obtain supp(I lagJ) from Tlag              
6.              if (supp(I lagJ) < (minsup ) × N)     
7.                 Prune S1 lagS2      // from Observation 2     
8.              if (supp(I lagJ) < supp(S1) × minconf)
9.                 Prune S1 lagS2     // from Observation 3
10.             for each item X in I12
11.                TempCount = 0 
12.                for each p s.t. 0 < p < T and lag  p > 0 
13.     TempCount =TempCount + min(supp(I pX), supp(X lag-pJ))
14.                if (TempCount < supp(S1) × minconf)
15.                   Prune S1 lagS2   // from Observation 4
16.             if (S1 lagS2 cannot be pruned) 
17.                Return S1 lagS2  

Fig. 8. Rule generation of TLT 

each serial episode by one and remove the nodes with supports = 0 from the prefix tree. 
In addition to the prefix tree, by keeping the last Lmax + T − 1 n-tuple events of the 
stream, the time lag table T1, T2, …, TLmax + T − 1 can be updated when a new n-tuple event 
is generated. 

When the users want the significant SERs, any two serial episodes with enough 
supports, that is, greater than or equal to (minsup − ε) × N, will form a candidate SER. 
Then, the candidate SER is checked to see whether it satisfies the pruning rules derived 
from Observations 2, 3, and 4. That is, given a candidate SER R: S1→lagS2, where the 
time lag = 1 to Lmax, and supp(S1) and supp(S2) both equal or exceed (minsup − ε) × N, 
R is returned to the users if it pass all of the pruning rules shown in Figure 8. The rule 
generation algorithm of TLT is described in Figure 8. 

4   Performance Evaluations 

This paper first addresses the problem of finding significant serial episode rules with 
time lags over multi-streams. Therefore, to evaluate the effectiveness of LossyDL and 
TLT, a series of experiments on real data are performed and the experiment results are 
provided in this section. All experiments are performed on a PC with the Intel Cel-
eron(R) 2.0GHz CPU, 1GB of memory, and under the Windows XP operating system. 
The memory space utilization, the updating time for the summary, the mining time 
while requesting the significant SERs, and the precision are used to evaluate the two 
proposed methods. The error parameter ε is set to 0.1 × minsup, as usually done in the 
other papers [8]. The maximum time lag, Lmax, is set to 10. 
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Two datasets tested in the experiments are described as follows: 1) Dryness and 
Climate Indices, denoted as PDOMEI: the data set contains several dryness and climate 
indices which are derived by experts and usually used to predict droughts. For example, 
several serial episode rules related to these indices are discovered in [14]. We select 
four indices from these indices, including Standardized Precipitation Index (SPI1, 
SPI3) [17], Pacific Decadal Oscillation Index (PDO) [16], and Multivariate ENSO 
Index (MEI) [15]. Therefore, there are four data streams with a length of 124, in-
cluding SPI1, SPI3, PDO, and MEI in this data set. Moreover, the values of these 
indices are divided into seven discrete categories [14], making the total types of items 
are 28. 2) Another data set is "Twin Cities' Traffic Data Archive," denoted as Traffic: 
the data set obtained from TDRL [18] is Twin Cities' traffic data near the 50th St. during 
the first week of February, 2006. It contains three data streams with a length of 1440. 
Each stream is generated by a sensor periodically reporting the occupancy and flow. A 
pair of the occupancy and the flow is divided into discrete classes and regarded as 
items. There are 55 distinct items in this dataset. 
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Fig. 9. Comparison of memory space between LossyDL and TLT  
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Fig. 10. Comparison of updating time between LossyDL and TLT 

Since Lossy Counting is applied to both of the two methods, the required memory 
space of the two methods will increase as time goes by and drastically decrease when 
the sizes of the streams are divisible by 1/ε⎡ ⎤⎢ ⎥ . Therefore, we concentrate on the maximal 

memory space used for the information of the occurrences of the serial episodes that is, 
the duration lists in LossyDL and the time lag tables in TLT, during the procedures, 
which is shown in Figure 9. As can be seen, the lower the minsup is, the more memory 
space the LossyDL method requires. This is because the error parameter ε is set to 0.1 × 
minsup and as ε decreases, the memory space required in LossyDL will increase. Al-
ternatively, the memory space used in TLT is almost fixed under any values of the 
minsup because the sizes of the time lag tables are decided according to the number of 
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items. Moreover, from Figure 9, it can find that the memory space used in TLT is 
substantially less than that in LossyDL. For example, in the Traffic dataset, the memory 
space used in TLT is around 64 KB, which is about 2% ~ 7% times that in LossyDL. 

The Running time in the experiments can be divided into two types. One for up-
dating such structures as the prefix tree, the duration lists, and the time lag tables and 
another one is for mining all the significant SERs from the structures. As shown in 
Figure 10, the updating time of TLT is less than that of LossyDL because increasing the 
counters in the time lag tables of TLT takes less time than frequently inserting/deleting 
the valid minimal occurrences into/from the duration lists of LossyDL. Moreover, the 
updating time of LossyDL and TLT roughly decreases as the minsup increases. Again, 
this is because ε is set to 0.1 × minsup. As ε (minsup) decreases, the size of the prefix 
trees will increase, thus making the updating time of two methods to be increased. In 
the Traffic dataset, the average processing time of LossyDL for each transaction is 
about 1.04 second. In other words, our methods can process the streaming data on time 
if the average arriving rate is less than 1 records/sec. This is acceptable in the traffic 
monitoring system because the sampling rates of the sensors cannot be set too high due 
to power consumption. 
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Fig. 11. Comparison of mining time between LossyDL and TLT 
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Fig. 12. Comparison of precision between LossyDL and TLT 

The mining time of the two methods are shown in Figure 11. Since the lower the 
minsup (s) is, the more the serial episodes need to be checked, the mining time of the 
two methods will increase as the minsup decreases. Moreover, as can be seen, the 
mining time of the two methods will lightly decrease as minconf increases but the 
effects of minconf on the mining time seems to be marginal. This is because the mining 
time is almost decided according to the number of the serial episodes with enough 
supports. From Figure 11, it can also find that the mining time of TLT is lower than that 
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of LossyDL because in LossyDL, the duration lists of two serial episodes need to be 
joined but to TLT, we only need to check the values in the time lag tables. 

Since both of LossyDL and TLT are false-positive oriented approaches, their recall 
rates are equal to 100%. Therefore, we concentrate on the precision rates of the two 
methods, which are shown in Figure 12. The LossyDL method has the higher precision 
rates than the TLT method on both of the two datasets. This is because almost all the 
valid minimal occurrences are kept in the duration lists of LossyDL, making the sup-
port and confidence of a SER be precisely calculated by comparing the duration lists of 
the serial episodes.  

5   Conclusions 

In this paper, we address the problem of finding significant serial episode rules with 
time lags over multiple data streams and propose two methods, LossyDL and TLT, to 
solve the problem. The prefix tree structure is used to store the information of the 
support for each serial episode in the two methods. In order to limit the memory space 
for the prefix tree, the principle of Lossy Counting is integrated into the maintenance of 
the prefix tree. Since the number of the events (items) is much less than the number of 
the serial episodes, TLT is more space-efficient. Alternatively, since LossyDL keeps 
almost all the valid minimal occurrences for a serial episode, the precision of LossyDL 
is higher than that of TLT. In the near future, we will combine these two methods into a 
hybrid method to investigate the balance between the memory space used and the 
precision. On the other hand, we will also manage to extend the approach to mine 
general episode rules with time lags over multiple data streams. 
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