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Abstract

A great deal of attention has been given to machine learning owing to the re-

markable achievement in Go game and AI robot. Since then, machine learning

techniques have been widely used in computer vision, information retrieval, and

speech recognition. However, data are inevitably containing statistically outliers or

mislabeled. These anomalies could interfere with the effectiveness of learning. In

a dynamic environment where the majority pattern changes, it is even harder to

distinguish anomalies from majorities. This work addresses the research issue on

resistant learning on categorical data. Specifically, we propose an efficient bipartite

majority learning algorithm for data classification with tensors. We adopt the re-

sistant learning approach to avoid significant impact from anomalies and iteratively

conduct bipartite classification for majorities afterward. The learning system is im-

plemented with TensorFlow API and uses GPU to speed up the training process.

Our experimental results on malware classification show that our bipartite majority

learning algorithm can reduce training time significantly while keeping competitive

accuracy compared to previous resistant learning algorithms.

Keywords: Bipartite majority learning, Resistant learning, Malware classifica-

tion.
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1 Introduction

Artificial Neural Network (ANN) is regularly adopted in data classification researches [1,

2, 3, 4]. These studies combine the softmax transformation in the output layer of ANNs

so that the output values of each output nodes can represent the probability of a specific

input belongs to that class. With the characteristics that ANN is suitable for classifica-

tion, ANN can also assist humans in solving yes-no questions. For example, determining

if the image contains a specific object, forecasting whether future stock prices will rise,

etc. A complex ANN has been proved that it could represent any input-output mappings

[5]. If sufficient information was supplied, ANN could help people making decisions more

effectively. However, the parameters of ANN need many tests to find proper settings. How

many hidden layers should be adopted? How many hidden nodes in each layer? Long

trial and error processes might consume a lot of time and computing resources. Even if a

proper model complexity is found, the loss of the model is often stuck in local optimal and

might not fulfill the requirement of the classification accuracy on training data. Still, in

real-world data sets, data is inevitably containing outliers or wrong information. Although

ANN is more flexible to handle mislabeled or outliers rather than linear models [6], a small

portion of outliers will still affect the learning effect of the majority. Tsaih and Chang [7]

proposed a resistant learning procedure on ANN. The learning model of resistant learn-

ing is single-hidden layer feed-forward neural networks (SLFN). This resistant learning

method allows multi-dimension inputs and only one dimension output. In other words,

the SLFN can have many input nodes but can have only one output node. The resistant

learning method dynamically changes the hidden node amount to find a proper model

complexity. When ANN’s loss stuck in local optimal, resistant learning approach will add

new hidden nodes and calculate the appropriate weights for the new hidden nodes. With

this mathematical approach, the data which is difficult to learn can be learned by the

ANN while the majority’s numeric output would not be affected significantly. But, the

final goal of resistant learning is to find a near perfect fitting-function, that is to say, the

resistant learning method focuses on finding perfect numeric input-output mappings, not

1
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to be a classifier for data. Still, if ANN learns the perfect input-output relationship of

the training data, it would probably cause the over-fitting problem. Therefore, in this

paper we designed a new resistant learning method. We retained the resistant learning

advantages and applied it to classify different types of data.

The proposed resistant learning mechanism we called bipartite majority learning (BML).

Our method can learn the proper majority features of two categories of data. Bipartite

classification problem is relative. Although resistant learning method only has one out-

put value of each input data, we can set different desired learning output for two types of

data. One of them should be greater, and the other should be smaller. Then, we can find

a boundary for classifying different types of data. BML can also pick out the anomalies

while the anomalies’ features were unknown previously. In order to achieve this goal, BML

starts learning from a small portion of training data, then gradually increase the selected

amount of training data until the majority features of data are learned. When selecting

the partial training data, the whole training data should be sort by specific criteria. This

sort-and-select process imitates the learning process of human beings. Humans use things

they already know to describe unknown things, and learn the concept of unknown things

in the process of such analogy and thinking. By the sorting process, ANN can learn the

data which is familiar to it first. As the knowledge of ANN becomes more and more

abundant, ANN can distinguish which data belongs to the majority pattern, and those

that are difficult to learn may be outliers. In the situation of classifying two types of

data, BML would learn the most different features of the bipartite data first. The most

different features mean the data that is far from the classification boundary. Then, BML

will tune the weights or change the model structure to learn the difference of the similar

data. The stop condition of BML is the majority of data can be correctly classified by

the boundary. The majority rate can be determined previously. Although BML can even

perform perfect classification for all training data due to the resistant learning process,

perfect learning might cause an over-fitting problem. Depending on the application, the

majority rate can be set as needed. More precisely, the setting of the majority rate should

2
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depend on the knowledge of training data. If we know how much outliers may be in the

training data, we can set the majority rate and then BML will automatically pick out the

appropriate majorities and learn these majorities perfectly.

In the experiments, we apply BML to do malware dynamic analysis. Dynamic analysis

refers to the process of executing a program and recording its behavior. The program

execution data sets used in our experiments are real-world data sets. The program execu-

tion data is a collection of profiles generated from the dynamic analysis. When a program

is executed, the monitor records all the function calls (e.g., system call or Windows API

call) invoked by the program and saves the call sequence in the profile [8]. We collect

several benign programs and malicious programs, then label their profiles as benign (B)

or malicious (M) for bipartite classification.

Our paper has three main contributions. First, we proposed BML to deal with bipartite

classification problem in the context of resistant learning. Past studies [7, 9] focus on

learning a fitting function of the numerical outputs. BML learns a fitting function to be

the classifier of two categories of data. The proposed resistant learning method in this

paper can be applied to any bipartite data.

Second, BML can find anomalies in a global view and do not need prior knowledge

of the training data set. BML has a sort-and-select mechanism for all of the training

data, selecting appropriate majority data for model training, decrease the effect from the

outliers. This function can be helpful when doing dynamic malware analysis. As we know,

a malicious program may not always do something harmful to the infected system (i.e.,

in the incubation phase); therefore, some function call sequences invoked by the malware

do not belong to the attack behavior (which can be considered as a noise or outlier). In

this case, the conventional ANN might be confused with the outlier data while training

the model. However, the proposed majority learning mechanism for nominal classification

can avoid being affected by such anomalies.

Third, BML has greater time efficiency in training the model and keep high prediction

accuracy. Compare to the former resistant learning methods, our BML is outperformed in

3
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decreasing training time and remains a competitive classification accuracy. Our method

can be faster than former ones due to two reasons. One reason is that, we design a looser

learning goal for the SLFN model. Former resistant learning methods need to learn a

near-perfect input-output relationship for training data. But, in our approach, we only

need to let the model classify the outputs of the two categories of data. For example, the

model does not need to train all class 1 data to the value of 1 and train all class 2 data

to the value of 0, instead, BML determine a boundary to classify the two categories of

data. It means that we only need to promise all class 1 predict outputs are greater than

the class 2 predict outputs. Another reason is that, the system and the underlying neural

network are implemented in Python and TensorFlow API [10] on GPU, which provides

the high performance of parallel computing mechanism on the high dimension tensors.

A tensor is a set of primitive values shaped into an array of any number of dimensions.

TensorFlow can perform parallel computing to large tensors, and also be able to speed up

computing by using GPU. We had tested the execution speed on a portable computer,

we tried to do a forward pass through a neural network by a tensor with the shape of

(1187842, 52). It took 9.998 seconds for JAVA, and 0.273 seconds for TensorFlow in the

same hardware environment. It was about 36 times faster by using TensorFlow with GPU

calculating. We used TensorFlow as the main framework in order to reduce the execution

time for training the SLFN model.

4
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2 Related Work

Our main learning architecture of bipartite majority learning is SLFN. The SLFN has

been discussed in many researches. Huang et al. [11] have proved the ability of SLFN

classifying disjoint decision regions with arbitrary shapes in multidimensional cases. They

also mention that failures in SLFN classification can be attributed to inadequate learning

and inadequate amount of hidden nodes. Tsaih [12] uses SLFN to conduct two class data

classification but having a limitation that input data must be binary inputs. Huang et

al. [13] develop an efficient learning algorithm, extreme learning machine (ELM), for the

SLFN. Feng et al. [14] apply ELM and have a growing hidden node approach on the

SLFN. Our approach also has a growing hidden node method for SLFN and focus on two

class data classification, but, we do not have the limitation on the input data, the inputs

in our study can be real numbers.

The proposed BML can deal with the anomalies in learning process. In the context of

linear regression analysis, there are two ways to dealing with outlier problems: deletion

diagnostics and robust estimators [15]. One way of deletion diagnostics is to determine

the observations that cause the largest change in some regression quantity [16, 17] when

they are excluded from the fitting procedure. As for the robust method, one robustness

analysis is to focus on trimmed sum of squared residuals instead of including all the

squared residuals as in the least squares estimator [18]. BML inspired by this robust

approach, limit the attention to a trimmed set of data and gradually increase the subset

size. In this way, BML can pick out the appropriate majority and fight against the outliers.

There are many studies focusing on robust learning methods and dealing with anomaly

pattern. Ren et al. [19] proposed a robust softmax regression for multi-class classification

to cope with noisy data and statistical outliers. Jiang et al. [20] worked on a single layer

robust autoencoder. Zhou and Paffenroth [21] devised a robust mechanism in deep au-

toencoder to find anomalies. Zhao and Fu [22] proposed a robust graph representation

method to clearly split the elements in the segmentation of videos. Wang and Tan [23]

studied a robust distance metric learning method which distinguishes labeled image data.

5
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Jia and Zhao [24] worked on deep neural network to develop a Chinese pinyin typo detec-

tion system. Our study was inspired by the resistant learning method on SLFN proposed

by Tsaih and Chang [7] and make appropriate modifications to make our method more

in line with the bipartite classification situations.

This paper is an extension study in the context of resistant learning. The word resis-

tant has the same meaning to robust. In the statistical literature, the terms robust and

resistant are often used interchangeably but sometimes have specific meanings [25]. Ro-

bust procedure means that the results are not impacted significantly by violations of the

model assumptions (i.e., the errors are normally distributed). As for resistant procedures,

those whose numerical results are not impacted significantly by outlying observations.

Tsaih and Chang [7] proposed a resistant learning procedure on ANN to learn near-

perfect real-number input-output mappings. The error values of all training observations

will less than a tiny value, ϵ (say, 10−6). However, in order to train a perfect fitting

function, the resistant learning procedure suffers high model complexity and long train-

ing time. Srivastava et al. [26] introduced dropout nodes in a neural network to reduce

computation requirements and hence speed up ANN training. Huang et al. [9] proposed

an envelope module to ease the restriction of ϵ. The envelope method covers the fitting

function with an envelope and the learning goal is to make majority data covered by the

range of envelope. The envelope method allows observations having larger error values,

thus accelerate the resistant learning procedure. Yet, past researchers do not address

the learning algorithm with nominal anomalies (i.e., outliers) in the context of resistant

learning. Hence, we propose a new resistant majority learning mechanism for nominal

classification that can antagonize the anomalies in the training data automatically with

less training time and high prediction accuracy.

In the field of malware detection, many research studies adopted machine learning

techniques. Hou et al. [27] developed a system to learn the features of malicious Android

application API calls. Grosse et al. [28] and Wang et al. [29] proposed adversary ap-

proaches in the deep neural network. Grosse et al. [28] used the deep neural network as a

6
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two-class classifier for static malware analysis. Wang et al. [29] developed a deep neural

network on audit logs to perform dynamic malware analysis. They also demonstrated

the validity of the algorithm in other image data sets. Dahl et al. [30] learned the API

calls feature and adopt random projections to deal with large, sparse, binary feature sets.

Chiu et al. [31] performed clustering for system call sequences and found the features of

malware behaviors. Training SLFN to distinguish between malicious behavior and benign

behavior is a good application of the bipartite classification. Therefore, we decided to test

the detection rate of malicious behavior of BML in our experiments.

There are many types of malware behaviors in our data set. In order to do further

classification for different behaviors, combining several trained neural networks to be a

cascade classifier might be a possible solution. Breiman [32] combines the prediction of

the tree classifiers. Bell and Koren [33] also verify the feasibility of combining multiple

predictors. To synthesize the classification results of each neural network to determine

the class of a system call sample might be a feasible approach. However, Krizhevsky et

al. [3] consider that it appears to be too much cost for complex neural networks. Thus,

we found another solution for multi-class classifying, the softmax neural network.

Neural networks which contain softmax transformation in their output layer are suit-

able for multi-class classifying. These neural networks are usually trained with back-

propagation gradient-descent procedure. [34] Lawrence et al. [2] trained convolutional

neural networks with softmax function to recognize faces. Krizhevsky et al. [3] build large

neural networks with softmax and classify 1,000 types of images. Karpathy et al. [4] also

verified the classification ability of softmax neural networks on large scale video data set.

Former studies have proved the effectiveness of neural networks with softmax function.

We decide to follow the MNIST instruction in TensorFlow [35], applying the softmax

neural network to be the multi-class classifier for practical application.

7
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3 Methodology

3.1 Resistant Learning on Single Hidden Layer Feed-forward

Neural Network

SLFN had been proved its ability to representing a complex input-output relationship. [36]

Given a set of N observations, (x1, y1), . . ., (xN , yN), we can train an SLFN to learn

the input-output relationship of the observations. The SLFN can be regarded as a fitting

function f(x,w), where w is the parameter vector. The value f(xc, w) is expected to be

equal or very close to yc. To train such a fitting function, we should define the loss function

of SLFN. We use one of the most commonly adopted methods, least squares estimator

(LSE), to evaluate the loss of the model. The LSE of the cth observation (xc, yc) is defined

as (1). The ultimate goal of training the SLFN model is to minimize
∑N

c=1(e
c)2. Gradient

descent is a popular method for optimizing SLFN. We applied gradient descent method

to minimize LSE in this paper.

(ec)2 = (yc − f(xc, w))2 (1)

From the perspective of statistics, outliers are the observations that lie far away from

the fitting function, i.e., outliers have larger square error (ec)2. Resistant learning means

that the machine learning progress are not significantly influenced by the outliers. Re-

sistant learning has a similar meaning to robust learning, but resistant learning does not

need previous knowledge for the majority and the outliers. Resistant learning will select

the appropriate majority of observations according to a guideline, then, train the model

with the majority, and, apply the special method for learning outliers.

Tsaih and Cheng [7] proposed a resistant learning algorithm using SLFN to find a near-

perfect fitting function for all of the numerical observations. Nevertheless, such training

process is very time-consuming. Huang et al. [9] proposed the resistant learning procedure

with envelope. It eases the restriction of fitting function for numeric observations and is

more effective on resistant learning. However, past solutions cannot be appropriately used

8
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for nominal data. Therefore, we propose a nominal majority learning mechanism, using

the resistant learning procedure to cope with the observations that are difficult to learn,

perform robust learning to avoid the interference from outliers.

3.2 Bipartite Majority Learning

The proposed resistant learning method, bipartite majority learning (BML), focuses on

binary classification problem, and SLFN is used as the learning model. The SLFN archi-

tecture is defined in (2) to (4). Table 1 shows the description of the notations. ai(x) is

the net output value of the hidden layer, and f(x) is the output value of the SLFN. The

activation function, tanh, is hyperbolic tangent. The SLFN can be a bipartite classifier

by setting a threshold [12]. If the output value of an observation is greater or equal than

the threshold, it will be considered as class 1; otherwise class 2. Figure 1 shows the tensor

graph of SLFN.

Table 1: Table of Notations

Notation Description

xc x ≡ (x1, , xm)
T , xc is the cth of input observations.

yc The desired output corresponding to the cth input observation of xc.

m The dimension of input observation x.

p The number of adopted hidden nodes.

wH
i0 The bias value θ of the ith hidden node.

wH
ij The weight between xj and the ith hidden node.

wO
0 The bias value θ of the output node.

wO
i The weight between the ith hidden node and

the output node.

f(x) ≡ wO
0 +

p∑
i=1

wO
i ai(x) (2)

9
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ai(x) ≡ tanh(wH
i0 +

m∑
j=1

wH
ij xj) (3)

tanh(x) ≡ ex − e−x

ex + e−x
(4)

Figure 1: The tensor graph of SLFN.

10
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Algorithm 1 Define the SLFN tensor graph in python code

1: x← tf.placeholder(tf.f loat64)

2: y ← tf.placeholder(tf.f loat64)

3: ht← tf.V ariable(h t)

4: hw ← tf.V ariable(h w)

5: hidden layer ← tf.tanh(tf.add(tf.matmul(x, hw), ht))

6: ot← tf.V ariable(o t)

7: ow ← tf.V ariable(o w)

8: y ← tf.add(tf.matmul(hidden layer, ow), ot)

9: sr ← tf.reduce sum(tf.square(y − y ))

10: train← tf.optimizer(eta).minimize(sr)

Algorithm 1 is the corresponding code in Python. In tensorflow, we should define

the calculation relationship between tensors. The binding tensors form a data flow

graph, which is the tensor graph(i.e., Figure 1). Variables x and y are the tensors of

tf.placeholder type that holds the input data. The variables hw(hidden layer weights,

wH
ij ), ht(hidden layer theta, wH

i0), ow(output layer weights, w
O
i ) and ot(output layer theta,

wO
0 ) are the tensors of tf.Variable type which will be modified by the optimizer. The

structure of the SLFN is defined by the above tensors and certain tensor operations. The

tf.matmul performs the matrix multiplication, the tf.add performs matrix addition and

the tf.square squares all the elements in the tensor. The tf.reduce sum calculates

the sum of all square residuals. Finally, the optimizer, tf.optimizer, applies gradient

descent method to modify the variable tensors of neuron weights.

In the supervised learning scenario for binary classification, we should give an ap-

propriate label to our training set. In general, the desired output will be set to [1, 0]

and [0, 1] for binary classification when the SLFN have two output nodes. But in this

study, our SLFN has only one output node, the desired output of the observations are

given dynamically by a specific method. The learning goal of the SLFN is to discern the

majority of two classes data. We adopt the linearly separating condition (the condition
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L) [12] to distinguish two classes of observations. The α in (5) is the minimum output

value of the observations in class 1(C1) and the β in (6) is the maximum output value

of the observations in class 2(C2). If α > β, for all f(xc) : c ∈ n, the condition L in (7)

is satisfied. The two classes of observations can be separated by a threshold, α+β
2
. In

practice, we label C1 as {1} and C2 as {-1} at the beginning of training process.

α = min
yc∈C1

f(xc) (5)

β = max
yc∈C2

f(xc) (6)

The Linear Separating Condition : α > β (7)

Since we introduce the condition L to be the learning goal of the SLFN, it could be

training more faster than the envelope method. The envelope method proposed by Huang

et al. [9] ensures that the square error between yc and f(xc) should be less than two times

of the standard deviation. The condition L is less restrictive than the envelope module

but more appropriate to do bipartite classification.

Table 2 presents the proposed bipartite majority learning algorithm. Assume there

are N observations, and γ is the majority rate while γN > m + 1. The BML algorithm

is terminated when more than γN observations are correctly classified and the condition

L is satisfied.

Let S(N) be the set of N observations. Let the nth stage be the stage of handling

n reference observations (i.e., S(n)), and γN ≥ n > m + 1. Let Ŝ(n) be the set of the

observations which are classified correctly by the condition L at the end of nth stage. Then,

the acceptable SLFN estimate that leads to a set of {(xc, yc)} that can find a threshold

to separate the two classes of observations for all c ∈ S(n). Meanwhile, |Ŝ(n)| ≥ n

since S(n) ⊆ Ŝ(n). To put it another way, at the end of the nth stage, the acceptable

SLFN estimate presents a fitting function f can find a threshold to classify at least n
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observations in {(xc, yc) : c ∈ Ŝ(n)}.

Table 2: The bipartite majority learning algorithm

Step 1 Randomly obtain the initial m+ 1 reference observations, two classes of

observations each account for half of the m+1 observations.

Let S(m+ 1) be the set of observations of these observations.

Set up an acceptable SLFN estimate with one hidden node regarding

the reference observations (xc, yc) for all c ∈ S(m+ 1).

Set n = m+ 2.

Step 2 If n > γN , STOP.

Step 3 Present the n-1 reference observations (xc, yc) that are the ones

with the largest distances between C1 and C2.

Then select another observation (xk, yk) so that the value of

α− β will be the largest.

Let S(n) be the set of observations selected in stage n.

Step 4 If n reference observations satisfy the condition L, go to Step 7.

Step 5 Set w̃ = w

Step 6 Apply the gradient descent algorithm to adjust weights w until

one of the following cases occurs:

(1) If n reference observations satisfy L, go to Step 7.

(2) If the n observations cannot satisfy L, then restore the weights.

Set w = w̃ and apply the resistant learning mechanism by adding extra

hidden nodes to obtain an acceptable SLFN.

Step 7 n+ 1→ n; go to Step 2.

The proposed BML executes the following two procedures: (i) the ordering procedure

implemented by Step 3 that determines the input sequence of reference observations and

(ii) the modeling procedure implemented by Step 6 that adjusts the weights of the SLFN

to minimize the sum of square residuals
∑N

c=1(e
c)2. If the gradient descent mechanism
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cannot tune the weight to find an acceptable SLFN, then restore weights and adjust the

number of hidden nodes adopted in the SLFN. Finally, all n observations S(n) at the nth

stage would satisfy the condition L. The detail operations are explained as follows.

(Step 1) It first randomly chooses m+ 1 observations from N training data. Then, it

calculates the weight of the initial neural network by using the m + 1 reference observa-

tions in the initial training case. The initial weights of the neural network are given by

formula (8) to (11). We firstly calculate wO
0 and wO

1 in (8) and (9) by all of the reference

observations. Next, we calculate wH
i0 and wH

ij in (8). There are m + 1 hidden weight

variables, we can use m+ 1 reference observations to obtain a set of m+ 1 simultaneous

equations. Then, we can solve the m + 1 simultaneous equations by using matrices [37]

to get the desired hidden weight values, and make f(xc) = yc ∀ c ∈ S(m+ 1).

wO
0 = min

c∈S(N)
yc − 1 (8)

wO
1 = max

c∈S(N)
yc − min

c∈S(N)
yc + 2 (9)

ỹc = tanh−1(
yc −minc∈S(N) y

c + 1

maxc∈S(N) yc −minc∈S(N) yc + 2
) (10)

wH
i0 +

m∑
j=1

wH
ij x

c
j = ỹc ∀ c ∈ S(m+ 1) (11)

Algorithm 2 shows how we use the TensorFlow API to define the operations of equa-

tions (8) to (11).
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Algorithm 2 Calculate the first SLFN weights in python code

1: o w ← tf.max(y)− tf.min(y) + 2

2: o t← tf.min(y)− 1

3: s y ← y[: m+ 1]

4: yc← tf.arctanh((s y − o t)/o w)

5: s x← x[: m+ 1]

6: h t vector ← tf.ones([m+ 1, 1])

7: xc← sess.run(tf.concat([s x, h t vector]))

8: answer ← sess.run(tf.matrix solve ls(xc, yc))

9: h w ← answer[: m]

10: h t← answer[m :]

The purpose of using this method to set the weight is to ensure that the initial neu-

ral network has met the condition: ec = 0 for all c ∈ S(m + 1). That is, the initial

SLFN perfectly represents the correspondence between xc and yc for the m+ 1 reference

observations.

(Step 2) It is the termination condition of the system. We set the majority rate, γ, to

95%. It guarantees the SLFN can correctly discern the observations in training set more

than 95%.

(Step 3) The BML first computes all the possible values of α−β of n− 1 observations

from all N observations. It then selects a set of n− 1 observations that has the maximal

value of α−β. To find the n−1 observations, we firstly sort the values f(xc) in C1 and C2,

respectively. Then we can get i maximum f(xc) in C1 and get (n− 1− i) minimum f(xc)

in C2, i ∈ [1, n−2], to calculate all possible α−β. The time complexity for obtaining such

n−1 observations is O(NlogN) since the time complexity of sorting is O(NlogN) and the

time complexity of calculating all possible α−β is O(n), N > n. Compare to the training

process, this step does not significantly reduce the efficiency of learning. After selecting

the n − 1 observations, it picks another observation, (xk, yk), so that the value of α − β

will be the largest. The purpose of this selection mechanism is to select the n observations
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which most likely to be classified by the condition L. The (n− 1)th stage S(n− 1) asserts

that there is at least one set of n− 1 observations that can let α − β > 0. Although the

n-1 observations selected in the nth stage may not necessarily equal to S(n−1), this select

mechanism ensures that if the observation (xk, yk) is excluded, the n− 1 observations can

satisfy the condition L.

(Step 4) It checks if the n selected reference observations satisfy the condition L. If

true, the nth stage can find at least one set of n observations that can let α− β > 0, then

it goes to the next stage. If not, the BML would temp to find an acceptable SLFN for

the chosen observations S(n).

(Step 5) It saves the current weights of SLFN for the resistant learning procedure. At

the end of the (n− 1)th stage, the ones in {(xc, yc) : c ∈ S(n− 1)} satisfy the condition L.

The resistant learning procedure can cram a new observation (i.e., (xk, yk)) by adding two

hidden nodes while not affecting the output of other observations. Adjusting the weights

by gradient descent mechanism in Step 6 might make the n − 1 observations picked in

the stage n violating the condition L. Therefore, the current state of the neural network

needs to be temporarily stored so that it can be restored in Step 6-2.

(Step 6) We apply gradient descent mechanism to find an acceptable SLFN. For the

purpose of nominal supervised learning, the learning target was given dynamically rather

than fixed value. Although we respectively give the desired output yc for C1 and C2

observations at the beginning, the difference between the two classes observations is even

more important. Let S̄(n) be the subset of S(n), S(n) = {k} + S̄(n). We first calculate

max(f(xC1)) and min(f(xC2)) ∀c ∈ S̄(n), then the supervised learning target changes to

max(f(xC1)) ∀(xc, yc) ∈ C1, and the supervised learning target changes to min(f(xC2))

∀(xc, yc) ∈ C2. After setting the learning target of S̄(n), we compute the values α and

β of S̄(n). Then, if yk ∈ C1, the learning target of xk is set to α; otherwise yk ∈ C2,

the learning target of xk is set to β. Then, the gradient descent mechanism is applied to

adjust the weights to find an acceptable SLFN.

(Step 6.1) If an acceptable SLFN is found, we move to the next stage. However, we
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might encounter the problem of local optimum which is caused by the implementation

of the gradient descent mechanism or by the SLFN model that does not have enough

hidden nodes. Both situations lead to an unacceptable SLFN estimate regarding the n

reference observations. Therefore, we adopt the resistant procedure proposed by Tsaih

and Cheng [7] to cope with the observation xk.

(Step 6.2) We apply the resistant learning procedure. Restore the w̃ that is stored in

Step 5. Then, we add two hidden nodes to change the output value of xk to the learning

target. It can also represent the observation xk is closer to the threshold than other same

class observations. Other output values yc′ ∀ c ∈ S̄(n) will not be significantly affected

by the resistant learning procedure. The hidden weights formulas of newly hidden nodes

are defined in (12) to (16).

wH
p−1,0 = ζ − λαTxk (12)

wH
p,0 = ζ + λαTxk (13)

wH
p−1 = λαT (14)

wH
p = −λαT (15)

wO
p−1 = wO

p =
|yk ′ − wO

0 −
∑q

i=1(w
O
i w

k
i )|

2 tanh(ζ)
(16)

ζ is a small constant number set to 0.05. λ is a large constant number set to 105. αT

is an m-dimension vector which length equals 1 and satisfies the condition (17).

αT (xk − xc) ̸= 0 ∀ c ∈ I(n)− {k} (17)

By adding two hidden nodes in the hidden layer, the SLFN satisfies the condition L
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for the n reference observations S(n). The output value f(xk) will be very close to α if

yk ∈ C1; otherwise yk ∈ C2, the output value f(xk) will be near to β.

(Step 7) We increase n by 1 and repeat step 2 to step 7. Most machine learning

methods use all training data as the basis for adjusting weights. In the BML mechanism,

in order to avoid anomaly observations affecting SLFN learning and picking appropriate

majority observations, BML will start with a small amount of data and gradually increase

the amount of selected data. The advantage of this approach is that since we do not

necessarily know in advance which data is the majority and which data is the anomaly in

all training data, it is possible that anomaly data will be selected when m+1 data are first

acquired. However, as the number of selected data n increases, the selection mechanism in

step 3 will select those that are most easily classified by condition L. Since n observations

selected in the nth stage is most suitable for the current SLFN, the n observations do

not necessarily include the n − 1 observations selected in the (n − 1)th stage. Through

this dynamic selection method, we can select appropriate majority data and avoid the

anomaly’s impact on the effectiveness of learning. Although n only increases by 1 at one

time that would slower than training the SLFN with all data, we found that the SLFN

does not need to retrain at every stage in our experiments due to the observations can

satisfy the condition L. The BML mechanism can quickly move to the next stage when

the most part of training data can be classified correctly.

3.3 Majority Learning on Softmax Neural Network

The softmax neural network is a popular neural network architecture, which is commonly

adopted to do nominal classification. In general conditions, the softmax neural network

will learn for all training data, but in order to make softmax neural network a comparable

learning model benchmark, we design a majority learning method for softmax neural

network.

The designed softmax majority learning method has 6 procedures which are similar

to the proposed majority method, BML. We list the process of softmax majority learning
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in table 3.

Table 3: The softmax majority learning algorithm

Step 1 Randomly obtain the initial m+ 1 reference observations, two classes of

observations each account for half of the m+1 observations.

Let S(m+ 1) be the set of observations of these observations.

Set up an acceptable SLFN estimate regarding the reference

observations (xc, yc) for all c ∈ S(m+ 1).

Set n = m+ 2.

Step 2 If n > γN , STOP.

Step 3 Present the n reference observations (xc, yc) that are the ones

with the smallest cross entropy value.

Let S(n) be the set of observations selected in stage n.

Step 4 If n reference observations can be correctly classified by the model, go to Step 6.

Step 5 Apply the gradient descent algorithm to adjust weights w until

one of the following cases occurs:

(1) If n reference observations can be correctly classified by model, go to Step 6.

(2) If the n observations stuck in local optimal and cannot correctly classified

by model, go to step 6.

Step 6 n+ 1→ n; go to Step 2.

The designed softmax majority learning method has the same procedure in increasing

training data and terminal condition. That is to say, compare to the general training

method of the softmax neural network, we iteratively obtain a new observation to be the

training data in each stage. We modify the other steps to let the softmax neural network

fit the majority learning process. In step 1, we arbitrarily pick m + 1 observations to be

the initial training data. We adopt gradient descent method to get an initial network state

that the m+ 1 observations can correctly classified by the softmax neural network. Note

that the gradient descent method cannot always tune the weight to find an acceptable

neural network, we can only minimize the cross-entropy of the model. In step 2, we
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check the terminal condition just like BML. In step 3, we do forward pass for all N

observations, calculate each observations’ cross-entropies, and sort the N observations by

the cross-entropy values. We obtain n observations with the smallest cross-entropy values

to be the training data in the satge n. In step 4, we would check if the n observations with

the smallest cross-entropy values can correctly classified by the softmax neural network.

If yes, go to step 6. Otherwise, go to step 5, the softmax neural network should apply

gradient descent optimizer to tune the weights until one of the two following occurs: (1)

The softmax neural network can correctly classified the n observations. (2) The gradient

descent optimizer stuck in local optimal and could not find a set of weight correctly

classified the n observations.

The softmax majority learning method does not have a resistant learning procedure.

After the training process, the ANN model cannot make sure the γN majority can be

correctly classified. In other words, the softmax majority learning method has a limited

ability to deal with outliers.

The ANN model with softmax function in softmax majority learning method could be

regarded as another form of condition L. Because of we focus on bipartite classification

problem, the ANN model have two output nodes in the output layer. If we concatenate

a new layer with one node to the original two output nodes and the neuron weights

connected are 1 and -1 respectively, the newly output node would satisfy the condition L.

One of the two class would have output value greater than 0, the other class would have

output value less than 0. Figure 2 illustrates the effect of this operation.
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Figure 2: The condition L in another form.
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3.4 Majority Learning on Support Vector Machines

Support Vector Machines (SVMs) are a prevalent supervised learning method for data

classification, regression, and other learning tasks. [38] SVMs have several advantages,

for example, SVMs are effective in high dimensional spaces and still effective in cases

where number of dimensions is greater than the number of samples. SVMs have several

kernel functions that can be specified for the decision function. We also design a majority

learning method for SVM. Table 4 describe the SVM majority learning process.

Table 4: The SVM majority learning algorithm

Step 1 Randomly obtain the initial m+ 1 reference observations, two classes of

observations each account for half of the m+1 observations.

Let S(m+ 1) be the set of observations of these observations.

Set up an initial model regarding the reference observations (xc, yc)

for all c ∈ S(m+ 1).

Set n = m+ 2.

Step 2 If n > γN , STOP.

Step 3 Present the n reference observations (xc, yc) that are the ones

with the smallest −yc ∗ f(xc) value.

Let S(n) be the set of observations selected in stage n.

Step 4 If n reference observations can be correctly classified by the model, go to Step 6.

Step 5 Apply the weight tuning method to adjust weights w until

one of the following cases occurs:

(1) If n reference observations can be correctly classified by model, go to Step 6.

(2) If the n observations stuck in local optimal and cannot correctly classified

by model, go to step 6.

Step 6 n+ 1→ n; go to Step 2.

The SVM majority learning algorithm has the same sort-and-select procedure to pick

the data most familiar to the trained classifier. The main idea of SVM is to find a
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hyperplane which can separate two class of data in a high dimension space. Thus, in step

3, we pick the data with the smallest −yc ∗ f(xc) value. yc is the desired output of the

training data. yc is 1 for all class 1 data and yc is −1 for all class 2 data. f(xc) is the

predict output value of SVM classifier for xc. If the two values are the same sign, it means

that xc is separated into the correct space by the hyperplane. If the two values are the

opposite sign, it means that xc is separated into the wrong space by the hyperplane. If

the value |f(xc)| is larger, the farther away b is from the hyperplane. Depending on the

selection criteria, data that is far from the hyperplane will be prioritized selected.

SVM classification methods have several kernels. Linear, polynomial, radial basis

function (RBF) and sigmoid are common used kernels. Each kernel has different ability

for classifying different data distribution. Figure 3 illustrates the ability of different kernels

classifying specific data distribution.

Figure 3: An example for different SVM kernels classifying two class data.

As for the implementation, Scikit-Learn [39] provides high-level functions for building

SVMs classifiers. We use Scikit-Learn library for the implementation of SVM majority

learning algorithm.
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3.5 Multi-Class Classifier for Majority

For the bipartite classification problem, the obtained SLFN from BML can be used as

a bipartite classifier. An input can be classified by comparing its output value with a

threshold. The threshold of the SLFN is α+β
2

where α is the minimum output value in

C1 and β is the maximum output value in C2 of the majority in the training set. If

f(xt) ≥ α+β
2
, xt is classified as C1; otherwise C2.

As for multi-class classification problem, for example, classifying several types of mal-

ware behaviors, We need to add an additional mechanism in our neural network. In the

literature, a cascade classifier is an option [40]; however, cascade classifier may lead to

poor classification accuracy in the circumstance of too many classes. Hence, inspired

by the MNIST experiments in TensorFlow [35], we build a neural network with softmax

function to perform multi-class classification. This neural network does not contain any

hidden layer. The softmax function is a generalization of the logistic function that con-

verts a K-dimensional vector z of arbitrary real values to a K-dimensional vector σ(z) of

real values in the range [0, 1] that add up to 1. The neural network architecture is defined

in (18). We use cross-entropy to determine the loss of our model, and the cross-entropy

is defined in (19).

g(xc) ≡ softmax(Wxc + b) (18)

Hyc′(y) = −
N∑
c=1

yc′ log(yc) (19)

Figure 4 shows the tensor graph of the softmax neuron network. Algorithm 3 is the

corresponding code in Python. Variables x and y are the tensors of tf.placeholder type

that holds the input data. W and b are the tensors of tf.Variable type. The shape of

W is determined by the dimension of x and the dimension of y. The tf.matmul performs

the matrix multiplication, the tf.add performs matrix addition. The tf.reduce sum

sums up all of the cross entropies.Finally, the optimizer, tf.optimizer, applies gradient
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descent method to modify the variable tensors of neuron weights.

Figure 4: The tensor graph of the softmax neuron network.
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Algorithm 3 Define the Softmax tensor graph in python code

1: x← tf.placeholder(tf.f loat64)

2: y ← tf.placeholder(tf.f loat64)

3: W ← tf.V ariable([x.shape[1], y.shape[1]])

4: b← tf.V ariable([y.shape[1]])

5: y ← tf.nn.softmax(tf.matmul(x,W ) + b)

6: c e← −tf.reduce sum(y ∗ tf.log(y ))

7: train← tf.optimizer(c e).minimize(sr)

Compared to SLFN, this neural network architecture has neither hidden layer nor

activation function. Gradient descent is also adopted here to adjust the weight and bias.

The advantage of this neural network is that it can classify multiple malicious behaviors.

The aforementioned SLFN can only distinguish between malicious behavior and benign

behavior. Using the softmax neural network, we can discern the category of a malicious

behavior. The neural network will output a set of probability values representing the

likelihood of each category. Among them, we would take the maximum probability value

to be the classification result of the neural network.
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4 EXPERIMENTS

In the experiments, we perform dynamic malware analysis and evaluate the effectiveness

of the proposed BML on real-world data sets. We apply BML to learn two types of

features, malware behavior, and benign program behavior.

4.1 Malware Samples from OWL

In our experiments, 998 malicious programs and 2 benign programs are used. The malware

executables are downloaded from the OWL database [41]. Chiu et al. [31] executed the

malware samples in a virtual machine with Cuckoo Sandbox [42] installed and used the

tool Viso [43] to record the chronological data of the system calls. The two benign

program are Google Chrome and Filezilla. Then, the chronological data are split into

multiple individual samples with the same window size N . Fig. 5 illustrates the method

of collecting training data.

Figure 5: Generate system call samples.

With the window size N = 1,000, there are 1,229,634 samples in total. The number of

distinct system call recorded in these programs is 52. Hence, we can build a vector with 52

dimensions for each sample, and each dimension represents the frequency occurrence of a
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specific system call. After clustered by the GHSOM algorithm [31], there were 19 clusters

containing only malicious behavior. In this case, the rest of the samples that are not in

the 19 clusters are considered as non-malicious samples, i.e., benign samples. Hence, the

unique patterns of these 19 clusters are the detection rules of malicious behaviors.

Some clusters have many repetitive features of samples. In order to prevent the bias

of model training, we filtered out the samples with the same features in advance, and only

one sample was reserved for an individual feature. In addition, we need a large enough

sample size to be suitable for the division of the training/testing set. Therefore, we select

clusters with more than 1000 samples. After these two filtering processes, only 9 malware

detection rule clusters meet our need. For the purpose of balancing the amount of benign

and malware samples, we randomly sampled 19391 benign samples from 1,187,842 benign

samples. The number 19,391 is equal to the sum of 9 malware sample amounts. The

sample amount of each detection rules are shown in Table 5.

Table 5: Sample amount in each detection rules

Rule 1. 3175 Rule 2. 1331 Rule 3. 2025 Rule 4. 1838 Rule 5. 2451

Rule 6. 4356 Rule 7. 1208 Rule 8. 1220 Rule 9. 1787 Benign 19391

4.2 Evaluation

To evaluate our model, we compare our BML with the state-of-art methods, including

the former resistant learning approach, envelope (ENV) [9], softmax and SVM. In order

to maintain the same benchmark, softmax and SVM methods are adapted to majority

learning to make a fair comparison.

ENV already has a majority picking method but does not have a classification method

for bipartite data. Thus, we combined ENV with the condition L for evaluating ENV’s

classification accuracy. The ANN with softmax function does not have a majority mothod.

So, we designed a majority learning method for softmax neural network in section 3.3.

SVM methods do not have majority methods either, so we designed majority learning

methods for SVMs in section 3.4. We applied these majority learning method in experi-
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ment 1.1, 2.1 and 3 to compare the performance.

The mentioned majority learning mechanisms in this study are applied to learn the

majority pattern in each cluster. We test all algorithms in the same hardware environ-

ment. We implement the majority learning methods with TensorFlow API and use GPU

accelerate training efficiency. In this paper, we set γ to 95%, which means all of the

majority learning mechanisms stop when the 95% of the majority in the training set is

correctly classified. We have tested several different degrees of γ setting. Since our sys-

tem call data set has been classified by GHSOM, there is a certain difference between

the benign sample patterns and the malicious sample patterns. The SLFN can easily

separate most of the data. Therefore, we set a stricter majority rate, 95%, to ensure that

the SLFN can learn most of the training data patterns and does not interfere with few

abnormal patterns.

We test the performance of BML under different experimental designs. In Experiment

1, we focus on the performance of BML to classify the samples in each cluster and test

whether BML selecting the appropriate majority. In Experiment 2, we concern about

the performance of BML to classify a large number of samples in each cluster and test

whether BML selecting the appropriate majority. In Experiment 3, we test if BML has

ability classifying two categories of samples which contain a variety of benign and malware

patterns.

4.2.1 Exp. 1.1: Majority Learning on Small-Size Sampling Data

RQ 1: How BML performs in terms of efficiency and accuracy compared to the state-of-

the-art approaches on small-size data sets?

To answer RQ1, in this experiment, we tested the learning results of BML, ENV,

SVM, and softmax on sampling data, whether it can improve performance in the case of

majority learning. The performance evaluation shows the classification accuracy and the

time efficiency of each the methods.
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Figure 6: Experimental design of experiment 1.1.

Figure 6 illustrates the experimental design of experiment 1.1. We randomly selected

an equal amount of malicious samples from the 9 malware clusters and the benign samples

from the benign data set. We decided to select 100 samples from each detection rule

clusters, because the size 100 is relatively small compared to the total sample amount in

each clusters (less than 10%). These randomly selected samples are used as the training

set; the rest of the samples are used as the testing set.

For example, we would randomly select 100 malware samples from the rule cluster 1

and randomly select 100 benign samples from the benign cluster. Then, we labeled these

200 samples according to their class and regarded these samples as training set. The

rest of the rule 1 cluster samples and the rest of the benign cluster samples would be

the testing set. After we sampling the data from each clusters, we conduct the different

majority learning experiments with the same sampling data.
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Table 6: Training result by using 100*2 samples

Rule Majority #HN Outliers Execute Train B Train M Test B Test M

Method (#FB/#B, #FM/#M) Time(s) #FB/#B #FM/#M #FB/#B #FM/#M

1

SVM linear - (0/1, 0/9) 0.1 0/99 0/91 85/19291 3/3075

SVM poly - (0/0, 0/10) 0.1 0/100 0/90 127/19291 30/3075

SVM rbf - (0/0, 3/10) 0.3 0/100 0/90 58/19291 350/3075

Softmax - (0/7, 0/3) 0.6 0/93 0/97 345/19291 1/3075

ENV 7 (7/9, 0/1) 106.1 0/91 0/99 1078/19291 0/3075

BML 1 (4/6, 3/4) 0.4 0/94 0/96 759/19291 30/3075

2

SVM linear - (0/6, 0/4) 0.1 0/94 0/96 12/19291 0/1231

SVM poly - (0/7, 0/3) 0.1 0/93 0/97 18/19291 0/1231

SVM rbf - (0/7, 3/3) 0.2 0/93 0/97 0/19291 47/1231

Softmax - (0/0, 0/10) 0.5 0/100 0/90 6/19291 7/1231

ENV 7 (0/0, 0/10) 82.5 0/100 0/90 2/19291 17/1231

BML 1 (0/4, 0/6) 0.4 0/96 0/94 2/19291 6/1231

3

SVM linear - (1/6, 0/4) 0.1 0/94 0/96 14/19291 0/1925

SVM poly - (1/7, 0/3) 0.1 0/93 0/97 18/19291 0/1925

SVM rbf - (0/3, 2/7) 0.2 0/97 0/93 0/19291 48/1925

Softmax - (0/0, 0/10) 0.5 0/100 0/90 3/19291 0/1925

ENV 5 (0/4, 0/6) 34.5 0/96 0/94 8/19291 0/1925

BML 1 (0/7, 0/3) 0.4 0/93 0/97 8/19291 0/1925

4

SVM linear - (0/10, 0/0) 0.1 0/100 0/100 15/19291 0/1738

SVM poly - (1/10, 0/0) 0.1 0/90 0/100 18/19291 0/1738

SVM rbf - (0/1, 1/9) 0.2 0/99 0/91 0/19291 28/1738

Softmax - (4/10, 0/0) 0.4 0/90 0/100 548/19291 0/1738

ENV 11 (0/2, 4/8) 104.7 0/98 0/92 0/19291 98/1738

BML 1 (0/6, 0/4) 0.5 0/94 0/96 0/19291 0/1738

5

SVM linear - (0/4, 0/6) 0.1 0/96 0/94 12/19291 0/2351

SVM poly - (0/4, 0/6) 0.1 0/96 0/94 18/19291 0/2351

SVM rbf - (0/0, 4/10) 0.2 0/100 0/90 0/19291 74/2351

Softmax - (7/8, 0/2) 0.5 0/92 0/98 1784/19291 0/2351

ENV 55 (1/2, 0/8) 1265.0 0/98 0/92 500/19291 0/2351

BML 1 (0/3, 0/7) 0.4 0/97 0/93 3/19291 0/2351

6

SVM linear - (0/8, 0/2) 0.1 0/92 0/98 16/19291 0/4256

SVM poly - (0/8, 0/2) 0.1 0/92 0/98 19/19291 0/4256

SVM rbf - (0/0, 7/10) 0.2 0/100 0/90 0/19291 125/4256

Softmax - (4/10, 0/0) 0.3 0/90 0/100 814/19291 0/4256

ENV 39 (0/3, 0/7) 461.0 0/97 0/93 0/19291 0/4256

BML 1 (0/3, 0/7) 0.4 0/97 0/93 0/19291 0/4256

7

SVM linear - (0/4, 0/6) 0.1 0/96 0/94 17/19291 0/1108

SVM poly - (0/4, 0/6) 0.1 0/96 0/94 34/19291 0/1108

SVM rbf - (0/0, 9/10) 0.3 0/100 0/90 0/19291 171/1108

Softmax - (0/0, 5/10) 0.5 0/100 0/90 1/19291 79/1108

ENV 25 (0/0, 4/10) 378.3 0/100 0/90 0/19291 38/1108

BML 1 (0/0, 4/10) 0.4 0/100 0/90 0/19291 36/1108

8

SVM linear - (0/0, 0/10) 0.1 0/100 0/90 10/19291 0/1120

SVM poly - (0/0, 0/10) 0.1 0/100 0/90 16/19291 0/1120

SVM rbf - (0/1, 3/9) 0.2 0/99 0/91 0/19291 58/1120

Softmax - (0/4, 0/6) 0.4 0/96 0/94 35/19291 0/1120

ENV 37 (0/1, 0/9) 1472.5 0/99 0/91 44/19291 32/1120

BML 1 (0/6, 0/4) 0.4 0/94 0/96 11/19291 0/1120

9

SVM linear - (0/2, 0/8) 0.1 0/98 0/92 11/19291 0/1687

SVM poly - (0/1, 0/9) 0.1 0/99 0/91 16/19291 0/1687

SVM rbf - (0/0, 9/10) 0.2 0/100 0/90 0/19291 60/1687

Softmax - (2/10, 0/0) 0.4 0/90 0/100 664/19291 0/1687

ENV 5 (0/1, 0/9) 92.1 0/99 0/91 118/19291 0/1687

BML 1 (0/1, 0/9) 0.4 0/99 0/91 7/19291 0/1687
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Table 6 shows the training result of SVM, softmax, ENV and BML. For each cluster,

we train the different models by using randomly selected samples as training data (100

benign samples and 100 malicious samples are used) in this experiment. The column of

“#HN” specifies the number of hidden nodes in SLFN after trained by ENV and BML.

Note that the softmax neural network does not have hidden layer, so the amount of hidden

nodes must be always zero.

For the ENV, all of the rules need more than one hidden nodes to find the fitting

function. For BML, all rules only need one hidden node to classify the majority data. It

indicates we do not even need to apply the add hidden nodes procedure to deal with the

outliers in the training data.

In column “Outliers (#FB/#B,#FM/#M)”, the value #B is the number of benign

samples which were regarded as outliers in the training data. The value #M is the number

of malware samples which were regarded as outliers in the training data. The sum of #B

and #M is equal to 5% of training data because our majority rate is set to 95%. The

value #FB and #FM are the number of false classified samples in the benign and malware

outliers, respectively. Although outliers have a greater loss than the majority data, not

all outliers are misclassified. Because we applied the condition L for classification, if the

losses are not great enough, the outliers would not be misclassified by the model.

On the average, BML has higher classification accuracy on training data than EVN,

and most of the misclassified samples are benign samples. As for the training time, BML

is outperformed then ENV and is similar with SVM and softmax, since BML do not need

to re-train the model as many times as ENV.

In this study, we evaluate the accuracy of the model by “false rate”. We define the false

rate as follows: False Rate = False classified sample amount / Total sample amount.

For example, if a rule 1 sample was classified as benign sample by a model, the rule 1

sample is a false classified sample. We sum the amount of false classified rule 1 samples

and divide by the total amount of rule 1 samples to calculate the false rate of rule 1

samples. This calculation method applies to all rule clusters and benign clusters.
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In column “Train B(#FB/#B)” indicates the false rate of benign training data, the

value #B is the number of benign samples in the training data. In column “Train

M(#FM/#M)” indicates the false rate of malware training data, the value #M is the

number of malware samples in the training data. In column “Test B(#FB/#B)” indi-

cates the false rate of benign testing data, the value #B is the number of benign samples

in the testing data. In column “Test M(#FM/#M)” indicates the false rate of malware

testing data, the value #M is the number of malware samples in the testing data.

Figure 7: False rate of different majority learning methods on training data (100*2 sam-
ples).

Figure 8: False rate of different majority learning methods on testing data (100*2 sam-
ples).
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Figure 9: False rate of different majority learning methods on outlier data (100*2 samples).

Figure 10: Execution time of different majority learning methods (100*2 samples).

Figure 7 to Figure 9 show the false rate of SVM, softmax, ENV and BML. We calculate

the mean false rate of 9 rules, BML can perform higher classification accuracy compare to

softmax and ENV on testing data. As for the training data, BML has higher classification

accuracy on benign data but has lower classification accuracy than softmax on malware

data. Figure 10 shows the execution time of SVM, softmax, ENV and BML. BML, SVM

and softmax finish the model training process much faster than ENV.

To answer RQ1, BML has on average higher time efficiency and higher classification
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accuracy than the state-of-art methods on small size data sets.

4.2.2 Exp. 1.2: Use ANN to Learn the Majority

RQ 2: How well the majority set selected by BML represents on small-size data sets?

Figure 11: Experimental design of experiment 1.2.

Figure 11 illustrates the experimental design of experiment 1.2. As far as we know,

outliers would affect the learning of softmax neural network. If training data contains

outliers, the classification accuracy of training and testing data would be decrease. In

this experiment, we want to test if BML can select proper majority data by the selecting

mechanism. We adopt the softmax neural network to the majority selected by the different

majority learning methods. We also test softmax learning by directly using the original

training data. We tested whether the selected majority can increase the performance of

softmax neural network learning. If the majority are chosen properly, the softmax neural

network should learn more accurately from the training data.

We label the data by using the corresponding one-hot vector. A one-hot vector is a

vector that in a single dimension is 1 and in other dimensions are 0s. In our case, the data

in the nth rule is labeled with a vector that its nth dimension is 1 and other dimensions

are 0s. For a benign sample, only the 0th dimension is 1 and others are 0s. Hence, the

shape of the one-hot vector is (10, 1). We apply gradient descent 10,000 times for weight

tuning and compare the classification accuracy. The learning rate is set as 0.0001.
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Table 7: Softmax neural network classification result by using 100*2 samples

Rule Majority Method Outlier FR Train FR Test FR

1

None - 0/100 13/3075

SVM linear 0/9 0/91 17/3075

SVM poly 0/10 0/90 19/3075

SVM rbf 0/10 0/90 17/3075

Softmax 0/3 0/97 16/3075

ENV 0/1 0/99 17/3075

BML 0/4 0/96 19/3075

2

None - 2/100 34/1231

SVM linear 0/4 2/96 42/1231

SVM poly 0/3 2/97 41/1231

SVM rbf 1/3 1/97 30/1231

Softmax 5/10 1/90 75/1231

ENV 1/10 1/90 42/1231

BML 1/6 2/94 43/1231

3

None - 14/100 150/1925

SVM linear 1/4 7/96 128/1925

SVM poly 1/3 8/97 131/1925

SVM rbf 0/7 14/93 149/1925

Softmax 1/10 13/90 158/1925

ENV 1/6 11/94 148/1925

BML 0/3 9/97 133/1925

4

None - 9/100 199/1738

SVM linear 0/0 8/100 181/1738

SVM poly 0/0 8/100 184/1738

SVM rbf 2/9 8/91 220/1738

Softmax 0/0 7/100 164/1738

ENV 0/8 8/92 182/1738

BML 0/4 8/96 180/1738

5

None - 2/100 207/2351

SVM linear 2/6 4/94 246/2351

SVM poly 2/6 4/94 247/2351

SVM rbf 1/10 2/90 195/2351

Softmax 0/2 3/98 216/2351

ENV 2/8 2/92 234/2351

BML 3/3 3/97 233/2351
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Table 8: Softmax neural network classification result by using 100*2 samples (cont.)

Rule Majority Method Outlier FR Train FR Test FR

6

None - 22/100 922/4256

SVM linear 1/2 20/98 798/4256

SVM poly 1/2 19/98 790/4256

SVM rbf 6/10 18/90 1002/4256

Softmax 0/0 22/100 907/4256

ENV 4/7 17/93 922/4256

BML 0/7 21/93 847/4256

7

None - 2/100 24/1108

SVM linear 0/6 2/94 37/1108

SVM poly 0/6 2/94 37/1108

SVM rbf 6/10 0/90 57/1108

Softmax 1/10 2/90 43/1108

ENV 6/10 0/90 57/1108

BML 6/10 0/90 57/1108

8

None - 0/100 15/1120

SVM linear 0/10 0/90 14/1120

SVM poly 0/10 0/90 14/1120

SVM rbf 0/9 0/91 13/1120

Softmax 0/6 0/94 9/1120

ENV 0/9 0/91 16/1120

BML 0/4 0/96 13/1120

9

None - 7/100 118/1687

SVM linear 0/8 8/92 127/1687

SVM poly 0/9 8/91 129/1687

SVM rbf 1/10 6/90 96/1687

Softmax 0/0 7/100 118/1687

ENV 0/9 6/91 88/1687

BML 4/9 3/91 153/1687

Benign

None - 2/900 67/18491

SVM linear 1/41 1/859 72/18491

SVM poly 1/41 1/859 72/18491

SVM rbf 0/12 2/888 70/18491

Softmax 2/49 0/851 108/18491

ENV 2/22 0/878 95/18491

BML 3/40 0/860 105/18491

Table 7 and 8 shows the classification result of the trained model. In column “Train

False Rate” indicates the false rate of training data. In column “Test False Rate” indicates
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the false rate of testing data.

Figure 12: False rate of different majority training softmax neuron network on training
data. (100*2 samples)

Figure 13: False rate of different majority training softmax neuron network on testing
data. (100*2 samples)
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Figure 14: False rate of different majority training softmax neuron network on outlier
data. (100*2 samples)

Figure 12 to Figure 14 show the false rate of softmax neural networks trained by differ-

ent majorities. On average, all of the majority learning methods increase the classification

accuracy of training data and do not loss much accuracy on testing data.

To answer RQ2, BML can choose proper majority set to make training data classified

by softmax neural network more accurately. But, the 95% of majority set loss some

information so that the accuracy of the classification on testing data is slightly lower than

using all training data to train the softmax neural network.

4.2.3 Exp. 2.1: Majority Learning on Large Scale Data

RQ 3: How BML performs in terms of efficiency and accuracy compared to the state-of-

the-art approaches on large-size data sets?
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Figure 15: Experimental design of experiment 2.1.

Figure 15 illustrates the experimental design of experiment 2.1. In this subsection,

we want to test the performance of BML learning a larger amount of data. We use 80%

of the rule samples, rather than using randomly selected 100*2 (i.e., 100 benign + 100

malicious) samples.

For example, we would randomly select 80% of malware samples from the rule cluster

1 (3175 * 0.8 = 2540 ) and randomly select 2,540 benign samples from the benign cluster.

Then, we labeled these 5,080 samples according to their class and regarded these samples

as training set. The rest of the rule 1 cluster samples and the rest of the benign cluster

samples would be the testing set. After we sampling the data from each clusters, we

conduct the different majority learning experiments with the same sampling data.

Note that we also use the same amount of benign and malicious samples for training.

The majority rate is set to 95%.

Table 9 shows the training result of the large-scale training set. In this set, BML

reduces significantly training time compared to ENV. Also, BML does not need to increase

model complexity for learning the 95% of training data. BML can train a proper SLFN for

classifying the majority of bipartite data more efficiency than ENV. Figure 16 to Figure

18 show the false rate of SVM, softmax, ENV and BML. We calculate the mean false rate

of 9 rules as same as exp 1-1. The accuracy performance of BML is between softmax and

ENV. Figure 19 and shows the execution time of SVM, softmax, ENV and BML. ENV

has slightly higher classification accuracy when the training data amount is larger, but

the trade-off is the long model training time.
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To answer RQ3, BML is more time efficiency and does not lose much classification

accuracy compared to the state-of-the-art approaches on large-size data sets.
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Table 9: Training result by using 80% samples

Rule Majority #HN Outliers Execute Train B Train M Test B Test M

Method (#FB/#B, #FM/#M) Time(s) #FB/#B #FM/#M #FB/#B #FM/#M

1

SVM linear - (60/186, 0/68) 70 0/2354 0/2472 490/16851 0/635

SVM poly - (60/185, 0/69) 66 0/2355 0/2471 490/16851 0/635

SVM rbf - (251/254, 0/0) 240 0/2286 0/2540 1773/16851 0/635

Softmax - (39/113, 2/141) 95 0/2427 0/2399 319/16851 0/635

ENV 1163 (83/157, 7/97) 9260 0/2383 0/2443 576/16851 4/635

BML 1 (106/214, 7/40) 69 0/2326 0/2500 673/16851 2/635

2

SVM linear - (0/47, 0/60) 6 0/1017 0/1004 12/18327 0/267

SVM poly - (0/46, 0/61) 6 0/1018 0/1003 18/18327 0/267

SVM rbf - (0/0, 55/107) 31 0/1064 0/957 0/18327 16/267

Softmax - (0/2, 13/105) 11 0/1062 0/959 14/18327 3/267

ENV 401 (0/16, 4/91) 2477 0/1048 0/973 6/18327 0/267

BML 1 (0/54, 4/53) 11 0/1010 0/1011 0/18327 2/267

3

SVM linear - (3/161, 0/1) 26 0/1459 0/1619 13/17771 0/405

SVM poly - (3/156, 0/6) 23 0/1464 0/1614 16/17771 0/405

SVM rbf - (0/0, 140/162) 76 0/1620 0/1458 0/17771 34/405

Softmax - (2/12, 0/150) 34 0/1608 0/1470 2/17771 0/405

ENV 175 (0/82, 0/80) 1461 0/1538 0/1540 2/17771 0/405

BML 1 (0/131, 0/31) 23 0/1489 0/1589 2/17771 0/405

4

SVM linear - (1/16, 0/131) 22 0/1454 0/1339 9/17921 0/368

SVM poly - (1/15, 0/132) 21 0/1455 0/1338 15/17921 0/368

SVM rbf - (0/0, 30/147) 72 0/1470 0/1323 0/17921 5/368

Softmax - (3/15, 0/132) 28 0/1455 0/1338 31/17921 0/368

ENV 667 (0/30, 0/117) 6762 0/1440 0/1353 1/17921 0/368

BML 1 (0/69, 0/78) 20 0/1401 0/1392 1/17921 0/368

5

SVM linear - (3/183, 0/13) 36 0/1777 0/1947 12/17431 0/491

SVM poly - (4/183, 0/13) 33 0/1777 0/1947 15/17431 0/491

SVM rbf - (0/141, 15/55) 117 0/1819 0/1905 0/17431 7/491

Softmax - (30/132, 0/64) 46 0/1828 0/1896 330/17431 0/491

ENV 1027 (0/41, 0/155) 8822 0/1919 0/1805 0/17431 0/491

BML 1 (0/127, 0/69) 35 0/1833 0/1891 0/17431 0/491

6

SVM linear - (2/136, 0/213) 116 0/3348 0/3271 8/15907 0/872

SVM poly - (3/125, 0/224) 128 0/3359 0/3260 14/15907 0/872

SVM rbf - (0/127, 51/222) 365 0/3357 0/3262 0/15907 18/872

Softmax - (0/1, 0/348) 131 0/3483 0/3136 0/15907 0/872

ENV 1399 (0/60, 0/289) 10724 0/3424 0/3195 0/15907 0/872

BML 1 (0/166, 0/183) 136 0/3318 0/3301 0/15907 0/872

7

SVM linear - (0/27, 0/70) 5 0/939 0/896 21/18425 0/242

SVM poly - (0/28, 0/69) 5 0/938 0/897 34/18425 0/242

SVM rbf - (0/0, 92/97) 32 0/966 0/869 0/18425 17/242

Softmax - (7/97, 0/0) 8 0/869 0/966 298/18425 0/242

ENV 121 (0/7, 0/90) 527 0/959 0/876 17/18425 0/242

BML 1 (0/23, 0/74) 10 0/943 0/892 14/18425 0/242

8

SVM linear - (3/19, 0/79) 5 0/957 0/897 13/18415 0/244

SVM poly - (3/15, 0/83) 4 0/961 0/893 16/18415 0/244

SVM rbf - (0/0, 25/98) 24 0/976 0/878 0/18415 12/244

Softmax - (18/58, 0/40) 8 0/918 0/936 220/18415 0/244

ENV 511 (0/33, 0/65) 6248 0/943 0/911 2/18415 0/244

BML 1 (0/76, 0/22) 9 0/900 0/954 7/18415 0/244

9

SVM linear - (1/132, 0/11) 18 0/1297 0/1418 15/17962 0/358

SVM poly - (1/133, 0/10) 19 0/1296 0/1419 20/17962 0/358

SVM rbf - (0/0, 62/143) 59 0/1429 0/1286 0/17962 17/358

Softmax - (73/97, 0/46) 22 0/1332 0/1383 953/17962 0/358

ENV 497 (0/29, 0/114) 5639 0/1400 0/1315 0/17962 0/358

BML 1 (0/82, 0/61) 17 0/1347 0/1368 0/17962 0/358
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Figure 16: False rate of different majority learning methods on training data (80% sam-
ples).

Figure 17: False rate of different majority learning methods on testing data (80% samples).

43

DOI:10.6814/THE.NCCU.MIS.001.2019.A05 



Figure 18: False rate of different majority learning methods on outlier data (80% samples).

Figure 19: Execution time of different majority learning methods (80% samples).

4.2.4 Exp. 2.2: Use ANN to Learn the Larger Amount of Majority

RQ 4: How well the majority set selected by BML represents on large-size data sets?
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Figure 20: Experimental design of experiment 2.2.

Figure 20 illustrates the experimental design of experiment 2.2. We took the same

approach as experiment 1.2, but this time we used the majority of 80% of rule data. We

also test softmax learning by directly using the original 80% of rule data. The softmax

neural network classification result on large-scale data is listed in Table 10 and 11.
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Table 10: Softmax neural network classification result by using 80% samples

Rule Majority Method Outlier FR Train FR Test FR

1

None - 5/2540 1/635

SVM linear 1/68 5/2472 2/635

SVM poly 2/69 4/2471 2/635

SVM rbf 0/0 4/2540 1/635

Softmax 0/141 4/2399 1/635

ENV 1/97 3/2443 1/635

BML 1/40 3/2500 1/635

2

None - 195/1064 39/267

SVM linear 47/60 202/1004 50/267

SVM poly 48/61 202/1003 50/267

SVM rbf 45/107 189/957 49/267

Softmax 21/105 182/959 44/267

ENV 35/91 175/973 44/267

BML 30/53 192/1011 46/267

3

None - 25/1620 3/405

SVM linear 0/1 20/1619 3/405

SVM poly 0/6 20/1614 3/405

SVM rbf 2/162 22/1458 3/405

Softmax 37/150 9/1470 10/405

ENV 3/80 22/1540 3/405

BML 1/31 24/1589 4/405

4

None - 252/1470 64/368

SVM linear 35/131 245/1339 69/368

SVM poly 35/132 245/1338 70/368

SVM rbf 22/147 260/1323 69/368

Softmax 89/132 204/1338 74/368

ENV 48/117 231/1353 71/368

BML 0/78 233/1392 60/368

5

None - 351/1960 89/491

SVM linear 13/13 344/1947 85/491

SVM poly 12/13 345/1947 82/491

SVM rbf 8/55 317/1905 75/491

Softmax 4/64 357/1896 88/491

ENV 54/155 277/1805 77/491

BML 69/69 319/1891 93/491
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Table 11: Softmax neural network classification result by using 80% samples (cont.)

Rule Majority Method Outlier FR Train FR Test FR

6

None - 78/3484 25/872

SVM linear 4/213 86/3271 28/872

SVM poly 8/224 89/3260 30/872

SVM rbf 28/222 56/3262 31/872

Softmax 0/348 47/3136 19/872

ENV 30/289 53/3195 30/872

BML 0/183 71/3301 23/872

7

None - 42/966 6/242

SVM linear 37/70 18/896 9/242

SVM poly 37/69 18/897 9/242

SVM rbf 51/97 5/869 9/242

Softmax 0/0 42/966 7/242

ENV 39/90 14/876 8/242

BML 39/74 14/892 9/242

8

None - 46/976 13/244

SVM linear 0/79 46/897 13/244

SVM poly 0/83 46/893 13/244

SVM rbf 18/98 34/878 13/244

Softmax 1/40 44/936 13/244

ENV 10/65 36/911 13/244

BML 0/22 41/954 13/244

9

None - 804/1429 204/358

SVM linear 0/11 681/1418 175/358

SVM poly 0/10 669/1419 172/358

SVM rbf 65/143 754/1286 212/358

Softmax 3/46 699/1383 184/358

ENV 44/114 749/1315 206/358

BML 42/61 729/1368 203/358

Benign

None - 63/15509 11/3882

SVM linear 77/907 32/14602 24/3882

SVM poly 79/886 32/14623 25/3882

SVM rbf 36/522 47/14987 11/3882

Softmax 52/527 37/14982 12/3882

ENV 24/455 48/15054 13/3882

BML 31/942 48/14567 13/3882
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Figure 21: False rate of different majority training softmax neuron network on training
data. (80% samples)

Figure 22: False rate of different majority training softmax neuron network on testing
data. (80% samples)
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Figure 23: False rate of different majority training softmax neuron network on outlier
data. (80% samples)

Figure 21 to Figure 23 show the false rate of softmax, ENV and BML. The majority

data selected by the different majority learning methods increase the learning effect of

softmax neural network. However, compared to experiment 1-2, the classification accuracy

of using small size data to train the model is much higher than using large size data. We

applied gradient descent 10,000 times for the model in experiment 1-2 and 2-2. We

speculate that it may be because when the amount of data is large, the softmax neural

network needs to do more weight tuning to reach the same accuracy.

To answer RQ4, BML can choose proper majority set to make training data classified

by softmax neural network more accurately.

In experiment 1 and experiment 2, we performed the majority learning for each cluster.

Benign samples are more possible to be outliers. After GHSOM clustering, the similarities

of malicious samples are relatively higher than benign ones; therefore, we found that

malicious samples would be less likely to be misclassified as benign ones. We speculate

that the pattern of malicious behavior is more consistent, so BML is easier to learn the

taxonomy.
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4.2.5 Exp. 3: Binary Classification Performance

RQ5: How BML performs on high-variation data sets?

The above experiments have proved the effectiveness of BML classifying rule samples

and benign samples. However, the rule samples are clustered by GHSOM, which means

the features of rule samples in the same cluster are similar.

Figure 24: Experimental design of experiment 3.1.

Figure 24 illustrates the experimental design of experiment 3.1. In this experiment,

we want to test whether BML can learn good binary classification criteria under the

condition that the malicious behavior patterns are more complicated. We consider all

kinds of malicious clusters as one malicious category and conduct our bipartite learning

on the two kinds but spread samples, i.e., benign and malicious. We use three methods

to build up the training data: 200, 10% and 80%. “200” means that we randomly select

200 malware samples from 9 rules separately, and then randomly select an equal amount

of benign samples (i.e. 1,800 benign samples). “10%” means that we randomly select

10% malware samples from 9 rules separately, and then randomly select an equal amount

of benign samples. “80%” means that we randomly select 80% malware samples from 9

rules separately, and then randomly select an equal amount of benign samples. Note that

the same amount of benign samples are randomly selected and used for training as well.

We used ENV and softmax neural network as the experimental control group. The
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terminal condition of ENV and softmax neural network is the neural network can correctly

classify 95% of the training data. We compare the performance of BML with the other

two majority learning methods.

Table 12: Training result of bipartite classification.

Sampling Majority #HN Outliers Execute Train B Train M Test B Test M

Method Method (#FB/#B, #FM/#M) Time(s) #FB/#B #FM/#M #FB/#B #FM/#M

200

SVM linear - (7/7, 161/173) 31 0/1793 0/1627 57/17591 889/17591

SVM poly - (7/8, 153/172) 33 0/1792 0/1628 53/17591 792/17591

SVM rbf - (152/180 0/0) 133 0/1620 0/1800 1359/17591 0/17591

Softmax - (33/77, 0/103) 37 0/1723 0/1697 278/17591 1/17591

ENV 3429 (5/5, 170/175) 9010 0/1795 0/1625 1295/17591 5526/17591

BML 107 (54/162, 12/18) 1205 0/1638 0/1782 589/17591 95/17591

10%

SVM linear - (3/3, 169/191) 32 0/1932 0/1744 53/17456 1469/17456

SVM poly - (3/3, 189/191) 38 0/1932 0/1744 57/17456 1763/17456

SVM rbf - (1/1 72/193) 690 0/1934 0/1742 47/17456 757/17456

Softmax - (7/12, 137/182) 230 0/1923 0/1753 87/17456 1214/17456

ENV 401 (51/51, 139/143) 6100 0/1884 0/1792 38/17456 5869/17456

BML 1 (32/35, 159/159) 33 0/1900 0/1776 347/17456 1446/17456

80%

SVM linear - (555/590, 771/961) 3108 0/14919 0/14548 194/3882 889/3882

SVM poly - (573/846, 11/705) 3139 0/14663 0/14804 150/3882 4/3882

SVM rbf - (1439/1551 0/0) 5247 0/13958 0/15509 361/3882 0/3882

Softmax - (416/750, 12/801) 2031 0/14759 0/14708 100/3882 4/3882

ENV N/A N/A N/A N/A N/A N/A N/A

BML 1 (551/1321, 0/230) 2316 0/14188 0/15279 133/3882 0/3882

Table 12 shows the training result of three sampling methods. The execution time

of 80% ENV is longer than 20,000 seconds, so we didn’t finish this experiment. Since

the malicious patterns are more complex, ENV needs a lot of time for training. BML

has higher time efficiency and lower model complexity compare to ENV. BML has much

higher time efficiency than SVMs, but softmax has much higher time efficiency than BML.
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Figure 25: False rate of different majority learning methods on training data (variety
samples).

Figure 26: False rate of different majority learning methods on testing data (variety
samples).
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Figure 27: False rate of different majority learning methods on outlier data (variety
samples).

Figure 25 to Figure 27 show the mean false rate of the three different sampling meth-

ods.

To answer RQ5, in the scenario of high variety data, BML can perform higher time

efficiency and higher classification accuracy compared to ENV. But, softmax has more

efficiency than BML.
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5 Discussion

In chapter 4, we have shown the experiment results. Generally speaking, BML performs

high time efficiency and remain the same level classification accuracy compared with the

state-of-art methods. In this chapter, we will explain the experiment results in more

detail.

5.1 Exp. 1.1: Majority Learning on Small-Size Sampling Data

In Experiment 1.1, we randomly obtained 100 rule samples and 100 benign samples as

training data. Compared to the number of all rule samples, 100 samples are less than 10%

of the total number of samples. This small portion of data might not able to represent the

distribution of the population. But, the rule sample have clustered by GHSOM algorithm,

the rule sample should have similar pattern. That is to say, the 100 sampling rule samples

are similar. Therefore, we should not worry too much about the representativeness of the

obtained rule samples. As for the benign samples, there are 133 benign clusters clustered

by GHSOM.

Figure 28: False rate of different majority learning methods (100*2 samples).

The variety of benign sample patterns are larger than the malware sample patterns.

Therefore, we sampled as much randomly as possible so that the obtained 100 benign
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samples are not overly concentrated on a few specific clusters. In figure 28, the false rate

of training data and testing data are related. To a certain extent, the sampling 100 rule

samples and 100 benign samples can represent the characteristics of the overall data.

We can discover that the execution time of ENV is much longer than softmax and BML

in table 6. The main reason for the result is that ENV needs to retrain the model much

more times than softmax and BML. ENV is a relatively strict majority learning method.

Thus, ENV needs more model training procedure to fit the strict limitation. The model

training procedure of ENV including weight-tuning and add hidden nodes. Since adding

hidden nodes only needs to calculate newly hidden node weights, the time complexity is

O(1), which means adding hidden nodes does not need too much time. The most time-

consuming process is to use the gradient descent method tuning the weight. The gradient

descent method needs to do forward and backward pass repeatedly so many times, this

process needs a lot of computation power. When the hidden node amount increased, the

model needs even more computation power to deal with the extra calculation. Table 6

shows that ENV indeed retrained the model and add hidden nodes in these 9 experiments.

Therefore, ENV spent the most time on model training compared to softmax and BML.

The softmax majority learning method and BML train the model much faster because

they do not need to retrain the model after the initialize of the model. Both methods

obtained m + 1 samples for model initialization. The softmax majority learning method

applies gradient descent method a few times to learn the m + 1 samples. BML adopts

simultaneous equations to calculate proper initial weights for the m + 1 samples. After

the m + 1 samples were learned by the model, the majority can be correctly classified

by softmax and BML. Thus, softmax and BML save much time in retraining the model.

We believe that the reason why BML and softmax do not need retraining is that the

rule sample and the benign sample are the data clustered by the GHSOM algorithm, and

the sample features have a certain degree of difference, so the malware and the benign

samples are not difficult to be distinguished by the neural network.

Figure 28 shows the average false rate of the 9 experiments. The classification result
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indicates that BML has the highest classification accuracy. However, BML is a less strict

majority learning method compared to ENV, the classification accuracy of BML should

not better than ENV. We hypothesise that the training data amount is not large enough,

the number of samples taken is not sufficient to represent all the features of the population,

so the BML classification results could be better than ENV.

5.2 Exp. 1.2: Use ANN to Learn the Majority

Figure 29: False rate of different softmax neuron network. (100*2 samples)

In experiment 1.2, we have tested the majority data selected by different majority learning

methods. Figure 29 shows that all the majority learning methods can find the proper

majority. Compared to using all data for training, the different selected majority data do

not lose accuracy on testing data. In other words, the majority learning methods can help

us to pick fewer data for model training but remain the same level classification accuracy.

As for the training data, both ENV and BML can select proper majority to slightly

increase classification accuracy. We can prove that the majority is selected properly by

BML in the small size data set.
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5.3 Exp. 2.1: Majority Learning on Large Scale Data

Table 9 shows the training result of the different majority learning methods. Obviously,

ENV needs lots of time for model training, and the hidden node amount is very large.

The SLFNs grew too big, and thus extended the model training time. We have observed

that once ENV needs to apply adding hidden nodes process, the later stages are almost

inevitable to add hidden nodes. Pure back-propagation process cannot get rid of local

optimal problem. Because of the newly hidden node weights were precisely calculated,

the gradient descent method was unable to make appropriate adjustments for the neuron

weights.

As for softmax and BML, the situation is the same as experiment 1.1: after the

model was initialized, the majority can be correctly classified by softmax and BML. Both

softmax and BML need to check the condition L for (γN −m− 1) times. The size of the

training set in experiment 2.1 is larger, so the execution time in experiment 2.1 is more

than experiment 1.1.

Figure 30: False rate of different majority learning methods (80% samples).

Figure 30 shows the false rate of the different majority learning methods. Compared

to experiment 1.1, the classification accuracy became much higher. We surmise that the

more data were used for training, the more information would be learned by the models. In

addition, when the size of the training set is large enough, ENV has better performance on
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classification accuracy compared to BML. However, the trade of is the long model training

time. BML can learn the majority very fast while remaining competitive classification

accuracy.

5.4 Exp. 2.2: Use ANN to Learn the Larger Amount of Major-

ity

Figure 31: False rate of different softmax neuron network. (80% samples).

Figure 31 shows the false rate of ANN. The classification accuracy is lower than experiment

1.2. There are two possible reasons for this result. First, we adopt simple ANN in this

experiment. That is to say, the ANN does not have any hidden layer. The simple model

might not be able to learn the feature of training data such precisely when the size of

training set is large. Another possible reason is that we apply gradient descent the same

10,000 times . When the data size becomes larger, ANN model might need more times

weight tuning to achieve the same level of classification accuracy.

The majority learning methods indeed select the proper majority. Compared to using

all data for training, the different majority learning methods have same level classification

accuracy on testing data. Also, the outliers are more easily to be mis-classified by the

ANN. As for the training accuracy, all of the majority learning methods can increase the
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classification accuracy on training data compared to using all data. We can prove that

BML can find proper majority on larger training set.

5.5 Exp. 3: Binary Classification Performance

In experiment 3, we designed 3 different sampling method. Sampling method “10%” and

“80%” are the experiments for testing small and large size training set. Sampling method

“200” is regarded as the experimental comparison of “10%”, due to the similar in training

set size.

Table 12 shows the training result. ENV has no doubt longest model training time.

ENV grows many hidden nodes to fit the majority of the training data. Thus, ENV

consumed lots of time for training a perfect model. However, figure 25 and figure 26

indicate that ENV has the worst classification accuracy. We supposed that the ENV

models over-fit the training data. So, the trained models have poor classification accuracy

on malware testing data.

We mentioned in section 3.3 that the classification of softmax is actually a variant of

the condition L. So, softmax and BML are no doubt having similar classification accuracy.

As for the model training time, we will discuss the three different sampling methods

separately.

In the experiment sampling method “200”, softmax only tuning the weights 3,600

times while BML cramming 53 times and tuning the weights 132,802 times. Thus, the

execution time is separately 37 and 1,205 seconds, softmax has more time efficient than

BML.

In the experiment sampling method “10%”, softmax tuning the weights 34,971 times

while BML does not need any training. BML only needs time for checking majority.

Thus, the execution time is separately 230 and 33 seconds, BML has more time efficient

than softmax.

In the experiment sampling method “80%”, softmax tuning the weights 2,023 times

while BML does not need any training. Although BML only needs time for checking

majority, softmax has a relatively simple model. Forward pass calculation is easier for
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softmax model. Thus, the execution time is separately 2,031 and 2,316 seconds, softmax

has more time efficient than BML.

5.6 Majority Learning on SVMs

We have mentioned in section 3.4 that SVM have four prevalent kernel for data classifica-

tion, Linear, polynomial, RBF and sigmoid. In general, we should choose the appropriate

kernel based on the characteristics of the data distribution. We had adopted all the four

kernel functions for majority learning. However, the sigmoid kernel has poor ability for

classifying the system call data in our experiment. So, we did not list the result of SVM

majority learning with sigmoid kernel.

In experiment 1.2 and 2.2, we have proof that the SVM majority learning with linear,

polynomial and RBF kernel can choose proper majority just like other majority learning

methods.

In experiment 1.1 and 2.1, the SVM majority learning methods with linear and polyno-

mial kernel have similar performance on classification accuracy and time efficiency. These

two methods have on average the best performance compare to other majority learning

methods. We speculate that the reason for this experimental result is that the system

call data set distribution is proper for using linear and polynomial kernel for classifying

two class of data. As for the SVM majority learning methods with RBF kernel, it has

on average the worst classification accuracy compare to other majority learning methods.

We can draw a conclusion that choosing a proper kernel for classifying the data set is

important.

In experiment 3.1, the classification accuracy of SVMs is on average worse than BML.

We supposed that when the training data has more variety, SVMs are more difficult to

find a hyperplane to separate two class of data. Relatively speaking, BML is a more stable

majority learning method.
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6 Conclusion

Noisy labels are almost inevitable in real-world cases. In this paper, we introduce a novel

nominal resistant learning procedure BML to avoid anomalies affecting the effectiveness

of learning. Through picking the observations with the maximum distance of two classes,

we are able to spot anomalies in a global view when the feature of anomalies is unknown.

Further, we apply the resistant learning mechanism to reduce the impact of outliers on

neural networks.

We had applied the majority learning concept on other prevalent classification mod-

els, SVMs and ANN. Through selecting the data which is familiar to the models, these

majority learning methods can learn proper majority and avoid the interference of outliers.

Besides the optimization on the algorithm, We implemented the majority learning

algorithms with TensorFlow and executed in GPU environment to accelerate the model

training process.

Experiments on real-world data sets show that our approach has a classification ac-

curacy similar to the envelope mechanism but have more time efficiency. We also use

popular multi-class classification model, the softmax neural network, to learn the major-

ity selected by BML and perform a higher classification accuracy on the training data,

and remain the same level classification accuracy on the testing data.
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