
Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

The Journal of Derivatives   1Winter 2018

MING-CHE CHUANG

is an assistant professor in 
the Department of Finance 
at Feng Chia University in 
Taiwan.
mcchuan@fcu.edu.tw

SHIH-KUEI LIN

is a professor in the 
Department of Money 
and Banking at National 
Chengchi University in 
Taiwan.
square@nccu.edu.tw

MI-HSIU CHIANG

is an associate professor in 
the Department of Money 
and Banking at National 
Chengchi University in 
Taiwan.
mhchiang@nccu.edu.tw

Pricing the Deflation Protection 
Option in TIPS Using an HJM 
Model with Inflation- and 
Interest-Rate Jumps
MING-CHE CHUANG, SHIH-KUEI LIN, AND MI-HSIU CHIANG

Much known about Treasury inf lation-protected 
securities (TIPS) is related to the hedge they offer 
against inf lation, but little is known about their 
protection against def lation—in the form of a 
deflation protection option (DPO). In this article, a 
pricing framework that builds on a Heath–Jarrow–
Morton forward-rate economy with codependent 
inf lation- and interest-rate jumps is derived to 
value this embedded DPO. The model prices for 
TIPS resulting from this pricing framework are 
found to most closely fit the 10-year notes issued 
following the 2008 crisis. Considering these notes 
accounted for over 70% of the total TIPS-market 
trading activity, this result underscores the impor-
tance of properly assessing DPO value in times of 
def lationary fears compounded by rising real yields, 
negligence of which may well be liable for the post-
crisis mispricing in TIPS.

Treasury inf lation-protected secu-
rities (TIPS) are bonds issued by 
the U.S. Treasury. As instruments 
that are constructed to facilitate 

efficient hedging of inf lation risk, the pro-
tection that they offer against def lation is 
comparatively less well known.1 The principal 

1 As a type of U.S. Treasury security, TIPS 
account for a market size of over $866 billion in issu-
ance. Other inf lation-linked markets of noticeable 
popularity include U.K. Index-linked Gilts ($549 
billion) and the French OATi/OAT€i market ($235 
billion) as of April 2012.

amount upon which the semiannual coupon 
payments are based is adjusted for inf lation, 
which is measured by the changes in the 
Consumer Price Index (CPI-U). Specifically, 
the principal amount is determined by the 
greater of its original value at par or its inf la-
tion-adjusted value at maturity. Based on a 
currency option analogy for inf lation (Amin 
and Jarrow [1991]; Jarrow and Yildirim 
[2003]), an embedded European put option 
written on the current CPI-U is immediately 
retrieved, with the initial CPI-U acting as 
the option’s strike price. As such, whether or 
not TIPS holders receive the original prin-
cipal at par (as a def lation protection) or the 
inf lation-adjusted principal at maturity (as 
an inf lation protection) is translated into an 
option exercise decision that is contingent 
on the status of the option’s moneyness. This 
embedded put option, commonly termed the 
def lation protection option (DPO), underlies the 
protection against def lation offered by TIPS 
in the form of a f loor on the bond’s prin-
cipal payment.

The seminal paper by Jarrow and 
Yildirim [2003], in which the existence of 
the DPO was clearly indicated, chose not 
to assign the option with any value because 
def lation was once dismissed as improbable 
for the U.S. inf lationary environment prior to 
1997. Moreover, because of the DPO’s inheri-
tance from TIPS of the codependent charac-
teristics between inf lation and interest rates, 
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the required modeling effort is never easy and entails 
extending Jarrow and Yildirim’s ( JY) Heath–Jarrow–
Morton (HJM) framework accordingly. In this respect, 
we are certainly not the first in the literature to have 
attempted to meet such modeling necessity. The inno-
vative works of Hinnerich [2008] and Chiang, Li, and 
Chen [2016] are examples of extended HJM economies 
that belong to this category. Although we focus on the 
valuation of the DPO embedded in TIPS, Hinnerich’s 
[2008] model is applied to the pricing of inf lation-indexed 
swaps and swaptions. Relative to our HJM forward-rate 
framework under codependent inf lation- and interest-
rate jumps, the Markov-modulated HJM framework of 
Chiang, Li, and Chen [2016] demonstrates how one can, 
in general, incorporate interest-rate regime shifts and 
inf lation jumps into the JY model.

The pricing framework in this article thus pro-
vides several new perspectives on TIPS valuation that 
the extant literature has yet to fully prof ile.2 First, 
to the best of our knowledge, this article is the f irst 
extended HJM framework with autonomous jumps 
that is tailored specifically to the valuation of the DPO 
embedded in TIPS. In contrast, the existing approaches 
to assessing the DPO value tend to be based on mod-
eling the yields only (see, e.g., Adrian and Wu [2010]; 
Christensen, Lopez, and Rudebusch [2012]; Haubrich, 
Pennacchi, and Ritchken [2012]; Fleckenstein, Long-
staff, and Lustig [2014]; and Grishchenko, Vanden, and 
Zhang [2016]). In this article, not only is the role of 
inf lation rate inseparable from the pricing framework, 
but its joint impacts with interest-rate uncertainties are 
also explicitly considered. The interplay between inf la-
tion- and interest-rate uncertainties that is commonly 
observed in reality—where the benefits of one are often 
found to be offset by those of the other—is thus ref lected 
in our model setting.

Second, in depicting the co-dependent struc-
ture between inf lation and interest rates under the JY 
model, we follow Das and Uppal [2004] to allow the 
jump amplitudes of the nominal and forward rates and 

2 Jarrow and Yildirim [2003] derived a pricing model for 
inf lation-linked Treasury bonds under the Heath, Jarrow, and 
Morton [1992] framework. They assumed a Brownian motion with 
constant drift for the nominal and the real instantaneous forward 
rates and a geometric Brownian motion for the CPI-U. Mercurio 
[2005] adopted the London Interbank Offered Rate market model 
of Brace, Gatarek, and Musiela [1997] with deterministic interest 
rate volatilities to price year-on-year inf lation-linked swaps.

the CPI-U to correlate with one another. Yet in our 
case, strict concordant co-movements among the jump 
amplitudes need not be assumed. In this context, our 
pricing framework, which we refer to as the JY model 
with correlated jumps ( JY-CJ), permits two degenerate 
cases: (1) the JY model with independent jumps ( JY-IJ) 
and (2) the original JY model without jump risk.

In addition, although there is no current consensus 
on whether the exact nature of jump risk is systematic 
or idiosyncratic, this study does not discriminate against 
assertions of either case. In fact, our pricing framework 
is general enough to allow for the adaptation of dif-
ferent jump-risk specifications. In particular, we show 
how the DPO pricing formula is capable of adapting to 
(1) Merton’s pricing measure, when jump risk is assumed 
to be idiosyncratic and diversifiable, and (2) a modified 
Esscher measure similar to that of Ballotta [2005], in 
which jump risk is assumed to be systematic/nondiversi-
fiable. Relative to Ballotta [2005], the modified Esscher 
measure that we derive incorporates correlated (instead 
of independent) jump amplitudes, and our DPO pricing 
formula retains a Black–Scholes type of analytic form 
that facilitates practical implementation.

Using the daily prices of U.S. Treasury and TIPS 
bonds from September 2008 to March 2016, this study 
employs the expectation-maximization (EM) algorithm 
of Dempster, Laird, and Rubin [1977] to estimate latent 
parameters for the system of correlated jump diffusion 
processes. We are certainly aware of other estimation 
techniques available to deal with models involving latent 
parameters. The Markov chain Monte Carlo model 
of Eraker, Johannes, and Polson [2003], for example, 
although equally applicable, involves much higher com-
putational cost than the point estimation required by the 
EM algorithm. Likelihood ratio tests (LRT) are used 
to select the best jump-risk specification among the JY, 
JY-IJ, and JY-CJ models. To analyze pricing perfor-
mance and, in particular, to nail down the impact of 
correlated jump risks on the DPO value and hence TIPS 
prices, the JY, JY-IJ, and JY-CJ models are examined 
under the Merton and Esscher measures, respectively.

Our key findings can be summarized as follows. 
First, the results of the LRT statistics indicate that the 
best jump-risk specification among the three is the JY-CJ 
model. These results directly support our rationale for 
considering inf lation- and interest-rate uncertainties 
as correlated jump diffusions. Second, we f ind that, 
under a systematic jump-risk setting, TIPS pricing that 
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incorporates the DPO value outperforms pricing that 
does not. Under the Esscher measure, both the JY-IJ and 
JY-CJ models exhibit significant gains in pricing per-
formance relative to the JY model. This result indicates 
that a systematic jump-risk setting is more appropriate 
for the pricing of TIPS. Their market quotes, even under 
normal market conditions, seem to already embody a 
certain level of the associated jump-risk premiums.3 
Analogous to such encapsulation for the market prices of 
correlated jump risks is the set of martingale conditions 
that this study provides. Third, the pricing performance 
of the JY-CJ model (under the Esscher measure) is par-
ticularly strong for the 10-year TIPS issued following 
the 2008 crisis. Most interestingly, we find the DPO 
values to be time varying, to be small in absolute terms, 
and to exhibit an interesting pattern especially for the 
late-2008 to early-2009 crisis period. This f inding is 
consistent with that of Grishchenko, Vanden, and Zhang 
[2016], and it suggests that the proper assessment of the 
DPO value, particularly in times of def lationary fears 
coupled with rising real yields, is indispensable to the 
accurate pricing of TIPS.

The rest of this article is organized as follows. The 
next section introduces our new pricing framework 
and its theoretical components, including the under-
lying assumptions, the martingale conditions, and the 
closed-form solutions for the DPO value. The following 
section presents the empirical components, including 
interest rate calibration, parameter estimation based on 
the expected maximization algorithm, and pricing per-
formance analysis under different choices of risk-neutral 
probability measures. The last section concludes. All the 
technical proofs are collected in the Appendix.

THE MODEL

An HJM Economy with Correlated Inflation- 

and Interest-Rate Jump Risks

We construct our pricing model on a filtered prob-
ability space F P F{Ω, ,F ,{ ( )} }=0t

T  generated by three jump 
diffusion processes with diffusion (correlated Brownian) 

3 These jump-risk premiums may inevitably be related 
to def lationary expectations and market illiquidity. Pastor and 
Stambaugh [2003] and Amiram, Cserna, and Levy [2015], for 
example, showed that the jump volatility component increases the 
priced liquidity risk and has a positive and statistically significant 
effect for various measures of liquidity risk.

components, {WN(t), WR(t), WI(t)}, and jump (compound 
Poisson) components, {YN,k, YR,k, ln YI,k}. N and R denote 
the nominal and real interest rates, respectively, and I 
is the inf lation rate/index; Ω is the set of all the pos-
sible outcomes; F denotes the σ-field of subsets of Ω; P 
represents the physical probability measure; and F ={ (F )} 0t t

T  
denotes the sequence of filtrations jointly generated by 
the correlated Brownian motions and the compound 
Poisson process at time t. Correlation coefficients among 
the Brownian motions are denoted by ρNR, ρRI, ρIN.

The arrival of abnormal information, for the inf la-
tion, and the nominal and real interest rates, M(t), is mod-
eled as a Poisson process with jump intensity λt, which 
is defined as the expected number of jumps occurring 
over a time interval (0, t]; that is, M(t) ∼ Poisson (λt). 
Jump amplitudes for the inf lation and the nominal and 
real interest rates are denoted by {YN,k, YR.k, ln YI,k} and 
assumed to be normally, independently and identically 
distributed random variables with mean (θN, θR, θI) and 
variance ν(ν ,  )ν2 2ν 2

N Rν, ν I . Correlation coefficients between 
the jump amplitudes are denoted by φNR, φRI, and φIN. 
The compound Poisson process is assumed to be inde-
pendent of the Brownian motions. Assumption 1 depicts 
an economy of correlated inf lation- and interest-rate 
uncertainties.

Assumption 1. Under the physical probability measure 
P, the nominal forward rate, fN(t, T ), the real instantaneous 
forward rates, fR(t, T ), and the inf lation rate, I (t), are mod-
eled by a system of jump diffusion processes defined as follows:

 + σ
=

( ) (= α , ) ( ) ( )
1

( )

,df T t, dt T d t d+) YN N( , ) αff T, N N( , )T,
k

M (

N k,YY  (1)

 ∑+ σ
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( ) (= α , ) ( ) ( )
1

( )

,df T t, dt T d t d+) YR R( , ) αff T, R R( , )T,
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M (

R k,YY  (2)
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where αN(t, T ) and αR(t, T ) are the expected growth rates for 
the nominal and real instantaneous forward rates, and σD(t, T ) 
and σF(t, T ) are the associated volatility functions. The drift 

term μ − λ −
⎛
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⎠⎟
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 for the inf lation index I(t) has 
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two components: the instantaneous mean level, μI(t), and a 

convexity adjustment, λ −
⎛

⎝⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

θ + ν

1
2
I

, which sets the growth 

rate of the inf lation equal to μI(t) under the P measure; that is, 

⎡
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⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=−
μ( )

( 1− )1
( )E

I(
I(

et
I . The instantaneous volatility function 

for the inf lation index is denoted by σI(t).
The following lemma, which follows directly from 

the Itô–Doeblin formula, depicts the dynamics of nom-
inal and inf lation-linked zero-coupon bonds in a market 
where the interest rates and the inf lation index evolve 
correlatively according to Equations 1–3.

Lemma 1. Given the forward-rate specifications of 
Assumption 1, the dynamic processes of the nominal and the 
inf lation-linked zero-coupon bond prices under the physical 
measure P are given by
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where rx(t) = fx(t, t), x ∈ {N, R}, denotes the instantaneous 

nominal or real short rate with drift, ∫α̂ ( , ) (∫= α , )T t, dsx

t

T

x , 

and diffusion, ∫σ̂ ( , ) (∫= σ∫∫ , )T t, dsx

t

T

x . Specifically, σx(t, T ) is 

based on a one-factor model ( Jarrow and Yildirim [2003]) 
with exponentially decaying volatility: σ = −( ) ( )−T a ex x( , ) b T(x , for 
some constant numbers ax and bx. The jump amplitude for the 
nominal zero-coupon bond, ,YN k,YY , is defined by its log transform:

Y T t tN kYY k N Ntt θ −TT νNln : (YN kYY ) ~ Normal[ N− θN ) ( )t−T ], ,k NN
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and the jump amplitude for the inf lation-linked zero-coupon 
bond, ,YRIYY k, is defined by
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Martingale Conditions

In the following, we derive the set of martin-
gale conditions under which a market with correlated 
inf lation and interest rates is arbitrage free. Essential 
to devising the martingale conditions for TIPS pricing 
under risk neutrality is the identification of a market-
price-of-risk process that determines the required 
jump-risk premiums. Furthermore, central to the 
Radon–Nikodým derivative that associates the physical 
measure to its risk neutral counterpart, the uniqueness 
of the market price of risk will determine the complete-
ness of a market.

Proposition 1. Under the risk-neutral Q measure, 
the dynamic processes of the discounted nominal zero-coupon 
bond and the discounted inf lation-linked zero-coupon bond 
are martingales if and only if the following conditions are met:
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where λQ represents the jump intensity; Q Q Qθ θ θ( , , )N R I  and (θN, 
θR, θI) denote the mean for the normally distributed jump 
amplitudes under the Q and P measures, respectively; and 
(νN, νR, νI) denotes the standard deviations, which remain intact 
under the change of measure. That is, we have
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where (hN,1, hR,1, hI,1) and (hN,2, hR,2, hI,2) are the Esscher 
parameters (see Appendix A) associated with the diffusion 
(Brownian) components and the jump (Poisson) components, 
respectively.

Note that deriving the Q measure entails rescaling 
the drifts of the associated stochastic processes by the set 
of Esscher parameters, (hN,1, hR,1, hI,1) and (hN,2, hR,2, hI,2). 
Equations 6–8 thus determine, respectively, the risk-
adjusted drifts of the nominal forward rate, the real for-
ward rate, and the inf lation rate under the risk-neutral 
Q measure.

Several interesting observations can be made about 
these results. First, encapsulated by Equations 6–8 is 
the market price of risk for correlated inf lation- and 
interest-rate jump uncertainties. Again, one can clearly 
identify the associated diffusion (Brownian) com-
ponents and the jump (Poisson) components therein. 
For example, in Equation 6, the total risk premium 
consists of the risk premium for the diffusion compo-
nent, −h t+ ρ + ρ σ TN Nρ+ ρ R Iρ+ ρNN N NσσII

ˆ ( ,t ),
2 , and the jump com-
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2
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the risk premium for the jump component,
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Second, and most interestingly from Proposition 1, 
Equation 8 depicts a modified Fisher equation that cap-
tures departures from the Fisher hypothesis, where 
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denotes the required risk premiums for investors con-
fronting the co-occurrence of inf lation- and interest-rate 
jump uncertainties. In this respect, Equation 8 echoes 
the no-arbitrage term structure framework of D’Amico, 
Kim, and Wei [2014] in interpreting the information 
content of TIPS prices. Consistent with our economic 
reasoning, they too argued that the Fisher hypothesis 
has neglected the potential correlation effects between 
inf lation and interest rates.

The Deflation Protection Option Value

Consider a TIPS coupon bearing bond issued at 
time t0 ≤ t with real coupon payments, c; the original 
principal at par, F(t0); the initial CPI-U rate, I(t0); and 
time-to-maturity, T − t. Let cI(t)/I(t0) denote the nominal 
coupon payments, which are the real coupon payments 
multiplied by an inf lation adjustment ratio, I(t)/I(t0). To 
derive the analytical solution for the DPO value, we first 
follow Jarrow and Yildirim [2003] to decompose the 
cash f low structure of a TIPS bond into a series of zero-
coupon bonds of different maturities plus, at maturity, 
a principal amount that is determined by the greater of 
the original principal at par or the inf lation-adjusted 
principal; that is,

 ( ) ( )
( )( ) ( ) ( )⎡⎣⎡⎡ ⎤⎦⎤⎤ +)= ⋅max ,( )⎡⎣⎡⎡ DPOF (( F ( F ((

F (
I (  (9)

where DPO(T ) denotes the def lation protection option 
with payoff max[I(t0) − I(T ), 0] at maturity T. Given that 
the principal amount now translates into an inf lation-
adjusted principal F(T ) plus F(t0)/I(t0) units of the def la-
tion protection option, we use the following lemma to 
depict the fair value of a TIPS bond.

Lemma 2. The time t fair value of a TIPS coupon-
bearing bond, BTIPS(t,T ), adopted to filtration F(t) under the 
Q measure thus takes the following form:
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where ∫β =
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
r∫= −⎢ u duN

t

Nrp ( )u
0

 is the nominal money market 

account, PR(t,T ) is the price of a T-maturity real zero-coupon 
bond, I(t)PR(t,T ) denotes the price of a T-maturity inf lation-
linked zero-coupon bond, and Q ( )Et  denotes the conditional 
expectation adapted to filtration F(t) under the risk-neutral 
Q measure. In particular, the payoff structure of the DPO at 
maturity T is given by

=
{ }

{ }

T I I−

t T I− P TN RT I PP

DPO( ) [= ( )t ( )T ]1

[ (I ) (PNPP )TT ( )TT ( ,T )]1

0

0
  

  (11)

where PN(t, T ) and PR(t, T ) denote prices for the T-maturity 
nominal and real zero-coupon bonds, and 1{⋅} is an indicator 
function.4

Equation 11 of Lemma 2 clearly depicts the def la-
tion protection scheme offered by the DPO. This inter-
pretation is not new but rather is drawn on the currency 
analogy for inf lation as identified by Amin and Jarrow 
[1991] and Jarrow and Yildirim [2003]. That is, the real 
rates are regarded as the interest rates in the foreign 
currency, whereas the inf lation index is reminiscent of 
the exchange rate between the U.S. dollar and the for-
eign currency. As such, the embedded DPO resembles 
a T-maturity European put option written on the cur-
rent CPI-U, I(T ), with the initial CPI-U, I(t0), acting as 
the option’s strike price. Specifically, TIPS holders are 
granted the right to exchange I(t0) units of the nominal 
zero-coupon bond for an inf lation-linked zero-coupon 
bond. A falling inf lation rate below the initial CPI-U 
reference level (I(t) < I(t0)) would indicate the in-the-
moneyness of the option and result in TIPS investors 
receiving the original principal at par. On the other 

4 Given the martingale conditions given by Equations 7 and 
8 of Proposition 1 and the cash f low decomposition of Equation 9, 
one immediately arrives at Lemma 2.

hand, if the current CPI-U is above or equal to its initial 
reference level (I(t) ≥ I(t0))—indicating the out-of-the-
moneyness of the DPO value—TIPS investors will be 
granted the inf lation-adjusted principal.

Theorem 1. Adapted to filtration F(t) under the Q 
measure, the DPO value embedded in TIPS is given by
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Q
t m( )m [ (λ (QλQλ )] / !m( )T t  is the probability 

mass function for Poisson distribution M(T − t) with intensity 
λQ(T − t) conditional on m number of jumps occuring over a 
period [t, T ]. Φ(·) is the distribution function of a standard 
normal with
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and other notations follow as previously defined.
Theorem 1 is referred to as the JY-CJ. Note 

that the analytic pricing formula for the DPO value 
depicted by Theorem 1 is in fact a generalized model 
incorporating correlated jump risks and thus is 
capable of adapting to different jump-risk specif ica-
tions according to one’s preferences. In this study, 
we demonstrate two such important cases. First, 
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E X H I B I T  1
The U.S. Monthly CPI-U Data from September 2008 to May 2016 are Obtained 
from the U.S. Bureau of Labor Statistics

Notes: The descriptive statistics are as follows. Panel A reports 227.3884 for the average CPI-U, 8.7641 for the standard deviation, 210.2280 for the 
minimum level, 229.5395 for the median, 239.2610 for the maximum level, −0.3161 for skewness, and 1.6830 for kurtosis. Panel B reports 0.0950% 
for the average CPI-U growth rate, 0.4161% for the standard deviation, 1.9339% for the minimum level, 0.1182% for the median, 0.9704% for the 
maximum level, −1.4340 for skewness, and 8.2999 for kurtosis.
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with hN,2 = hR,2 = hI,2 = 0, the DPO pricing formula 
retrieves Merton’s [1976] jump-diffusion option-pricing 
formula, where jump risk is assumed to be idiosyncratic 
and diversif iable. The associated measure is hereby 
referred to as the Merton measure. Second, by setting 

= σh tσ T h= T h t h h hN Nσσ R Rσ I I N R I
ˆ ( ,t ) ˆ ( ,t ) (= h σI Iσσ ) ,= =h h= hN Rh I, ,1 ,1 , ,2 ,2  

one arrives at a modif ied Esscher measure (Gerber 
and Shiu [1994]) in the spirit of Ballotta [2005], which 

accounts for the presence of systematic/nondiversifiable 
jump risk. Hereafter, we may simply refer to this 
modified Esscher measure as the Esscher measure.

Given our interest in nailing down the impact of 
correlated jump risks on the DPO value and, in turn, 
their pricing inf luence on TIPS, subsequent discussions 
of the empirical results and pricing performance of the 
JY-CJ model need to rely on two degenerate cases of 

E X H I B I T  2
Data for 1,103 U.S. Treasury and 55 TIPS Bonds from September 2, 2008 to March 31, 2016

 Note: Daily real and nominal yield rates are calibrated using piecewise cubic Hermite interpolating polynomials.

Source: Obtained from TreasuryDirect (http://www.treasurydirect.gov/).
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Theorem 1 as the benchmarks for comparison: (1) when 
the correlation between any two jump amplitudes is set 
to zero (φIR = φIN = φNR = 0), which results in the inde-
pendent occurrences of jump events and is referred to as 
the JY model with independent jumps (the JY-IJ model); 
and (2) when there is no jump risk (λ = θI = θR = θN = 
νI = νR = νN = 0). In this case, the correlated geometric 
Brownian motions of Jarrow and Yildirim [2003] are 
retrieved. We refer to this case as the JY model.

EMPIRICAL AND NUMERICAL RESULTS

Data and Yield Curve Calibration

Our study sample consists of the daily prices of 1,013 
Treasury bonds and 55 TIPS bonds from September 2, 
2008 to March 31, 2016.5 Exhibit 1 presents the time series 
data of monthly CPI-Us from September 2008 to July 
2016, highlighting a def lationary episode begun by the 
deepening of the financial crisis and followed by reces-
sion. Over the period from September 2008 to March 
2009, the CPI-U fell substantially to 4.0034% because of 
increasing def lationary concerns—documenting a nega-
tive year-over-year change in CPI-U for the first time 
since 1955. Panels A and B of Exhibit 2 show the daily 
real spot and forward yield curves constructed using a 
piecewise cubic Hermite interpolating polynomial based 
on U.S. Treasury bond data. Panels C and D in Exhibit 2 
illustrate the daily nominal spot and forward yield curves 
over the same period.

Parameter Estimates and LRTs

Using the daily 1- to 20-year nominal and real 
yield curves calibrated from the bond data, we derive 
estimates of daily CPI-Us by linearly interpolating the 
monthly CPI-U data. Exhibit 3 reports parameter esti-
mates for the JY, JY-IJ, and JY-CJ models, respectively. 
Without the presence of jumps, the JY model is esti-
mated solely by maximum likelihood. From the first 
column of Exhibit 3, the mean-reverting forces of the 
nominal and real short rates (bN and bR) are 11.6100% and 
10.2671%, respectively; the volatilities of both the nom-
inal and the real zero-coupon bonds (i.e., a eN

b TN ( )−T t  and 
−a eR

b TR ( )−T t ) are positively related to the bond maturities. 

5 The sample data are collected from TreasuryDirect (http://
www.treasurydirect.gov/).

In addition, Exhibit 3 exhibits positive correlations 
between (1) the nominal and the real zero-coupon 
bonds (ρNR = 70.2337%) and (2) the real zero-coupon 
bonds and the inf lation rate (ρRI = 0.3162%). However, 
these correlation coefficients are not significantly dif-
ferent from zero. The correlation between the nominal 
zero-coupon bonds and the inf lation rate is negative 
(ρIN = −3.0195%).

The second and third columns of Exhibit 3 report 
the results of parameter estimation for the JY-IJ and JY-CJ 
models based on the EM algorithm. For JY-IJ, the means 
(θN, θR, and θI) and standard deviations (νN, νR, νI) for the 
jump amplitudes of the nominal forward rate, the real 
forward rate, and the CPI-U are (−0.0069%, −0.0002%, 
and −0.0050%) and (0.0678%, 0.0841%, and 0.0503%), 
respectively. Jump intensity (λ) is estimated as 14.5229%, 
suggesting a rate of occurrence of 0.145229 jump events 
per day. It takes approximately 6.8857 (=1/λ) days on 
average for a jump event to occur in our study sample. 
For JY-CJ, the mean-reverting forces of the short rates 
(bN and bR) are 11.8558% and 10.3665%, respectively; 
again, a positive volatility-maturity relationship can be 
identified between the nominal and real zero-coupon 
bonds. Average jump amplitudes (θN, θR, and θI) are 
(−0.0060%, 0.0008% [not significant], and −0.0045%), 
indicating the presence of downward jumps, and it takes 
approximately 6.3691 (=1/0.157008) days on average for 
a jump event to occur. In addition, the jump ampli-
tudes of the nominal forward rate, the real forward rate, 
and the CPI-U are correlated. Finally, for all models, 
the standard errors of all parameters are obtained using 
cross-sectional nonlinear regressions over zero-coupon 
bonds with 1- to 20-year maturities.

Note that the jump frequency (of approximately 
once every six to seven days) estimated over our sample 
period is closely comparable to those of Das [2002], 
Johannes [2004], and Tauchen and Zhou [2011]. Das’s 
[2002] Poisson–Gaussian model for interest rates, in par-
ticular, is equipped with an estimated jump frequency of 
once every five days. In general, the finance literature 
seems to document more intense occurrence of jumps 
in interest rates and Treasury bond prices than in stock 
prices/indexes. Eraker, Johannes, and Polson [2003], 
for example, found that the estimated jump frequency/
intensity for S&P 500 Index returns is only 0.0060 to 
0.0066 per day. Based on 11 U.S. individual stocks, 
Maheu and Mccurdy [2004] found that their averaged 



Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

10   Pricing the Deflation Protection Option in TIPS Using an HJM Model with Inflation- and Interest-Rate Jumps Winter 2018

jump frequency is about 0.05 per day, or equivalently, 
once every month (approximately 20 business days).

The last row of Exhibit 3 reports the LRT statistics 
for the system of multivariate jump diffusions depicted 
by Equations 1–3. The goodness-of-f it of respective 
models is tested over the market CPI-U quotes and the 
bond data. The last number in Column 3 in Exhibit 3 
is the LRT statistic for the JY-IJ jump-risk specifica-
tion against the JY-CJ jump-risk specification. To be 
specif ic, it is the test statistic for the null hypothesis 
that all additional coefficients in the JY-CJ jump-risk 

specification with respect to the JY-IJ jump-risk speci-
f ication are equal to zero. The result shows that we 
reject the null hypothesis at the 1% significance level, 
indicating that the JY-CJ jump-risk specification fits 
the data better than the JY-IJ jump-risk specification. 
Similarly, we find that JY-IJ fits the data better than JY 
at the 1% significance level. In sum, we conclude that the 
JY-CJ jump-risk specification is the best specification 
for the market data. These results support our rationale 
for hypothesizing the correlated nature of inf lation- and 
interest-rate jump uncertainties.

E X H I B I T  3
Estimated Parameters for Inflation Rates, Real Forward Rates, and Nominal Forward Rates

 Notes: Model parameters for the JY model are estimated using maximum likelihood. For the JY-IJ and JY-CJ models, parameter estimates are obtained 
by using the EM algorithm. In the following, indexes i, j ∈ (N, R) denote the nominal or real interest rates. μi denotes the instantanous mean. ai denotes 
the volatility coefficient. bi is the mean-reverting force. σI denotes the volatility coefficent for inf lation. ρij denotes the correlation coefficient between the 
Brownian motions. θi and νi are the mean and standard deviation for the jump amplitudes, and φij is the correlation coefficient between the jump ampli-
tudes. Standard errors of the parameters are reported in the parentheses. The degrees of freedom for the LRT—the difference between the numbers of param-
eters in any two models—are reported in the parentheses. The second column is the null (versus alternative) hypothesis that the rates of return on bonds 
and CPI-U follow the JY model (versus the JY-IJ model). The third column is the null (versus alternative) hypothesis that the rates of return on bonds and 
CPI-U follow the JY-IJ model (versus the JY-CJ model).

∗∗∗ and ∗ indicate, respectively, statistical significance levels at the 1% and 10% levels.

JY Model JY-IJ Model JY-CJ Model

S.E. (%)

(0.0003)
(0.0003)
(0.0001)
(0.0012)
(0.0013)
(0.0001)
(0.0684)
(0.0612)
(0.2678)
(0.5215)
(0.5084)

S.E. (%)

(0.0003)
(0.0002)
(0.0001)
(0.0012)
(0.0012)
(0.0001)
(0.0778)
(0.0728)
(0.2386)
(0.6147)
(0.6289)
(0.0014)
(0.0015)
(0.0007)
(0.0011)
(0.0011)
(0.0006)
(0.2688)

S.E. (%)

(0.0003)
(0.0003)
(0.0001)
(0.0012)
(0.0013)
(0.0001)
(0.0758)
(0.0793)
(0.2668)
(0.6106)
(0.6002)
(0.0014)
(0.0015)
(0.0007)
(0.0011)
(0.0012)
(0.0005)
(0.2837)
(1.3032)
(1.5380)
(1.9434)

Parameters
(%)

0.0012***
0.0009***
0.0042***
0.1496***
0.1706***
0.0234***
11.6100***
10.2671***
70.2273***
–3.0915***
0.3162

570,400 584,717

Parameters
(%)

0.00011***
0.0009***
0.0042***
0.1261***
0.1342***
0.0133***
11.8364***
10.3994***
79.5197***
0.5974
0.3174
–0.0069***
–0.0002
–0.0050***
0.0678***
0.0841***
0.0503***
14.5229***

28,635***

Parameters
(%)

585,279

0.0011***
0.0009***
0.0042***
0.1210***
0.1294***
0.0131***
11.8558***
10.3665***
77.8530***
0.9370*
0.3641
–0.0060***
0.0008
–0.0045***
0.0777***
0.0932***
0.0487***
15.7008***
54.3579***
–8.8433***
0.5135

1,123***

μN
μR
μI
σN
σR
σI
γN
γR
ρNR
ρIN
ρRI
θN
θR
θI
νN
νR
νI

φNR
φIN
φRI
Λογ–Λικελιηοοδ
ΛPT

λ
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E X H I B I T  4
Pricing Performance Analysis

(continued)

Absolute Percentage Pricing Errors (%)

Panel A: Full sample

Panel B: 5-Year

Panel C: 10-Year

Issue
Date

10/15/2004
04/15/2006
04/15/2007
04/15/2008
04/15/2009
04/15/2010
04/15/2011
04/15/2012
04/15/2013
04/15/2014
04/15/2015

01/15/2000
01/15/2001
01/15/2002
07/15/2002
07/15/2003
01/15/2004
07/15/2004
01/15/2005
07/15/2005
01/15/2006
07/15/2006
01/15/2007
07/15/2007
01/15/2008
07/15/2008
01/15/2009
07/15/2009
01/15/2010
07/15/2010
01/15/2011
07/15/2011
01/15/2012
07/15/2012
01/15/2013
07/15/2013
01/15/2014
07/15/2014
01/15/2015
07/15/2015
01/15/2016

Maturity
Date

04/15/2010
04/15/2011
04/15/2012
04/15/2013
04/15/2014
04/15/2015
04/15/2016
04/15/2017
04/15/2018
04/15/2019
04/15/2020

01/15/2010
01/15/2011
01/15/2012
07/15/2012
07/15/2013
01/15/2014
07/15/2014
01/15/2015
07/15/2015
01/15/2016
07/15/2016
01/15/2017
07/15/2017
01/15/2018
07/15/2018
01/15/2019
07/15/2019
01/15/2020
07/15/2020
01/15/2021
07/15/2021
01/15/2022
07/15/2022
01/15/2023
07/15/2023
01/15/2024
07/15/2024
01/15/2025
07/15/2025
01/15/2026

Initial
CPI-U

189.45
198.49
202.92
211.37
211.63
216.71
220.73
227.13
231.16
234.32
234.18

168.25
174.05
177.56
179.80
183.66
184.77
188.50
190.95
194.51
198.48
201.95
201.66
207.26
209.50
215.64
214.70
213.52
216.25
218.09
218.75
225.38
226.33
229.96
230.82
232.72
233.33
237.45
236.85
237.14
237.61

Coupon
Rate

0.875
2.375
2.000
0.625
1.250
0.500
0.125
0.125
0.125
0.125
0.125

4.250
3.500
3.375
3.000
1.875
2.000
2.000
1.625
1.875
2.000
2.500
2.375
2.625
1.625
1.375
2.125
1.875
1.375
1.250
1.125
0.625
0.125
0.125
0.125
0.375
0.625
0.125
0.250
0.375
0.625

Without
DPO

2.93#

0.40#

0.98#

1.78#

2.73#

2.78#

2.78#

2.88#

2.70#

2.78#

2.13#

2.03#

0.39#

1.03#

1.69#

1.99#

2.46#

2.41#

2.61#

2.57#

2.99#

2.97#

3.27#

3.17#

3.69#

3.62#

4.17#

3.93#

4.36#

3.99#

4.37#

3.84#

4.16#

3.65#

3.93#

3.23#

3.33#

2.70#

2.99#

2.84#

3.29#

3.70#

JY

2.92

0.40
0.96
1.75
2.57
2.74
2.74
2.85
2.62
2.65
1.98
1.90

0.39
1.03
1.69
1.99
2.46
2.41
2.61
2.57
2.99
2.97
3.27
3.17
3.69
3.62
4.15
3.92
4.36
3.99
4.36
3.84
4.15
3.65
3.93
3.22
3.32
2.69
2.96
2.81
3.25
3.64

With DPO

JY-IJ JY-CJ

Merton

2.91

0.40
0.97
1.77
2.61
2.75
2.75
2.87
2.67
2.71
2.02
1.91

0.39
1.03
1.69
1.99
2.46
2.41
2.61
2.57
2.99
2.97
3.27
3.17
3.68
3.60
4.13
3.90
4.36
3.99
4.36
3.84
4.15
3.64
3.91
3.20
3.29
2.65
2.88
2.73
3.15
3.50

Esscher

1.23

0.38##

0.51##

0.67##

0.48##

0.43##

0.56##

0.43##

0.39
0.39
0.19##

0.14##

0.38##

0.73##

0.77##

0.77##

0.53##

0.38##

0.49##

0.53##

0.59##

0.43##

0.43##

0.37##

0.42##

0.55
0.93
1.16
1.48
1.38
1.78
1.73
2.06
1.98
2.18
1.83
1.86
1.56
2.02
2.21
2.85
3.41

Merton

2.92

0.40
0.97
1.77
2.64
2.76
2.76
2.88
2.68
2.73
2.06
1.95

0.39
1.03
1.69
1.99
2.46
2.41
2.61
2.57
2.99
2.97
3.27
3.17
3.69
3.61
4.15
3.92
4.36
3.99
4.36
3.84
4.15
3.65
3.92
3.22
3.31
2.68
2.94
2.79
3.23
3.61

Esscher

0.89##

0.39
0.71
0.86
0.73
0.53
0.68
0.62
0.36##

0.36##

0.31
0.26

0.39
0.92
1.11
1.03
0.82
0.59
0.66
0.66
0.82
0.66
0.67
0.44
0.48
0.39##

0.42##

0.41##

0.43##

0.41##

0.46##

0.41##

0.36##

0.31##

0.41##

0.34##

0.30##

0.23##

0.25##

0.22##

0.27##

0.32##
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Pricing Performance Analysis

Exhibit 4 reports the in-sample pricing perfor-
mance results for the overall fit of the JY, JY-IY, and 
JY-CJ models to the market data.6 Pricing performance 
is measured by the absolute percentage pricing error 
(APPE)—defined as the ratio of the absolute pricing 
error (APE) to the market price—where APE is the 
absolute difference between the model price and market 
price. The fifth column of Exhibit 4 is the base case 
when the TIPS are priced without the DPO value, 
which gives rise to an average APPE of 2.93%.

The sixth to ninth columns of Exhibit 4 are the 
cases in which the DPO value is explicitly considered 
for the pricing of TIPS. The sixth column of Exhibit 4 
reports the APPEs for the JY model; the seventh and 
ninth columns of Exhibit 4 report the APPEs for the 
JY-IJ and JY-CJ models under the Merton measure; 

6 The market data make up the sample consisting of TIPS 
bonds issued from September 2, 2008 to March 31, 2016.

and the eighth and tenth columns report the APPEs for 
the JY-IJ and JY-CJ models under the Esscher measure. 
The average APPE for the JY model is 2.92% whereas 
the JY-IJ and JY-CJ models under the Merton measure 
report average APPEs of 2.91% and 2.92%, respectively. 
On the other hand, both the JY-IJ and JY-CJ models 
under the Esscher measure show markedly incremental 
gains in pricing performance relative to the JY model, 
with their APPEs being reduced to 1.23% and 0.89%, 
respectively. This result strengthens the proposition that 
the accurate pricing of TIPS would entail a systematic 
jump-risk setting aided by an explicit presence of the 
DPO value. On the other hand, this result also suggests 
that the market prices of TIPS seem to already embed a 
certain level of risk premium associated with inf lation- 
and interest-rate jump risks. A direct implication of 
this finding is that, for TIPS to properly function as an 
effective hedge against inf lation risk, a higher level of 
unexpected inf lation risk—more than what the market 
already participates—is required.

E X H I B I T  4  (continued)
Pricing Performance Analysis

Notes: This table analyzes the pricing of TIPS using the JY-CJ model—under a Merton (idiosyncratic) or Esscher (systematic) measure—relative to the JY 

and JY-IJ models, with or without the embedded DPO. Pricing performance is measured by the APPE: = Σ −=APPE VΣ × V Vi iT t
T

t i tVV i tVVˆ /1 ,V× iVV , ,t i , 

where ˆ
,Vi t,VV  denotes the TIPS prices derived from the JY-CJ model, and Vi,t denotes their market quotes. Ti is the holding period for each TIPS bond i. The 

notations # and ## indicate, respectively, the maximum and minimum APPEs.

Absolute Percentage Pricing Errors (%)

Issue
Date

Maturity
Date

Initial
CPI-U

Coupon
Rate

Without
DPO JY

With DPO

JY-IJ JY-CJ

Merton Esscher Merton Esscher

Panel D: 20-Year

Panel E: 30-Year

07/15/2004
01/15/2006
01/15/2007
01/15/2008
01/15/2009

04/15/1998
04/15/1999
10/15/2001
02/15/2010
02/15/2011
02/15/2012
02/15/2013
02/15/2014
02/15/2015

01/15/2025
01/15/2026
01/15/2027
01/15/2028
01/15/2029

04/15/2028
04/15/2029
04/15/2032
02/15/2040
02/15/2041
02/15/2042
02/15/2043
02/15/2044
02/15/2045

188.50
198.48
201.66
209.50
214.70

161.74
164.39
177.50
216.14
218.99
225.96
229.91
233.06
235.48

2.375
2.000
2.375
1.750
2.500

3.625
3.875
3.375
2.125
2.125
0.750
0.625
1.375
0.750

2.91#

2.66#

2.57#

2.45#

2.39#

2.04#

2.10#

2.11#

0.32#

0.28#

0.16#

0.02##

0.00##

0.22##

2.91
2.66
2.57
2.44
2.39

2.04
2.10
2.11
0.25
0.20
0.12
0.32#

0.37#

0.66#

2.91
2.66
2.57
2.43
2.38

2.04
2.10
2.11##

0.24##

0.19##

0.10
0.22
0.28
0.54

2.79
2.63
2.56
2.45
2.39

2.04
2.10
2.11
0.32
0.28
0.16
0.02
0.00
0.22

2.91
2.66
2.57
2.44
2.39

2.04
2.10
2.11
0.27
0.22
0.01##

0.14
0.18
0.31

2.05##

2.11##

2.34##

2.36##

2.36##

1.98##

2.08##

2.11
0.32
0.28
0.16
0.02
0.00
0.22
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E X H I B I T  5
DPO Prices Computed with Theorem 1 Under the Esscher Measure from September 2, 2008 to March 31, 2016

ATM = at-the-money; ITM = in-the-money; OTM = out-of-the-money.

Notes: Using the parameter estimates of Exhibit 3, the figure illustrates the DPO prices computed with Theorem 1 (the JY-CJ model) under the Esscher mea-
sure (the systematic jump-risk setting) for the 5-, 7-, 10-, and 20-year TIPS bonds issued from September 2, 2008 to March 31, 2016. The initial refer-
ence CPI-U is 218.85 as of September 2, 2008; the strike prices of DPO are set at the 90%, 95%, 100%, 105%, and 110% levels of the initial CPI-U.

01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 01/01/2014 01/01/2015 01/01/2016
0
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0.8

1.2
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5-Year 7-Year 10-Year 20-Year

5-Year 7-Year 10-Year 20-Year

01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 01/01/2014 01/01/2015 01/01/2016
0
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Panel (B): OTM (K=0.95)

5-Year 7-Year 10-Year 20-Year

01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 01/01/2014 01/01/2015 01/01/2016
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5-Year 7-Year 10-Year 20-Year

01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 01/01/2014 01/01/2015 01/01/2016
0

7

14

21

28

35
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Panel (E): ITM (K=1.10)
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E X H I B I T  6
DPO Prices Computed with Theorem 1 Under the Esscher Measure from October 1, 2008 to April 30, 2009

ATM = at-the-money; ITM = in-the-money; OTM = out-of-the-money.

Notes: Using the parameter estimates of Exhibit 3, the figure illustrates the DPO prices computed with Theorem 1 (the JY-CJ model) under the Esscher 
measure (systematic jump-risk setting) for the 5-, 7-, 10-, and 20-year TIPS bonds issued during the subprime financial crisis (October 1, 2008 to April 
30, 2009). The initial reference CPI-U is 218.85 as of September 2, 2008; the strike prices of DPO are set at the 90%, 95%, 100%, 105%, and 
110% levels of the initial reference CPI-U.
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Furthermore, the pricing performance gain of 
JY-CJ relative to JY-IJ under the Esscher measure 
suggests that the Merton measure, which assigns zero 
probabilities to the likelihoods of systematic/nondi-
versif iable jump events, is likely to underestimate the 
risk premiums required by TIPS investors: An extra 
return needs to be built in to compensate TIPS inves-
tors for the co-dependent jump risks that they bear. 
As for the bond markets, we are certainly not the f irst 
to make such assertions. Altman [1989], for example, 
showed that corporate bond investors in fact expect 
signif icantly higher returns than risk-free bond inves-
tors, even when accounting for the impact of defaults. 
Collin-Dufresne, Goldstein, and Hugonnier [2003] 
argued that correlated jump risks, in the form of 
systematic contagion, would require risk premiums 
that are several times higher than direct jump-risk 
premiums. Consistent with their f indings, the TIPS 
investors in this article are assumed to require com-
pensation not only for enduring the inf lation- and 
interest-rate jump risks but also the correlated inter-
play among them. In our pricing framework, such 
co-dependent jump-risk premiums are encapsulated 
in the prices of the underlying bonds, under the risk-
neutral measure, by the set of martingale conditions 
that ensures an arbitrage-free market. That, we argue, 
inevitably contributes to the incremental pricing per-
formance of the JY-CJ model.

Finally, the TIPS prices from the JY-CJ model are 
found to provide a superior fit to the market prices of the 
10-year TIPS issued after the 2008 crisis. Because the 
10-year notes accounted for over 70% of total trading 
activity in TIPS in terms of daily trading volumes 
(Fleming and Krishnan [2012]), this superior fit may not 
be a mere coincidence but may in fact be representative 
of average investor perceptions regarding the inf lation- 
and interest-rate environments. In this study, the repre-
sentation of such information content, although aided by 
the correlated jump-risk specification, resolves into the 
DPO value. Further illustrated by Exhibit 5 are the DPO 
values associated with TIPS of 5-, 7-, 10-, and 20-year 
maturities, respectively, from 2008 to 2016. Consistent 
with Grishchenko, Vanden, and Zhang [2016], we find 
the DPO values to be time-varying and small in abso-
lute terms. Most interestingly, as shown by Exhibit 6, 
the DOP values exhibit an interesting pattern especially 
for the late-2008 to early-2009 period. In stark contrast 

to the stagf lation period of the 1970s, the late-2008 to 
early-2009 period was a time of turmoil induced by 
spurred fears of def lation and sudden upward jumps in 
real spot rates. Such a period defines a worst scenario 
for TIPS: Negative inf lation is bad for TIPS, and rising 
real yields implies direct losses due to the extended dura-
tion profiles. Ref lected by the peeked positive values in 
Exhibit 5 is the indispensable role of the DPO value in 
the valuation of TIPS in times of prevailing def lationary 
concerns confounded by rising real yields.

Although one can always benefit from an out-
of-sample pricing performance analysis that employs 
data previously unused for parameter estimation, 
direct observations of Exhibit 1 (for the CPI-U) and 
Exhibit 2 (for the nominal/real interest rates) suggest 
that the patterns of their propagating paths tend to 
vary indistinguishably—which is most likely to induce 
time homogeneity in the estimated parameters. In this 
case, we expect the out-of-sample pricing performance 
results to remain quantitatively similar to those in 
Exhibit 4.

CONCLUSIONS

This pricing framework adds to the existing litera-
ture on TIPS valuation in the following respects. First, 
we theoretically quantify the DPO value embedded in 
TIPS—a motivation previously seen as inadequate for 
the inf lationary environment prior to 1997 but that 
became a focus of attention when the 2008 financial 
crisis brought along def lationary concerns. Second, 
our pricing framework directly addresses the co-
occurrence of inf lation- and interest-rate uncertainties, 
which have always been considered vital to the pricing 
of TIPS (Christensen, Lopez, and Rudebusch [2012]; 
Grishchenko, Vanden, and Zhang [2016]). Third, this 
pricing framework is sufficiently general to incorporate 
various jump-diffusion settings in the literature. More 
importantly, we find that the pricing of TIPS with DPO 
explicitly identified under a systematic jump-risk set-
ting (the Esscher measure) outperforms that under an 
idiosyncratic jump-risk setting (the Merton measure). 
Most interestingly, model prices from this pricing frame-
work closely conform to the market prices of the 10-year 
TIPS issued following the 2008 crisis. Consistent with 
Grishchenko, Vanden, and Zhang [2016], we find the 
DPO values to be time varying, to be small in absolute 



Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

16   Pricing the Deflation Protection Option in TIPS Using an HJM Model with Inflation- and Interest-Rate Jumps Winter 2018

terms, and to exhibit an interesting pattern, especially 
during the late-2008 to early-2009 crisis period.

A P P E N D I X  A

PROOF OF PROPOSITION 1

By the Itô–Doeblin formula
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represent the nominal and real money market accounts, 
respectively; the exponential growth factors G1(t,T ), G2(t,T ), 
and G3(t,T ) take the following forms:
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Under the assumption that the compound Poisson 
process is independent of the standard Brownian motions, 
the conditional Radon–Nikodým derivative thus permits a 
decomposition into two independent martingale processes 
under the P measure; that is,
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where ψ(c; hN,2, hR,2, hI,2) is a moment-generating function 
applied to identify the distributional characteristics of the 
random component h Y h Y h YN NY k Rh k I I k(hN +Y hNYY k + +Y h )YIYY k, , ,k R 2 ,YRY ,2 , ; 
that is,
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with θ (hN,2, hR,2, hI,2) and ν2(hN,2, hR,2, hI,2) representing the 
mean and variance, respectively, as follows

θ = θ θ θ
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2
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2 2ν

For the standard Brownian motions WN(T−t), WR(T−t), 
and WI(T−t), we have
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which gives rise to a set of standard Brownian martingale 
representations for the nominal interest rate, the real interest 
rate, and the inf lation index, under the Q measure

 Q ∫ ( )( )( ) ( ) +) (ˆ ()(),W Q ( W) =) h (σ (ˆ
1 d( ))()() uN N( )WW ( WW)

t

T

N Nσ,1σ1   
  

(A-7)

 Q ∫+ ρ ρW Q W= h uσ T duR RWW WW
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(A-8)
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For the compound Poisson process
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The jump frequency M(T−t) under the Q measure obeys 
the Poisson distribution with the intensity λQ(T − t); that is,

Q Q− λ λ λ ψM Qλ hQλ λ h hN Rh I( )−T [ ( )−T ], : (λ ψ= λ ⋅ ψ ; ,Rh ),2 ,2 ,2
 

  (A-11)

and the correlated jump amplitudes for the nominal interest 
rate, the real interest rate, and the inf lation index under the 
Q measure are as follows

 Q∼ θY ∼ νN kYY
IID

N Nννln [ ,QθQθN ( )− t ],
2 2( )T t  (A-12)

 Q∼ θY ∼ νR kYY
IID

R Rννln [ ,QθQθR ( )− t ],
2 2( )T t  (A-13)

 Q∼ θ νYI kYY
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2  (A-14)

where
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 Q [ ]θ =Q θ + [,h [ν [2I Iθ I Iν,2ν2

By the fundamental theorem of asset pricing (Harrison 
and Kreps [1978]; Harrison and Pliska [1981]), the absence of 
arbitrage opportunities is equivalent to the existence of an 
equivalent martingale measure under which the discounted 
asset price processes are martingales. Hence, we require the 
discount price processes for the nominal zero-coupon bond 
PN(t,T ), the inf lation-adjusted money market account I(t)βR(t), 
and the inf lation-linked zero-coupon bond I(t)PR(t,T ) to be 
martingales under the Q measure
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Using the functions G1(t,T ), G2(t,T ), G3(t,T ) as derived 
in Equations A-1 to A-3 and the conditional Radon–Nikodým 
derivative of Equation A-4, the required martingale condi-
tions of this pricing framework are as follows:
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Thus, under the Q measure, the risk-neutral dynamic 
processes for the nominal zero-coupon bond PN(t, T ), the 
inf lation-adjusted money market account I(t)βR(t), and the 
inf lation-linked zero-coupon bond I(t)PR(t, T ) are
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This completes our proof of Proposition 1.

A P P E N D I X  B

PROOF OF THEOREM 1

At maturity, the TIPS investor will receive cash f lows 
either from the original principal F(t0) or the adjusted prin-
cipal F(T ) = F(t0)I(T )/I(t0). That is
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 (B-1)

which is analogous to a European put option written on the 
inf lation-linked zero-coupon bond with I(t0) as its strike 
price. The payoff of DPO at maturity is thus defined by

=
{ }

{ }

T I I−
t T I− P TN RT I PP

DPO( ) [= ( )t ( )T ]1
[ (I ) (PNPP )TT ( )TT ( ,T )]1

0

0  (B-2)

Under the Q measure and using the law of iterated 
expectations, the fair value of DPO at time t is
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where M(T−t) = m is the expected number of jumps over the 
period [t,T ]. Given m, the dynamic processes are

 

Q

β
=

β

× − + + ε⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

I P T I P T

V t L V t

RPP

N

RPP

N

( )T ( ,T )

( )T
( )t ( ,t )

( )t

exp
1

2
( ,m , )T ( ) ( ,m , )T1VV 2

1 1+VV( )m 1
 (B-4)

Q

β
=

β
− + + ε⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

P T P T
V t L VNPP

N

NPP

N

( ,T )

( )T
( ,t )

( )t
exp

1

2
( ,m , )T ( )m ( , , )T2V 2

2 2+( )m 2

 
 

 
(B-5)
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For the inner expectation in the first term of Equation 
B-3, we have
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The inner expectation in the second term of Equation 
B-3 leads to the follwing form:
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where
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Therefore, the DPO pricing formula is
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where QQ
= λ

Q
−λp m T

Q
t m( )m [ (λ (QλQλ )] / !m( )T t  is the probability 

mass function of the Poisson distribution with the intensity 
λQ(T−t). This completes our proof of Theorem 1.
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