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Abstract

Let Zn = (Z
(1)
n , Z

(2)
n , · · · , Z(d)

n ) be a d-type (d < ∞) Galton-Watson branch-
ing process. For a positive integer k ≥ 2. Pick k individuals at random
from the nth generation by simple random sampling without replacement.
Trace their lines of descent backward in time till they meet. Let Xn,k be
the generation number of the coalescence time of these k individuals of the
nth generation. We call the common ancestor of these chosen individuals in
the Xn,kth generation their last common ancestor. In this paper, the limit
behaviors of the distributions of Xn,k, for any integer k ≥ 2, is studied for the
supercritical cases. Also, we investigate the limit distribution of joint distri-
bution of the generation number and the type of the last common ancestor of
these randomly chosen individuals and their types in the supercritical case.

AMS (2000) subject classification. Primary 60J80; Secondary 60G50.
Keywords and phrases. Branching processes, Coalescence, Supercritical,
Multitype, Line of descent.

1 Introduction

1.1. The Coalescence Problem. We consider a branching process
with finite number d of individual types (see Section 1.3 for a precise def-
inition). Such processes arise in a variety of applications in biology and
physics.

For these processes, we address the problem of coalescence.
Pick k individuals at random from the nth generation bysimple random

sampling without replacement (SRSWOR). Trace their lines of descent back-
ward in time till they meet. Let Xn,k be the generation number of that time.
Call this the coalescence time of these k individuals of the nth generation.
We call the common ancestor of these chosen individuals in the Xn,kth gen-
eration their last common ancestor. In this paper, the limit behaviors of the
distributions of Xn,k, for any integer k ≥ 2, is studied for the supercritical
case. Also, we investigate the limit distribution of the joint distribution of
the generation number and the type of the last common ancestor of these
randomly chosen individuals and their types. Finally, the Markov property
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of the limit behavior of types along the line of descent backward in time
of an individual randomly chosen by SRSWOR from the nth generation, as
n → ∞, is also discussed.

1.2. Notations. Throughout this paper, we adopt the following
notations.

1. N0 is the set of all nonnegative integers.

2. N
d
0 ≡

{
j ≡ (j1, j2, · · · , jd) : ji ∈ N0, i = 1, 2, · · · , d

}

3. 0 = (0, 0, · · · , 0) and 1 = (1, 1, · · · , 1) in N
d
0

4. ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ N
d
0 with the 1 in the ith component.

5. Let u = (u1, u2, · · · , ud) and v = (v1, v2, · · · , vd) be d-vectors with ui, vi ∈
R, i = 1, 2, · · · , d. Then u ≤ v means ui ≤ vi for i = 1, 2, · · · , d while
u < v means ui ≤ vi for all i and ui < vi for at least one i.

6. The absolute value of the vector x is

|x| = |x1|+ |x2|+ · · ·+ |xd|

7. The sup norm of the vector x is

‖x‖ = max{|x1|, |x2|, · · · , |xd|}

8. For a vector x and a y in N
d
0,

xy =

d∏
i=1

xyii

9. For a matrix M, the super norm is

‖M‖ = max{|mij | : i, j = 1, 2, · · · , d}

1.3. Definition of Branching Processes. Let Zn = (Z
(1)
n , Z

(2)
n , · · · , Z(d)

n )

be the population vector in the nth generation, n = 0, 1, 2, · · · , where Z
(i)
n

is the number of individuals of type i in the nth generation. We assume
that each individual of type i, i = 1, 2, · · · , d, lives a unit of time and, upon
death, produces children of all types according to the offspring distribution
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{
p(i)(j) ≡ p(i)(j1, j2, · · · , jd)

}
j∈Nd

0
and independently of other individuals,

where p(i)(j1, j2, · · · , jd) is the probability that a type i parent produces j1
children of type 1, j2 children of type 2, · · · , jd children of type d.

Let

f (i)(s1, s2, · · · , sd) ≡
∑

j1,j2,··· ,jd≥0

p(i)(j1, j2, · · · , jd)sj11 sj22 · · · sjdd (1.1)

where 0 ≤ sr ≤ 1, r = 1, 2, · · · , d, be the probability generating function of
the numbers of various types produced by a type i individual.

Let

f ≡ (f (1), f (2), · · · , f (d)). (1.2)

be the vector of generating functions.
Thus, a discrete-time d − type Galton − Watson branching process{

Zn

}
n≥0

is a Markov chain on N
d
0 with the transition function

P (i, j) = P (Zn+1 = j|Zn = i) ∀i, j ∈ N
d
0 (1.3)

such that, for any i,
∑

j∈Nd
0

P (i, j)sj =
(
f(s)

)i
(see notation (8)).

When the process is initiated in state ei, we will denote the process
{Zn}n≥0 by

Z(i)
n =

(
Z(i)(1)
n , Z(i)(2)

n , · · · , Z(i)(d)
n

)

where, for j = 1, 2, · · · , d, Z
(i)(j)
n is the number of type j individuals in

the nth generation for a process with Z0 = ei. The probability generating

function of Z
(i)
n will be denoted by f

(i)
n (s).

Also, if we let ξ
(j)
n,r be the vector of offsprings of the rth individual of type

j in the nth generation then, for all r and n, P (ξ(j)n,r = ·) = p(j)(·). Thus, the
population in the (n+ 1)th generation can be expressed as

Zn+1 =

d∑
j=1

Z
(j)
n∑

r=1

ξ(j)n,r. (1.4)

This is a useful stochastic evolution relation. In particular, this generates

the following result on the means EZ
(i)(j)
n .
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Let mij = E(Z
(j)
1 |Z0 = ei) be the expected number of type j offspring of

a single type i individual in one generation for any i, j = 1, 2, · · · , d. Then,

M ≡ {mij : i, j = 1, 2, · · · , d}. (1.5)

is called the mean matrix.
From (1.4), is follows that E(Z1|Z0) = Z0M and hence by iteration

E(Zn|Z0) = Z0M
n. Here, we denote the (i, j)th element of Mn by m

(n)
ij .

We also impose the following assumptions on the process
{
Zn

}
n≥0

for
the rest of the paper:

1. The branching process
{
Zn

}
n≥0

is non-singular, i.e., for every i, the pro-
bability that each individual has exactly one offspring of the same type
is less than 1.

2. The branching process
{
Zn

}
n≥0

is positive regular. That is, there exists

an n such that m
(n)
ij > 0 for all 1 ≤ i, j ≤ d.

3. Each individual in this process produces at least one offspring with proba-
bility 1 upon death, that is, P (Z1 = 0|Z0 = ei) = 0 for all i = 1, 2, · · · , d.
Thus, the probability of extinction is zero.

By the Perron-Frobenius theorem (see Karlin and Taylor, 1975 or Athreya
and Ney, 2004), the matrix M has a maximal eigenvalue ρ which is positive,
simple (it has 1 as its algebraic and geometric multiplicities) and has asso-
ciated strictly positive right and left eigenvectors u and v. Moreover, these
can be normalized so that the inner products

u · v = 1 and u · 1 = 1. (1.6)

Further, one can write

Mn = ρnP+Rn (1.7)

where P is the matrix whose (i, j)th entry is uivj and R ≡ {rij : i, j =

1, 2, · · · , d} is a matrix such that PR = RP = 0 and r
(n)
ij ≤ cρn0 , for all

n ≥ 1, i, j = 1, 2, · · · , d, for some c < ∞ and 0 < ρ0 < ρ.
In a discrete-time multi-type Galton-Watson branching process, the max-

imal eigenvalue ρ of the mean matrix M plays a crucial role. The process
is called a subcritical, critical, supercritical or explosive branching process
according as ρ < 1, ρ = 1, 1 < ρ < ∞ or ρ = ∞, respectively. It is known
(Athreya and Ney, 2004) that if ρ ≤ 1 then the process dies out with prob-
ability one and if ρ > 1 then this probability is less than one.
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2 Main Results

For a supercritical branching process, we assume that E
(
Z1,j

∣∣Z0 = ei
)
≡

mij < ∞ for all 1 ≤ i, j ≤ d.
Let ρ be the maximal eigenvalue of M = {mij : i, j = 1, 2, · · · , d}. Then

we have the following results.

Theorem 2.1. Let 1 < ρ < ∞, Z0 = ei0 and E
(
‖Z1‖ log ‖Z1‖

∣∣Z0 = ei
)

< ∞ for all 1 ≤ i ≤ d. Then, for k = 2, 3, · · · ,

(a) (Quenched version) for almost all trees T and r = 1, 2, · · · , there

exists positive real-valued random variables W
(l)
r,i , i = 1, 2, · · · , Z(l)

r ,
l = 1, 2, · · · , d such that

P (Xn,k < r|T ) → φk(r,T ) ≡ 1−

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

as n → ∞. The random variables {Wr,i : i = 1, 2, · · · , Z(l)
r ,

l = 1, 2, · · · , d} are all functions of the tree T . Further, conditioned
on Zr and averaged over all trees T , they are independent random
variables.

(b) (Annealed version) there exists random variable X̃k such that Xn,k
d−−→

X̃k as n → ∞, where

P (X̃k < r) ≡ φk(r) = 1− E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

⎞
⎟⎟⎟⎟⎠

for any r = 1, 2, · · · . Further, lim
r→∞φk(r) = 1 so that X̃k is a proper

random variable.

Remark 2.1. Athreya (2012) proved the coalescence in the single-type
case. Many ideas of the proof of the above theorem came from his paper
and this theorem can be viewed as an extension to the multi-type case.

Remark 2.2. Theorem 2.1 (a) and (b) should be valid just with
1 < ρ < ∞. That is, the assumption E‖Z1‖ log ‖Z1‖ < ∞ should not be
needed.
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This will need Hoppe’s result in Hoppe (1976) and the result that the func-
tion E

(
W : W ≤ x

)
is slowly varying at ∞. For single-type case, this was

proved by Athreya and Schuh (2003). The multi-type extension of this needs
to be investigated.

Theorem 2.2 is a result on the limit distribution of X̃k as k → ∞. Not
surprisingly, it says that the coalescence time goes away back to one gener-
ation before the first time when this process began to split.

Theorem 2.2. Let 1 < ρ < ∞ and E‖Z1‖ log ‖Z1‖ < ∞. Let
U = min

{
n ≥ 1 : |Zn| ≥ 2

}
be the first time when the population exceeds 1.

Then X̃k
d−−→ U − 1 as k → ∞.

Next, we pick two individuals (i.e. consider k = 2) at random by SR-
SWOR from the nth generation and trace their lines of decent backward in
time to find their last common ancestor. Let Xn,2 be the generation number
of this common ancestor, ηn the type of this common ancestor and

(
ζn,1, ζn,2

)
be the types of the chosen individuals. The following theorem asserts that
the joint distribution of

(
Xn,2, ηn, ζn,1, ζn,2

)
converges as n → ∞ to a proper

distribution. It is necessarily the annealed version.

Theorem 2.3. Let 1 < ρ < ∞, Z0 = ei0 and E
(
‖Z1‖ log ‖Z1‖

∣∣Z0 = ei
)

< ∞ for all 1 ≤ i ≤ d. Then

lim
n→∞P (Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2) ≡ ϕ2(r, j, i1, i2) exists

and
∑

(r,j,i1,i2)

ϕ2(r, j, i1, i2) = 1.

The next result is an extension of the above theorem for k ≥ 2.

Theorem 2.4. Let 1 < ρ < ∞, Z0 = ei0 and E
(
‖Z1‖ log ‖Z1‖

∣∣Z0 = ei
)

< ∞ for all 1 ≤ i ≤ d. Then, for any 2 ≤ k < ∞,

lim
n→∞P (Xn,k = r, ηn = j, ζn,1 = i1, ζn,2 = i2, · · · , ζn,k = ik)

≡ ϕk(r, j, i1, i2, · · · , ik)

exists and
∑

(r,j,i1,i2,··· ,ik)
ϕk(r, j, i1, i2, · · · , ik) = 1.

3 Proofs of Main Results

In order to prove our main theorems, we need the following limit theorem
that shows that the population of a supercritical multi-type branching
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process grows geometrically under the condition E‖Z1‖ log ‖Z1‖ < ∞.
(Recall that we have assumed that there is no extinction.)

Theorem 3.1. (Kesten and Stigum, 1966) Let 1 < ρ < ∞.

(a) Let Wn =
u · Zn

ρn
and Fn be the σ-algebra generated by

{
Zi : 1 ≤ i ≤

n
}
. Then

{
(Wn,Fn) : n ≥ 0

}
is a nonnegative martingale and hence

W ≡ lim
n→∞Wn exists with probability 1.

(b) Furthermore,

(i) P (0 < W < ∞) = 1 if and only if E‖Z1‖ log ‖Z1‖ < ∞.

(ii) Moreover, if E‖Z1‖ log ‖Z1‖ < ∞, then

E(W |Z0 = ei) = ui i = 1, 2, · · · , d.

(c) For any initial |Z0| 
= 0,

lim
n→∞

(
Zn

u · Zn

)
= v with probability 1.

3.1. Proof of Theorem 2.1. We need the following lemma to prove this
theorem.

Lemma 3.1. (O’Brien, 1980) Assume W1,W2, · · · are pairwise indepen-
dent, and identically distributed and positive random variables. Then,

max{W1,W2, · · · ,Wn}
n∑

i=1
Wi

→ 0 in probability

if and only if L(x) ≡ E(W : W ≤ x) is slowly varying at ∞.

Now, we begin to prove Theorem 2.1.

Let
{
Z
(l)
p,i,n−p

}
n≥p

be the be the discrete-time multi-type Galton-Watson

branching process initiated by the ith individual of type l in the pth
generation.
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For any k ≥ 2, we pick k individuals by SRSWOR from the population
in the nth generation and let Xn,k be the generation number of their last
common ancestor.

(a) For almost all trees T and r = 1, 2, · · · ,
P (Xn,k ≥ r|T )

=

d∑
l=1

Z
(l)
r∑

i=1

∣∣Z(l)
r,i,n−r

∣∣
(∣∣Z(l)

r,i,n−r

∣∣− 1

)
· · ·

(∣∣Z(l)
r,i,n−r

∣∣− k + 1

)

|Zn|
(
|Zn| − 1

)
· · ·

(
|Zn| − k + 1

)

=

d∑
l=1

Z
(l)
r∑

i=1

∣∣Z(l)
r,i,n−r

∣∣
ρn−r

∣∣Z(l)
r,i,n−r

∣∣−1

ρn−r · · ·
∣∣Z(l)

r,i,n−r

∣∣−k+1

ρn−r

(
d∑

l=1

Z
(l)
r∑

i=1

|Z(l)
r,i,n−r|
ρn−r

)(
d∑

l=1

Z
(l)
r∑

i=1

|Z(l)
r,i,n−r|
ρn−r − 1

ρn−r

)
· · ·

(
d∑

l=1

Z
(l)
r∑

i=1

|Z(l)
r,i,n−r |
ρn−r − k−1

ρn−r

) (3.1)

Since 1 < ρ < ∞ and E‖Z1‖ log ‖Z1‖ < ∞, by Theorem 3.1, we know

that

∣∣Z(l)
r,i,n−r

∣∣
ρn−r

→ (1 · v)W (l)
r,i with probability 1 as n → ∞, for all r, i, l.

So, as n → ∞,

P (Xn,k ≥ r|T ) →

d∑
l=1

Z
(l)
r∑

i=1

(
(1 · v)W (l)

r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
(1 · v)W (l)

r,i

)k
with probability 1

=

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
≡ 1− φk(r,T )

and hence (a) is proved.

(b) Since P (Xn,k ≥ r) = E
(
P (Xn,k ≥ r|T )

)
, by the bounded convergence

theorem,

P (Xn,k ≥ r) → E

⎛
⎜⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

⎞
⎟⎟⎟⎟⎟⎠

≡ 1− φk(r) as n → ∞
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for r = 1, 2, · · · . Now, averaged over all trees T , conditioned on

Zr, the random variables W
(l)
r,i , i = 1, 2, · · · , Z(l)

r are i.i.d for each
l = 1, 2, · · · , d.
Moreover, since E‖Z1‖ log ‖Z1‖ < ∞, by Theorem 3.1, EW (l) < ∞ for
l = 1, 2, · · · , d. Hence, dropping l, if we let

L(x) ≡ E
(
W : W ≤ x

)

then L(x) is slowly varying at ∞ since EW is finite. That is, for

l = 1, 2, · · · , d, the function E(W
(l)
r,1 : W

(l)
r,1 ≤ x) in x is slowly varying

at ∞.

Therefore, by Lemma 3.1, for each l = 1, 2, · · · , d

max
1≤i≤n

W
(l)
r,i

n∑
i=1

W
(l)
r,i

→ 0 in probability

as n → ∞. So, since |Zr| → ∞ with probability 1 as r → ∞, by the
bounded convergence theorem, we have

E

⎛
⎜⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

⎞
⎟⎟⎟⎟⎟⎠

→ 0 as r → ∞.

Thus, φk is a proper probability distribution. So, there exists a random

variable X̃k with P (X̃k < r) = φk(r) for any r ≥ 1 such that Xn,k
d−−→

X̃k as n → ∞ and we have completed the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2. We prove this theorem in two steps.

Step 1:

Since U = min{n ≥ 1 : |Zn| ≥ 2}, for almost all trees T and any r =
1, 2, · · · , we have that

φk(r,T )=1−

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if r ≤ U − 1

1−

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
if r ≥ U
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Also, the assumption that P (Z1 = 0|Z0 = ei) = 0 for all i = 1, 2, · · · , d
implies that

P

⎛
⎜⎜⎜⎝0 <

max
1≤i≤N
1≤l≤d

W
(l)
r,i

d∑
l=1

N∑
i=1

W
(l)
r,i

< 1

⎞
⎟⎟⎟⎠ = 1

for any N ≥ 2. So, for almost all trees T ,

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
≤

⎛
⎜⎜⎜⎜⎝

max
1≤i≤Z

(l)
r

1≤l≤d

W
(l)
r,i

d∑
l=1

Z
(l)
r∑

i=1
W

(l)
r,i

⎞
⎟⎟⎟⎟⎠

k−1

→ 0 as k → ∞

and hence, for r = 1, 2, · · · ,

lim
k→∞

φk(r,T ) =

{
0 if r ≤ U − 1
1 if r ≥ U.

Step 2:

We have that

E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k

⎞
⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
I(r≤U−1)

⎞
⎟⎟⎟⎟⎠
+E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
I(r≥U)

⎞
⎟⎟⎟⎟⎠

= P (r ≤ U − 1) +E

⎛
⎜⎜⎜⎜⎝
E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
I(r ≥ U)

∣∣∣∣∣Zr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
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Since, averaged over all trees T and conditioned on Zr,
{
W

(l)
r,i : i =

1, 2, · · · , Z(l)
r

}
are i.i.d., for each l = 1, 2, · · · , d,

E

⎛
⎜⎜⎜⎜⎝
E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z
(l)
r∑

i=1

(
W

(l)
r,i

)k

(
d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

)k
I(r ≥ U)

∣∣∣∣∣Zr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z(l)
r E

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

W
(l)
r,1

d∑
l=1

Z
(l)
r∑

i=1
W

(l)
r,i

I(r ≥ U)

⎞
⎟⎟⎟⎟⎠

k

∣∣∣∣∣Zr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Also, P

⎛
⎜⎜⎜⎜⎝
0 <

W
(l)
r,i

d∑
l=1

Z
(l)
r∑

i=1
Wr,i

< 1

∣∣∣∣r ≥ U

⎞
⎟⎟⎟⎟⎠

= 1 implies that

⎛
⎜⎜⎝

W
(l)
r,i

d∑

l=1

Z
(l)
r∑

i=1
W

(l)
r,i

I(r ≥ U)

⎞
⎟⎟⎠

k

→ 0 with probability 1 as k → ∞, and hence

E

⎛
⎜⎜⎜⎜⎝

d∑
l=1

Z(l)
r E

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

W
(l)
r,1

d∑
l=1

Z
(l)
r∑

i=1
W

(l)
r,i

I(r ≥ U)

⎞
⎟⎟⎟⎟⎠

k

∣∣∣∣∣Zr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

→ 0 as k → ∞

by the bounded convergence theorem. Therefore, as k → ∞,

P (X̃k<r)=φk(r)=E
(
φk(r,T )

)
→ 1− P (r ≤ U − 1) = P (U − 1<r)

for any r = 1, 2, · · · . So, X̃k
d−−→ U − 1 as k → ∞ and the proof is

complete.

3.3. Proof of Theorem 2.3. The following proof also can be extended
to prove Theorem 2.4.
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Let ξ
(i)
n,j =

(
ξ
(i)1
n,j , ξ

(i)2
n,j , · · · , ξ

(i)d
n,j

)
be the vector of the offsprings of the jth

individual of the type i in the nth generation. Let
{
Z
j(l)
p,r,s,n

}
n≥0

be the multi-
type Galton-Watson branching process initiated by the sth child of type l of

the pth individual of type j in the rth generation. So,
{
Z
j(l)
p,r,s,n =

(
Z

j(l)1
p,r,s,n ,

Z
j(l)2
p,r,s,n, · · · , Zj(l)d

p,r,s,n

)}
n≥0

has the same distribution as
{
Zn|Z0 = el

}
does.

Let An,i be the type of the ancestor in the next generation after the last
common ancestor of the ith chosen individual, i = 1, 2. Then

P (Xn,2 = r, ηn = j, ζn,1 = ζn,2 = i, An,1 = An,2)

= E
(
P (Xn,2 = r, ηn = j, ζn,1 = ζn,2 = i, An,1 = An,2|T )

)

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

Z
j(l)i
p,r,s,n−r−1Z

j(l)i
p,r,t,n−r−1

|Zn|(|Zn| − 1)

⎞
⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

Z
j(l)i
p,r,s,n−r−1

ρn−r−1

Z
j(l)i
p,r,t,n−r−1

ρn−r−1

|Zn|
ρn−r−1

|Zn|−1
ρn−r−1

⎞
⎟⎟⎟⎟⎟⎠

−→ E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

(viWp,r,s)(viWp,r,t)

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

as n → ∞

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

v2iWp,r,sWp,r,t

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

(3.2)

Conditioned on Zr and Zr+1 and averaged over all trees T , the ran-

dom variables
{
Wp,r,s, : s = 1, 2, · · · , ξ(j)lr,p , l = 1, 2, · · · , d, p = 1, 2, · · · , Z(j)

r

}
are independent. Further, conditioned on Zr+1 and averaged over all trees

T , the random variables
{
W

(l)
r+1,s : s = 1, 2, · · · , Z(l)

r+1, l = 1, 2, · · · , d
}

are
independent as well.
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Similarly, we have, as n → ∞,

P (Xn,2 = r, ηn = j, ζn,1 = ζn,2 = i, An,1 
= An,2)

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l �=q=1

ξ
(j)l
r,p∑
s=1

ξ
(j)q
r,p∑
t=1

Z
j(l)i
p,r,s,n−r−1

ρn−r−1

Z
j(l)i
p,r,t,n−r−1

ρn−r−1

|Zn|
ρn−r−1

|Zn|−1
ρn−r−1

⎞
⎟⎟⎟⎟⎟⎠

−→ E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l �=q=1

ξ
(j)l
r,p∑
s=1

ξ
(j)q
r,p∑
t=1

v2iWp,r,sWp,r,t

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

as n → ∞, (3.3)

P (Xn,2 = r, ηn = j, i1 = ζn,1 
= ζn,2 = i2, An,1 = An,2)

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

Z
j(l)ii
p,r,s,n−r−1

ρn−r−1

Z
j(l)i2
p,r,t,n−r−1

ρn−r−1

|Zn|
ρn−r−1

|Zn|−1
ρn−r−1

⎞
⎟⎟⎟⎟⎟⎠

−→ E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

(vi1Wp,r,s)(vi2Wp,r,t)

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

as n → ∞

= E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l=1

ξ
(j)l
r,p∑

s �=t=1

vi1vi2Wp,r,sWp,r,t

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠
, (3.4)

and

P (Xn,2 = r, ηn = j, i1 = ζn,1 
= ζn,2 = i2, An,1 
= An,2)

−→ E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

d∑
l �=q=1

ξ
(j)l
r,p∑
s=1

ξ
(j)q
r,p∑
t=1

vi1vi2Wp,r,sWp,r,t

(
d∑

l=1

Z
(l)
r+1∑
s=1

W
(l)
r+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

as n → ∞. (3.5)
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Therefore, (3.2), (3.3), (3.4) and (3.5) together yield, as n −→ ∞,

P (Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2)

−→ vi1vi2E

⎛
⎜⎜⎜⎜⎜⎝

Z
(j)
r∑

p=1

|ξ(j)r,p|∑
s �=t=1

Wp,r,sWp,r,t

(
d∑

l=1

Z
(l)
r+1∑
s=1

Wr+1,s

)2

⎞
⎟⎟⎟⎟⎟⎠

≡ ϕ2(r, j, i1, i2).

By Theorem 2.1, we know that Xn,2
d−−→ X̃2 and then {Xn,2}n≥0 is

tight. Also, ηn, ζn,1 and ζn,2 are random variables taking values on a finite
set {1, 2, · · · , α}. Hence,

{
(Xn,2, ηn, ζn,1, ζn,2)

}
n≥0

is tight and the limit

ϕ2(r, j, i1, i2) of P (Xn,2 = r, ηn = j, ζn,1 = i1, ζn,2 = i2) is a probability

distribution. Thus,
∑

(r,j,i1,i2)

ϕ2(r, j, i1, i2) = 1 and the proof is complete.
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