
‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

:   

HiSeqGAN:  

HiSeqGAN: High-dimensional Sequence Synthesis 

and Prediction 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Abstract

High-dimensional data sequences constantly appear in practice. State-of-the-art

models such as recurrent neural networks suffer prediction accuracy from complex

relations among values of attributes. Adopting unsupervised clustering that clusters

data based on their attribute value similarity results data in lower dimensions that

can be structured in a hierarchical relation. It is essential to consider these data

relations to improve the performance of training models. In this work, we propose

a new approach to synthesize and predict sequences of data that are structured in

a hierarchy. Specifically, we adopt a new hierarchical data encoding and seamlessly

modify loss functions of SeqGAN as our training model to synthesize data sequences.

In practice, we first use the hierarchical clustering algorithm, GHSOM, to cluster our

training data. By relabelling a sample with the cluster that it falls to, we are able

to use the GHSOM map to identify the hierarchical relation of samples. We then

converse the clusters to the coordinate vectors with our hierarchical data encoding

algorithm and replace the loss function with maximizing cosine similarity in the

SeqGAN model to synthesize cluster sequences. Using the synthesized sequences,

we are able to achieve better performance on high-dimension data training and

prediction compared to the state-of-the-art models.

Keywords: High-dimensional data, Sequence Synthesis, Sequence Prediction,

SeqGAN, GHSOM.



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Contents

Abstract

1 Introduction 1

2 Related Work 4

3 Hierarchical Data 6

3.1 Growing Hierarchical Self-Organizing Map(GHSOM) . . . . . . . . . . . . 6

3.2 Hierarchical Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Data Synthesis and Prediction with HiSeqGAN 13

4.1 HiSeqGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Sequence Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Sequence Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Sequence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Experiments 20

5.1 Data Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 From High-dimension Data to Hierarchical Data . . . . . . . . . . . . . . . 21

5.3 Sequence Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Sequence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 From Cluster Prediction to Actual Value Prediction . . . . . . . . . . . . . 24

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 32

References 33



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

List of Figures

1 GHSOM structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Decimal number labelling on clusters of a GHSOM map . . . . . . . . . . . 10

3 Coordinate encoding of clusters with decimal labels . . . . . . . . . . . . . 10

4 The HiSeqGAN framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Clusters with 2D coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Clusters with 3D coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 GHSOM clustering result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 A sampled item for prediction on the AWU value of five periods . . . . . . 25



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

List of Tables

1 Entropy rate of different clustering methods . . . . . . . . . . . . . . . . . 9

2 Coordinate points of GHSOM clusters . . . . . . . . . . . . . . . . . . . . 11

3 Numerical Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Layer accuracy of sequence synthesis . . . . . . . . . . . . . . . . . . . . . 23

5 Layer accuracy on multi-periods prediction . . . . . . . . . . . . . . . . . . 24

6 Mean and standard deviation of AWU . . . . . . . . . . . . . . . . . . . . 25



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

1 Introduction

With the progress and the fast development of technology, artificial intelligence forecasting

techniques have been receiving much attention in recent years. Deep learning is one of

advanced machine learning technique which is highly used in artificial intelligence. It

relies on sophisticated mathematical and statistical computations for solving complicated

real-world problems. As we know, AlphaGo [1], an application of deep neural network

have gained victory with a Chinese Go master lately. Moreover, there have been numerous

applications of deep learning in our lives such as automatic classification of emails [2] [3],

chatbot [4] and image recognition [5]. In different applications, we can also use different

models to train machines. For example, convolutional neural network (CNN) [6], recurrent

neural network (RNN) [7] and generative adversarial network (GAN) [8] are some of the

modern implementations of deep learning.

CNN is a model which is most commonly applied to analyze visual imagery. It is built

by the visual cortex of the human brain and consists of convolutional layers and pooling

layer. The former applies a convolution operation to the input and pass the result to

the next layer. And then the convolution emulates the response of an individual neuron

to visual stimuli. The latter combines the outputs of neuron clusters at one layer into a

single neuron in the next layer. Through the structure, CNN can optimize the correlation

between pattern recognition and adjacent data, which shows excellent performance on

recognition especially in the data type of image [5] and sound [9].

Sequence modeling has been one of the most complicated tasks in real-world problems.

When it comes to sequence modeling, noise, the length of time and pattern variabilities

always hamper the progress. RNN is a model that heavily used in sequence modeling.

It is different from the general feedforward neural network since the neurons in the RNN

have a temporary internal memory that remembers the previous output state, and then

the neuron can calculate different output values based on the previous state. Also because

RNN can remember the feature of a previous output state, this model can handle input

data of different lengths, which has a good performance in applications such as automatic

1



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

translation [10] and speech recognition [11].

However, RNN encounters vanishing gradient problem and exploding gradient problem

in the practice training. These problems lead the stochastic gradient descent method

to produce volatile results, and this situation also affects the performance of analyzing

longer sequence data. In order to solve these problem encountered by RNN, long-short-

term memory (LSTM) is proposed by Hochreiter et al. [12]. In the neurons of LSTM,

three gates for input, forget, and output is added to this model. After inputting the

data, it determines the opening and closing of each gate according to the respective

weight calculation results. According to Gers et al. [13], when training data are longer

sequences, the forget gate can reset the neuron state to zero or reduce the value of the

neuron state slowly, thereby effectively avoiding the problem of over-amplification of the

neuron.

GAN is proposed by Goodfellow et al. in 2014[8] and has shown excellent performance

for data generation. It is an unsupervised learning method in deep learning that learns

through two neural networks, generator and discriminator. The generator samples the

data randomly as input from the latent pace, and it is just like a forger who tries to mimic

the real-world data in training while the discriminator is just like a policeman who tries

to distinguish the fake data generated by the generator. Through iteratively training on

generator and discriminator, both the generator and the discriminator advance. In other

words, the goal of the generator is to maximize the probability of discriminator making

a mistake. We expect that the discriminator cannot judge whether the output of the

generator is correct.

Nevertheless, GAN has limitations on training discrete sequences. The first reason is

that the generator usually needs an LSTM model, so when the generator passes data to

the discriminator, it gets a sequence of discrete values, which makes the gradient update

challenging to handle. The second reason is that the discriminator can only accept a

complete sentence. The generation process is a sequential decision process, and it is crucial

to balance its current score and future score. The sequence generative adversarial nets

2



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

(SeqGAN) [14] adopts reinforcement learning and policy gradient to solve this problem.

It is the first work that extends GAN to generate sequences of discrete tokens.

However, for high-dimensional data sequences, we have observed that SeqGAN suffers

from complex computations on relations of attributes. It is challenging to model and

draw data samples from high dimensional distributions. We can learn the parameters of

conditional probability distributions that map intermediate, latent variables from simpler

distributions to more complex ones [15]. Some researches also use the learned intermediate

representations on retrieval and classification [16] [17] [18] [19]. Myszkowski et al. [20]

use hierarchical clustering to build a hierarchy of documents which gives them a useful

advantage in navigation of document search on visual content.

In this work, we propose a two phase analysis. We first adopt growing hierarchical

self-organizing maps (GHSOM) as the unsupervised clustering means to construct high-

dimensional data into hierarchical clusters. Samples that fall into the same cluster have

relatively similar attribute values. This enables us to use clusters, instead of the high-

dimension values, to represent the input data, and turn the problem of synthesizing high-

dimensional data sequences into the problem of synthesizing hierarchical data sequences.

In the second phase of our analysis, we propose HiSeqGAN that adopts the SeqGAN

model to synthesize sequences that have their data in a hierarchical relation. To this aim,

we propose a novel coordinate encoding to represent clusters in a hierarchical relation.

We modify the reward function in HiSeqGAN on maximizing sequence cosine similarity

to integrate the hierarchical relations of clusters into SeqGAN. Compared to loss function

on mean square errors, considering the hierarchical relations improves the quality of data

that we have generated. In our experiments, we showed that the synthesized sequences

can be used as new input data to train a better RNN model. Furthermore, we synthesize

sequences that have lengths longer than the training set, and show how to use them to

predict the future movement of sequences that are similar to the prefix of synthesized

sequences. Finally, we discuss how to predict actual attribute values from the predicted

cluster. We are able to achieve better accuracy compared to the state-of-the-art model.

3



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

2 Related Work

Many researchers have shown interest in the generative aspects of CNN recently to figure

out what the model learn and how to improve the model. Furthermore, the generative

models can be beneficial when the training data are not enough, and the labeled data are

incomplete. Dai et al. [21] have constructed a generative model for the CNN and have

proposed a method of visualization which can directly draw synthetic samples for any

given node in a trained CNN by the Hamiltonian Monte Carlo (HMC) algorithm. Xie

et al. [22] used the Gaussian distribution which is used initially in convolutional neural

networks as an example to simulate the way of probability distribution in the process of

CNN. Moreover, they used auto-encoder which is commonly used in unsupervised learning

and Langevin dynamics algorithm to learn reconstructed pictures. Also, they found a

generative random field model has the potential to learn from big unlabeled data. After

that, they proposed a CoopNets [23] which can train a bottom-up descriptor network and

a top-down generator network simultaneously. Both the descriptor and the generator are

involved in Langevin sampling and are in the form of alternating back-propagation.

Recently, GAN has shown excellent performance especially in the field of computer

visions. However, Dai et al. [24] explained the doubts about semi-supervised learning

with GAN. In their research, they improved the drawbacks of feature matching GAN

and presented a semi-supervised learning framework. Also, Salimans et al. [18] focused

on semi-supervised learning and the generation of images in their research. Moreover,

they proposed an evaluation metric for comparing the quality of these models. Radford

et al. [17] proposed a deep convolutional generative adversarial networks (DCGAN) and

demonstrated its efficacy through image data, which proved that unsupervised learning

has excellent and stable results. Besides, it is an essential issue for models to produce

high-resolution images. Denton et al. [25] proposed the LAPGAN model with a Laplacian

pyramid framework to create a pyramid structure. The model uses a generation network

at each level of the pyramid to produce a higher resolution image.

In addition to improving and optimizing the GAN model, many research proposed a

4



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

variant based on the original architecture. Ho et al. [26] have implemented the imita-

tion learning of deep reinforcement learning in a given environment. They combined this

method with GAN, and it can ultimately be implemented in robots and self-driving vehi-

cles. Luc et al. [27] applied the GAN model to semantic segmentation for the first time.

They add a discriminator to the semantic segmentation model and finally proved that this

method could improve the consistency of high-order potentials in their experiments. Liu

et al. [28] proposed coupled generative adversarial networks (CoGAN)which enforced a

weight sharing constraint on learning a joint distribution of multi-domain images. Finally,

they applied this model to several learning tasks, including color and depth images, and

face images with different attributes. All of the tasks show successful results by learn-

ing the joint distribution without any tuple of corresponding images. Besides, Zhu et

al. [29] proposed a cycle-consistent adversarial network (CycleGAN) in conjunction with

the concept of cycle consistency. They presented a method that can learn to capture the

unique characteristics of one images collection and to translate these characteristics into

the other image collection.

Besides, Tulyakov et al.[30], Saito Matsumoto et al.[31] and Vondrick et al.[32] have

researched for recent video generative models based on GAN. Nevertheless, GAN does

not infer the latent noise vectors while VAE needs to design an inference model for the

sequence of noise vectors, which is a non-trivial task due to the complex dependency

structure. Xie et.al[33] proposed a learning dynamic generator model, using alternating

back-propagation through time to learn realistic models for dynamic textures and action

patterns. It does not require an extra model such as a discriminator in GAN or an

inference model in VAE.

5



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

3 Hierarchical Data

The first phase of our analysis is to cluster high-dimensional data into a hierarchical

relation. In this way, we are able to reduce the data dimension. Similar to symbolic

dynamics, we seek for a partition of the state space that describes the trajectories of points

to represent the dynamics in a simple way. However, it is hard to extract the best partition

associated to Markov process [34]. In this paper, we propose hierarchical clustering to

achieve unsupervised partition, where number of partitions is dynamically determined

based on sample variations. Particularly, we adopt growing hierarchical self-organizing

map (GHSOM) algorithm [35] to cluster our data first, and then investigate hierarchical

data sequence model training in the second phase. One can predict actual attribute values

from samples that fall into the predicted cluster as we show in the experiments.

3.1 Growing Hierarchical Self-Organizing Map(GHSOM)

Unsupervised clustering is one common way to reduce data dimensions. GHSOM [35] is a

self-organizing map that grows hierarchically based on data distribution. It expands self-

organization maps in a hierarchy according to the variance between and within clusters.

When the horizontal and vertical expansion thresholds are set, the algorithm continu-

ously grows the map and checks whether variations between the clusters and within the

clusters meet the set requirement. Unlike K-means [36] or SOM [37] where number of

clusters is given in advance, using GHSOMs, given tolerances on variations of between

and within clusters, samples are separated and clustered iteratively on the fly until the

given tolerances are satisfied.

The constructions for using GHSOM consists of the following four steps: 1) Initialize

layer 0: Layer 0 includes a single node, the weight vector of which is initialized as the

expected value of all input data. The mean quantization error of layer 0(MQE0) is

calculated next. The MQE of a node denotes the mean quantization error that sums the

deviation between the weight vector of the node and all input data mapped to the node. 2)

Train each individual SOM: As a component of the training process of an individual SOM,

6



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Figure 1: GHSOM structure

the input data are imported individually. The distances between the imported input data

and the weight vectors of all nodes are calculated, and the node with the shortest distance

is selected as the winner. Under the competitive learning principle, only the winner and

its neighboring nodes qualify for adjustment of their weight vectors. The competition

and training processes are repeated until the learning rate decreases to a certain value.

3) Grow each individual SOM horizontally: Each individual SOM grows until the mean

value of the MQEs for all nodes on the SOM is smaller than the MQE of the parent node

multiplied by parameter τ1. If the stop criterion is not satisfied, we find the error node

that owns the largest MQE and insert one row or column of new nodes between the error

node and its dissimilar neighbor. 4) Expand or terminate the hierarchical structure: The

node with its MQE greater than τ2×MQE0 will be used to develop the next SOM layer.

7



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Algorithm 1 GHSOM Algorithm

Initialize the parameters τ1 and τ2.

Initialize the set of layers L = {l0}.

Initialize the set of maps M = {m0}.

Randomly initialize the weight vectors wi and normalize the values.

Compute the initial quantization error qe0

for l in L do

for m in M do

repeat

Train the map m as a single SOM

Compute qei and MQEm

if MQEm ≥ τ1 · qeu then

Select a neuron e with the highest qe and its most dissimilar neighbor d.

Insert a row or column of neurons between d and e and initialize their weight

vectors as the means of their respective neighbors.

end if

until MQEm < τ1 · qeu

for wi in W do

if qei ≥ τ2 · qe0 then

Create a new map in the lower layer from the neuron i.

end if

end for

end for

end for

8



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

We use the GHSOM toolbox [38] to implement the clustering process with GHSOM.

Segment of the algorithm is shown in Algorithm 1. By adjusting the values of breadth(τ1)

and depth(τ2), one may derive different shapes of GHSOMs and discover the suitable one.

To evaluate the partitioning of GHSOM, we can calculate the entropy rate according to

[39][34]. Table 1 shows the entropy rate comparison with different clustering method.

Table 1: Entropy rate of different clustering methods

Method K-means SOM GHSOM

entropy rate 4.191 3.926 3.048

3.2 Hierarchical Data Encoding

The GHSOM map results data in clusters of a tree-like structure. We use decimal encod-

ing [40] to label the clusters. Each digit in the decimal number corresponds to a cluster

of a layer. We append zero at the end of the decimal number as a padding symbol to

indicate clusters that have no child clusters in the next layer. As shown in Fig. 2, labels

230, 164 and 475 represent some clusters in a three layer map, and the 230 refers to a

cluster that does not has any of its child clusters in the third layer.

After using the decimal number to label clusters, we converse each number to the

two-dimensional coordinate vector. The idea is to squeeze all the clusters in one square

layer by layer as shown in Fig. 3. Each label can then be encoded as the coordinate of

the center point of each square that represents to the cluster as shown in Table 2.

9



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Figure 2: Decimal number labelling on clusters of a GHSOM map

Figure 3: Coordinate encoding of clusters with decimal labels

10



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Table 2: Coordinate points of GHSOM clusters

Cluster Point Cluster Point Cluster Point

110 (1
8
, 11
12

) 210 (5
8
, 7
8
) 450 ( 9

16
, 1
8
)

120 (3
8
, 11
12

) 220 (7
8
, 7
8
) 460 (11

16
, 1
8
)

130 (1
8
, 3
4
) 230 (5

8
, 5
8
) 471 (37

48
, 3
16

)

140 (3
8
, 3
4
) 240 (7

8
, 5
8
) 472 (13

16
, 3
16

)

150 (1
8
, 7
12

) 300 (1
4
, 1
4
) 473 (41

48
, 3
16

)

161 ( 5
16
, 5
8
) 410 ( 9

16
, 3
8
) 474 (37

48
, 1
16

)

162 ( 7
16
, 5
8
) 420 (11

16
, 3
8
) 475 (13

16
, 1
16

)

163 ( 5
16
, 13
24

) 430 (13
16
, 3
8
) 476 (41

48
, 1
16

)

164 ( 7
16
, 13
24

) 440 (15
16
, 3
8
) 480 (15

16
, 1
8
)

Taking cluster 164 as an example, the first layer has four clusters, and the first layer

of 164 is 1, i.e., the first cluster. Thus, the two-dimensional coordinate we assign to its

interval vector is: (1
4
, 3
4
). The second layer has a total of six clusters, and the second layer

of 164 is 6, i.e., the sixth cluster. The two-dimensional coordinate of the layer vector is:

(3
8
, 7
12

). The third layer has four clusters, and the the third layer of 164 is 4, i.e., the

fourth cluster. The vector is: ( 5
16
, 5
8
). which is same with the cluster 164 by using decimal

number encoding.

Eq. (1) to Eq. (4) show how we calculate coordinates of the center point of each

square that represents a cluster in a GHSOM map. Px (Py) is the coordinate of x-axis

(y-axis) that we aim to calculate for the center point of the square that represents the

label of the target cluster; m refers to the number of the GHSOM layers; P x
i (P y

i ) refers

to the coordinate in theith layer and Bx
i (By

i ) refers to the unit width of x-axis (y-axis) of

the square in the ith layer, where xi (yi) refers to the position of the target cluster in the

ith layer. Both Bx
0 and By

0 are set to 1, i.e., the square of the whole space is initially set

to 1, where its central point is set (0.5, 0.5). nxi (nyi ) refers to size of the SOM map, i.e.,

the number of x-axis (y-axis) clusters, in the ith layer; rx (ry) refers to the offset as the

width of x-axis (y-axis) of the last square (the last layer of the cluster). The coordinate

of x-axis Px (of y-axis Py), can be calculated using the following formulas.

11



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Px = rx +
m∑
i=1

P x
i ; Py = ry +

m∑
i=1

P y
i (1)

, where

Bx
i = Bx

i−1 ×
1

nxi
; By

i = By
i−1 ×

1

nyi
(Bx

0 = 1 and By
0 = 1) (2)

P x
i = Bx

i × xi; P y
i = By

i × yi (3)

rx = Bx
m ×

1

2
; ry = By

m ×
1

2
(4)

Algorithm 2 shows more details how we converse the clusters to the two-dimensional

coordinates.

Algorithm 2 Transformation of 2-dimensional coordinate Algorithm

Input :

1. Amount of layers m

2. Number of GHSOM layers i {i = 1, ....,m}

3. Size of x-axis, y-axis in i layer nxi, nyi

4. The x coordinate, y coordinate in i layer xi, yi

Output :

1. The x coordinate in GHSOM coordinates Px

2. The y coordinate in GHSOM coordinates Py

1: Initialize Bx
0 , B

y
0 ← 1

2: Use Eq. (2) to Calculate the equal segment of x and y

3: Set P x
i and P y

i by Eq. (3)

4: Get Px and Py by Eq. (1)

12



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

4 Data Synthesis and Prediction with HiSeqGAN

In the second phase of our analysis, we propose HiSeqGAN as our primary training

model on hierarchical data sequence synthesis. HiSeqGAN adopts the sequence generation

framework of SeqGAN [14] but with its optimization function on maximizing sequence

similarity based on cosine similarity of coordinates to take the hierarchical relations among

data into account.

4.1 HiSeqGAN

Fig. 4 shows the structure of HiSeqGAN, similar to the proposed framework in [14]. The

generator used in the sequence generation is an RNN model with LSTM cells, while the

discriminator is a CNN model. First, HiSeqGAN uses the real-world data and the native

samples generated by the generator (fake samples) to train the discriminator, so that

the discriminator can distinguish real-world data from fake samples. Then, the reward

is passed back to the intermediate state-action steps by using the Monte Carlo search.

Second, the generator updates by reinforcement learning (RL). To be more specific, the

generator is treated as an RL agent; the state refers to the currently produced tokens;

the action refers to the next token to be generated. In a stochastic parameterized policy,

the actions are drawn from a distribution that parameterizes the policy and the objective

of the policy is to generate a sequence from the start state in such a way that maximizes

the expected end reward.

13



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Figure 4: The HiSeqGAN framework

4.2 Sequence Similarity

As defined in section 3, we represent the cluster in a GHSOM map as the coordinates of

the center point of its square. To evaluate the prediction on clusters between two labels,

we propose three-dimensional cosine similarity on their coordinates. The reason that we

extend two-dimensional to three-dimensional is to prevent the distortion of the original

point on the same plane. As shown in Fig. 5 and Fig. 6, the 2D cosine similarity of point

C1 and point C2 is larger than point C1 and point C3 at two-dimensional coordinate while

the variance between point C1 and point C3 is smaller since they have the same first layer

in the hierarchical cluster. To increase the accuracy of our generated points, we add a

dimension to separate the points and the origin of the coordinate at the different planes.

That is to say, point C1, point C2 and point C3 are transformed into (3
8
, 3

4
, 1), (5

8
, 7

8
,

1) and ( 7
16

, 13
24

, 1) respectively while O is (0, 0, 0). Then, the cosine similarity of point

C1 and point C3 is larger than point C1 and point C2 at a three-dimensional coordinate,

which means the variance between point C1 and point C3 is also smaller.

14



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Figure 5: Clusters with 2D coordinates

Figure 6: Clusters with 3D coordinates

15



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Given the synthesized sequence as Y1:t = (y1, ..., yt) and Y c
1:t = (yc1, ..., y

c
t ) as raw

sequence of clusters. We define the metric of sequence similarity as Eq. (5), where
⇀
p i and

⇀
p
c

i are the three-dimensional vectors, which refer to the coordinate transformation of yi

and yci respectively.

SequenceSimilarity(Y1:t, Y
c
1:t) =

t∑
i=1

⇀
p i ·

⇀
p
c

i∥∥∥⇀p i∥∥∥∥∥∥⇀p ci∥∥∥ (5)

4.3 Sequence Synthesis

Following SeqGAN, our generator model is updated by employing a policy gradient and

Monte Carlo search, where the final reward signal is provided by the discriminator based

on Eq.(5) and is passed back to the intermediate action value. Given a dataset, train a

generative model Gθ of parameter θ to produce a sequence Y1:T = (y1, ..., yt), and train a

discriminative model Dφ of the parameter φ to distinguish real or fake data for improving

the generator. Then, we use an N time Monte Carlo search with a roll-out policy Gβ to

sample the unknown last T − t tokens. Eq.(6) shows how we use the roll-out policy to get

a batch of output samples.

Q
Dφ
Gθ

(s = Y1:t−1, a = yt) =
1
N

∑N
n=1Dφ (Y n

1:T ) , (Y n
1:T ) ∈MCGβ (Y1:t;N) , for t < T

Dφ (Y1:t) , for t = T

(6)

To keep a good pace with the generator, the discriminator shall re-train as long as the

generator generates more realistic sequences.

min
φ
−EY∼p [logDφ (Y )]− EY∼Gθ [log (1−Dφ (Y ))] (7)

16



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

After a new discriminator model has been obtained, we update the generator for

optimizing a parameterized policy to maximize the long-term reward. Following , the

objective function can be derived as Eq.(8)

∇θJ(θ) =
T∑
t=1

EY1:t−1∼Gθ

[∑
ytεy

∇θGθ(yt|Y1:t−1) ·QGθ
Dφ

(Y1:t−1, yt)

]
(8)

Then, the parameters of generator can be updated by Eq.(9). αh refers to the corre-

sponding learning rate at ith step.

θ ← θ + αh∇θJ(θ) (9)

Algorithm 3 shows full details of our model. Firstly, we use the maximum likelihood

estimation (MLE) to pre-train generator on the training dataset. Secondly, we pre-train

discriminator by maximizing the cosine similarity, the output of the pre-trained generator

can be our negative samples whereas the given dataset is our positive examples. Next, we

re-train our discriminator when the generator has improvement. Also, to reduce the vari-

ability of the estimation, we combine different datasets of negative samples with positive

ones.[41]

17



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Algorithm 3 Sequence Synthesis Algorithm

1: Initialize Gθ, Dφ with random parameter θ, φ

2: Pre-train Gθ via MLE

3: Assign parameter θ to the roll-out policy

4: Pre-train Dφ by Eq. (5)

5: repeat

6: for g-steps do

7: Generate a sequence

8: for t in 1:T do

9: Compute Q by Eq. (6)

10: end for

11: Update θ by Eq. (9)

12: end for

13: for d-steps do

14: Train Dφ by Eq. (7)

15: end for

16: Update the parameter of roll-out policy

17: until model converges

18



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

4.4 Sequence Prediction

In order to predict next tokens of training sequences, we use the trained generator Gθ

to generate sequences that have more periods, and the extended tokens are used as our

prediction on sequences that have similar prefix.

Formally speaking, given the length of sequences of our training data, denoted as t, to

predict the next t′ periods of the sequence, we synthesize sequence Y = (y1, ..., yt, yt+1, ..., yt+t′).

Given a set of synthesized sequences S, and a real item sequence Y item that has

its length t, Eq. (10) defines the way to find a synthesized sequence Y1:t+t′ ∈ S that

has its prefix Y1:t most similar to the item sequence Y item. Then, we use the postfix

Yt+1:t+t′ = (yt+1, ..., yt+t′) to predict the future movement.

max
Y ∈S

SequenceSimilarity(Y1:t, Y
item) (10)

19



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

5 Experiments

In this section, we evaluate our approach against supply chain management data from

real worlds. We use semiconductor component distributors to conduct research. All the

experiment data are collected from real transactions of the company W, one of the world’s

largest semiconductor component distributor in the Asia Pacific area. With more than

30 branches and over 60 international electronics component suppliers, company W plays

a key role as a supply chain buffer for a franchise partner, including Intel, Philips, Texas

Instruments, Hynix, Vishay and Omni Vision. Our goal is to predict at the item level the

values of essential attributes on demand and inventory.

5.1 Data Settings

The raw data of transactions contain more than eighty thousand weekly transaction

records over thousands of semiconductor component items and customers. Each item-

customer pair has records up to 96 weeks. (Weeks that have no demands have no trans-

action records). For each record, we label it with nominal attributes including item,

customer and date (on week), and use numerical attributes including all the predefined

indicators of demand and inventory in supply chain management as the sample attributes

of that record. Each item-week record consists of 8 demand and inventory attributes as

shown in Table 3.

20



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Table 3: Numerical Attributes

Indicators Name Description

Inventory Actual AWU
Average weekly usage (i.e., actual
demand) in the past

FCST M
Managers forecast of monthly demand
for the future

Demand BL <= 9WKs
In-transit inventory to be delivered
by upstream supplier within 9 weeks

Backlog (BL)
Total in-transit inventory (to
be delivered)

DC-OH
On-hand (OH) inventory in the
distribution center (DC)

Hub-OH
On-hand (OH) inventory in warehouse
nearby downstream customer
production plant

TTL OH In stock quantities

Available Company backlog

5.2 From High-dimension Data to Hierarchical Data

We first apply GHSOM to cluster samples based on these numerical attributes. (All the

values are normalized with max and min, i.e., n(d) = d-min/max-min.) Fig. 7 shows the

partition result, a GHSOM map (in decimal encoding) that consists of three layers with

70 clusters. Based on the GHSOM map, one can label each item-week 8-dimension record

with its corresponding cluster. We generate 5712 cluster sequences from raw transaction

records, where each cluster sequence refers to an item-customer trajectory movement on

demand and inventory attributes. We denote this set as Dataraw.

21



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Figure 7: GHSOM clustering result

5.3 Sequence Synthesis

In our first experiment, we use Dataraw and the GHSOM map to train our HiSeqGAN

model and synthesize another 2500 cluster sequences (denoted as the set Datasyn). To

evaluate the quality of our synthesized sequences, we use RNN as the training model that

uses the cluster sequence of week 1 to 95 to predict the cluster in week 96. We first train

the RNN model [40] with Dataraw, the prediction accuracy rate (on average over 5712

item-customer pairs) is 82% on the first layer, 61% on the second layer and 45% on the

third layer. That is to say, for an item has its week 96 cluster in 164, the prediction

as 1xx (first-layer accurate) is 82%, 16x (second-layer accurate) is 61%, and 164 (third-

layer accurate) is 45%. Under the same setting of the RNN, but using both Dataraw and

Datasyn as training inputs, we can improve the precision to 85% on the first layer, 72%

on the second layer and 52% on the third layer. The performance is shown in Table 4.

22



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

Table 4: Layer accuracy of sequence synthesis

Dataset
Layer Accuracy

l1 l1, l2 l1, l2, l3

Dataraw 0.82 0.61 0.45

DataHiSeqGAN 0.85 0.72 0.52

The result shows our first contribution that we can synthesize additional training

inputs for the state of the art models and improve their performance.

5.4 Sequence Prediction

We conduct experiments on sequence prediction in the second experiment and compare

the prediction accuracy against 1) the Naive Bayes method, and 2) the RNN model.

The setting is to use week 1-95 to predict week 92-96. The Naive Bayes method [42] is

the learning algorithm based on a conditional probabilistic model, which counts observed

sequences for prediction. The cluster Naive Bayes learns to predict is the result of creating

the probability distribution of all cluster sequence it is shown, and then deciding which

cluster to assign on the target week. The RNN has the same setting as the previous

experiment but this time it has to use its prediction to predict next periods. For both

NaiveBayes and RNN models, we use Dataraw with week 1 to 91 for training, and for each

item, predict its week 92 cluster, and then with week 2 to 92, to predict week 93, and so

on so forth until the prediction on week 96. For our HiSeqGAN model, we use Dataraw

with week 1 to 91 to synthesize 3840 sequences with week 1 to 96 (denoted as the set S).

Then for each item (Y item), we use Eq.(10) to find a synthesized sequence Y that has its

prefix best match to Y item, and then use the postfix (clusters on week 92 to 96) of the

selected synthesized sequence for prediction.

Table 5 summarizes the results on prediction accuracy on different layers. As one can

see that the NaiveBayes model has the worst accuracy rate and drops its accuracy rate

23



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

significantly after multiple periods. Compared to the HiSeqGAN model, the RNN model

has a slight better accuracy rate on the prediction in the first two weeks, but loses its

advantage after the third week. This confirms that RNN suffers from error propagation.

On the other hand, our HiSeqGAN model is more stable and has better performance on

average for long run prediction.

Table 5: Layer accuracy on multi-periods prediction

Method
Accuracy

layer

period
92 93 94 95 96 Average

NaiveBayes

l1 0.28 0.01 0.04 0.06 0.01 0.08

l2 0.27 0.0007 0.0017 0.0007 0.0026 0.06

l3 0.26 0.0003 0.0001 0 0.0001 0.05

RNN

l1 0.82 0.71 0.69 0.55 0.53 0.66

l2 0.61 0.58 0.51 0.42 0.43 0.51

l3 0.46 0.47 0.43 0.42 0.38 0.43

HiSeqGAN

l1 0.79 0.74 0.74 0.68 0.63 0.72

l2 0.62 0.59 0.57 0.54 0.49 0.56

l3 0.54 0.51 0.49 0.48 0.43 0.49

5.5 From Cluster Prediction to Actual Value Prediction

Finally, we discuss how we use the predicted cluster to estimate attribute values. This

is done by computing the distribution of attribute values with samples that fall into the

cluster. For instance, consider that we are interested in the attribute value of AWU

(demand on the item). Fig.8 shows the five period prediction on the AWU value of item

itemA. The points are the actual value of itemA in the 92nd to 96th weeks and the

24



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

boxplots refer to the statistics on AWU values of samples that fall into our predicted

clusters. Table 6 shows the mean and standard deviation on AWU of all clusters.

Figure 8: A sampled item for prediction on the AWU value of five periods

Table 6: Mean and standard deviation of AWU

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

1

(3462)
(0.03774, 0.0284)

11

(245)
(0.09613, 0.02823) ***

12

(984)
(0.03397, 0.0135) ***

13

(144)
(0.05203, 0.02576) ***

14

(124)
(0.0188, 0.01872) ***

15

(458)
(0.0308, 0.01476) ***

25



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

16

(789)
(0.01656, 0.01353) ***

17

(318)
(0.02714, 0.02031) ***

18

(400)
(0.07011, 0.01928) ***

2

(80693)
(0.00209, 0.00522)

21

(2137)
(0.01128, 0.00824)

211

(293)
(0.00427, 0.00434)

212

(18)
(0.00249, 0.00182)

213

(114)
(0.00571, 0.00439)

214

(317)
(0.00256, 0.00334)

215

(79)
(0.02048, 0.00495)

216

(601)
(0.00954, 0.00457)

217

(392)
(0.02095, 0.00499)

218

(323)
(0.01788, 0.00463)

22

(8626)
(0.00478, 0.00354)

221

(1662)
(0.00901, 0.00229)

222

(1523)
(0.00315, 0.00255)

26



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

223

(505)
(0.00598, 0.00369)

224

(972)
(0.00568, 0.00305)

225

(290)
(0.00376, 0.0034)

226

(8)
(0.00338, 0.00457)

227

(2314)
(0.00274, 0.00192)

228

(1352)
(0.00404, 0.00343)

23

(65495)
(0.00052, 0.00111)

231

(49441)
(0.00019, 0.00039)

232

(1020)
(0.00185, 0.00129)

233

(1807)
(0.00101, 0.00114)

234

(5282)
(0.00069, 0.00075)

235

(5556)
(0.00111, 0.00102)

236

(2389)
(0.00472, 0.0019)

24

(1057)
(0.01368, 0.00881) ***

27



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

25

(1681)
(0.00758, 0.0074)

251

(219)
(0.00536, 0.00426)

252

(194)
(0.00849, 0.00459)

253

(119)
(0.02612, 0.00731)

254

(321)
(0.00457, 0.00392)

255

(641)
(0.00544, 0.00491)

256

(187)
(0.00994, 0.00662)

26

(1697)
(0.02496, 0.01107) ***

3

(1000)
(0.16351, 0.11832)

31

(30)
(0.20976, 0.10459) ***

32

(340)
(0.07779, 0.0383) ***

33

(98)
(0.11878, 0.04735) ***

34

(52)
(0.03807, 0.03842) ***

35

(46)
(0.16, 0.0551) ***

36

(194)
(0.18049, 0.04735) ***

28



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

37

(69)
(0.29845, 0.08073) ***

38

(107)
(0.24879, 0.07085) ***

39

(64)
(0.43062, 0.12997) ***

4

(1598)
(0.03845, 0.0295)

41

(141)
(0.0401, 0.02286) ***

42

(168)
(0.06949, 0.03566) ***

43

(212)
(0.03875, 0.02146) ***

44

(557)
(0.02202, 0.01742) ***

45

(148)
(0.07823, 0.03122) ***

46

(372)
(0.03242, 0.01885) ***

5

(338)
(0.36076, 0.17759)

51

(16)
(0.2604, 0.06976) ***

52

(16)
(0.30035, 0.07555) ***

53

(39)
(0.3325, 0.09421) ***

54

(20)
(0.43322, 0.21226) ***

29



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

l1 (µ, σ) l1, l2 (µ, σ) l1, l2, l3 (µ, σ)

55

(76)
(0.27628, 0.09706) ***

56

(56)
(0.30504, 0.12339) ***

57

(72)
(0.59736, 0.13636) ***

58

(43)
(0.2382, 0.1169) ***

6

(347)
(0.13047, 0.09394)

61

(10)
(0.02884, 0.0352) ***

62

(9)
(0.17451, 0.0316) ***

63

(12)
(0.26544, 0.07343) ***

64

(85)
(0.09287, 0.05164) ***

65

(5)
(0.54998, 0.0891) ***

66

(32)
(0.20099, 0.08159) ***

67

(48)
(0.1591, 0.04949) ***

68

(79)
(0.06231, 0.03579) ***

69

(67)
(0.15814, 0.06932) ***

30



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

5.6 Discussion

Note that predicted values have their variation depending on the layer accuracy. The

variations are smaller when the accurate layer of the predicted cluster is higher. Since

clusters in 1xx contain more samples than clusters in 16x, the second layer accuracy can

have better prediction on actual values than the first layer accuracy. We can get most

precise estimation when we have the third layer accuracy.

31



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

6 Conclusion

We present a GAN-like model for synthesizing and predicting sequences of structured data

effectively. By using coordinate and cosine similarity to express hierarchical data and loss

functions, we are able to adopt SeqGAN to generate more realistic and representative

sequences of structured data. In our experiments, we show that the synthesized sequences

can be used in two folds: 1) as input data to improve the training process of the state-of-

the-art models, and 2) as the prediction of sequences that match the prefix and achieve

higher accuracy compared to the state-of-the-art models.

32



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

References

[1] P. S. Churchland, T. J. Sejnowski, and T. A. Poggio, The computational brain. MIT

press, 2016.

[2] W. Awad and S. ELseuofi, “Machine learning methods for e-mail classification,”

International Journal of Computer Applications, vol. 16, no. 1, 2011.

[3] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing

surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[4] W. B. Rauch-Hindin, Artificial Intelligence in Business, Science, and Industry: Fun-

damentals. Prentice-Hall New Jersey, 1986.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time

series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995,

1995.

[7] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully

recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[9] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolu-

tional neural networks for speech recognition,” IEEE/ACM Transactions on audio,

speech, and language processing, vol. 22, no. 10, pp. 1533–1545, 2014.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances in neural information processing systems, 2014, pp. 3104–

3112.

33



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

[11] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recur-

rent neural networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee

international conference on. IEEE, 2013, pp. 6645–6649.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[13] F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual predic-

tion with LSTM. IET, 1999.

[14] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial

nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[15] A. Creswell and A. A. Bharath, “Denoising adversarial autoencoders,” IEEE trans-

actions on neural networks and learning systems, no. 99, pp. 1–17, 2018.

[16] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen-

coders,” arXiv preprint arXiv:1511.05644, 2015.

[17] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[18] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training gans,” in Advances in Neural Information Processing

Systems, 2016, pp. 2234–2242.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and compos-

ing robust features with denoising autoencoders,” in Proceedings of the 25th inter-

national conference on Machine learning. ACM, 2008, pp. 1096–1103.

[20] P. B. Myszkowski and B. Buczek, “Growing hierarchical self-organizing map for

searching documents using visual content,” in 2011 Federated Conference on Com-

puter Science and Information Systems (FedCSIS). IEEE, 2011, pp. 77–81.

34



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

[21] J. Dai, Y. Lu, and Y.-N. Wu, “Generative modeling of convolutional neural net-

works,” arXiv preprint arXiv:1412.6296, 2014.

[22] J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu, “A theory of generative convnet,” in Interna-

tional Conference on Machine Learning, 2016, pp. 2635–2644.

[23] J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu, “Cooperative training of descriptor

and generator networks,” arXiv preprint arXiv:1609.09408, 2016.

[24] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good semi-

supervised learning that requires a bad gan,” in Advances in Neural Information

Processing Systems, 2017, pp. 6510–6520.

[25] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image models using

a laplacian pyramid of adversarial networks,” in Advances in neural information

processing systems, 2015, pp. 1486–1494.

[26] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in

Neural Information Processing Systems, 2016, pp. 4565–4573.

[27] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using

adversarial networks,” arXiv preprint arXiv:1611.08408, 2016.

[28] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in

neural information processing systems, 2016, pp. 469–477.

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks,” arXiv preprint, 2017.

[30] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing motion and

content for video generation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 1526–1535.

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

[31] M. Saito, E. Matsumoto, and S. Saito, “Temporal generative adversarial nets with

singular value clipping,” in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 2830–2839.

[32] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynam-

ics,” in Advances In Neural Information Processing Systems, 2016, pp. 613–621.

[33] J. Xie, R. Gao, Z. Zheng, S.-C. Zhu, and Y. N. Wu, “Learning dynamic

generator model by alternating back-propagation through time,” arXiv preprint

arXiv:1812.10587, 2018.

[34] A. Hadriche, N. Jmail, and R. Elleuch, “Different methods of partitioning the phase

space of a dynamic system,” International Journal of Computer Applications, vol. 93,

pp. 1–5, 05 2014.

[35] M. Dittenbach, D. Merkl, and A. Rauber, “The growing hierarchical self-organizing

map,” in Proceedings of the IEEE-INNS-ENNS International Joint Conference on

Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives

for the New Millennium, vol. 6. IEEE, 2000, pp. 15–19.

[36] J. Macqueen, “Some methods for classification and analysis of multivariate observa-

tions,” in In 5-th Berkeley Symposium on Mathematical Statistics and Probability,

1967, pp. 281–297.

[37] T. Kohonen, Neurocomputing: Foundations of Research, J. A. Anderson and

E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988. [Online]. Available:

http://dl.acm.org/citation.cfm?id=65669.104428

[38] M. D. E. P. Andreas Rauber, Dieter Merkl, “The growing hierarchical self-organizing

map.” [Online]. Available: http://www.ifs.tuwien.ac.at/∼andi/ghsom/

[39] V. Rajagopalan, A. Ray, R. Samsi, and J. Mayer, “Pattern identification in dynamical

systems via symbolic time series analysis,” Pattern Recognition, vol. 40, no. 11, pp.

2897–2907, 2007.

36

http://dl.acm.org/citation.cfm?id=65669.104428
http://www.ifs.tuwien.ac.at/~andi/ghsom/


‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU201900564

[40] T. Y. Lin, H. H. C. Chuang, and F. Yu, “Tracking supply chain process variabil-

ity with unsupervised cluster traversal,” in 2018 IEEE 16th Intl Conf on Depend-

able, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence

and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber

Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,

2018, pp. 966–973.

[41] J. R. Quinlan et al., “Bagging, boosting, and c4. 5,” in AAAI/IAAI, Vol. 1, 1996,

pp. 725–730.

[42] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič, M. Možina,

M. Polajnar, M. Toplak, A. Starič, M. Štajdohar, L. Umek, L. Žagar, J. Žbontar,

M. Žitnik, and B. Zupan, “Orange: Data mining toolbox in python,” Journal

of Machine Learning Research, vol. 14, pp. 2349–2353, 2013. [Online]. Available:

http://jmlr.org/papers/v14/demsar13a.html

37

http://jmlr.org/papers/v14/demsar13a.html

