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以序列型學習演算法預測牛市與熊市之轉折點	

摘要	

在機器學習領域中，對於人工神經網絡（ANN）的架構中，輸入值是實數，

輸出值是二元的問題是有挑戰性的，尚未有任何神經網路學習演算法可以解決過度

擬合（overfitting）問題，同時可以完美地學習所有訓練數據；另外，在概念飄移

環境中要如何去處理離群值的偵測也變得重要，現今的很多資料多為動態性且具概

念漂移的特性。	

為了解決上述挑戰，本研究提出了DSM（決策支持機制）和 CSI（強記、軟

化、整合）學習演算法。決策支持機制運用了移動視窗的概念，不僅可以識別牛市

/熊市中的潛在轉折點檢測，還可以幫助決策者檢視所有轉折點候選者。所提出的

CSI 學習算法具有以下特點：	

（1）採用單層隱藏層的神經網絡（ASLFN）和 ReLU激活函數；	

（2）採用 LTS原理加速訓練時間；	

（3）完美的學習所有訓練的數據；	

（4）實行正則化（regularization），軟化和整合機制，以減輕過度擬合趨勢的

模型。	

我們進行了檢測牛市/熊市轉折點的實驗，以驗證所提出的演算法具有有效性

和效率，以及偵測出轉折點候選人幫助決策者作出最終決定。	

	

關鍵字：概念飄移、離群值偵測、人工神經網路、決策支援機制、移動視窗	
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The sequentially-learning-based algorithm and the pre-

diction of the turning points of bull and bear markets 
 

Abstract 
In the field of machine learning, there is a challenge to the Artificial Neural Networks 

(ANN) application whose input values are real numbers and the output values are binary. 

Whether any of ANN learning algorithms can solve the overfitting problem, while it can 

perfectly learn all of training data. Besides, the problem of outlier detection in the concept 

environment is becoming an issue. The nature data now has the dynamic and unstable 

property in the concept drifting environment.  

To address the aforementioned challenge, this study proposes the DSM (Decision Support 

Mechanism) and CSI (Cramming, Softening, and Integrating) learning algorithm. DSM 

apply the moving window mechanism, and it can not only identify the potential turning 

point detection in the bull/ bear market but also assist the decision maker to double check 

merely all of turning point candidates. The proposed CSI learning algorithm has the fol-

lowing features: (1) the adoption of adaptive single-hidden layer feed-forward neural net-

work (ASLFN) and ReLU activation function, (2) the usage of least trimmed squares (LTS) 

principle to speed up the training time, (3) the practice to precisely learn all training data, 

and (4) the implementations of the regularization term, the softening and integrating mech-

anism to alleviate the obtained model from the overfitting tendency. We conduct an exper-

iment of detecting the turning points of bull/bear markets to validate the effectiveness and 

efficiency of the proposed algorithm in the addressing challenge. 

 

Keywords: concept drifting, outlier detection, artificial neural network, cramming 

mechanism, softening mechanism, integrating mechanism, moving window. 
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1. Introduction 
Nowadays, artificial intelligence (AI) is booming and leads the technical revolution in 

decision making of financial and industrial fields. Financial firms worldwide begin to em-

ploying artificial neural networks (ANN) to tackle difficult tasks requiring the detection of 

data patterns which cannot be done by conventional analytic techniques. Unlike other types 

of AI, ANN mimic to some extent the processing characteristics of the human brain. As a 

result, ANN can draw conclusions from incomplete data, recognize patterns as they unfold 

in real time and forecast the future. They can even learn from mistakes [1]. Many observers 

believe the ANN based system will eventually provide better decision support to even the 

best traders and investors. 

There is a hybrid approach based on the ANN for time series properties, such as the 

adaptive time delay neural networks (ATNNs) and the time delay neural networks 

(TDNNs), with the genetic algorithms (GAs) in detecting temporal patterns for stock mar-

ket prediction tasks [2]. To estimate many aspects of the ATNN and TDNN design, Kim 

et al. [2] propose a general method based on trial and error along with various heuristics or 

statistical techniques is proposed. The results show that the accuracy of the integrated ap-

proach is higher than that of the standard ATNN, TDNN and the recurrent neural network 

(RNN). The disadvantages of [2] are the computational complexity to obtain optimal sets 

of the number of time delays and network architectural factors at the same time, and the 

infinite number of possible combinations with control variables that can generate a lot of 

groups for the general result. 

Moreover, in the big data era, there is a challenge to the ANN application whose input 

values are real numbers and the output values are binary. Whether any of ANN learning 

algorithms can deal with the overfitting tendency, while it can perfectly learn all of training 

data. To address the aforementioned challenge, the proposed DSM (Decision Support 

Mechanism) can assist the decision to double check merely all of turning point candidates. 

This study introduces a sequentially-learning-based algorithm, called CSI (Cramming, Sof-

tening, and Integrating) learning algorithm. That is, the proposed CSI learning algorithm 

should have the following factors: (1) the adoption of adaptive single-hidden layer feed-

forward neural network (ASLFN) and ReLU activation function, (2) the usage of least 

trimmed squares (LTS) principle to speed up the training time, (3) the practice to precisely 
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learn all training data, and (4) the implementations of the regularization term, the softening 

and integrating mechanism to alleviate the overfitting tendency of the obtained model. 

Stock market price is one of the most important indicators of a country's economic 

growth. That's why determining the exact movements of stock market price is considerably 

regarded. However, complex and uncertain behaviors of stock market make exact determi-

nation impossible and hence strong forecasting models are deeply desirable for investors' 

financial decision making process. To capture the relationship between the technical indi-

cators and the stock market for the period under investigation, hybrid ANN models are 

used for selecting the most relevant technical indicators [3]. In addition, [3] simultaneously 

searches the most appropriate number of hidden neurons in hidden layer and in this respect; 

proposed models mitigate well-known problem of over-fitting/under-fitting of ANN. But 

there are two limitations of the model, one is the hidden layer is fixed that may influence 

the performance of the model. The other limitation is that combinations of predetermined 

training function and transfer functions may affect quality of ANN. 

This study conducts an experiment of detecting the turning points of bull/bear markets 

to validate the effectiveness and efficiency of the proposed DSM and CSI learning algo-

rithm in addressing the challenge. To increase the computation power and effectively re-

duce the training time, TensorFlow and GPU are adopted to implement the proposed algo-

rithm. TensorFlow and GPU can speed up the training and enhance the learning perfor-

mance. TensorFlow is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a va-

riety of platforms (CPUs, GPUs, TPUs), and it comes with strong support for machine 

learning and deep learning and the flexible numerical computation core is used across many 

other scientific domains. The experiment results are promising. 

The paper is structured as follows. Chapter 2 presents the literature review of previous 

studies and related algorithms. Chapter 3 describes the learning algorithm in detail. Finally, 

the experiment design is provided in Chapter 4. The experiment results are shown in Chap-

ter 5. Finally, the conclusion and future work is provided in Chapter 6. 
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2. Literature Review 
2.1 The prediction of bull and bear markets 

Numerous market analysts propose the strategies to forecast the trending in the stock 

market price, namely the bull and bear markets. According to several studies in the predic-

tion of the stock market, the popular research tools include statistical models, supervised 

learning, unsupervised learning, the reinforcement learning, and so on. 

Macchiarulo [4] compares machine learning (ML) and technical analysis to explore 

which one best predicts the stock market and in turn generates the highest return. He 

concludes that forming a trading strategy with ML can yield higher returns that using most 

technical indicators. ML performs better in up markets because it uses momentum to its 

advantage and calculate the optimal weights of the portfolio in the market well predicted of 

the future direction. However, his sample period is only ten years long and the down market 

has only 48 observations for training the system. The under-represented bear market makes 

the predictability of the stock return less convincing in the market downturn. 

Chong et al. [5] offer a systematic analysis of the use of deep learning networks for 

stock market analysis and prediction. Its ability to extract features from a large set of raw 

data without relying on prior knowledge of predictors makes deep learning potentially at-

tractive for stock market prediction at high frequencies. However, if there exist factors with 

strong evidence of predictability, exploiting those factors may likely give better perfor-

mance than simply dumping a huge volume of raw data into the system. 

Text-mining provides another interesting thread of methodology on market forecast. 

Nassirtoussi et al. [6] conduct a thorough literature review on different ML algorithms used 

in text-mining for market prediction. Researchers use these tools to detect investor senti-

ment from social media and predict market returns with the information. Their study di-

vides the prediction process into three aspects: pre-processing, ML and the evaluation 

mechanism, and discusses the development and prospects of future study in each area. 

Hanna [7] proposes a top-down approach to identify the bull and bear market states 

and highlights potential deficiencies in existing ex-post rule-based methodologies and pro-

poses adjustments to address such issues. While early work was inspired by the treatment 

of business cycles, a principle-based approach is adopted specifically for the treatment of 
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bull and bear market phases. His approach focuses on identifying low-frequency, long-

term trends where wide agreement between market observers would be expected. 

 Pagan and Sossounov [8] use an algorithm to sort a given time series of equity prices 

into periods that can be designated as bull and bear markets. They define the idea of local 

peaks and troughs in asset prices and then observe that the proposed definitions mean that 

the characteristics of such markets come from the stochastic process driving capital gains. 

 Chen [9] investigates whether macroeconomic variables can predict the bear markets. 

He uses both parametric and non-parametric approaches to identify the market trends, then 

ex-amines macroeconomic variables to see whether they are useful predictors. Chen [10] 

pro-poses the theory whether the empirical linkages between stock returns and trading vol-

ume differ over the fluctuations of stock markets, for example, whether the return–volume 

relation is asymmetric in bull and bear stock markets. It is found that the stock return is 

capable of predicting trading volume in both bear and bull markets. Therefore, we can 

adopt these potential factors into our experiment design to forecast the market trend. 

In this paper, the information of both macroeconomic variables and historical performances 

of the stock market itself are fed into an ANN to predict the future market trends. We present 

a brand-new learning algorithm to perfectly learn thorough training cases and implement 

the practical experiment in the prediction of turning points of  bull and bear markets. 

 

2.2 Concept drifting 
In the real world, concepts are often not stable but change with time. Typical examples of 

this are weather prediction rules and customers’ preferences. The underlying data 

distribution may change as well. Often these changes make the model built on old data 

inconsistent with the new data, and regular updating of the model is necessary. The defini-

tion of concept drifting proposed by Tsymbal [11] is that it complicates the task of learn-

ing a model from data and requires special approaches, different from commonly used 

techniques, which treat arriving instances as equally important contributors to the final 

concept. 

In order to build model in concept drifting environment, Elwell & Polikar [12] introduce 
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the ensemble of classifiers-based approach for incremental learning of concept drift, char-

acterized by nonstationary environments (NSEs), where the underlying data distributions 

change over time. Krawczyk & Woźniak [13] develop efficient classifiers to cope with the 

concept drifting environment. They come up with several different strategies for incre-

mental learning and forgetting mechanism. In addition, they evaluate forgetting mecha-

nism on the basis of several real data streams. Obtained results confirmed the usability of 

proposed classifier to the problem of data stream classification with the presence of con-

cept drift. 

 

2.3 The single-hidden layer feed-forward neural networks 

with single output node 

 The single-hidden layer feed-forward neural networks (SLFN) with single output node 

is defined as follows: 

ai
c º ReLU(wi0

H+∑ wij
Hxj

cm
j=1 )      (1) 

f(xc, w) º w0
o+∑ wi

oai
cp

i=1             (2) 

where ai
c is the activation value of ith hidden node; ReLU(xi) º #xi, if   xi ≥ 0

0 , if   xi < 0; m is the 

amount of input nodes; xc º (x1
c ,	x2

c , …,	xm
c )T is the cth input vector; 𝑤()* is the threshold 

value of the ith hidden node; 𝑤(+* is the weight between the ith hidden node and the jth input 

node; m is the amount of input nodes; p is the amount of hidden nodes; f(xc, w) is the 

activation value of the output node; 𝑤), is the threshold value of the output node; wi
o is 

the weight between the output node and the ith hidden node; w(
H º (wi0

H ,	wi1
H ,	wi2

H , …,wim
H )T; 

wH º (w1
H/ , w2

H/ , …,	wp
H/ )T; wo º (w0

o,w1
o ,w2

o , …,wp
o )T; and wT  º (woT ,	wHT ). The 

superscript H refers to quantities related to the hidden layer throughout the paper; the 

superscript o refers to quantities related to the output layer throughout the paper. In this 

study, a character with bold format represents a vector, a matrix, or a set, and the superscript 

T means transpose. 
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 Through this SLFN, the input vector xc is transformed into the values of hidden nodes ac 

º ( a1
c , 	a2

c , …, 	ap
c ) first, then the value of output node f(xc, w) is generated by ac 

[14][15][16][17][18]. 

 

2.4 The back-propagation learning algorithm associated 

with SLFN with single output node 

Let N denote the total amount of reference observations for the training and 𝑦2  the 

desired output value of the output node corresponding to the cth case. The following loss 

function is adopted: 

En(w) º 
∑ 3𝑒𝑐 678
c=1

n
	+ 0.001

p+1+(m+1)p
>∑ (wi

o)2p
i=0 +∑ ∑ 3wij

H62m
j=0

p
i=1 E   (3) 

where 𝑒2  º f(xc,	𝐰)– 𝑦2  and there is a regularization term. 

In general, the generalized delta rule is used in the weight-tuning mechanism for the 

SLFN. For instance, Figure 1 shows the weight-tuning mechanism implementing the mo-

mentum version of the generalized delta rule with an automatic adjustment of learning rate 

𝜂 and 𝛾 and tiny e2 and e3 values. [14] But it leads to either an acceptable SLFN or an 

unacceptable SLFN due to the defective SLFN or the convergence to local minimum solu-

tion. In Figure 1, the A and B represent the SLFN is acceptable and unacceptable, respec-

tively. Within the weight-tuning procedure, we can repeatedly inspect if the new SLFN is 

better than the old SLFN. The design of tiny e2 and e3 values can help identify if the current 

SLFN is defective or the convergence leads to a local minimum of a good SLFN or a global 

minimum of a defective SLFN. 
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Figure 1: The momentum version of the generalized delta rule. [14] 

 

2.5 The adaptive single-hidden layer feed-forward neural 

networks with single output node 

  When p, the amount of adopted hidden nodes, is variable during the training process, 

the SLFN becomes an adaptive single-hidden layer feed-forward neural networks (ASLFN). 

  Tsaih and Cheng [16] propose the resistant learning outlier detection that SLFN can 

adapt the weight dynamically during training. Besides, they also come up with both robust-

ness analysis and deletion diagnostics. The ideas of robustness analysis is proposed by 

Rousseeuw and Van Driessen [19] features for deriving an (initial) subset of m+1 reference 

observations to fit the linear regression model, ordering the residuals of all N observations 
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at each stage and then augmenting the reference subset gradually based upon the smallest 

trimmed sum of squared residuals principle. In deletion diagnostics section, this idea is em-

ployed with the diagnostic quantity as the number of pruned hidden nodes when one obser-

vation is excluded from the reference pool. That means the ASLFN will exclude the poten-

tial outlier at early stage prevent the SLFN from learning it. 

 

2.6  Least Trimmed Squares estimator 

In the literature [16] of the LTS estimator, if  denotes any estimate of w, then least 

squares estimator (LSE) is defined to the wJ that minimizes (ec)2, in which 

ec = yc - f(xc, w)       (4) 

The generalized delta rule proposed by Rumelhart et al. [20] is a kind of nonlinear LSE. 

If only the smallest q of those ordered squared residuals are included in the summation, 

then the LTS estimator is defined as the estimate wJ that minimizes (e[c])2, where ec is 

defined in equation (4) and (e[c])2 denotes the ordered squared residuals; that is, (e[1])2 £ 

(e[2])2 £ …£ (e[N])2. Zaman et al. [21] suggest that ë0.75Nû is a reasonable value for q in 

most empirical studies, in which ëxû is the largest integer not larger than the value x. 

Atkinson and Cheng [22] adapt the forward search algorithm to obtain the LTS estimator. 

The forward search algorithm consists of randomly choosing an (initial) subset of obser-

vations to fit the linear regression model, ordering the residuals of all N observations, and 

then augmenting the subset gradually by including extra observations based upon the 

smallest sum of q squared residuals principle. 

 

2.7  Moving Windows 
Gama et al. [23] propose the approach of the moving windows to data management is 

to maintain a predictive model consistent with a set of recent examples. The data structure 

store as the type of first-in-first-out (FIFO). At each time step, the learning algorithm builds 

a new model using the examples from the training window. The model is updated following 

two processes: a learning process (update the model based on the new data) and a forgetting 

ŵ
N

c 1=
å

q

c 1=
å
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process (discard data that is moving out of the window). The key challenge is to select an 

appropriate window size. A short window reflects the current distribution more accurately; 

thus, it can ensure fast adaptation in times with concept changes, but during stable periods, 

a too short window worsens the performance of the system. A large window gives a better 

performance in stable periods, but it reacts to concept changes more slowly. In general, the 

training window size can be fixed or variable over time. In our experiment design, we store 

in memory a fixed number of the training data. Whenever a new example arrives, it is saved 

to memory and the oldest one is discarded. This simple adaptive learning method is often 

used as a baseline in evaluation of new algorithms. 

Figure 2 presents the conceptual moving window mechanism [24]. Due to the FIFO 

technique, it will dispose of the oldest data as time goes by. This mechanism will reflect in 

discarding the out-of-date data and retain the up-to-date data. 

 
Figure 2: Moving window concept. [24] 

 

2.8  TensorFlow & GPU 
TensorFlow, a flexible data flow-based programming model, as well as single machine 

and distributed implementations of this programming model. The system is borne from 

real-world experience in conducting research and deploying more than one hundred ma-

chine learning projects throughout a wide range of Google products and services. [25] Ten-

sorFlow supports both large-scale training and inference: it efficiently uses hundreds of 

powerful (GPU-enabled) servers for fast training, and it runs trained models for inference 

in production on various platforms. At the same time, it is flexible enough to support ex-
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perimentation and research into new machine learning models and system-level optimiza-

tions [26]. Figure 3 presents the example computation graph of TensorFlow. In a Tensor-

Flow graph, each node has zero or more inputs and zero or more outputs, and represents 

the instantiation of an operation. Values that flow along normal edges in the graph (from 

outputs to inputs) are tensors, arbitrary dimensionality arrays where the underlying element 

type is specified or inferred at graph-construction time. 

 

Figure 3: Corresponding computation graph. [26] 

 

TensorFlow takes computations described using a dataflow-like model and maps them 

onto a wide variety of different hardware platforms, ranging from running inference on 

mobile device platforms such as Android and iOS to modest-sized training and inference 

systems using single machines containing one or many GPU cards to large-scale training 

systems running on hundreds of specialized machines with thousands of GPUs [26]. 
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3. The proposed DSM and CSI learning algorithm 
3.1 The proposed DSM 

In order to provide decision support for turning point issue in bull and bear markets, 

we derive the proposed CSI learning algorithm. Furthermore, we choose the incremental 

learning technique (that is, the moving window) in our DSM to help us handling the data 

expiration problem. With time passing, the older time series data won’t be learned in the 

learning procedure. In contrast, the incoming time series data will be taken into considera-

tion. The proposed DSM is shown in Table 1. There are one training block and one testing 

block in each window. M is the index of current window. N is the sample size of training 

block. B is the sample size of testing block. 

Table 1. The proposed DSM. 

Step 1.1: Use the CSI learning algorithm stated in Table 2 to learn the training block  

{(x(M-1)*B+1, y(M-1)*B+1), (x(M-1)*B+2, y(M-1)*B+2), …, (x(M-1)*B+N, y(M-1)*B+N)} to  

obtain an acceptable SLFN, the majority of training block, and the standard 

deviation of the majority (𝜎). 

Step 1.2: Output the turning point candidates in the training block. 

Step 2.1: Use the obtained SLFN and s to detect whether there are turning point can-

didates within the testing block {(x(M-1)*B+N+1, y(M-1)*B+N+1), (x(M-1)*B+N+2,  

y (M-1)*B+N+2), …, (xM*B+N, yM*B+N)}. 

Step 2.2: Output the turning point candidates in the testing block. 

Step 3: For more data, M ß M+1 and go to Step 1.1; otherwise, STOP. 

 

In Step 1.1, and set the first window’s M to 1 and use N training data of the current 

window to obtain an acceptable SLFN via the CSI learning algorithm. This step will make 

the SLFN to learn a non-linear fitting function 𝑓. Besides, we also get the majority of data 

in the training block (i.e., the learnt N*(1-k) data) and their associated s, the standard 

deviation of residuals regarding the learnt N*(1-k) data. 

In Step 1.2, the last (N*k) data, recognized as the potential turning points, will be ex-

amined their deviance information via the s. The “deviance information” is the distance 
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between the fitting function 𝑓 and the desired output. Any instance that has larger resid-

ual (e.g., large than 3s) will be recognized as the turning point candidate. We will output 

the potential outliers as turning point candidates to the decision maker. 

In Step 2.1, we use the obtained SLFN and s from Step 1.1 to determine whether any 

instance in testing block is the turning point candidate or not via its deviance information 

and s. In Step 2.2, any instance that has larger residual (e.g., large than 3s) will be recog-

nized as the turning point candidate and be outputted to the decision maker. 

In Step 3, the stopping criteria. If there is no more incoming data, this DSM will slide 

to next window and go back to Step 1. Otherwise, the DSM will be finished. In this research, 

the time series data is sorted sequentially in order. 

 

3.2  The proposed CSI learning algorithm 
This study has revised the softening learning procedure [14] to get the learning concept 

of CSI algorithm: when we encounter a new case (a new input/output relationship), we first 

check whether it is familiar to us. If it is familiar to us, there is no spontaneous learning 

effort involved. Later all learnt cases within our knowledge system are integrated. If it is 

unfamiliar, we might cram this unfamiliar case first. The cramming results in a strict rule 

regarding to this unfamiliar case. Then we will soften the strictness of the new case and do 

our best to integrate all learnt cases within our knowledge system. 

Based upon the aforementioned learning concept, the proposed sequentially-learning-

based algorithm contains the cramming, softening and integrating mechanisms as shown 

in Table 2, the details are as follows. 

In the training phase, there are {(x1, y1), (x2, y2), …, (xN, yN)}, in which yc Î {-1, 1} is 

the desired output associated with xcÎ Rm; yc is the desired output value of the output node 

associated with xc; and N is the total amount of all reference observations for training. 

Based upon the aforementioned CSI learning procedure, the training case is learnt in se-

quence. 

At the 𝑛th stage of handling n reference observations, through minimizing the loss 

function 𝐸O(𝐰)  ≡ 
∑ (P(𝐱R,S)TUR)7R∈𝐈(8)

O
+ 0.001
XYZYX([YZ)

(∑ (w(
\)2X

(])  + ∑ ∑ (𝑤(+*[
+]) )2X

(]Z ), the 

learning goal is to seek 𝐰  where f(𝐱𝐜,𝐰) ≥ ν		∀	c ∈ 𝐈Z(n)	and		f(𝐱𝐜,𝐰) ≤ −ν		∀	c ∈
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𝐈g(n), with 	1 > ν > 0 and the alternative goal of learning is to seek 𝐰 that satisfies the 

condition 𝐿 regarding {𝑓(𝐱2,𝐰), 		∀	𝑐 ∈ 𝐈(𝑛)}. 

Table 2. The proposed CSI learning algorithms. 

 

Step 1 uses two reference observations {(x1, y1), (x2, y2)} with y1*y2 = -1 to set up an 

SLFN estimate with one hidden node. It is easy to find a set of w associated with merely 

one hidden node that can render the condition L regarding { f(xc, w), c Î I(n)} satisfied. 

 Step 2 defines the stopping criterion of the proposed learning algorithm. The symbol k 

can be referred to the percentage of potential outlier. Clearly, the majority consists of at least 

(1-k) % data. For example, if there is approximately at least 97% non-outliers and at most 

3% outliers, the SLFN will take 97% data into the learning practice while building the SLFN. 

Step 1: Use two reference observations {(x1, y1), (x2, y2)} with y1*y2 = -1 to set up an 

acceptable SLFN estimate with one hidden node. Set n = 3. 

Step 2: If n > N*(1-k), STOP. 

Step 3: Pick up the first n reference observations {(xc, yc)} which are sorted by all N 

reference observations’ squared residuals in ascending order. Let I(n) be the set 

of indices of these picked observations. 

Step 4: If the condition L regarding {f(xc, w), all c Î I(n)} is satisfied, go to Step 7; 

otherwise, there is one and only one k Î I(n) that is not at the right place and k = 

[n]. 

Step 5: Save 𝐰. 

Step 6: Apply the weight-tuning mechanism to min
w

En(w) to adjust w until one of the 

following two cases occurs : 

(1) If the condition L regarding {f(xc, w), all c Î I(n)} is satisfied, go to Step 7. 

(2) If the condition L is not satisfied, restore w and then apply the cramming 

mechanism to add four extra hidden nodes to the existing SLFN to obtain an 

acceptable SLFN estimate. 

Step 7: Apply the softening and integrating mechanism to prune the irrelevant hidden 

node, n+1→ 	n; go to Step 2. 



DOI:10.6814/NCCU201900325

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 20 

In Step 3, in order to reduce learning time, we choose our reference observation of the 

nth stage by the LTS principle. Pick up the first n reference observations {(xc, yc)} which are 

sorted by all N reference observations’ squared residuals in ascending order. Let (ec)2 = 

3𝑦2-𝑓(𝐱2,𝐰)6
g
, and (e[1])2 £ (e[2])2 £ … £ (e[n])2. At the nth stage, the cases with smallest n 

of the ordered squared residuals are included in the summation. Let I(n) be the set of indices 

of these observations and the following loss function is adopted: 

  𝐸O(𝐰) ≡ 
∑ (P(kR,S)TUR)7R∈𝐈(8)

O
+ 0.001
XYZYX([YZ)

(∑ (w(
\)2X

(])  + ∑ ∑ (𝑤(+*[
+]) )2X

(]Z )   (5) 

where 0.001
XYZYX([YZ)

(∑ (w(
\)2X

(])  + ∑ ∑ (𝑤(+*[
+]) )2X

(]Z ) is the regularization term. 

 Step 4 states that, at the beginning of nth stage, the SLFN is acceptable if its w and r 

can render the condition L regarding {f(xc, w), all c Î I(n)} satisfied. As shown in Figure 

4, we represent the cases of the class 1 with cross and the ones of class 2 with circle. 

 
Figure 4: The illustration of the condition L. 

 

The condition L regarding {f(xc, w), all c Î I(n)} is satisfied implied there is no over-

lap between cross and circle and thus 𝛼 > 𝛽. If the condition L regarding {f(xc, w), all c 

Î I(n)} is not satisfied, there is one and only one case k that is not at the right place. Note 

that the kth case is the [n]th case since Step 3 has implemented the LTS principle. Step 5 

stores w such that when we restore w at Step 6.2.1, we get back the scenario of there is one 

and only one [n] case that is not at the right place.  

In Step 6, the weight-tuning mechanism will implement the adapted version of 

RMSProp Optimizer with an automatic adjustment of learning rate 𝜂 shown in Figure 5, 

trying to accomplish the condition L and accelerate the training time. With such a weigh-

tuning mechanism, it may lead to an acceptable SLFN or an unacceptable SLFN.  
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Figure 5: The adapted version of RMSProp Optimizer of the weight-tuning mechanism. 

 

The unacceptable SLFN may be due to the defect of the SLFN or the convergence to 

local minimum solution. If the weight-tuning mechanism leads to an unacceptable SLFN, 

the cramming mechanism in Step 6.2 is implemented to add extra hidden nodes to obtain 

an acceptable SLFN. Table 3 shows the proposed cramming mechanism. The cramming 

mechanism creates a SLFN that, given n reference observations, will render the condition 

L regarding {f(xc, w), all c Î I(n)} satisfied when given any reference observation as input. 

Step 6.2.a lets ζ be a given small number and tries to find two parallel hyperplanes whose 

normal vector is the m-vector g of length one. g is not vertical to the (xc–x[n]) " c 

ÎI(n) –{[n]}. Moreover, the multiple of (ζ+gn(𝐱2-𝐱[n])) and (ζ-gn(𝐱2-𝐱[n])) will smaller 

than 0. Step 6.2.b assigns the new weights and bias of these four new added hidden nodes 

to satisfy the condition L regarding the output node. 
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Table 3.The proposed cramming mechanism in Step 6.2. 

Step 6.2.1: Restore w 

Step 6.2.a: Let ζ be a given small number. Find an m-vector g of length one such that 

gn(𝐱2-𝐱[n]) ¹ 0 all c Î I(n)-{[n]} and (ζ+gn(𝐱2-𝐱[n]))*(ζ-gn(𝐱2-𝐱[n])) < 0 all 

c Î I(n)-{[n]}. 

Step 6.2.b:  

(i) For the case of y[n] = 1.0, let p+4 à p and add four new hidden nodes p-3th, p-2th, p-

1th and pth to the existing SLFN with 𝑤XTo,)*  = ζ-gn𝐱[O], 𝐰XTo
*  = g, 

𝑤XTg,)*  = -gn𝐱[O], 𝐰XTg
*  = g, 𝑤XTZ,)*  = -gn𝐱[O], 𝐰XTZ

*  = g, 

𝑤X)*  = -ζ-gn𝐱[O], 𝐰X
* = g, and 

𝑤XTo,  = -𝑤XTg,  = -𝑤XTZ,  = 𝑤X, = 1.01( 𝑚𝑎𝑥
u∈𝑰7(O)

∑ 𝑤(,𝑎(u
XTg
(]Z -∑ 𝑤(,𝑎(

[O]XTg
(]Z )	/z 

(ii) For the case of y[n] = -1.0, let p+4 à p and add four new hidden nodes p-3th, p-2th, p-

1th and pth to the existing SLFN with 𝑤XTo,)*  = ζ-gn𝐱[O], 𝐰XTo
*  = g, 

𝑤XTg,)*  = -gn𝐱[O], 𝐰XTg
*  = g, 𝑤XTZ,)*  = -gn𝐱[O], 𝐰XTZ

*  = g, 

𝑤X)*  = -ζ-gn𝐱[O], 𝐰X
* = g, and 

𝑤XTo,  = -𝑤XTg,  = -𝑤XTZ,  = 𝑤X, = 1.01( 𝑚𝑖𝑛
u∈𝑰x(O)

∑ 𝑤(,𝑎(u
XTg
(]Z -∑ 𝑤(,𝑎(

[O]XTg
(]Z )	/z 

 

 Because of cramming mechanism, all of N reference observations can be learnt perfectly 

at the end of training. But the SLFN may turn out to be overfitting due to recruiting too 

many hidden nodes. To prevent the overfitting dilemma, the softening and integrating 

mechanism of the Step 7 is implemented to prune any identified irrelevant hidden node. At 

the nth stage, the kth hidden node is irrelevant if it is deleted and the condition L can still be 

accomplished by merely applying the weight-tuning mechanism to min
wk

'
En3wk

' 6, where 

wk
' º w–{wk

o,wkH}. 

 Table 4 shows the proposed softening and integrating mechanisms implemented in 

Step 7. The details are as follow. 

Step 7.1 applies the weight-tuning mechanism one hundred times to min
w

En(w) to 

adjust w, while keeping the learning goal satisfied. Since there is a regularization term 
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defined in En(w), applying the weight-tuning mechanism one hundred times to min
w

En(w) 

can “soften” the large values of w, and thus may solve the tendency of overfitting. 

 In Step 7.2, we calculate the 𝑔{|  value regarding each hidden node. That is, let 𝒘{
|  º 

𝐰-{𝑤{,,𝒘{
*} all k. Then, we calculate 𝑓(𝒙2,𝒘{

| ) º 𝑓(𝐱2, 𝐰)	- 𝑤{,𝑎{2  all c Î I(n) all k, 

and 𝛼{| ≡ min
2�𝑰x(O)

𝑓(𝒙2, 𝒘{
| ), 	𝛽{| ≡ max

2�𝑰7(O)
𝑓(𝒙2,𝒘{

| ), and	𝑔{| 	º	𝛼{| -𝛽{|  all k. 

The fact max
Z�{�X

gk
'  = 0 means that some hidden node is irrelevant and can be pruned 

directly. Thus, Step 7.3 picks up the ith hidden node, where i is the first index of argmax
{∈W

gk
' ,  

and prune it directly. Then go to step 7.1 to keep inspecting if the SLFN has any other 

irrelevant hidden node. 

Let Q be the tolerance quantity regarding the irrelevance. With the Q guidance, the 

fact –Q > max
Z�{�X

gk
'  means that we assume the current SLFN has no irrelevant hidden node 

and go to Step 2. Meanwhile, the fact 0 > max
Z�{�X

gk
'  ³ –Q means that we assume the current 

SLFN may have some potentially irrelevant hidden nodes. Thus, Step 7.5 picks up the ith 

hidden node, where i is the first index of argmax
{∈W

gk
' , where W º {k: 0 > gk

'  ³ –Q}, to 

temporarily prune the kth hidden node, and then apply the weight-tuning mechanism to 

min
wi

'
En3wi

'6 to adjust wi
'  to inspect if the ith hidden node is irrelevant or not. If the ith hid-

den node is irrelevant, then go to step 7.1 to keep inspecting if the SLFN has any other 

irrelevant hidden node. If the ith hidden node is not irrelevant, then we assume the current 

SLFN has no irrelevant hidden node and go to Step 2. 

 With the proposed CSI learning algorithm, all the reference observations can be per-

fectly learnt by the cramming, softening, and integrating mechanisms. 
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Table 4. The softening and integrating mechanism in Step 7. 

Step 7.1: Apply the weight-tuning mechanism 100 times to min
w

En(w) to adjust w, 

while keeping the condition L regarding {f(xc, w), all c Î I(n)} satisfied. 

Step 7.2: Calculate 𝑔{| 	∀	𝑘, where 𝒘{
|  º 𝐰 - {𝑤{, , 𝒘{

*}, 𝑓(𝒙2,𝒘{
| ) º 𝑓(𝐱2,𝐰)	- 

𝑤{,𝑎{2 , 𝛼{| ≡ min
2�𝑰x(O)

𝑓(𝒙2,𝒘{
| ), 	𝛽{| ≡ max

2�𝑰7(O)
𝑓(𝒙2,𝒘{

| ), and	𝑔{| 	º	𝛼{| -𝛽{| . 

Step 7.3: If -Q > max
Z£{£X

𝑔{| , where Q is a given constant, go to Step 2.  

Step 7.4: If max
Z£{£X

𝑔{|  > 0, prune the 𝑖�� hidden node, in which 𝑖 is the first index of 

argmax
Z£{£X

𝑔{| , p-1 à p, 𝒘(
| à w, and go to Step 7.1. 

Step 7.5: If 0 ³ max
Z£{£X

𝑔{|  ³ -Q, 

(a) store w. 

(b) temporarily prune the 𝑖��  hidden node, in which 𝑖  is the first index of 

argmax
{∈W

𝑔{| , where W º {k: 0 >𝑔{| ³ –Q}.  

(c) apply the weight-tuning mechanism to min
𝒘�
�
𝐸O(𝒘(

|) to adjust 𝒘(
| until one of 

the following two cases occurs: 

(1) If an acceptable result is obtained, then prune the 𝑖�� hidden node, p-1 à 

p, 𝒘(
| à w, and go to Step 7.1. 

(2) If an unacceptable result is obtained, then restore the 𝑖�� hidden node, re-

store w, and go to Step 2. 
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4. Experiment design 
4.1 The bull and bear market in US stock market 

Although the market trend has been widely touted by media, there has never been a 

globally agreed upon definition on the bull and bear markets. A bull market sees persis-

tently rising stock prices, strong investor sentiment, lower volatility, higher trading vol-

ume, among other performance behavior. A bear market often features otherwise. How-

ever, there is no consensus on how much the stock prices are rising or falling in what kind 

of an extended period of time constitute a bull or bear market. Hanna [7] proposes a top-

down approach to identify the bull and bear market states and discusses three different 

methods. Gonzalez et al. [27] use a formal turning-point identification to pinpoint the break 

points of different market trends, and they find that the bull and bear markets are associated 

with significantly different and persistent mean return shifts. 

 
4.2 Variable description 

In addition to the consideration of the y-label of the attribute of bull and bear mar-

kets, the purpose of this study is to use potential factors as the x-label to predict the trend 

of the turning point. Traditional technical analysis often compares prices with 3-month or 

12-month moving average to see the general trend of the prices. Chen [9][10] further in-

vestigates whether macroeconomic variables can predict the bull and bear markets, not 

only the other way round as people believe.  

 We use these trustworthy theories to set up our inputs and output data. Among the 

different market trend identification approaches, we apply Pagan and Sossounov [8] 

method. They propose the approach which is influenced by Bry and Boschan [28] but 

adapted to stock prices in accordance with Dow Theory. The output we used in the CSI 

learning algorithm to demonstrate the prediction of the bull/bear market can be defined as 

the theory of Pagan and Sossounov [8]. They represent the monthly situation where the 

phase is between peak and trough. We use the moment of peak and trough as the turning 

point to construct the indicator of y-label. We assign the bull market (peak) as value 1, and 

the bear market (trough) as value -1. Chen [9] proposes the macroeconomic variables 
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which is associated with the bull and bear markets. The x-labels we apply in the CSI learn-

ing algorithm include term spreads (3M-10Y), term spreads (3M-5Y), inflation rates, in-

dustrial production growth, money stocks (M1), money stocks (M2), federal funds rates, 

unemployment rates, stock return, and trading volume. The description of x-labels and y-

label are shown in Table 5. 

In sum, there are 12 inputs for the network (including term spreads (3M-10Y), term 

spreads (3M-5Y), inflation rates, nominal rate of return, industrial production growth, 

money stocks (M1), money stocks (M2), federal funds rates, unemployment rates, stock 

return, trading volume, and the extent that the current index is above/below the past 3- and 

12-month average); there is only one output of the network (i.e., bull market and bear mar-

ket). 

Table 5. The description of x-labels and y-label. 

Input Attribute Description 

x1 Term spreads (3M-10Y) 

[9] 

The difference between the 3-month treasury bill 

rate and the 10-year treasury constant maturity rate. 

x2 Term spreads (3M-5Y) 

[9] 

The difference between the 3-month treasury bill 

rate and the 5-year treasury constant maturity rate. 

x3 Inflation rates [9] Related to consumer price. 

x4 Industrial production 

growth [9] 

The annual percentage increase in industrial produc-

tion (includes manufacturing, mining, and construc-

tion). 

x5 Money stocks (M1) [9] M1 includes funds that are readily accessible for 

spending. 

x6 Money stocks (M2) [9] M2 includes a broader set of financial assets held 

principally by households. 

x7 Federal funds rates [9] The federal funds rate is the interest rate at which 

depository institutions trade federal funds (balances 

held at Federal Reserve Banks) with each other over-

night. 

x8 Unemployment rates [9] Unemployment rate is the number of unemployed 

people as a percentage of the labour force, where the 
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latter consists of the unemployed plus those in paid 

or self-employment. 

x9 Stock return [10] S&P 500 index. 

x10 Trading volume [10] S&P 500 trading volume. 

x11 3-month MA The current S&P index is above/below the past 3-

month average. 

x12 12-month MA The current S&P index is above/below the past 12-

month average. 

Out-

put 

Attribute Description 

y Bull market [7] The S&P index that extending both directions of cur-

rent 8-month window, ant determines the highest 

peak in the window. The bull market starts from the 

trough and ends at the peak, representing a rising 

market. 

Bear market [7] The S&P index that extending both directions of cur-

rent 8-month window, ant determines the lowest 

trough in the window. The bear market starts from 

the peak and ends at the trough, representing a fall-

ing market. 

 

In order to compare the performance and the evaluation of the CSI learning algorithm, 

we categorize the desired output yc into the bull or bear market. When we have identified 

the tendency of the bull and bear market, we then determine whether there is a turning 

point. 

 

4.3 The description of collected data 
We focus on the US stock market and use the S&P 500 index to identify the market 

trend (although Dow Jones Industrial Average is more popular among investors, it only 

consists 30 stocks and is calculated with less advanced technique), and we collect the 

monthly data of inputs and output value in monthly frequency.  
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Babcock, Datar and Motwani [29] define a sequence-based window by choosing a 

specified size uniformly over a “moving window” of the last elements in a data stream. 

The moving window mechanism has been adopted in many fields. For example, Kashani 

et al. [30] use a robust ANN with the moving window concept to build a dynamical model 

for predicting the crude oil fouling behavior. They claim that the implementation of moving 

window updates the model whenever a new data block comes in and helps to catch the 

slowly changing dynamic trends. 

Because the stock market is considered to be the type of time series data, we set data 

range from January 1978 to December 2017. The experiment adopts totally 480 observa-

tion data, a sample size of 360 for the training block and a sample size of 12 for the testing 

block in Figure 6. For instance, at the beginning, the training block consists of the 1st to 

360th instances and the testing block consists of the 361th to 372th instances. As time passes, 

the first twelve instances are discarded and the training block slides to the 13th to 372th 

instances. The testing block simultaneously slides to the 373th to 384th instances. This pro-

cess continues until there are no further data. Thus, there are 10 windows in total. The 

advantage of using moving window is to set up the initial acceptable SLFN model in the 

first window, and use this model to transfer to the second window. Due to the high corre-

lation between the first and the second window, we can assume that the acceptable SLFN 

will be similar and accelerate the training time. In order to figure the candidate turning 

point, we apply the proposed DSM to justify and evaluate both the training block and the 

testing block. 

 
Figure 6: The experiment design of moving window. 
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With a view to evaluating the performance of detecting outliers with this proposed 

DSM in concept drifting environment, we have to clarify the s by deviance information. 

s = �∑ (�(��)T��)7�∈�×(x��)

�×(ZT{)
      (6) 

𝑌� = 𝑓(𝑋�) + 𝜖�	, 	𝑡 ≥ 0	      (7) 

Here we first calculate the s by the standard deviation between the desired output 

of acceptable SLFN and the actual output in the majority of each window. In the research 

of the potential turning point, we assign the k to the 3.3%, that is, for 360 instances in 

each window, there are approximately 348 major instances, and 12 potential turning 

points. Secondly, for the training block and the testing block, we calculate the difference 

between acceptable SLFN and the actual output and set it as 𝜖� in equation (7). If |𝜖� | ≥ 

3𝜎, where 𝜎 is “the standard deviation obtained from the training block”, the instance is 

treated as the potential turning point. 

 

4.4 The proposed learning algorithm and its 

implementation 
The experiment is implemented by the DSM and proposed CSI learning algorithm, 

which is conducted with TensorFlow and GPU to speed up the training and enhance the 

learning performance. TensorFlow can result in better performance of the system, in par-

ticular with respect to data transfers and memory usage and it comes with strong support 

for machine learning and deep learning and the flexible numerical computation core is used 

across many other scientific domains. Besides, the experiment environment is shown as 

Table 6. 

Table 6. The experiment environment. 

Property Tool 

Operating System Ubuntu 16.04.5 LTS 

GPU NVIDIA GeForce GTX 1080 Ti 

Language Python 3.6 

API TensorFlow 1.12.0 

IDE Jupyter Notebook 



DOI:10.6814/NCCU201900325

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 30 

5. Experiment results 
5.1 The performance evaluation 

In the performance evaluation, we set the rule that how to evaluate the DSM’s perfor-

mance in this research. According to the non-turning point or turning point defined when 

designing the experiment by judging 𝜖�, we can compare the identification result to the 

proposed DSM. There are four possible outcomes: (the term’s fist character is on behalf 

of the actual type, and the second character is on behalf of the predicted type identified 

by the proposed DSM). 

(1) N─T: The non-turning-point that has been incorrectly specified as turning point 

candidate. 

(2) T─N: The actual turning point that has been incorrectly specified as non-turning 

point. 

(3) T─T: The actual turning point that has been correctly specified as turning point 

candidate. 

(4) N─N: The actual non-turning point that has been correctly specified as non-

turning point. 

 In our experiment, we will record the training time of the training block and the 

amount of the adapted hidden nodes in each moving window to examine the effectiveness 

and efficiency of the proposed CSI learning algorithm and the DSM. 

 

5.2 The experiment results 
As mentioned in section 4.2, we will take the x and y variables to predict the trend of 

the turning point. We set data range from January 1978 to December 2017 of the monthly 

data. The experiment adopts totally 480 observation data, a sample size of 360 for the 

training block, a sample size of 12 for the testing block, and there are totally of 10 mov-

ing windows. For the majority in each training block, there are 348 instances; and for the 

potential turning points in the training block, there are 12 instances. 
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Table 7 shows the outcome of the distribution of the actual turning points of the pro-

posed CSI learning algorithm and the DSM. For the most part of actual turning points, it 

will be categorized to the potential turning points. The overall average of the proportion 

of actual turning points in the potential turning points is 54.17% and the standard devia-

tion is 7.08%. In comparison, there are fewer actual turning points in the majority of the 

training block than the potential turning points. The overall average of the proportion of 

actual turning points in the majority of the training block is 1.29% and the standard devi-

ation is 0.24%. 

Table 7. The distribution of the actual turning points in each window. 
M Training block Testing block 

Majority Potential turning point 

Non-turning point Turning point Non-turning 

point 

Turning 

point 

Non-turning 

point 

Turning 

point 

1 344 (98.85%) 4 (1.15%) 4 (33.33%) 8 (66.67%) 12 (100%) 0 (0%) 

2 345 (99.14%) 3 (0.86%) 5 (41.67%) 7 (58.33%) 11 (91.67%) 1 (8.33%) 

3 344 (98.85%) 4 (1.15%) 5 (41.67%) 7 (58.33%) 12 (100%) 0 (0%) 

4 343 (98.56%) 5 (1.44%) 7 (58.33%) 5 (41.67%) 10 (83.33%) 2 

(16.67%) 

5 342 (98.27%) 6 (1.73%) 6 (50%) 6 (50%) 12 (100%) 0 (0%) 

6 343 (98.56%) 5 (1.44%) 5 (41.67%) 7 (58.33%) 12 (100%) 0 (0%) 

7 343 (98.56%) 5 (1.44%) 6 (50%) 6 (50%) 12 (100%) 0 (0%) 

8 344 (98.85%) 4 (1.15%) 6 (50%) 6 (50%) 12 (100%) 0 (0%) 

9 343 (98.56%) 5 (1.44%) 5 (41.67%) 7 (58.33%) 12 (100%) 0 (0%) 

10 344 (98.85%) 4 (1.15%) 6 (50%) 6 (50%) 12 (100%) 0 (0%) 

Aver-

age 

309.2 (98.71%) 4.1 (1.29%) 4.95 

(45.83%) 

5.95 

(54.17%) 

10.6 

(97.5%) 

0.3 (2.5%) 

Stand-

ard de-

viation 

0.85 (0.24%) 0.85 (0.24%) 0.85 

(7.08%) 

0.85 

(7.08%) 

0.67 

(7.08%) 

0.67 

(7.08%) 

 

In Table 8, there are four possible outcomes of the proposed DSM in each window. 

As far as the turning point detection is concerned, we use Table 9 and Table 10 to explain 

the relationship between the actual turning points and the turning point candidates. Table 
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9 shows the amount of actual turning points, the prediction of the proposed CSI learning 

algorithm and DSM in each window. For the prediction in the training block, we can dis-

tinguish more than 50% actual turning points. For the prediction in the testing block, 

there are only three turning points in two windows. In other words, we can precisely 

identify non-turning point in the testing block and prevent the wrong classification.  

Table 10 points up the relationship between the actual turning points and the turning 

point candidates. The proportion of turning point candidates that are actual turning points 

in the training block is 73/382. It explains that the proposed CSI learning algorithm and 

DSM will capture dominant actual turning points for the turning point candidates. Moreo-

ver, the proportion of actual turning points identified as turning point candidates in the 

training block is 66.67%, and depicts the turning point candidates is highly probability 

belong to the actual turning points. On the other hand, there is not necessarily a turning 

point of every window in the testing block, for the proportion, we can detect 2 actual 

turning points in 4 turning point candidates. For the proportion of actual turning points 

identified as turning point candidates in the testing block is for 3 turning point candidates, 

we can identify 2 actual turning points. 

 

Table 8. The experiment results in each window. 
M Training block Testing block 

Majority Potential turning point 

N-N N-T T-T T-N N-N N-T T-T T-N N-N N-T T-T T-N 

1 319 25 3 1 2 2 7 1 12 0 0 0 

2 323 22 2 1 4 1 7 0 11 0 1 0 

3 336 8 2 2 3 2 4 3 12 0 0 0 

4 311 32 3 2 3 4 2 3 9 1 1 1 

5 309 33 4 2 3 3 3 3 11 1 0 0 

6 307 36 3 2 3 2 4 3 12 0 0 0 

7 309 34 3 2 4 2 4 2 12 0 0 0 

8 315 29 3 1 4 2 4 2 12 0 0 0 

9 305 38 3 2 5 2 4 1 12 0 0 0 

10 314 30 3 1 4 2 5 1 12 0 0 0 
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Aver-

age 

314.8 28.7 2.9 1.6 3.5 2.2 4.4 1.9 11.17 0.333 0.333 0.167 

Stand-

ard 

devia-

tion 

9.27  8.73  0.57  0.52  0.85  0.79  1.58  1.10  0.97  0.42  0.42  0.32  

 

Table 9.The experiment results of turning point in each window. 
M The amount of actual 

turning points 

Training block Testing block 

Majority Potential turning 

point 

Training 

block 

Testing 

block 

T-T T-N T-T T-N T-T T-N 

1 12 0 3  

(75%) 

1 

(25%) 

7 

(87.5%) 

1 

(12.5%) 

NA NA 

2 10 1 2 

(66.66%) 

1 

(33.33%) 

7 

(100%) 

0 

(0%) 

1 

(100%) 

0 

(0%) 

3 11 0 2 

(50%) 

2 

(50%) 

4 

(57.14%) 

3 

(42.86%) 

NA NA 

4 10 2 3 

(60%) 

2 

(40%) 

2 

(40%) 

3 

(60%) 

1 

(50%) 

1 

(50%) 

5 12 0 4 

(67.33%) 

2 

(33.67%) 

3 

(50%) 

3 

(50%) 

NA NA 

6 12 0 3 

(60%) 

2 

(40%) 

4 

(57.14%) 

3 

(42.86%) 

NA NA 

7 11 0 3 

(60%) 

2 

(40%) 

4 

(67%) 

2 

(33%) 

NA NA 

8 10 0 3 

(75%) 

1 

(25%) 

4 

(67%) 

2 

(33%) 

NA NA 

9 10 0 3 

(60%) 

2 

(40%) 

4 

(80%) 

1 

(20%) 

NA NA 

10 10 0 3 

(75%) 

1 

(25%) 

5 

(83%) 

1 

(17%) 

NA NA 

Average 2.9 

(64.83%) 

1.6 

(35.17%) 

4.4 

(68.84%) 

1.9 

(31.16%) 

1 

(75%) 

0.5 

(25%) 

Standard Deviation 0.57 0.52 1.58 1.1 0 0.71 
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(8.37%) (8.37%) (18.63%) (18.63%)  (35.36%) (35.36%) 

 

Table 10. The evaluation of the turning point in each window. 

M 

Amount of actual 

turning points 

Amount of turning 

point candidates 

Proportion of turn-

ing point candi-

dates that are actual 

turning points 

Proportion of ac-

tual turning points 

identified as turn-

ing point candi-

dates 

Training 

block 

Testing 

block 

Training 

block 

Testing 

block 

Training 

block 

Testing 

block 

Training 

block 

Testing 

block 

1 12 0 37 0 
10/37 

(27.03%) 
NA 

10/12 

(83.33%) 
NA 

2 10 1 32 1 
9/32 

(28.13%) 

1/1 

(100%)    

9/10 

(90%) 

1/1 

(100%) 

3 11 0 16 0 
6/16 

(37.5%) 
NA 

6/11 

(54.55%) 
NA 

4 10 2 41 2 
5/41 

(12.2%) 

 1/2 

(50%)   

5/10 

(50.00%) 

1/2 

(50%) 

5 12 0 43 1 
7/43 

(16.28%) 
0/1 

7/12 

(58.33%) 
NA 

6 12 0 45 0 
7/45 

(15.56%) 
NA 

7/12 

(58.33%) 
NA 

7 11 0 43 0 
7/43 

(16.28%) 
NA 

7/11 

(63.64%) 
NA 

8 10 0 38 0 
7/38 

(18.42%) 
NA 

7/10 

(70%) 
NA 

9 10 0 47 0 
7/47 

(14.89%) 
NA 

7/10 

(70%) 
NA 

10 10 0 40 0 
8/40 

(20%) 
NA 

8/10 

(80%) 
NA 

Average 10.8 0.3 38.2 0.4 
73/382 

(19.11%) 

2/4 

(50%)   

  73/108 

(67.59%) 

2/3 

(66.67%)  

Standard 

Deviation 
0.92  0.67  8.90  0.70  NA NA NA NA  
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The additional evaluation of this research shows in Table 11. The average of the 

training time in training block is 1day 13hrs 17mins. Window 1 spends the much time to 

get the acceptable SLFN via the proposed CSI learning algorithm and DSM. And for an-

other window, the training time is accelerated and the average training time does not ex-

ceed to two days. The amount of adopted hidden nodes is gradually increasing because of 

the moving window. The moving window will discard the older data and update the new 

information. Overall, the average of the amount of adopted hidden nodes 148.3. 

 

Table 11. The evaluation of the training time and the amount of adopted hidden nodes. 

M Training time in the 

training block 

The amount of adopted 

hidden nodes 

1 2 days 3 hrs 48 mins 105 

2 1 day 13 hrs 29 mins 95 

3 1 day 10 hrs 16 mins 120 

4 1 day 11 hrs 28 mins 148 

5 1 day 8 hrs 35 mins 131 

6 1 day 15 hrs 48 mins 159 

7 1 day 11 hrs 56 mins 164 

8 1 day 14 hrs 21 mins 186 

9 1 day 10 hrs 2 mins 182 

10 1 day 9 hrs 47 mins 193 

Average 1day 13hrs 17mins 148.3 

Standard deviation 5 hrs 35 mins 34.53 

 

 

 

 

 

 

 



DOI:10.6814/NCCU201900325

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 36 

6. Conclusion and future work 
Returning briefly to the study subjective of the detection of the turning point in the 

bull/ bear markets, this thesis has described the proposed CSI learning algorithm and 

DSM methods used in this investigation. As for the experiment results, it explains the re-

lationship between the actual turning points and the turning point candidates, we can dis-

tinguish more than 50% actual turning points in the training block. Although there are 

only three turning points in two windows of the testing block, we can precisely identify 

non-turning points in the testing block in the performance and avoid the wrong classifica-

tion. That is to say, we present that the proposed CSI learning algorithm and DSM will 

capture dominant actual turning points for the turning point candidates. Moreover, the av-

erage proportion of the actual turning points that has been identified as turning point can-

didates is 67.6%, and depicts the turning point candidates is highly probability belong to 

the actual turning points. The proposed CSI learning algorithm and DSM will make effort 

to provide a decision-making support to the decision maker in the detection of the turning 

points. 

In DSM, there are many hyper-parameters like N, B, ε, k, and 3𝜎 (the coefficient of 

the 𝜎) needed to be set depending on the data nature and the specific requirements regard-

ing the detection usage. Similarly, Q, h, and 𝜀 are the hyper-parameters in the CSI learn-

ing algorithm. In order to conduct different experiment design, we can tune these hyper-

parameters in different arrangements.  

 This thesis is to use potential factors as the x-label to predict the trend of the turning 

point in the bull and bear markets. For the prediction measure, we can adopt the x varia-

bles to predict the following monthly value of both x and y variables. Furthermore, we 

can build the simulation of x-label to develop the diverse application of the financial 

trend, for example, the y-label can be assigned as the indicator of the business cycle. 

 In comparison of the turning point detection in the bull/ bear markets in the domain 

of the ANN, there is no learning model in econometrics so far. We can progress more 

conceivable variables to establish the general rule and use other machine learning models 

to enhance the SLFN model. 
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