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ABSTRACT
The medical costs in an ageing society substantially increase when
the incidences of chronic diseases, disabilities and inability to live
independently are high. Healthy lifestyles not only affect elderly
individuals but also influence the entire community. When assess-
ing treatment efficacy, survival and quality of life should be con-
sidered simultaneously. This paper proposes the joint likelihood
approach for modelling survival and longitudinal binary covari-
ates simultaneously. Because some unobservable information is
present in themodel, theMonte Carlo EM algorithm andMetropolis-
Hastings algorithm are used to find the estimators. Monte Carlo
simulations are performed to evaluate the performance of the pro-
posed model based on the accuracy and precision of the estimates.
Real data are used to demonstrate the feasibility of the proposed
model.
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1. Introduction

Themedical costs in an ageing society dramatically increasewhen the incidences of chronic
diseases, disabilities and inability to live independently are high. Healthy lifestyles not only
affect elderly individuals but also influence the entire community. When assessing the effi-
cacy of a treatment, two important primary endpoints are the survival time and the quality
of life (QOL) of an individual. Thus, when studying potential influential factors that are
associated with a healthy lifestyle, the survival time and the QOL should be addressed
simultaneously.

Jointly studying two outcomes is quite common in medical studies. Many phase III
clinical trials consider both survival time andQOL as the primary endpoints. Thus, a com-
posite measure of quality and quantity of life is needed to be able to assess the efficacy of
treatments.Many different techniques have been proposed to derive such a compositemea-
sure [3]. Although the composite measure accounts for the missing QOL due to death, it
does not handle the missing data resulting from drop-out from the study prior to death.
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By contrast, modelling-based approaches can explicitly address drop-out. Modelling-
based approaches for jointly considering continuously repeated measures and the survival
outcome have been discussed. The difference between various models is how to incorpo-
rate the predicted values derived from the general linear model into the survival model.
Three major parameter estimations include the two-stage approach [26], the likelihood-
based approach [14,28] and the Bayesian approach [4]. A detailed overview is presented
in [25].

A limited number of studies that jointly assess the association between longitudinal
QOL data and time-to-event data are discussed. First, the quality of life might be mea-
sured by a well-developed questionnaire, such as the 36 item short-form health survey
(SF36; [27]) and preference-based health utilities index instrument [7,9], which are often
summarized in a continuous measure for the QOL. Ribaudo, Thompson and Allen-Mersh
[20] formed trivariate normal models for analysing the QOL and the log transformation of
the survival time. Xu and Zeger [29] jointly modelled the general linear model for longitu-
dinal QOL and the Cox proportional hazards model conditionally on the latent quantity of
QOL that is obtained from the general linear model. Zeng and Cai [30] assumed common
random effects in bothmodels to account for a possible dependence between the QOL and
the survival time.

The majority of the recent simultaneous modellings are focused on modelling the
relationship between the continuous longitudinal measures and the time-to-event data.
However, in some instances, it might only be possible to obtain a binary outcome that
indicates the respondent’s health condition or the QOL because of limited resources. Fur-
thermore, Rizopoulos et al. [22] presented a study that has an aim of finding the association
between longitudinal proteinuria measurements and the time to renal graft failure for
patients with a renal allograft, where proteinuria is treated as a binary outcome. Also, Choi
et al. [5] investigated the ethnic difference in binary longitudinal satisfaction outcomes
and the survival time. Since the binary repeated measurement is related to the individual
survival time, both outcomes need to be modelled simultaneously. Rizopoulos et al. [22]
suggested using the parametric survival model with a random effect to capture unobserved
heterogeneity and amixed effects logistic regression tomodel the binary longitudinal effect
and assumed that the random effects from these two models have a multiplicative relation.
Furthermore, Choi et al. [5] suggested a joint analysis of survival time and longitudinal
categorical outcomes, where the survival time was modelled by the stratified multiplica-
tive hazards model and longitudinal categorical outcomes was analyzed by the generalized
linear model. In particular, the joint analysis between these two models was linked by the
common random effects.

Rather than sharing the random effect in the two models and using the parametric sur-
vival model, we adapt the joint model formulation proposed in [26,28], where the true
mean trajectory for each subject is obtained from the mixed effect logistic regression and
is used as a time-dependent covariate in the survival model. The joint likelihood function
approach is used to find the estimator of parameters.

The remainder of this paper is organized as follows. A general framework and model
assumptions for modelling the longitudinal binary outcome and the survival time are pre-
sented in Section 2. The joint likelihood function is established and the corresponding
numerical algorithm is described in Section 3. Simulations are performed to evaluate the
performance of the estimators in Section 4. In Section 5, data collected by the Department
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of Health (DOH) in Taiwan are used to illustrate the usage of the proposed model. Further
discussion and generalizations are provided in Section 6.

2. Model and notation

Let Ti and Ci denote the survival time and censoring time for the ith patient, i = 1, . . . , n.
Assume that Ti and Ci are independent. In practice, either Ti or Ci is observed. Let the
ith observable data be denoted as Xi = min(Ti,Ci) and �i = I[Ti ≤ Ci], where I[A] is an
indicator function of the event A. For the ith patient, let ηi = (ηi1, . . . , ηip)′ be the vector
of p time-independent covariates and Z∗

i (t) be a time-dependent covariate. Additionally,
let the full time trajectory of Z∗

i (t) prior to t be denoted as Z̄∗
i = {Z∗

i (s), s ≤ t}. Moreover,
let λ(t | ηi, Z̄∗

i ) denote the hazard function at time t for the ith patient given ηi and Z̄∗
i . If

it is possible to observe the complete history of Z∗
i (t), then the association between the

survival and the corresponding risk factors can be established by the Cox proportional
hazards model:

λ(t | ηi, Z̄∗
i ) = λ0(t) exp{η′

iγ + βZ∗
i (t)}

= λ0(t) exp

{ p∑
k=1

γkηik + βZ∗
i (t)

}
, (1)

where λ0(t) is an unspecified baseline hazard function and γ = (γ1, . . . , γp)′ and β are
parameters associated with risk factors and a time-dependent covariate. The parameters
in (1) can be estimated through the partial likelihood function proposed by [6].

The complete history of the time-dependent covariate is often unable to be obtained in
practice since the respondent is only subject to follow-up on a regular basis. Furthermore,
measurement errors may exist when obtaining the time-dependent covariate. When this
covariate is measured continuously, a general linear model for the repeated measure can
be used to derive the true complete history of the time-dependent covariate. Based on
this model and (1), Wulfsohn and Tsiatis [28] constructed a joint likelihood function that
simultaneously takes both the survival and the continuous repeated measure into account
to obtain the estimators of model parameters.

However, when this time-dependent covariate is a binary variable, a generalized lin-
ear model for the repeated measure is needed to find the true subject-specific trajectory.
Suppose that for the ith patient, a sequence of binary measures observed at time ti =
(ti1, ti2, . . . , timi)

′ is obtained and is denoted as Zij, j = 1, . . . ,mi. The time-dependent
covariate can be assumed to be a function of θ ′f (u), where f (u) is a (q × 1) vector of a
function of u and θ is a (q × 1) random effect vector. In practice, it is often assumed to be
a known polynomial function, e.g.

θ ′f (u) =
q−1∑
l=0

θilul. (2)

The generalized linear model for the repeated binary measure can then be formulated as
follows:
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(1) Suppose that θ i has a multivariate normal distribution with mean vector μ =
(μ0, . . . ,μq−1)

′ and q × q covariance matrix

� =

⎛
⎜⎜⎜⎝

σ00 σ01 · · · σ0,q−1
σ10 σ11 · · · σ1,q−1
...

...
. . .

...
σq−1,0 σq−1,1 · · · σq−1,q−1

⎞
⎟⎟⎟⎠ .

(2) Given (2), the conditional distribution ofZij is a Bernoulli distributionwith probability
of success π defined as

π(θ i; tij) =
exp(

∑q−1
l=0 θiltlij)

1 + exp(
∑q−1

l=0 θiltlij)
, (3)

where π(θ i; tij) = E[Zij | θ i].
(3) Given θ i, Zij, j = 1, . . . ,mi, i = 1, . . . , n, are independent.

3. Proposedmodels

The proposedmodels include the generalized linear mixedmodel and the Coxmodel. The
following discusses the estimation approach. To ease the notation, set q=2. To be able
to incorporate the binary repeated measure into the Cox model, we define the following
models:

π(θ i; tij) = exp(θi0 + θi1tij)
1 + exp(θi0 + θi1tij)

, (4)

λ(t | ηi, π̄ i) = λ0(t) exp{η′
iγ + βπ(θ i; t)}, (5)

where π̄ i = {π(θ i; s), s ≤ t}.
The following constructs the joint likelihood function for the observable data and

obtains the model estimators based on the observed likelihood function. Let Di =
(Zi, ti,Xi,�i, ηi) denote the observable data for the ith patient and � = {μ,�, λ0,β , γ }
denote the parameter space, where Zi = (Zi1, . . . ,Zimi)

′. Then, the observed joint likeli-
hood function for Di, i = 1, . . . , n, is

L(�) =
n∏

i=1

⎧⎨
⎩
∫ ⎡

⎣ mi∏
j=1

f (Zij | θ i)
⎤
⎦ f (θ i | μ,�)f (Xi,�i | θ i, λ0,β , γ ) dθ i

⎫⎬
⎭ , (6)

where

f (Zij | θ i) = π(θ i; tij)Zij(1 − π(θ i; tij))1−Zij ,

f (θ i | μ,�) = exp{−(θ i − μ)′�−1(θ i − μ)/2}
(2π)q/2|�|1/2 ,

f (Xi,�i | θ i, λ0,β , γ ) = [
λ0(Xi)exp{η′

iγ + βπ(θ i;Xi)}
]�i

× exp
[
−

∫ Xi

0
λ0(u) exp{η′

iγ + βπ(θ i; u)} du
]
. (7)
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Since random effects are unobservable, the estimates cannot be found directly. The EM
algorithm is needed. Let �̂ = {μ̂, �̂, λ̂0, β̂ , γ̂ } denote the estimates for the current step. In
the E step, given �̂, the expected log-likelihood value can be computed. Given the observ-
able data and the parameter estimates, we can derive the conditional probability density
function as

f (θ i |Xi,�i,Zi, �̂) = f (Xi,�i | θ i, λ̂0, β̂ , γ̂ )f (θ i |Zi, μ̂, �̂)∫ ∞
−∞ f (Xi,�i | θ i, λ̂0, β̂ , γ̂ )f (θ i |Zi, ti, μ̂, �̂) dθ i

. (8)

Let h(·) be any arbitrary function. Given the observable data and the parameter estimates,
the conditional expectation of h(·) has the following representation:
Ei[h(π(θ i; t) |Zi, μ̂, �̂] = Ei[h(π(θ i; t)]

=
∫ ∞
−∞ h(π(θ i; t))f (Xi,�i | θ i, λ̂0, β̂ , γ̂ )f (θ i |Zi, ti, μ̂, �̂) dθ i∫ ∞

−∞ f (Xi,�i | θ i, λ̂0, β̂ , γ̂ )f (θ i |Zi, ti, μ̂, �̂) dθ i
.

(9)

In contrast to the joint likelihood approach for the general linear model and the survival
model as given in [28], f (θ i |Zi, ti, μ̂, �̂) defined in (8) is a mixture distribution. The ran-
dom sample cannot be generated directly. The Metropolis-Hastings algorithm proposed
by [19] and [12] is used to generate the random sample. The detailed step is listed in
Appendix 1. Let the M MH samples be denoted as π(θ

(k)
i ; t), k = 1, . . . ,M, where only

the lastM−B samples are used in the computation. The conditional expectation in (9) can
be approximated by

Ei(h(π(θ i; t)) ≈
∑M

k=B+1 h(π(θ
(k)
i ; t))f (Xi,�i | θ (k)

i , λ̂0, β̂ , γ̂ )/(M − B)∑M
k=B+1 f (Xi,�i | θ (k)

i , λ̂0, β̂ , γ̂ )/(M − B)
. (10)

From the E step, we obtain the complete dataD∗
i = (Zi,π(θ i; t),Xi,�i, ηi). Based on these

data, we can then obtain the MLE of �̂. The detailed derivation of the M step is given in
Appendix 2, and the estimates are denoted as follows:

μ̂ = 1
n

n∑
i=1

Ei(θ i), (11)

�̂ = 1
n

n∑
i=1

Ei[(θ i − μ̂)(θ i − μ̂)′], (12)

λ̂0(u) =
n∑
i=1

�iI(Xi = u)∑n
j=1 Ej

[
exp

{
βπ(θ j; u) + η′

jγ
}]

I(Xj ≥ u)
. (13)

Since γ and β do not have closed forms, FMINSEARCH in MATLAB is used to find the
numerical solution for γ and β [18].

The standard error of estimates cannot be derived directly. Adapting the estimation pro-
cedure suggested by [15,23], the standard error of estimates is obtained by the bootstrap
samples. The procedure to obtain the bootstrap estimates is as follows:
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Step 1. Use D = {Di, i = 1, . . . , n} to generate a bootstrap sample Db
l and use EM to

find MLE �̂
b
l .

Step 2. Repeat Step 1 L times to obtain �̂
b
l , l = 1, . . . L.

Step 3. Compute ˆCov(�̂b
) as

ˆCov(�̂b
) = 1

L − 1

L∑
l=1

(�̂
b
l − �̄

b
)(�̂

b
l − �̄

b
)′,

where �̄
b = ∑L

l=1 �̂
b
l /L.

4. Monte Carlo simulations

Monte Carlo simulations are conducted to evaluate the performance of the estimates of the
proposed model. Eleven repeated measures that are measured equally spaced are consid-
ered. Let the binary repeated measures Zij be generated from a generalized linear random
effects model (q=2) as

log
(

π(θ i; tij)
1 − π(θ i; tij)

)
= θ0i + θ1itij, (14)

where tij = j, j = 1, 2, . . . , 11, and θ i = (θ0i, θ1i)′ has a bivariate normal distribution with
mean μ and variance-covariance matrix

� =
(

σ00 σ01
σ10 σ11

)
.

In particular, we set μ = (2,−1)′ and σ00 = 1, σ01 = 0.4 and σ11 = 0.5.
In addition to the time-dependent covariate, the survival time is assumed to be associ-

atedwith a binary fixed effect (ηi), which is generated from the Bernoulli randomgenerator
with mean 0.5. The survival time Ti is generated from the Cox model defined as

λ(t | ηi, π̄ i) = λ0(t)exp{βπ(θ i; t) + γ ηi}, (15)

where the baseline survival function is assumed to be linear in time, i.e. λ0(t) = αt and
α = 0.05, β = −0.1 and γ = 0.3. Moreover, the censoring time is assumed to have an
exponential distribution with mean μc, where μc is determined by the probability of cen-
soring. In this paper, two different probabilities of censoring, 10% and 30%, are chosen.
The corresponding settings for μc are 70 and 15. The following results are based on 500
random samples. Due to censoring, the average number of repeated measures for 15% and
30% censoring rates are 4.53 and 3.80, respectively.

The performance of the estimates is evaluated by 5 indices: bias, percent of bias,
√
SSE,

SE andCP. The bias is defined as the average of the estimateminus the true value computed
from 500 samples. The relative bias is defined as the average of the bias relative to the true
value. When the estimate is unbiased, the percent of bias is close to zero. The

√
SSE is the

sample standard error of estimates. The SE for the joint likelihood approach is the average
of the standard error derived from the bootstrap samples, where the number of bootstrap
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samples equals L=40, which is suggested by [16]. The CP is the 95% coverage probability,
which is computed from the average of 500 samples of the status of the confidence interval
of the parameter covering the true value.

The proposed model settings include two models: the generalized linear model and
the Cox model. Similar to the two-stage approach proposed in [26], the estimates can be
derived from two stages. The first stage is to find the predicted individual mean trajectories
derived from the generalized linear model. The second stage uses the predicted individ-
ual mean value π̂(θ i; t), which is treated as the time-dependent covariate in (1). The Cox
model becomes

λ(t | ηi, π̄ i) = λ0(t)exp{η′
iγ + βπ̂(θ i; t)}.

The following uses estimates derived from the two-stage model as a comparison. The
advantage of this method is the estimates can be derived directly from the well-known sta-
tistical packages. In this paper, the GLIMMIX procedure in SAS is used to find π̂(θ i; t),
which are obtained by the marginal log likelihood function, and the adaptive Gauss-
Hermite quadrature rule is chosen to solve the estimates iteratively. The PHREGprocedure
in SAS is then used to find the estimates of γ and β . The SE for the two-stage approach is
the average of the standard error derived from the GLIMMIX procedure.

Table 1 provides the performance of the simulation when the probability of censoring
is 10%.When the two-stage approach is used, two estimates related to the Cox model have
larger biases compared to the estimates obtained by the joint likelihood approach. In par-
ticular, the variable of interest evaluated by β is incorrectly estimated by the two-stage
estimation. Both approaches are able to yield small biases of the estimates related to the
generalized linear model. Most of relative bias of the estimates are slightly larger than 0.
Specifically, only the estimates of the covariance of the intercept and the slope (σ01) and the
fixed effect (γ ) have negative relative biases for the two-stage estimation, whereas only one
estimate of the covariance of the intercept and the slope (σ01) has negative relative biases

Table 1. Performance of estimates for two estimation procedures under a 10% censoring rate.

Two-stage model Joint model

Parameter True Bias RB#
√
SSE SE$ CP Bias RB

√
SSE SE∗ CP

n= 200
μ0 2 0.0229 1.14% 0.2084 0.2100 95.20% 0.0402 2.01% 0.1537 0.1572 93.00%
μ1 −1 −0.0074 0.74% 0.1134 0.1117 95.00% −0.0258 2.58% 0.0955 0.0933 92.60%
σ00 1 0.0873 8.73% 0.6298 0.6171 86.20% −0.0573 −5.73% 0.3097 0.3426 87.60%
σ01 0.4 −0.0170 −4.24% 0.2056 0.5126 90.80% 0.0347 8.66% 0.1358 0.1479 96.00%
σ11 0.5 0.0247 4.94% 0.1902 0.9342 91.00% 0.0255 5.11% 0.1365 0.1458 95.20%
β −0.1 −1.2219 1221.88% 0.1870 0.1073 0.00% −0.0056 5.57% 0.2674 0.2731 95.00%
γ 0.3 −0.0750 −25.00% 0.1441 0.1044 79.60% 0.0032 1.05% 0.1524 0.1560 94.80%

n= 400
μ0 2 0.0017 0.66 % 0.1516 0.1485 93.20% 0.0438 2.19% 0.0963 0.0981 90.60%
μ1 −1 0.0032 0.03% 0.0775 0.0789 96.00% −0.0275 2.75% 0.0591 0.0622 94.00%
σ00 1 0.0315 6.94% 0.4317 0.4450 91.60% −0.0834 −8.34% 0.1444 0.1678 89.20%
σ01 0.4 0.0071 −7.17% 0.1502 0.3615 98.60% 0.0522 13.05% 0.0846 0.0930 94.80%
σ11 0.5 0.0188 7.87% 0.1318 0.6480 98.60% 0.0374 7.48% 0.0846 0.0913 95.00%
β −0.1 −1.2135 1124.98% 0.1272 0.0750 0.00% −0.0183 18.34% 0.1830 0.1837 94.20%
γ 0.3 −0.0697 −22.23% 0.1077 0.0732 71.80% 0.0086 2.87% 0.1072 0.1071 92.94%
# RB stands for the relative bias.
$ Average SE computed from the GLIMMIX procedure.
∗ Average SE derived from bootstrap samples.
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for the two-stage estimation. The relative bias for β is extremely large under the two-stage
estimation. On the contrary, the relative bias for β under the joint model estimation is
less than 10%. The performance in terms of

√
SSE and SE is similar when the joint likeli-

hood estimation is used. Nevertheless,
√
SSE and SE derived from the two-stage approach

are not similar. In particular, the SEs of the estimates for the Cox model are smaller than√
SSE, whereas those of the estimates for the covariance of the generalized linearmodel are

larger than
√
SSE. The CPs for the estimates derived from the joint likelihood approach are

closer to the nominal confidence level than those obtained from the two-stage approach.
In particular, the CP for the estimate of β derived from the two-stage approach is 0 due to
a larger bias.

The performance in term of the sample size states as follows. The bias increases slightly
as n increases. In term, the relative bias also increases. Nevertheless, as expected, the sample
size has a great impact on SE. Increasing the sample size reduces the

√
SSE and SE. Finally,

the performance in term of CP varies. Most of the estimators derived from the generalized
linear model become closer to the nominal confidence level, but the estimators derived
from the survival model are away from the nominal confidence level slightly.

Table 2 lists the results of the simulation when the probability of censoring is 30%. The
bias of the estimates derived from the joint likelihood approach increases slightly. The rel-
ative bias also increases. In contrast, the bias of the estimates derived from the two-stage
approach decreases slightly when n=200, whereas when n=400, only some bias of the
estimates decreases.

When using the joint likelihood approach,
√
SSE and SE of the estimate increase slightly.

In particular,
√
SSE remains slightly larger than SE. However, the magnitudes of

√
SSE and

SE derived from the two-stage approach change when the censoring rate changes. Since
the bias of the estimates related to the binary repeated measures derived from the joint
likelihood approach is slightly larger, the CP for these estimates is slightly away from the

Table 2. Performance of estimates for two estimation procedures under a 30% censoring rate.

Two-stage model Joint model

Parameter True Bias RB#
√
SSE SE$ CP Bias RB

√
SSE SE∗ CP

n= 200
μ0 2.0 0.0177 0.89% 0.2156 0.2214 95.00% 0.0520 2.60% 0.1525 0.1674 95.80%
μ1 −1.0 −0.0020 0.20% 0.1216 0.1214 95.20% −0.0304 3.04% 0.0970 0.1019 94.80%
σ00 1.0 0.1288 12.88% 0.7181 0.6627 88.20% −0.0242 −2.42% 0.3433 0.3961 95.40%
σ01 0.4 −0.0328 −8.20% 0.2252 0.5629 91.20% 0.0430 10.76% 0.1558 0.1723 95.60%
σ11 0.5 0.0398 7.96% 0.1993 1.0014 91.40% 0.0445 8.91% 0.1351 0.1679 97.20%
β −0.1 −1.1243 1124.26% 0.1817 0.1238 0.00% 0.0211 −21.07% 0.3113 0.3191 94.80%
γ 0.3 −0.0638 −21.26% 0.1768 0.1204 78.60% 0.0013 0.42% 0.1776 0.1761 93.00%

n= 400
μ0 2.0 0.0132 0.66% 0.1557 0.1590 95.00% 0.0687 3.43% 0.1120 0.1065 87.40%
μ1 −1.0 −0.0003 0.03% 0.0848 0.0867 94.40% −0.0410 4.10% 0.0694 0.0683 88.40%
σ00 1.0 0.0694 6.94% 0.4712 0.4891 91.60% −0.0764 −7.64% 0.1550 0.1868 90.60%
σ01 0.4 −0.0287 −7.17% 0.1724 0.3992 96.80% 0.0540 13.51% 0.0985 0.1007 93.60%
σ11 0.5 0.0393 7.87% 0.1651 0.7438 97.20% 0.0500 10.00% 0.0995 0.1003 94.40%
β −0.1 −1.1250 1124.98% 0.1269 0.0864 0.00% −0.0268 26.77% 0.2242 0.2144 92.20%
γ 0.3 −0.0667 −22.23% 0.1286 0.0842 74.40% 0.0014 0.47% 0.1257 0.1214 94.60%
#RB stands for the relative bias.
$Average SE computed from the GLIMMIX procedure.
∗Average SE derived from bootstrap samples.
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nominal confidence level. The performance in terms of the CP for the two-stage model is
similar to that for the lower censoring rate.

A compute with an Intel(R) core (TM) i7-7700 CPU @ 3.60 GHz processor and 64 GB
RAM is used to perform all the simulations. The average convergent time including finding
the estimates and the corresponding standard error based on 40 bootstrap samples for a
data set is 30 minutes.

5. A case study

Due to ageing, the Department of Health (DOH) in Taiwan launched a longitudinal study
30 years ago to investigate the physical and mental functions in the elderly in Taiwan. This
study aimed to formulate the needs of medical insurance and social support in the future.
This study began in 1987. The respondents were followed every 3-4 years for approximately
20 years. Excluding data thatwere answered by surrogates and hadmissing important study
variables, there were 739 eligible individuals that resided in northern Taiwan. Each respon-
dent was contacted in 1989, 1993, 1996, 1999, 2003 and 2007. The number of repeated
measures varies from 1 to 6 times, and the average number of repeated measures was 3.12
times.

Although the study was a longitudinal follow-up study, the questionnaire for each run
was not consistent. We were able to identify four binary questions that were related to
satisfaction and were consistent in 6 follow-up runs. This first question was ‘compared
with others, your life is better than others’. The second question was ‘You feel satisfied?’.
The third questionwas ‘You expect some good things would happen?’. The fourth question
was ‘You have the best time currently’. When the respondent chooses more than 2 items,
the respondent is defined as having high satisfaction; otherwise, they are defined as having
low satisfaction. Figure 1 displays the percent and log odds of having high satisfaction
over time, where the solid line stands for the percent of satisfaction (%) and the dashed
line represents the log odds. The percent and log odds of high satisfaction decrease at the
beginning and then increase after 1993.

Three explanatory variables were selected, including age, gender and hypertension. The
respondent’s age in 1989 was used and was classified into 2 groups: less than 75 and equal
to or over 75 years of age. Additionally, the status of hypertension used the information
collected in 1989. Table 3 lists the median survival time stratified by each variable. The
log rank test is used to assess the association between the survival time and risk factors.
Female respondents who were less than 75 years of age and did not have hypertension had
significantly larger median survival times.

Based on the log odds over time for the high satisfaction in Figure 1, the individual time
trajectory for the longitudinal binary response is assumed to have a piecewise linear form
and is defined as

log
(

π(θ i; tij)
1 − π(θ i; tij)

)
= θ0i + θ1itij + θ2i(tij)+,

where (t)+ equals t if t>4 and equals 0 otherwise. Controlling for age, gender and
hypertension, the Cox model is defined as

λ(t | ηi, π̄ i) = λ0(t)exp(βπ(θ i; t) + γ1ηi1 + γ2ηi2 + γ3ηi3), (16)
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Figure 1. Percent and log odds of having high satisfaction for the case study.

Table 3. Median survival time stratified by gender, age andhypertension
for the case study.

Variable Category Median survival p-value∗

Gender Female (reference) 3.95 0.0004
Male 3.06

Hypertension No (reference) 3.51 0.0111
Yes 3.01

Age < 75 (reference) 3.88 < 0.0001
≥ 75 2.17

∗computed by log rank test.

where ηi1 stands for male, ηi2 stands for the status of hypertension, and ηi3 represents the
status of respondents aged 75 years old and older for subject i.

Table 4 provides the estimates derived from the two-stage approach and the joint like-
lihood approach. The parameter of interest, quality of life, is not significant when the
two-stage approach is used, whereas it becomes very significant when the joint likelihood
estimation is used. The estimate (β̂ = −0.6067) means that the higher the score of qual-
ity of life is, the lower is the hazard rate. When the score of the quality of life measured
in the propensity (π(θ i; t)) increases 0.1 unit, the hazard rate reduces 0.94 times. Esti-
mates for other controlling variables derived from the two approaches are similar. Males
who were 75 years old and over and had hypertension have higher hazard rates. Both
approaches demonstrate that age has the greatest impact on survival. Furthermore, since
the SE of estimates for the randomeffects derived from the two-stage approach is very large,
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Table 4. Estimators derived from the two-stage and joint likelihood approaches for the case study.

Two-stage approach Joint likelihood approach

Parameter Estimate SE∗ p-value 95% CI Estimate SE∗ p-value 95% CI

β −0.0705 0.3560 0.8431 0.464 1.873 −0.6067 0.1871 0.0012 −0.9734 −0.2400
γ1 0.3132 0.1150 0.0065 1.092 1.714 0.4141 0.0810 < 0.0001 0.2553 0.5729
γ2 0.3806 0.1303 0.0035 1.133 1.889 0.3294 0.1071 0.0021 0.1195 0.5393
γ3 0.7728 0.1374 < .0001 1.655 2.835 0.9532 0.0796 < 0.0001 0.7972 1.1092
μ0 0.1916 0.1132 0.0453 −0.030 0.414 −0.1846 0.0383 < 0.0001 −0.2597 −0.1095
μ1 −0.3990 0.1557 0.9948 −0.704 −0.094 0.3038 0.0157 < 0.0001 0.2730 0.3346
μ2 0.8457 0.2138 < .0001 0.427 1.265 −0.4622 0.0043 < 0.0001 −0.4706 −0.4538
σ00 1.1383 2.4022 0.3178 −3.570 5.847 0.2072 0.0341 < 0.0001 0.1404 0.2740
σ01 0.1664 3.3677 0.4803 −6.434 6.767 0.0893 0.0151 < 0.0001 0.0597 0.1189
σ02 0.1702 1.4519 0.4533 −2.676 3.016 0.0034 0.0014 < 0.0001 0.0007 0.0061
σ11 1.4816 7.2205 0.4187 −12.670 15.634 0.0451 0.0068 < 0.0001 0.0318 0.0584
σ12 −2.0117 1.8652 0.8696 −5.668 1.644 0.0020 0.0006 0.0009 0.0008 0.0032
σ22 2.9683 2.5142 0.1189 −1.960 7.896 0.0012 0.0002 < 0.0001 0.0008 0.0016
∗SE based on bootstrap samples.

all the estimators except those for μ0 and μ2 are not significant. In particular, the two-
stage approach results in an increasing mean trajectory in time, while the joint likelihood
approach yields estimates with smaller SEs. In turn, all estimates are very significant from
0. Furthermore, when taking the individual survivals into account, the mean trajectory of
the QOL increases slightly and then declines.

6. Discussion

This paper constructs models for analysing longitudinal binary QOL data and survival
time simultaneously. Although the two-stage approach is a straightforward approach and
is easily implemented with existing software, we again show the efficiency of estimates is
not good. The joint likelihood approach requires some intensive computations, but this
approach provides more accurate estimates. For the case study, the estimates derived from
the two approaches are very different. The individual mean trajectory derived from the
two-stage model is similar to the mean response curve, whereas that from the joint likeli-
hood approach reveals an increasing trend and then decreasing trend over time. However,
since the number of eligible participants decreases as time increases, the mean response
curve presented in Figure 1 might be misleading.

The point mass construction for estimating the baseline hazard function is suggested by
[28]. A similar construction can be also referred to [15]. Moreover, under the point mass
construction, the consistency and asymptotic normality of the infinite dimensional cumu-
lative baseline hazard and finite dimensional parameters have been theoretically verified
in [5,30].

The proposed joint likelihood function is much complex than that discussed in [26]
owing to the mixture distribution. Besides the usual EM algorithm, the MH algorithm is
required. The MH algorithm is used to generate the random sample to find empirical esti-
mates of the conditional expectation defined in (9). The candidate-generating distribution
g(θ) is assumed to have a multivariate normal distribution with a mean vector θ (B−1) and
a variance-covariance matrix I. Normally, the MH algorithm uses data obtained from the
previous step to update data for the current step. In a preliminary inspection, when the
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variance-covariance matrix is replaced by the sample values from the previous step, the
EM algorithm does not converge. Nevertheless, when I is chosen, the EM algorithm con-
verges. The reason for this result might be that the estimates of the variance and covariance
have slightly larger biases and have more conservative CP.

The predictive power of the logistic regression can be assessed by the ROC curve and
the area under the ROC curve. Heagerty and Zheng [13] illustrated how to obtain the ROC
curves for the standard Cox regression. Risopoulos [21] derived accuracy measures based
on the ROC curve and the area under the ROC curve under the jointmodelling framework
for continuous longitudinal and time-to-event data. Based on these results, the predictive
power of the proposed model might be derived.

The data used to illustrate the feasibility of the model actually have an ordinal repeated
measure. To analyse the ordinal repeated measure, the proportional odds model might
be considered. A similar formulation may be constructed. The observed joint likelihood
function consists of themultinomial distribution, themultivariate normal distribution and
the setting from the Cox model. The computation part will be more complex. In addition,
the appropriateness of the proportional odds assumption has to be verified.

The Coxmodel is used tomodel the survival time. An extended hazardmodel proposed
by [24] is a more general survival model and can be considered as an alternative model.
Furthermore, Agresti [1] and Griffith, Hill and Pope [11] showed that the maximum likeli-
hood estimator (MLE) ofμ can have significant bias for small samples. Also, themaximum
likelihood estimates of logistic regression parameters are biased when the event of interest
is rare [17]. Albert and Chib [2] used the exact Bayesian methods to perform exact infer-
ence for the small samples. Firth [8] proposed a penalized likelihood function to correct
the bias. Based on the preliminary simulation, When π(θ i; t) = 0.5, the bias of of the esti-
mate of β is small as given in Table 5. However, whenπ(θ i; t) = 0.1, the bias of the estimate
of β is indeed 3 times larger than that when π(θ i; t) = 0.3 as given in Table 6. Thus, when

Table 5. Performance of estimate when π(θ ; tij) = 0.5 under a 30% censoring rate and n= 400.

Parameter True Average bias
√
SSE CP∗

μ0 2 1.952 −0.048 0.1138 0.9486
μ1 −0.5 −0.5024 −0.0024 0.0628 0.9571
σ00 1 1.0273 0.0273 0.2637 0.9486
σ01 −0.4 −0.4413 −0.0413 0.1445 0.9414
σ11 0.5 0.5143 0.0143 0.1057 0.9543
β −0.1 −0.1085 −0.0085 0.2159 0.9443
γ 0.3 0.3072 0.0072 0.1197 0.9529

∗Standard error of CP is based on
√
SSE.

Table 6. Performance of estimate when π(θ i ; t) = 0.1 under a 30% censoring rate and n= 400.

Parameter True Average Bias
√
SSE CP∗

μ0 −1.0 −0.9948 0.0052 0.1180 0.9470
μ1 −1.0 −0.9767 0.0233 0.1046 0.9382
σ00 1.0 1.0089 0.0089 0.3854 0.9470
σ01 −0.4 −0.4676 −0.0676 0.1931 0.9435
σ11 0.5 0.5151 0.0151 0.1350 0.9417
β −0.1 −0.0254 0.0746 0.6627 0.9435
γ 0.3 0.3040 0.0040 0.1208 0.9523

∗Standard error of CP is based on
√
SSE.
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the sample size is small or the event of interest is rare, the proposed estimation needs to be
modified.
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Appendix 1. MH algorithm

Since the data include both categorical data and continuous data, the joint distribution function is a
rather complex function. Due to themixture of data, we cannot generate the random sample directly.
The Metropolis-Hastings algorithm proposed by [10,12,19] is chosen to obtain the desired sample.

Let gθ denote a candidate-generating distribution. A sample is randomly selected from gθ and is
accepted when it falls in the acceptance region. The process then continues until the desired sample
is determined. The following provides the selection procedures:

Step 1. Let B= 0 and given the current estimates of μ and �, generate a random sample θ i of
size n from MVN(μ̂, �̂), where θ

(B)
i = [θ0i θ1i], i = 1, . . . , n. Let this random sample be denoted

as 	θ (B) = [θ (B)
1 θ

(B)
2 · · · θ (B)

n ]′.
Step 2. Let B=B+1, k= 0 and 	θ (B) = 	θ (B−1)

.
Step 3. Let k= k+1 and generate θ∗

k = (θ∗
0k, θ

∗
1k) from g(θ) = MVN(	θ (B−1)

, I), where I is an
identity matrix.

Step 4. Replace the kth row in 	θ (B)
by θ∗

k and denote the new sample

	θ∗
k = [θ (B)

1 θ
(B)
2 · · · θ

(B)

k−1 θ∗
k θ

(B)

k+1 · · · θ (B)
n ]′.

Step 5. Generate a random number p∗ from U(0,1) and replace 	θ (B)
by 	θ∗

k if p∗ ≤ p, where

p = Ak(	θ (B−1)
, 	θ∗

k) = min

{
1,
f (	θ∗

k |Z, μ̂, �̂)g(	θ (B−1)
)

f (	θ (B−1) |Z, μ̂, �̂)g(	θ∗
k)

}

= min

⎧⎨
⎩1,

mk∏
j=1

exp{Zkj[θ∗
0k − θ

(B−1)
0k + (θ∗

1k − θ
(B−1)
1k )tkj]}

×
[
1 + exp(θ(B−1)

0k + θ
(B−1)
1k tkj)

1 + exp(θ∗
0k + θ∗

1ktkj)

]

× exp
[
−1
2
(θ∗

k − μ̂)′�̂
−1

(θ∗
k − μ̂) + 1

2
(θ

(B−1)
k − μ̂)′�̂

−1
(θ

(B−1)
k − μ̂)

]}
, (A1)

and f (Z|	θ) is defined in (7).
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Step 6. Repeat Steps 3 and 5 until k=n times to obtain the first Monte Carlo sample θ (1).
Step 7. Repeat Steps 2–5M times to obtain θ (1), . . . , θ (M).

Appendix 2. M step for the joint model

From (6), the conditional expectation can be partitioned into three parts according to the type
of coefficients. Only the second and third parts include the unknown parameters of interest. The
conditional expectation given the observable data for the second part is

E

[
ln

n∏
i=1

f (θ i | μ,�) |D
]

= −n
2
ln |�| − 1

2

n∑
i=1

Ei[(θ i − μ)′�−1(θ i − μ)]. (A2)

Differentiating (A2) with respect to μ yields

�−1
n∑

i=1
Ei(θ i − μ). (A3)

The estimates in (11) are obtained by setting (A3) equal to 0. Let U = �−1. Taking the derivative
of (A2) with respect to �−1, we obtain

d
dU

[
n
2
ln |U| − 1

2
tr

{ n∑
i=1

Ei

(
θ i −

∑n
j=1 θ j

n

)(
θ i −

∑n
j=1 θ j

n

)′}]

= n
2
{2U−1 − diag(U−1)} − 1

2

[
2

n∑
i=1

Ei

(
θ i −

∑n
j=1 θ j

n

)(
θ i −

∑n
j=1 θ j

n

)′

−diag

{ n∑
i=1

Ei

(
θ i −

∑n
j=1 θ j

n

)(
θ i −

∑n
j=1 θ j

n

)′}]
, (A4)

where diag is a diagonal matrix and tr is the sum of diagonal elements. The estimates in (12) are
obtained by setting (A4) equal to 0.

The conditional expectation given the observable data for the second part is focused on the
estimation for γ , β and λ0(u). The conditional expectation is

E

[
ln

n∏
i=1

f (Xi,�i | θ i, λ0,β , γ ) |D
]

=
n∑

i=1
�i ln λ0(Xi)

+
n∑

i=1
{�i(βEi[π(θ i;Xi)] + η′

iγ )} −
n∑
i=1

∫ Xi

0
λ0(u)Ei[eβπ(θ i ;u)+η′

iγ ] du

Differentiating (A5) with respect to λ0(u) yields
n∑

i=1

[
�iI(Xi = u)

λ0(u)
− Ei

[
exp{βπ(θ i; u) + η′

iγ }]Yi(u)
]
, (A5)

where Yi(u) = I(Xi ≥ u) is an indication function for Xi. The estimates in (13) are obtained by
setting (A5) equal to 0. Differentiating (A5) with respect to β , we obtain

n∑
i=1

⎧⎨
⎩�iEi[π(θ i;Xi)] −

n∑
j=1

λ0(Xj)Ei[π(θ i;Xj) eβπ(θ i ;Xj)+η′
iγ ]Yi(Xj)

⎫⎬
⎭ , (A6)

where λ0(u) is a function of β and γ . Consequently, the estimates of β and γ do not have a closed
form. β and γ are solved by FMINSEARCH in MATLAB.
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