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Abstract We consider ordered bivariate gap time while data on the first gap time are
unobservable. This study is motivated by the HIV infection and AIDS study, where
the initial HIV contracting time is unavailable, but the diagnosis times for HIV and
AIDS are available. We are interested in studying the risk factors for the gap time
between initial HIV contraction and HIV diagnosis, and gap time between HIV and
AIDS diagnoses. Besides, the association between the two gap times is also of interest.
Accordingly, in the data analysis we are faced with two-fold complexity, namely data
on the first gap time is completely missing, and the second gap time is subject to
induced informative censoring due to dependence between the two gap times. We
propose a modeling framework for regression analysis of bivariate gap time under
the complexity of the data. The estimating equations for the covariate effects on, as
well as the association between, the two gap times are derived through maximum
likelihood and suitable counting processes. Large sample properties of the resulting
estimators are developed by martingale theory. Simulations are performed to examine
the performance of the proposed analysis procedure. An application of data from the
HIV and AIDS study mentioned above is reported for illustration.
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1 Introduction

In many medical studies, the process of disease evolution can be classified into two
systems, “competing-risks” and “serial” systems. In the competing-risks system, only
the first occurring event time and the corresponding failure type are observed for each
subject, namely each subject may experience one and only one of several dependent
failures. On the other hand, the serial system consists of occurrences of a recurrent
event, or a certain event that assumes its progression to go through several succes-
sive stages, such as “susceptible”, “infected”, and “recovered” stages. Owing to the
ordering structure in data from the serial system, it is much more informative to utilize
information regarding the previous event history for studying the risk of the subsequent
event occurrence and the underlying disease progression.

The analysis of serial or ordered event data can either be based on time-to-event
models where event times are measured from a common time origin (Wang et al. 2001;
Wang and Chiang 2002; Zeng and Lin 2006), or on gap time models where durations
between successive events or stages are the main interests (Chang and Wang 1999;
Huang 2000; Schaubel and Cai 2004; Sun et al. 2006; Cook and Lawless 2007; Huang
and Liu 2007). In the latter type of analysis, various conditional proportional hazards
models have been developed, which in particular allow for assessing the effects of
subject-specific covariates and event history, such as the gap time of the previous
event, on the gap time of the subsequent event (Chang and Wang 1999; Huang 2000).

In event time analysis, it is typical to assume that the censoring due to restriction
of the follow-up period or absence of subjects is conditionally independent of the
failure times given the covariates. However, in the serial system, the residual censoring
time depends on the duration times of the prior events. Unless there is no correlation
among the multiple event times, the conditional independence assumption between
duration times and the residual censoring time would fail. Such a phenomenon, known
as “induced informative censorship”, poses a significant challenge in ordered events
analysis (Visser 1996; Wang andWells 1998; Huang and Louis 1998; Lin et al. 1999).

In this study, we focus on regression analysis of bivariate duration time where the
first duration time is unobserved. The motivation comes from the analysis of ordered
duration times in HIV-infected subjects, where the first duration time is defined as
the time from the initial contraction of HIV to diagnosis of HIV, and the second
duration time is the time interval between HIV and AIDS diagnoses. In practice, the
initial HIV contracting time is usually not available and hence the first duration time
is missing, although the diagnosis dates of HIV and AIDS are available if the two
events are not censored. One of the study focuses is on how the duration time from
the initial contraction of HIV to HIV diagnosis would affect the duration between
HIV and AIDS diagnoses. Note that in the setting we considered, although the first
gap time (i.e., time from the initial contraction of HIV to diagnosis of HIV) itself is
unobservable, whether the first event (i.e. HIV diagnosis) had occurred by time t is
observable. This is similar to the setting of the current status or type-I interval censored
data, where both regression analysis assessing covariate effects on event time as well
as association analysis between two event times is feasible and has been studied in
literature (see for example Huang 1996 and Wang and Ding 2000).
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Regression analysis for bivariate gap time with missing… 85

To address this problem under the two-fold complexity, namely the missingness
of data on the first duration time as well as the informative censoring for the second
duration time, we propose a novel modeling framework for bivariate gap time analysis.
In this framework, a parametricmarginal hazardmodel is assumed for the first duration
time, and a conditional hazardmodel is specified for the second duration time given the
first duration time. Additionally, to facilitate analysis under the complexity mentioned
above, unlike conventional survival analysis where the censoring time distribution is
unspecified, in our proposal a parametric model is assumed for the censoring time
distribution. Our simulations suggest that the analysis results from our proposal are
in fact not sensitive to moderate mis-specification of the censoring time distribution.
We establish maximum likelihood estimation for the proposed modeling framework.
The limiting distribution of the resulting estimators can be derived by martingale
theory. Simulation results reveal the nice finite sample performances of the proposed
method.

The rest of the paper is organized as fellows. In Sect. 2, we introduce the data
structure and a general bivariate model for the gap time distribution. The likelihood
function based on the counting processes, and the associated score equations are
derived in Sect. 3. Simulation study evaluating performances of the estimates under
practical sample sizes is reported in Sect. 4, together with an application to the HIV
data. Sect. 5 provides some discussions and conclusions.

2 Data and model

Consider the settingwhere an individualmay experience two successive events. Let D0
be the calendar time of the initiation, and D1, D2 the calendar times of events 1 and 2,
respectively. We are primarily interested in the durations or gap times T ∗

1 := D1−D0,
and T ∗

2 := D2 − D1, and how T ∗
k may be affected by the covariates Zk , k = 1, 2.

Besides, let C be the calendar time of random censoring and T ∗
C = C − D0 the

censoring time since initiation of the study. As mentioned in the Introduction section,
parametric models, i.e., exponential distributions, are imposed for both gap times T ∗

1
and T ∗

2 as well as the censoring time T ∗
C , to tackle the two-fold complexity involved

in the available data: the unobservable D0 and hence T ∗
1 , and the induced informative

censoring of T ∗
2 . Such type of data can be found in the infectious disease study where

the first gap time T ∗
1 is usually unknown because its initial contracting time D0 is

unavailable, though the symptom onset time D1, the subsequent event time D2, or the
censoring time C may usually be available. The maximum likelihood method is then
performed for inference of the proposed models.

We first specify the joint distributions of T ∗
1 and T ∗

2 through the marginal and
conditional hazard functions as in the following:

λ1(u|Z1) = limΔ→0 P(T ∗
1 ∈ [u, u + Δ)|T ∗

1 ≥ u, Z1)/Δ = exp(β ′
1Z1)λ1,

λ2(v|Z2, T
∗
1 ) = limΔ→0 P(T ∗

2 ∈ [v, v + Δ)|T ∗
2 ≥ v, T ∗

1 = u, Z2)/Δ

= {
exp(β ′

2Z2) + θu
}
λ2, (1)

123



86 C.-H. Huang, Y.-H. Chen

where β1 and β2 are unknown regression coefficients, λ1 and λ2 are unknown positive
constant baseline hazards, respectively, and θ is the association parameter measuring
the effect of T ∗

1 on T ∗
2 and assumed to be an unknown constant.

We further assume that the censoring time T ∗
C since initiation of the study is inde-

pendent of T ∗
1 and T ∗

2 conditioning on the covariates and follows a proportional hazard
model:

λC (t |ZC ) = lim
Δ→0

P(T ∗
C ∈ [t, t + Δ)|T ∗

C ≥ t, ZC )/Δ = exp(β ′
C ZC )λC , (2)

where λC is an unknown positive constant, ZC is a set of covariates and βC the
corresponding regression coefficients.

We can see from (1) that the distribution of T ∗
1 is exponential given the covariates,

and the hazard function of T ∗
2 given T ∗

1 consists of a multiplicative term for the the
covariate effects as well as an additive term for the effect from T ∗

1 . Like the standard
additive hazards model (Lin and Ying 1997, pp. 185–198), the overall conditional
hazard function {exp(β ′

2Z2) + θu}λ2 is constrained to be positive. This assumption is
always met in our numerical studies. For ease of exposition, from now on we consider
the simplified case where the three sets of covariates Z1, Z2, and ZC are identical and
denoted by Z .

From (1) we can find the marginal survival function of T ∗
2 :

P(T ∗
2 > v) = exp(−η2λ2v)

η1λ1 + θλ2v
η1λ1,

where ηk = exp(β ′
k Z), k = 1, 2. In addition, the joint survival function S(u, v) =

P(T ∗
1 > u, T ∗

2 > v) and joint density function f (u, v) = ∂2S(u, v)/∂u∂v are

S(u, v) = exp(−η2λ2v)

η1λ1 + θλ2v
η1λ1 exp(−[η1λ1 + θλ2v]u),

f (u, v) = η1λ1 (θu + η2) λ2 exp (−[η1λ1 + θλ2v]u − η2λ2v) .

(3)

Let δ1 = I (T ∗
1 ≤ T ∗

C ) indicate whether event 1 (D1) is firstly observed. If D1 is
observed, then either D2 orC is subsequently observed; otherwise onlyC is observed.

To denote the time and the occurrence of the second event, let T2 = min(T ∗
2 ,(

T ∗
C − T ∗

1

)
δ1), δ∗

2 = I (T2 = T ∗
2 ), and δ∗

C = I (T2 = T ∗
C − T ∗

1 ). Define the two
counting processes N∗

2 (v) = δ∗
2 I (T2 ≤ v) and N∗

C (v) = δ∗
C I (T2 ≤ v) for 0 < v ≤ ζ ,

where ζ is the maximum follow-up time for event 2 since the occurrence of event
1. The counting processes N∗

2 (v) and N∗
C (v) record the type and the gap time of the

second event for 0 < v ≤ ζ . The only observable information for the first-occurring
event is δ1, i.e. the type (infectious or censored) of the first-occurring event, while
the duration time for this event is unobserved. The gap time of the second event is
available only when δ1 = 1, namely when the first-occurring event is not a censoring
event. Figure 1 depicts three observed event occurrence patterns corresponding to the
cases where only the censoring event is observed (δ1 = 0, δ∗

2 = 0, and δ∗
C = 0), event

1 is observed while event 2 is censored (δ1 = 1, δ∗
2 = 0, and δ∗

C = 1), and both event
1 and event 2 are observed (δ1 = 1, δ∗

2 = 1, and δ∗
C = 0), respectively.
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Regression analysis for bivariate gap time with missing… 87

Fig. 1 Three possible patterns of censoring for observed event occurrence; case 1 (δ1, δ
∗
2 , δ∗

C ) = (0, 0, 0);
case 2 (δ1, δ

∗
2 , δ∗

C ) = (1, 0, 1); case 3 (δ1, δ
∗
2 , δ∗

C ) = (1, 1, 0)

Under the above model and data setups, let
(
δ1i , δ

∗
2i , δ

∗
Ci , T2i , Zi

)
, i = 1, . . . , n,

be n independent and identically distributed replicates of
(
δ1, δ

∗
2 , δ

∗
C , T2, Z

)
. For indi-

vidual i , the data available in the follow-up period are {(δ1i , δ2i , δCi , T2i ∧ ζ, Zi ), i =
1, . . . , n}, where δ2i = δ∗

2i I (T2i ≤ ζ ) and δCi = δ∗
Ci I (T2i ≤ ζ ), and a ∧ b ≡

min(a, b). In the next section we develop the maximum likelihood estimation for the
model parameters with the observable data. Although the models considered are fully
parametric, to develop the maximum likelihood estimation for the model parameters
in a neat and systematic way, we will utilize the representation associated with the
observable counting processes N2i (v) = δ2i I (T2i ≤ v) and NCi (v) = δCi I (T2i ≤ v),
as shown in the next section.

3 Maximum likelihood method

3.1 Intensity and likelihood functions

To establish the likelihood function of the observed bivariate gap time data as described
in the previous section, we consider the first-occurring event and then the subsequent
gap time conditioning on the previous event type. For the first-occurring event, we
can observe which type of event it is and the probability of this event being event 1,
i.e. δ1i = 1, is η1iλ1/(η1iλ1 + ηCiλC ) with ηCi = exp(β ′

C Zi ). On the other hand,
the probability that the first-occurring event is a censoring event, i.e. δ1i = 0, is
ηCiλC/(η1iλ1 + ηCiλC ).

Conditioning on δ1i = 1, we are able to observe two counting processes N2i (·)
and NCi (·). We derive the cause-specific intensity function of these two counting
processes, so that the unbiased estimating equations can be constructed. According
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to models (1)–(2), the survival function of T2i and the sub-density functions can be
shown, for 0 < v ≤ ζ , to be

G(v) = P(T2i > v|δ1i = 1) = exp (− [η2iλ2 + ηCiλC ] v)

η1iλ1 + θλ2v + ηCiλC
(η1iλ1 + ηCiλC ) ,

f (T2i = v, δ2i = 1|δ1i = 1) = exp (− [η2iλ2 + ηCiλC ] v) (η1iλ1 + ηCiλC )

η1iλ1 + θλ2v + ηCiλC

×
{
η2i + θ

η1iλ1 + θλ2v + ηCiλC

}
λ2,

f (T2i = v, δCi = 1|δ1i = 1) = exp (− [η2iλ2 + ηCiλC ] v) (η1iλ1 + ηCiλC )

η1iλ1 + θλ2v + ηCiλC
ηCiλC .

Therefore, for 0 < v ≤ ζ , the cause-specific intensity functions of N2i (v) and NCi (v)

are given by Yi (v)η̃2i (v)λ2 and Yi (v)η̃Ci (v)λC , respectively, where

η̃2i (v) = η2i + θ

η1iλ1 + θλ2v + ηCiλC
, (4)

η̃Ci (v) = ηCi , (5)

with Yi (v) = I (T2i ≥ v) the at-risk process for T2i .
Comparing models (2) and (5), it is seen that the cause-specific intensity function

for NCi (v) is the same as its original net intensity. This is expectable because we have
assumed independence between (T ∗

1 , T ∗
2 ) and T ∗

C conditioning on the covariates. On
the other hand, the cause-specific intensity of N2i (v) is a function depending on the
parameters in the models for both T ∗

1i and T ∗
Ci . Define

M2i (t) = N2i (t) −
∫ t

0
Yi (v)η̃2i (v)λ2dv,

MCi (t) = NCi (t) −
∫ t

0
Yi (v)η̃Ci (v)λCdv, (6)

which are martingales with respect to the filtrationFt=σ {N2i (v), NCi (v),Yi (v), Zi :
v < t, i = 1, . . . , n}.

Set λk = exp(αk), k = 1, 2, and λC = exp(αC ). Let α = (α1, α2, αC ),
β = (β1, β2, βC ) and Ω = (α,β, θ). We shall assume that two counting processes
cannot jump simultaneously. Accordingly, the likelihood function L (Ω) based on
{δ1i , δ2i , δCi , T2i , Zi } can be written as

L (Ω) =
n∏

i=1

P(δ1i = 1)δ1i {1 − P(δ1i = 1)}1−δ1i

×{η̃2i (T2i ∧ ζ ) exp(α2)}δ2i {η̃Ci (T2i ∧ ζ ) exp(αC )}δCi G(T2i ∧ ζ )δ1i .

The first two terms in the likelihood correspond to the first-occurring event, and the
other terms correspond to the second-occurring event conditioning on the first event.
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Regression analysis for bivariate gap time with missing… 89

Expressed explicitly in thisway, the loglikelihood function �(Ω) = �1(Ω)+�2(Ω),
where

�1(Ω) =
n∑

i=1

δ1i
(
α1 + β ′

1Zi
) + (1 − δ1i )

(
αC + β ′

C Zi
)

− log
{
exp

(
α1 + β ′

1Zi ) + exp(αC + β ′
C Zi

)}
,

�2(Ω) =
n∑

i=1

∫ ζ

0
{α2 + log η̃2i (v)} dN2i (v) − Yi (v)η̃2i (v) exp(α2)dv

+
n∑

i=1

∫ ζ

0

{
αC + β ′

C Zi
}
dNCi (v) − Yi (v) exp

(
β ′
C Zi

)
exp(αC )dv. (7)

3.2 Estimation and asymptotic properties

To find the estimators, we apply themaximum likelihoodmethod. The score functions,
given below, are obtained by taking the derivative of �(Ω) with respect to Ω =
(α,β, θ):

Uα1 =
n∑

i=1

{
δ1i − exp(α1 + β ′

1Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )

}
+

n∑

i=1

∫ ζ

0
X̃1i (v)dM2i (v),

Uα2 =
n∑

i=1

∫ ζ

0

{
X̃2i (v) + 1

}
dM2i (v),

UαC =
n∑

i=1

{
(1 − δ1i ) − exp(αC + β ′

C Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )

}

+
n∑

i=1

∫ ζ

0

{
X̃Ci (v)dM2i (v) + dMCi (v)

}
,

Uβ1 =
n∑

i=1

Zi

{
δ1i − exp(α1 + β ′

1Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )

}

+
n∑

i=1

∫ ζ

0
Z̃1i (v)dM2i (v),

Uβ2 =
n∑

i=1

∫ ζ

0
Z̃2i (v)dM2i (v),

UβC =
n∑

i=1

Zi

{
(1 − δ1i ) − exp(αC + β ′

C Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )

}

+
n∑

i=1

∫ ζ

0

{
Z̃Ci (v)dM2i (v) + Zi dMCi (v)

}
,
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Uθ =
n∑

i=1

∫ ζ

0
W̃i (v)dM2i (v),

where X̃ki (v) = (∂/∂αk) log η̃2i (v), Z̃ki (v) = (∂/∂βk) log η̃2i (v), k = 1, 2, and sim-
ilarly for X̃Ci (v) and Z̃Ci (v), and W̃i (v) = (∂/∂θ) log η̃2i (v). We use the MATLAB
function “fminunc” to optimize the objective function given by the negative loglikeli-
hood, with the score equations and the hessian matrix, which is the second derivate of

the objective function, explicitly provided. Let Ω̂ =
(
α̂, ̂β, θ̂

)
be the solution of the

system of the score equations. It can be seen that the score functions are martingales.
Hence we can apply the martingale central limit theorem to establish the large sample
properties of Ω̂ , as shown in Theorem 1 below.

Let

πi = exp(α1 + β ′
1Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )
,

π̄i = exp(αC + β ′
C Zi )

exp(α1 + β ′
1Zi ) + exp(αC + β ′

C Zi )
,

and

S1i (Ω) =
(
δ1i − πi , 0, 1 − δ1i − π̄i , Z ′

i (δ1i − πi ), 0, Z ′
i (1 − δ1i − π̄i ), 0

)′
,

S2i (v,Ω) =
(
X̃1i (v), X̃2i (v) + 1, X̃Ci (v), Z̃ ′

1i (v), Z̃ ′
2i (v), Z̃ ′

Ci (v), W̃i (v)
)′

,

SCi (Ω) =
(
0, 0, 1 , 0, 0, Z ′

i , 0
)′

. (8)

Hence Ω̂ is the root of the following estimating functions

n∑

i=1

U i (Ω) =
n∑

i=1

{
S1i (Ω) +

∫ ζ

0
S2i (v,Ω) dM2i (v) +

∫ ζ

0
SCi (Ω) dMCi (v)

}
,

where S1i , S2i , and SCi are components of the estimating functions associated with
the first-occurring event, the gap time between the first and second events, and the
censoring time, respectively.

Let Ω0 = (α0, β0, θ0), where α0, β0, θ0 are the true values of α, β, θ ,
respectively. The consistency and weak convergence properties are established in the
following theorem, with the proof provided in the Appendix. The following assump-
tions are required.

(A1) Z is bounded and left-continuous. Also the true values of parameters are in the
interior of a known compact set.

(A2) P(δ1 = 1|Z) > 0, P(Y (ζ ) = 1|Z) > 0, P(δ2 = 0, T2 ≥ ζ |Z) > 0.
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Regression analysis for bivariate gap time with missing… 91

(A3) There exists a deterministic s1 such that

−1

n

n∑

i=1

∂S1i (Ω0)

∂Ω

p→ s1.

(A4) There exists a deterministic, integrable functions s2 and sC , such that

1

n

n∑

i=1

Yi (v)η̃2i (v)λ2S2i (v,Ω0)
⊗2 p→ s2(v),

1

n

n∑

i=1

Yi (v)η̃Ci (v)λC SCi (Ω0)
⊗2 p→ sC (v),

where a⊗2 = aa′ for a column vector a.
(A5) There exists a positive-definite matrix I0 such that

I0 = s1 +
∫ ζ

0
s2(v)dv +

∫ ζ

0
sC (v)dv.

Theorem 1 Assume that conditions (A1)–(A5)hold. Then there exists a neighborhood
ofΩ0, within which Ω̂ is a unique solution to

∑n
i=1 U i (Ω) = 0, and Ω̂ → Ω0 almost

surely. Furthermore,

√
n(α̂ − α0, ̂β − β0, θ̂ − θ0)

is asymptotically normal with mean zero and variance-covariance matrix I −1
0 .

The information matrix I0 can be consistently estimated by Î /n, where Î =
−∑n

i=1 ∂U i (Ω)/∂Ω evaluated at Ω̂ is the observed information matrix.

4 Numerical examples

We conduct simulations under several scenarios to evaluate the performance of the
proposed estimator and the associated large sample theory, including standard error
estimation, the coverage probability of the Wald-type and the bootstrap-based confi-
dence intervals. We also apply the proposed method to the HIV data mentioned in the
Introduction.

4.1 Simulation

We consider the covariate Z , which is a two-dimensional vector with the first compo-
nent generated from a standard normal distribution truncated at ±2, and the second
component a bernoulli trial with probability 0.5. The first gap time T ∗

1 for event 1
and the censoring time T ∗

C are respectively simulated from (1) and (2) with the given
values of (α1, αC , β1, βC ). If δ1 = 1, we continue to simulate the second gap time T ∗

2
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92 C.-H. Huang, Y.-H. Chen

for event 2 from the conditional hazard function (1), with θ ranging from 0.2 to 0.8.
The censoring rate for T ∗

2 ranges from 36 to 46 %, where a quarter of the subjects may
be censored before event 1 occurs, i.e., δ1 = 0.

Table 1 shows the summary statistics based on 5000 simulation replications. In the
scenario where θ = 0.4, about 71 % of the subjects experience event 1 and then 56
% of the subjects experience the subsequent event 2. The estimates for the regression
coefficients are nearly unbiased and the empirical standard errors are quite close to
the estimated standard errors based on the observed information matrix. The coverage
probabilities of the Wald-type confidence interval based on Theorem 1 are close to
the desired level. Compared to the regression parameter estimates, the association
parameter estimate θ̂ has larger bias, its asymptotic standard error underestimates
the empirical standard error, and the coverage probability of the confidence interval
based on asymptotic theory is slightly lower than the nominal 95 % level under the
sample size 1000. We also apply the bootstrap method to estimate the standard error
of the parameters and obtain the bootstrap-based confidence interval. We see that the
bootstrap standard error for θ̂ matches better with the simulation standard error, and
the coverage probability of the bootstrap-based confidence interval for θ is better than
that based on asymptotic theory when n = 1000. When the sample size increases to
2000, the bias decreases and the coverage probability of the confidence interval based
on asymptotic theory becomes closer to the desired value. We further consider the
scenario with θ = 0.6; the results in this scenario are consistent with those in the
former one.

We also consider a setting where the covariate effects do not exist and the value
of θ is 0.2 or 0.8. The results are given in Table 2, showing that the large sample
properties work well. From Tables 1 and 2, we see that it requires a larger sample
size to ensure the theoretical properties, which may be due to that the first duration
time is unobservable. This, however, will not cause a major limitation on the proposed
analysis, since data on the first duration time are already allowed to be missing, more
subjects are eligible to be included in the analysis.

Since the proposed analysis further assumes the parametric model (2) for the cen-
soring time T ∗

C , there is a potential concern with robustness against mis-specification
for such a model. To examine this problem, we perform simulations where T ∗

C does
not follow an exponential distribution as in model (2), but follows a gamma orWeibull
distribution with the shape and scale parameters chosen to yield a percentage around
30 % of observing event 2. Data on T ∗

1 and T ∗
2 are still generated from the model (1),

The sample sizes considered are n = 1000, 2000, and 3000. Table 3 gives the analysis
results from the proposed models (1) and (2). It is seen that results for the covariate
effects β1 and β2 remain satisfactory when T ∗

C is generated from either the gamma or
Weibull distribution, while in analysis it is wrongly assumed to follow the exponential
distribution (2). The estimate for θ has a larger bias when n = 1000; however, the
bias decreases when sample size increases. The estimate for the baseline hazard λ1 is
severely biased and the coverage probability of the confidence interval is much lower
than the desired level of 95 %, which seems to be expectable given that data on T ∗

1
is fully unobservable and hence the associated analysis is highly model-dependent.
The sensitivity analysis is also performed in the setting when the covariate effects do
not exist and θ = 0.5, and the values of the shape and scale parameters in gamma or
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ŜE

is
th
e
av
er
ag
e
of

es
tim

at
ed

st
an
da
rd

er
ro
r,
C
P
is
th
e
co
ve
ra
ge

pr
ob

ab
ili
ty

of
95

%
co
nfi

de
nc
e
in
te
rv
al
ba
se
d
on

as
ym

pt
ot
ic
st
an
da
rd

er
ro
r,
B
SE

is
th
e
bo

ot
st
ra
p
st
an
da
rd

er
ro
r,
an
d
B
C
P
is
th
e
co
ve
ra
ge

pr
ob

ab
ili
ty

of
th
e
bo

ot
st
ra
p-
ba
se
d
co
nfi

de
nc
e
in
te
rv
al

123



Regression analysis for bivariate gap time with missing… 95

Table 3 Simulation results when the distribution of T ∗
C is misspecified

n Parameter Scenario 1: Gamma (2, 3) Scenario 2: Weibull (3, 0.5)

Bias SE ŜE CP(%) Bias SE ŜE CP(%)

1000 β1 : z1 = −0.5 −0.034 0.106 0.108 94.48 0.028 0.131 0.122 92.66

β1 : z2 = 1 0.072 0.194 0.200 94.56 −0.068 0.244 0.232 92.72

β2 : z1 = −0.5 −0.008 0.130 0.125 91.76 0.008 0.174 0.164 91.88

β2 : z2 = 1 0.040 0.326 0.312 93.02 −0.020 0.398 0.389 91.38

λ1 : 0.1 0.031 0.018 0.019 66.00 −0.046 0.010 0.010 2.56

λ2 : 0.1 0.008 0.046 0.042 88.64 0.011 0.055 0.050 91.56

θ : 0.5 0.178 0.712 0.577 89.08 0.136 0.712 0.615 86.06

2000 β1 : z1 = −0.5 −0.034 0.074 0.076 93.60 0.029 0.092 0.086 92.10

β1 : z2 = 1 0.073 0.136 0.141 92.88 −0.076 0.169 0.163 91.32

β2 : z1 = −0.5 −0.006 0.090 0.089 95.44 0.005 0.119 0.114 93.84

β2 : z2 = 1 0.031 0.218 0.216 95.66 −0.035 0.271 0.261 92.30

λ1 : 0.1 0.030 0.013 0.013 34.46 −0.046 0.007 0.007 0.02

λ2 : 0.1 0.004 0.032 0.030 93.54 0.005 0.036 0.034 94.14

θ : 0.5 0.085 0.366 0.342 92.92 0.043 0.378 0.333 88.96

3000 β1 : z1 = −0.5 −0.031 0.061 0.062 92.82 0.034 0.073 0.070 90.84

β1 : z2 = 1 0.068 0.112 0.115 91.46 −0.073 0.142 0.133 88.80

β2 : z1 = −0.5 −0.007 0.074 0.072 95.30 0.008 0.094 0.092 93.74

β2 : z2 = 1 0.034 0.181 0.175 95.96 −0.039 0.214 0.210 92.74

λ1 : 0.1 0.030 0.010 0.011 15.80 −0.046 0.006 0.006 0

λ2 : 0.1 0.002 0.025 0.024 94.60 0.003 0.028 0.028 94.92

θ : 0.5 0.067 0.290 0.271 94.08 0.014 0.264 0.251 91.14

In scenario 1, there are 55 % of study subjects experiencing event 1 and 36 % experiencing event 2; in
scenario 2, there are 35 % of study subjects experiencing event 1 and 23 % experiencing event 2

Weibull distribution are chosen so that the percentage of observing event 2 is about
30 %. The results shown in Table 4 lead to conclusions quite similar to those based
on Table 3.

4.2 Data analysis

A dataset of 3255 subjects is analyzed to illustrate the proposed method. In this analy-
sis, event 1 is defined as theHIVdiagnosis, event 2 is theAIDSdiagnosis, and censoring
is caused by death. The data were collected from hospitals, centers for disease con-
trol, and prevention and public health centers from 1984 to 2001 in Taiwan. Although
the diagnosis dates of HIV and AIDS were recorded if they had occurred, the initial
date of HIV contraction was unavailable for all subjects. Some of the subjects had the
record of death time during the study period. About 1.2 % of subjects died before HIV
diagnosis. In the end of 2001, 16.4 % of subjects were diagnosed with AIDS and 12.7
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Table 4 Simulation results when the distribution of T ∗
C is misspecified

n Parameter Scenario 1: Gamma (0.8, 12.5) Scenario 2: Weibull (6, 2/3)

Bias SE ŜE CP(%) Bias SE ŜE CP(%)

1000 β1 : z1 = 0 0.001 0.112 0.108 94.14 −0.002 0.121 0.115 93.85

β1 : z2 = 0 −0.001 0.213 0.208 94.44 −0.002 0.229 0.220 94.17

β2 : z1 = 0 −0.001 0.215 0.196 95.48 −0.002 0.270 0.224 95.09

β2 : z2 = 0 0.007 0.407 0.387 97.08 0.003 0.472 0.450 98.50

λ1 : 0.1 −0.009 0.014 0.014 86.10 −0.025 0.012 0.012 43.44

λ2 : 0.1 0.006 0.036 0.035 95.08 0.011 0.046 0.043 95.33

θ : 0.5 0.057 0.511 0.374 88.76 0.094 0.950 0.605 85.99

2000 β1 : z1 = 0 0.000 0.079 0.076 94.00 −0.001 0.085 0.080 93.84

β1 : z2 = 0 0.001 0.146 0.146 94.78 0.003 0.158 0.154 94.80

β2 : z1 = 0 0.000 0.140 0.132 94.68 −0.002 0.159 0.148 95.20

β2 : z2 = 0 −0.004 0.258 0.254 96.40 −0.002 0.296 0.286 96.78

λ1 : 0.1 −0.009 0.010 0.010 80.94 −0.025 0.009 0.008 19.42

λ2 : 0.1 0.004 0.025 0.024 94.72 0.007 0.030 0.029 95.36

θ : 0.5 0.002 0.210 0.198 89.74 0.001 0.271 0.244 88.14

3000 β1 : z1 = 0 −0.001 0.062 0.062 94.70 0.001 0.069 0.065 93.86

β1 : z2 = 0 0.002 0.119 0.118 94.90 0.001 0.129 0.126 94.10

β2 : z1 = 0 −0.001 0.109 0.107 95.02 0.002 0.126 0.118 94.80

β2 : z2 = 0 0.000 0.209 0.206 95.78 0.001 0.234 0.227 95.88

λ1 : 0.1 −0.009 0.008 0.008 76.16 −0.025 0.007 0.007 7.48

λ2 : 0.1 0.003 0.020 0.020 94.70 0.006 0.024 0.023 95.54

θ : 0.5 0.000 0.166 0.157 91.88 −0.015 0.263 0.188 88.98

In scenario 1, there are 49 % of study subjects experiencing event 1 and 33 % experiencing event 2; in
scenario 2, there are 65 % of study subjects experiencing event 1 and 36 % experiencing event 2

% died between HIV and AIDS diagnoses. The average age of being diagnosed with
HIV was 34.4 and the standard deviation was 12.2.

We apply the proposed analysis to the data by considering potential risk factors for
HIV, AIDS, and death, including: homosexuality (Z1), heterosexuality (Z2), bisex-
uality (Z3). According to the documentation, the proportions of the above patient
groups are 32.23, 47.50, and 13.43 %, respectively, and the reference group consists
of the subjects who did not respond to this question about sexual orientation and
the proportion is 6.85 %. Table 5 shows the estimates of regression coefficients and
the corresponding estimated standard errors. We can see that there is no statistically
significant effect found in analyzing the gap time between time of contraction and
diagnosis time of HIV-positive. However, subjects with bisexuality seem to have a
higher risk of becoming HIV-positive, compared to individuals in other categories.
After HIV diagnosis, heterosexual and bisexual subjects have a significantly higher
risk of being AIDS-positive than subjects with unknown sexual orientation, while the
increased risk for subjects with homosexuality is not significant at 5 % significance
level.
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Table 5 Analysis of HIV and AIDS positive data

Variable Time to HIV positive Time to AIDS positive Time to death
after HIV infected

β̂1 SE(β̂1) β̂2 SE(β̂2) β̂C SE(β̂C )

Z1 0.3046 0.6899 0.4474 0.2286 −0.4428 0.2014∗
Z2 0.0455 0.5997 0.6573 0.2216∗ 0.2375 0.1796

ZC 1.2297 0.8174 0.9041 0.2461∗ 0.5181 0.2046∗
Baseline (λ) 2.2715 1.2845 0.0242 0.0053∗ 0.0321 0.0053∗
The first gap time – – 0.2327 0.1295 – –

Z1: homosexuality, Z2: heterosexuality, Z3: bisexuality. ∗ : p-value less than 5 %

The duration between initial contraction of HIV and HIV diagnosis does not have
a statistically significant effect on the duration between HIV diagnosis and AIDS
diagnosis. For the death time, the analysis shows that subjects with bisexuality are
associated with an significantly increased risk for death, while homosexual subjects
have a lower risk for death comparedwith the reference group of subjects (i.e., subjects
with unknown sexual orientation).

To examine the validity of the model assumptions employed, we use the martingale
residuals M̂2i (ζ ) and M̂Ci (ζ ) (i = 1, . . . , n), which are obtained directly from (6)
with the involved parameters substituted with their estimates, and plot the residuals
against the linear predictors β̂ ′

2Zi and β̂ ′
C Zi (i = 1, . . . , n). There are no systematic

patterns revealed in these residual plots (see Figs. 2, 3 ), suggesting the adequacy of
the model assumptions.

5 Conclusion

This paper is concerned with the setting where the process of disease progression
goes through two successive stages, but data on the first gap time are unavailable. The
dependence of the second gap time on the first gap time is one of the study interests.
We propose a simple bivariate model for the two gap times, allowing the second gap
time to depend on the previous one. To overcome the two-fold difficulty caused by
missing data on the first gap time, and the induced informative censoring arising in
the system of serial events, we impose an additional model for the distribution of the
censoring time. However, our simulation results show that, the proposed analysis for
the covariate effects on the event times, as well as the effect of the first gap time on
the second one, are insensitive to moderate deviation from the assumed model for
the censoring time distribution, provided that the sample size is sufficiently large.
We derive the cause-specific intensity functions for the available event times based on
the proposed modeling framework, by which the observed-data likelihood is obtained.
Using the counting process approach andmartingale theory, the large sample properties
of the maximum likelihood estimator can be readily established.

Due to the two-fold difficulty (missing first-gap time data plus dependent censoring)
mentioned above, the current work focuses specifically on parametric models based on
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98 C.-H. Huang, Y.-H. Chen

Fig. 2 The estimated martingale residual M̂2i (ζ ) against the linear predictor β̂ ′
2Zi

Fig. 3 The estimated martingale residual M̂Ci (ζ ) against the linear predictor β̂ ′
C Zi

exponential distributions. The idea underlying the proposed approach can be similarly
extended to other parametric models. However, we are unaware of if there is any
other model that will also lead to an analytically tractable model formulation as in the
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exponential models we consider. Note that the martingale representation of the score
functions can facilitate convenient model diagnosis for the proposed method.

Acknowledgements This research was supported by Taiwan Ministry of Science and Techonology Grant
103-2118-M-305-003.

Appendix 1: Proof of Theorem 1

First we shall show that 1√
n

∑n
i=1 U i (Ω) at Ω0 converges to a multivariate normal

distribution, where

U i (Ω) = S1i (Ω) +
∫ ζ

0
S2i (v,Ω) dM2i (v) +

∫ ζ

0
SCi (Ω) dMCi (v).

Note that Ski , k = 1, 2, 3, have been defined in (8). By the multivariate central limit

theorem, we have 1√
n

∑n
i=1 S1i (Ω0) → N

(
0, E

{
− 1

n

∑n
i=1

∂S1i (Ω0)
∂Ω

})
. Since we

assume that dN2i , dNCi cannot jump simultaneously and two counting processes are
conditionally independent to δ1i given Zi ,

1√
n

n∑

i=1

S1i (Ω0),
1√
n

n∑

i=1

∫ ζ

0
S2i (v,Ω0) dM2i (v), and

1√
n

n∑

i=1

∫ ζ

0
SCi (Ω0) dMCi (v),

are asymptotically independent. Based onmartingale central limit theorem and regular
assumptations (A1) − (A5), we have

1√
n

n∑

i=1

{
S1i (Ω0) +

∫ ζ

0
S2i (v,Ω0) dM2i (v) + SCi (Ω0) dMCi (v)

}
→ N (0, I0) .

Furthermore, the differential of − 1
n

∑n
i=1 U i (Ω) with respect to Ω is

−1

n

n∑

i=1

∂S1i (Ω)

∂Ω

+1

n

n∑

i=1

∫ ζ

0

{
Yi (v)η̃2i (v)λ2S2i (v,Ω)⊗2 + Yi (v)η̃Ci (v)λC SCi (Ω)⊗2

}
dv

−1

n

n∑

i=1

∫ ζ

0

{
∂S2i (v,Ω)

∂Ω
dM2i (v) + ∂SCi (Ω)

∂Ω
dMCi (v)

}
. (9)

By (A3)–(A4) we have the first two terms on the right-hand side of (9) converge to
I0, and the third term is op(1) because the sum is scaled by n−1. So with the Taylor
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expansion of 1
n

∑n
i=1 U i (Ω̂) around Ω0, we have

√
n
(
α̂ − α0, ̂β − β0, θ̂ − θ0

)
=

{
− 1

n

n∑

i=1

∂U i (Ω
∗)

∂Ω

}−1 1√
n

n∑

i=1

U i (Ω0),

where Ω∗ is on the line segment between ̂Ω and Ω0. Therefore, by Slutsky’s theorem
and ̂Ω → Ω0 almost surely, Theorem 1 is established.

Appendix 2: Information matrix

For s, l ∈ {1, 2,C}, the differential of − 1
n

∑n
i=1 U i (Ω) for each parameter are given

Iαsαl = (−1)I (s �=l) I (s �= 2, l �= 2)
1

n

n∑

i=1

[
exp(α1 + β ′

1Zi ) exp(αC + β ′
C Zi )

{
exp(α1 + β ′

1Zi ) + exp(αC + β ′
C Zi )

}2

]

+ 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)

{
X̃si (v) + I (s = 2)

} {
X̃li (v) + I (l = 2)

}
dv

+ I (s = l = C)
1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃Ci (v) exp(αC )dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂αs∂αl
− X̃si (v)X̃li (v)

}

dM2i (v),

Iαsβl = (−1)I (s �=l) I (s �= 2, l �= 2)
1

n

n∑

i=1

[
exp(α1 + β ′

1Zi ) exp(αC + β ′
C Zi )

{
exp(α1 + β ′

1Zi ) + exp(αC + β ′
C Zi )

}2

]

Zi

+ 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)

{
X̃si (v) + I (s = 2)

}
Z̃li (v) dv

+ I (s = l = C)
1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃Ci (v) exp(αC )Zi dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂αs∂βl
− X̃si (v)Z̃li (v)

}

dM2i (v),

Iαsθ = 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)

{
X̃si (v) + I (s = 2)

}
W̃ ′
i (v) dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂αs∂θ
− X̃si (v)W̃ ′

i (v)

}

dM2i (v),

Iβsβl = (−1)I (s �=l) I (s �= 2, l �= 2)
1

n

n∑

i=1

[
exp(α1 + β ′

1Zi ) exp(αC + β ′
C Zi )

{
exp(α1 + β ′

1Zi ) + exp(αC + β ′
C Zi )

}2

]

Z⊗2
i

+ 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)Z̃si (v)Z̃ ′

li (v) dv
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+ I (s = l = C)
1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃Ci (v) exp(αC )Z⊗2

i dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂βs∂βl
− Z̃si (v)Z̃ ′

li (v)

}

dM2i (v),

Iβsθ = 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)Z̃si (v)W̃ ′

i (v) dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂βs∂θ
− Z̃si (v)W̃ ′

i (v)

}

dM2i (v),

Iθθ = 1

n

n∑

i=1

∫ ζ

0
Yi (v)η̃2i (v) exp(α2)W̃

2
i (v)dv

− 1

n

n∑

i=1

∫ ζ

0

{
1

η̃2i (v)

∂2η̃2i (v)

∂2θ
− W̃ 2

i (v)

}

dM2i (v),

References

Chang SH, Wang MC (1999) Conditional regression analysis for recurrence time data. J Am Stat Assoc
94:1221–1230

Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York
Huang J (1996) Efficient estimation for the proportional hazards model with interval censoring. Ann Stat

24:540–568
Huang Y, Louis TA (1998) Nonparametri estimation of the joint distribution of survival time and mark

variables. Biometrika 85:785–798
Huang Y (2000) Multistate accelerated sojourn time model. J Am Stat Assoc 95:619–627
HuangX, Liu L (2007)A joint frailitymodel for survival and gap times between recurrent events. Biometrics

63:389–397
Lin DY, Ying Z (1997) Additive regression models for survival data Proceedings of the First Seattle Sym-

posium in Biostatistics: Survival Analysis. Springer, New York
Lin DY, Sun W, Ying Z (1999) Nonparametric estimation of gap time distributions for serial events with

censored data. Biometrika 86:59–70
Schaubel DE, Cai J (2004) Regression methods for gap time hazard functions of sequentially ordered

multivariate failure time data. Biometrika 91:291–303
Sun LQ, Park DH, Sun JG (2006) The additive hazards model for recurrent gap times. Stat Sin 16:919–932
VisserM (1996) Nonparametric estimation of the bivariate survival functionwith an application to vertically

transmitted AIDS. Biometrika 83:507–518
WangW,WellsM (1998)Nonparametric estimation of successive duration times under dependent censoring.

Biometrika 85:561–572
WangW, Ding AA (2000) On assessing the association for bivariate current status data. Biometrika 87:879–

893
Wang MC, Qin J, Chiang CT (2001) Analyzing recurrent event data with informative censoring. J Am Stat

Assoc 96:1057–1065
Wang MC, Chiang CT (2002) Nonparametric methods for recurrent event data with informative and non-

informative censorings. Stat Med 21:445–456
Zeng D, Lin DY (2006) Efficient estimation of semiparametric transformation models for counting

processes. Biometrika 93:627–640

123


	Regression analysis for bivariate gap time with missing first gap time data
	Abstract
	1 Introduction
	2 Data and model
	3 Maximum likelihood method
	3.1 Intensity and likelihood functions
	3.2 Estimation and asymptotic properties

	4 Numerical examples
	4.1 Simulation
	4.2 Data analysis

	5 Conclusion
	Acknowledgements
	Appendix 1: Proof of Theorem 1
	Appendix 2: Information matrix
	References




