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ABSTRACT
Identifying cost-effective decisions that can take into account of
medical cost and health outcome is an important issue under very
limited resources. Analyzing medical costs has been challenged
owing to skewness of cost distributions, heterogeneity across sam-
ples and censoring.When censoring is due to administrative reasons,
the total cost might be related to the survival time since longer sur-
vivals are likely to be censored and the corresponding total cost will
be censored as well. This paper uses the general linear model for
the longitudinal data to model the repeated medical cost data and
the weighted estimating equation is used to findmore accurate esti-
mates for the parameter. Furthermore, the asymptotic properties for
the proposed model are discussed. Simulations are used to evaluate
the performance of estimators under various scenarios. Finally, the
proposedmodel is implementedon thedata extracted fromNational
Health Insurance database for patients with the colorectal cancer.
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1. Introduction

Increasing cost in health care becomes great financial burdens inmany industrialized coun-
tries. Identifying cost-effective decisions that can take into account of medical cost and
health outcome is an important issue under very limited resources. Analyzing medical
costs has been challenged owing to skewness of cost distributions, heterogeneity across
samples and censoring [3].

When the sample is censored exogenously, the total cost over a period such as the
survival time (T) could be assumed independent of T. Nonetheless, owing to some admin-
istrative reasons, the study might be terminated at a pre-specified date τ . In turn, the total
cost might be related to T since longer survivals are likely to be censored and the cor-
responding total cost will be censored as well. The estimates constructed using only the
uncensored cases are likely to be biased [3,16,19].

Estimators for the total cost that adjust for the effect of censoring have been discussed.
The standard survival analysis techniques such as the Kaplan–Meier curve and the log rank
test can be applied to handle the censoring problem in estimating the total cost [9,10,13,26].
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However, this implementation might be incorrect since the total cost can be positively
correlated with the survival time [17,19]. An alternative way is to find proper weights for
observations when constructing the estimator for the total cost. Dividing the entire study
period of interest into several intervals, Lin et al. [19] derived 4 weighted sample mean
estimates, where where the weight can be either the Kaplan–Meier estimator for the prob-
ability of dying or for the probability of surviving to the start of each interval conditioning
on surviving to the start of the interval. On the contrary, using only the complete case for
total costs, Bang and Tsiatis [2] proposed a weighted average total cost where the weight is
the inverse of probability of a subject not being censored. The former estimators are more
efficient when costs in subintervals are available, while the later estimator is recommended
when only total costs are available on each patient [25,27].

To assess the effect of covariates, Baser et al.[3] and Lin [16–18] proposed regression
models. The construction of the regression models depends also upon the availability of
data. When only the total cost is available, Lin [17] used the proportional cox model to
model the censored total cost, where the survival time is replaced by the total cost. Besides
censoring, the total cost might be right-skewed and heterogoeneous and have a large pro-
portion of zero values. Liu et al. [22] proposed a flexible two-part random effect model
which includes the logistic model and the generalized gamma distribution and is used
to model the probability of positive cost and the medical cost, where the distribution of
the medical cost is assumed to be generalized gamma distributions. Chen et al. [6] sug-
gested using the generalized linear mixed model (GLMM), where the working variance
and covariance matrix is assumed to be a smooth function of the mean function known
as the penalized spline function and is used to model the heteroscedasticity. Besides using
GLMM, Locatelli and Marazzi [24] added the duration in the GLMM and the jointly esti-
mated the coefficientswith the parametric survivalmodel. Furthermore, to be able to adjust
for the incompleteness, the total cost estimate proposed by Lin et al. [19] is re-formulated
by plugging in the estimated coefficients from the parametric models.

When the cost is collected per subperiod over the entire study period of interest, Lin [16]
specified a linear regressionmodel for each subperiod using the same predictors, where the
error terms from the same subject are assumed to be correlated, and the average total cost
was then estimated by summing the cost for each subinterval and the unknown parame-
ters are estimated by the generalized estimating equation that is weighted by the inverse
of the probability of a subject not being censored. Following similar model constructions
and estimation techniques, Lin [16] extended the linear model to the generalized linear
model to model a more complex relationship between cumulative costs and time. Instead
of modeling a regression model for each subinterval, Baser et al. [3] treated costs for the
subperiods as a panel data and proposed using the random intercept model to take into
account of possible correlation between subperiods, where the observation is weighted by
the inverse of the probability of a subject not being censored.

The variance and covariance structure in the random intercept model is a compound
symmetric structure which assumes that constant variances for the panel and constant cor-
relations among panels. To have a more general association among the panel, in this paper,
we suggests using the general linear model for the longitudinal data to model the medi-
cal cost and the estimates of the parameters are derived based on the weighted estimating
equation, where the weight equals again the probability of a patient being uncensored. The
asymptotic properties of the corresponding estimators for the proposed model are derived
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in Section 2.2. Section 3 evaluates the performance of proposed parameter estimators using
Monte Carlo simulation. Section 4 illustrates the usage of these estimators using a real data
obtained fromNationalHealth Insurance (NHI)ResearchDatabase inTaiwan.Discussions
are given in Section 5.

2. Methods

2.1. Preliminaries

LetXi andCi denote the survival time and censoring time of the ith patient, i = 1, 2, . . . , n,
and be assumed to be independent. For the right-censored data, we are only able to observe
the smallest time of Xi and Ci. Let the observable data be denoted as Ti = min(Xi,Ci) and
δi = I[Xi ≤ Ci], where I[A] denotes the indicator of the event A.

The research duration is assumed to be fixed and be denoted as [0, τ), where τ is a pre-
specified constant. Let the duration be partitioned into K intervals, where the kth interval
is denoted as [tk, tk+1) and t1 = 0, tK+1 = τ . Let T∗

i = min(Xi, τ), T∗
ik = min(T∗

i , tk), and
δ∗
ik = I[Ci ≥ T∗

ik], k = 1, 2, . . . ,K and i = 1, 2, . . . , n. Let Yik denote the accumulative cost
in the kth interval for the ith subject. Owing to censoring, some Ỹik may be incompletely
observed. Obviously, Yik is completely observed if and only if δ∗

ik = 1. However, when Ti <

τ andTi ∈ (tk, tk+1) for some k, then the cost beyond the kth interval is not available. Thus,
adopting the cost setting in [16], let Ỹij denote the observable cost in the jth interval for the
ith patient, where Ỹij = 0 for all j> k if δ∗

ij = 1, Ỹij = · for all j> k if δ∗
ij = 0 and otherwise

Ỹij = Yij.
Suppose the medical cost is completely observable. In turn, the linear model for the

repeated measurements can be used to identify potential significant covariates and be
defined as

Yik = β0 + β1Zik,1 + · · · + βp−1Zik,p−1 + εik, i = 1, . . . , n, k = 1, . . . ,K, (1)

where Zik,j, j = 1, 2, . . . , p − 1 are the covariate observed at the kth interval for the ith sub-
ject. For simplicity, let Y ′

i = (Yi1,Yi2, . . . ,YiK) denote the medical cost for the ith subject
and the corresponding covariates be denoted as

Zi =

⎛
⎜⎜⎜⎝
Z′
i1

Z′
i2
...

Z′
iK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1 Zi11 Zi12 · · · Zi1,p−1
1 Zi21 Zi22 · · · Zi2,p−1
...

...
...

. . .
...

1 ZiK1 ZiK2 · · · ZiK,p−1

⎞
⎟⎟⎟⎠ ,

where Z′
ij = (1,Zij1,Zij2, . . . ,Zij,p−1). In turn, Equation (1) can be expressed as

Y i = Ziβ + εi, i = 1, . . . , n,

where β ′ = (β0,β1, . . . ,βp−1) and ε′
i = (εi1, εi2, . . . , εiK) is the measurement error.

The distribution of εi is assumed to be multivariate normal with mean 0 and vari-
ance–covariance matrix �.
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Given the observed cost data yi, i = 1, 2, . . . , n, the log-likelihood function is

l = −Kn
2

log(2π) − n
2
log |�| − 1

2

{ n∑
i=1

(yi − Ziβ)′�−1(yi − Ziβ)

}
. (2)

Differentiating l with respect to β yields

n∑
i=1

Z′
i�

−1(yi − Ziβ) = 0. (3)

The solution of ∂ l/∂β = 0 is the maximum likelihood estimator (MLE) of β . When � is
completely specified, a closed form solution for the estimator of β can be obtained as

β̂ =
( n∑

i=1
Z′
i�

−1Zi

)−1 ( n∑
i=1

Z′
i�

−1yi

)
. (4)

If � is unknown, the estimator β̂ and an estimator of � can be also obtained from the
likelihood function (see [11]). Since the MLE of � is a biased estimator, Fitzmaurice et al.
[11] suggested using the restricted likelihood function

l = −Kn
2

log(2π) − n
2
log |�| − 1

2

{ n∑
i=1

(yi − Ziβ)′�−1(yi − Ziβ)

}
− 1

2
log

∣∣∣∣∣
n∑

i=1
Z′
i�Zi

∣∣∣∣∣
to obtain the estimator of �, which is denoted as �̂. The asymptotic distribution of β̂ is

β̂ ∼ MVN

⎛
⎝β ,

( n∑
i=1

Z′
i�

−1Zi

)−1
⎞
⎠

(see [14]). The estimated covariance matrix is

�̂β =
( n∑

i=1
Z′
i�̂

−1
Zi

)−1

.

When � is completely unspecified and the number of partitions increases, the num-
ber of parameters in � can increase dramatically. For the repeated measures, there exist
certain characteristics in the association among the repeated measures. In turn, � may be
characterized into some specified parametric structures such as the compound symmetry
covariance structure, first-order autoregressive covariance structure, Toeplitz covariance
structure, etc. (see [11]). An appropriate structure is often determined by the likelihood
ratio statistics or Akaike information criterion (AIC).

2.2. Proposedmodels

Considering only the random intercept model, which is a special case of Equation (1),
Baser et al. [3] suggested using the inverse probability weight method (IPWM) to modify
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the influence of censoring. Analogously, based on the IPWM, the following derives the
estimators for Equation (1).

To derive the weighted estimators for Equation (1), the estimates using only the observ-
able data are discussed first as follows. Let the design matrix for the observable cost be
denoted as Z̃i = SiZi, where Si is a K ×K diagonal matrix and the kth diagonal element
equals 1 when the cost for the kth interval for the ith subject is observable and 0 otherwise.
Let ỹ′

i = (ỹi1, ỹi2, . . . , ỹiK) denote the observed medical cost for the ith subject. Based on
only observable data, the model defined in Equation (1) becomes

ỹi = Z̃iβ + ẽi, i = 1, . . . , n, (5)

where ẽi has the multivariate normal distribution with mean 0 and variance–covariance
matrix �̃. To use this model, censoring is assumed to be not associated with the total cost.

By using Equation (3), the estimator of β is obtained and denoted as

β̂
C =

( n∑
i=1

Z̃
′
i
ˆ̃
�−1Z̃i

)−1 ( n∑
i=1

Z̃
′
i
ˆ̃
�−1ỹi

)
(6)

and ˆ̃
�. The asymptotic distribution of β̂

C
is the multivariate normal with mean β and an

estimated asymptotic variance covariance matrix ˆCov(β̂C
) = (

∑n
i=1 Z̃

′
i
ˆ̃
�−1Z̃i)

−1.
To take into account of censoring, the estimating equation is modified as follows. Since

E[δ∗
ik/G(T∗

ik)] = 1, Equation (3) is modified as

n∑
i=1

Z̃
′
iW i�̃

−1
(ỹi − Z̃iβ) = 0, (7)

whereW i is a K × K diagonal matrix with the kth diagonal element being δ∗
ik/Ĝ(T∗

ik) and
Ĝ(t) is an estimated censoring distribution as defined in Equation (10).

To derive the estimator of β , we first assume �̃ is known. An explicit solution of the
estimator of β for Equation (7) can be obtained as

β̂
W =

( n∑
i=1

Z̃
′
iW i�̃

−1Z̃i

)−1 ( n∑
i=1

Z̃
′
iW i�̃

−1ỹi

)
. (8)

When �̃
−1

is unknown, Gourieroux et al. [12] and Liang and Zeger [15] have shown
that the resulting equation is asymptotically as efficient as if �̃

−1
is known. Let ˆ̃

� be
an estimator of �̃, and B̂ be an estimator of B as defined in Equation (13), which is
obtained by replacing the unknownquantities in Equation (13) by the following estimators:
ŵ1i,j = δ∗

ij/Ĝ(T∗
ij |V i),

ŵ2i,j =
δ∗
ij

n

n∑
k=1

δCk I[Tk ≤ T∗
ij] e

γ̂V i(T∗
ij)

S(0)(Tk, γ̂ )

−
δ∗
ij

n

n∑
k=1

n∑
l=1

δCl I[Tk ≥ Tl]I[Tl ≤ T∗
ij](e

γ̂V i(Tl))2

n(S(0)(Tl, γ̂ ))2
+ ĥ′(T∗

ij ;V i)�̂
−1

δ∗
ij

n

n∑
k=1
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×
{

δCk I[Tk ≤ T∗
ij](V i(Tk) − S̄(Tk, γ̂ ))

[
1 − eγ̂V i(Tk)

∑n
l=1 I[Tl ≥ Tk]

nS(0)(Tk, γ̂ )

]}
,

ĥ′(T∗
ij ;V i) =

δCi (eγV i(T∗
ij ))2(V i(T∗

ij) − S̄(T∗
ij , γ̂ ))

nS(0)(T∗
ij , γ̂ )

,

�̂ = 1
n

n∑
k=1

δCk

[
S(2)(Tk, γ̂ )

S(0)(Tk, γ̂ )
− (S̄(Tk, γ̂ ))⊗2

]
.

Also, let Ân denote an estimator of An as defined in Equation (A6), which is obtained by
replacing � by ˆ̃

� in Equation (A6). Appendix 2 shows that n1/2(β̂
W − β) converges in

distribution to a p-variate zero-mean normal random vector with a covariance matrix that
can be consistently estimated by Â−1

n B̂Â−1
n .

3. Simulations

The performance of model estimates is evaluated by Monte Carlo simulations. Both the
survival time and the yearly cost are generated. The settings for generating the survival
time is taken from [16,19]. The survival time is generated from two distributions. The
first distribution is the exponential distribution with mean μ = 6 and the second distri-
bution assumes the Weibull distribution with shape = 2 and scale = √

6. The censoring
time is generated only from the exponential distribution with mean c, where c is deter-
mined according to the probability of censoring. Three censoring situations are considered.
Specifically, under the exponential survival assumption, c equals 25, 15, 8, which corre-
spond to the probability of censoring being 27%, 36% and 45%. Under theWeibull survival
assumption, c equals 10, 7, 5 and results in the probability of censoring being 29%, 40%
and 55%.

Tohave amean response curve similar to the pattern displayed in Figure 5 , the piecewise
linear model is considered and defined as

Yik = β0 + β1Zi + β2tik + β3(tik − 2)+ + ui + eik, i = 1, 2, . . . , n; k = 1, 2, . . . , 10,

where Zi is a dummy variable for the treatment, (t)+ = max(0, t), ui is the random normal
intercept with mean 0 and variance σ 2

u and eik is the random error having a normal distri-
bution with mean 0 and variance σ 2

e = 1. Assume σ 2
u = 0.25, 1, 4 and β0 = 0.5, β1 = 1

and β2 = −1, β3 = 1.5. Also, for a random intercept model, there exists an intraclass
correlation coefficient (ICC) among panels, where ICC = ρ = σ 2

u/(σ 2
e + σ 2

u ) and under
the preceding settings, ρ equals 0.2, 0.5 and 0.8. The variance and covariance matrix is a
compound symmetric structure, that is,

� =

⎡
⎢⎢⎢⎣

σ 2
e + σ 2

u σ 2
u · · · σ 2

u
σ 2
u σ 2

e + σ 2
u · · · σ 2

u
...

...
. . .

...
σ 2
u σ 2

u · · · σ 2
e + σ 2

u

⎤
⎥⎥⎥⎦ .

The detailed simulation setting for cost is described in Tables A1 and A2.
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The performance of each estimator is evaluated based on the bias, the standard error
of estimator (SSE), the mean of standard error of estimator (SEE) and the 95% coverage
probability (CP), which are computed from 10,000 simulated samples. Estimates of models
are obtained for four different methods:

Method I: � is a diagonal matrix and no adjustment is set for the censoring bias. The
estimate of β1 is denoted as β̂IC.
Method II: � is a diagonal matrix and IPWM adjustment is applied for the censoring
bias. The estimate of β1 is denoted as β̂IW.
Method III: Dependence is considered and no adjustment is set for the censoring bias.
The estimate of β1 is denoted as β̂C.
Method IV: Dependence is considered and IPWM adjustment is applied for the
censoring bias. The estimate of β1 is denoted as β̂W.

Figure 1(a) displays the bias (×10−3) of the estimates in terms of P[C ≤ X] = 0.27, 0.36
and 0.45 assuming the exponential survival distribution andρ = 0.8. The difference in bias
is rather small. In particular, the bias reduces as n increases. The estimates obtained from
the independent covariance structure have slightly larger bias. When P[C ≤ X] is small,
the difference in bias between different methods is small, whereas for larger P[C ≤ X], a
relative large difference is displayed. The performance in terms of SSE and SEE is given
in Figure 1(b) and 1 (c). Obviously, both indices decline as the sample size increases but
the difference in SSE and SEE is small. Nevertheless, both indices increase as P[C ≤ X]
increases. The estimate β̂IW has the largest SSE and SEE. Finally, Figure 1(d) provides CP

−
15

−
10

−
5

0
5

10

B
ia

s 
(1

0ˆ
−

3)

100 250 500

IC1
IW1
C1
W1

IC2
IW2
C2
W2

IC3
IW3
C3
W3

0.
00

0.
10

0.
20

0.
30

SE
E

100 250 500

IC1
IW1
C1
W1

IC2
IW2
C2
W2

IC3
IW3
C3
W3

0.
00

0.
10

0.
20

0.
30

SS
E

100 250 500

IC1
IW1
C1
W1

IC2
IW2
C2
W2

IC3
IW3
C3
W3

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

C
P

100 250 500

IC1
IW1
C1
W1

IC2
IW2
C2
W2

IC3
IW3
C3
W3

(a) (b)

(c) (d)
Bias SSE

SEE CP

Figure 1. Performance of estimators in terms of P[C ≤ X] = 0.27, 0, 36, 0.45 under the exponential sur-
vival time and ρ = 0.8, where IC1, IC2 and IC3 correspond to estimates for P[C ≤ X] = 0.27, 0.36, 0.45
and the others are defined similarly.
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Figure 2. Performance of estimators under ρ = 0.2, 0.5, 0.8, P[C ≤ X] = 0.45 and the exponential sur-
vival time, where IC2, IC5 and IC8 correspond to estimates forρ = 0.2, 0.5, 0.8 and the others are defined
similarly.

of the estimates with respect to the sample size and P[C ≤ X]. As the sample size increases,
CP is closer to 0.95. In particular, when the dependent covariance structure is incorporated
and P[C ≤ X] is small, CP is closer to 0.95.

Figure 2(a) displays the bias (×10−3) of the estimates in terms of ρ assuming the expo-
nential survival distribution and P[C ≤ X] = 0.45. The bias of estimates is again very
small. When ρ is moderate, bias is very robust with respect to n. When ρ is large, the
bias increases slightly when n=500. However, ρ has stronger impact on SSE and SEE as
given in Figure 2(b) and 2 (c). Larger ρ yields larger SSE and SEE, but the difference in SSE
and SEE reduces as n increases. Figure 2(d) presents CP with respect to the sample size and
ρ. Again, when n is small, CP is smaller than the desired confidence level (95%). Further-
more, increasing ρ yields CP slightly closer to the desired level, especially when n is small.
Overall, estimates using dependent covariance structures have better performance. The
detailed performance in terms of four indices with respect to n, ρ and P[C ≤ X] assuming
the exponential survival time is given in Table A1.

Given ρ = 0.8 and the Weibull survival time, Figure 3(a) displays the performance in
terms of bias with respect to n and P[C ≤ X]. The bias is again small but is slightly larger
than that under the exponential survival time. As n increases, the bias reduces slightly.
Also, when n is small, P[C ≤ X] influences the bias and larger P[C ≤ X] has larger bias.
Furthermore, the estimates using the independent covariance structure have slightly larger
bias when n is small and P[C ≤ X] is large. Figure 3(b) and 3 (c) display SSE and SEE in
terms of n and P[C ≤ X]. Again, n has a strong impact on SSE and SEE, whereas P[C ≤ X]
has very mild impact on SSE and SEE. Among different methods, SSE and SEE derived
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Figure 3. Performance of estimators under P[C ≤ X] = 0.29, 0.40, 0.55, ρ = 0.8 and the Weibull sur-
vival time, where IC1, IC2 and IC3 correspond to estimates for P[C ≤ X] = 0.29, 0.40, 0.55 and the others
are defined similarly.

from Method I are larger than those from other methods. In particular, when P[C ≤ X]
is large, the difference is very evident. Finally, Figure 3(d) shows the result for CP. CP is
again influenced by n. As n increases, CP is much closer to the desired confidence level.
Also, when n is small, P[C ≤ X] also influences CP. That is, CP is closer to the desired
confidence level when P[C ≤ X] is small. Overall, estimates with dependent covariance
structures have better performance.

Figure 4(a) displays the bias when P[C ≤ X] = 0.55 and the Weibull survival time for
ρ = 0.2, 0.5, 0.8. The bias is slightly larger than that for the Weibull survival time. n and
ρ has some influences on bias. Specifically, when n is small and ρ is large, the estimates
that incorporate the independent covariance structure have larger bias. The difference in
bias of estimates becomes small when n=500. Figure 4(b) and 4 (c) provide the tendency
of SSE and SEE in terms of n for ρ = 0.2, 0.5, 0.8. The performance in terms of SEE and
SSE with respect to n and ρ is similar to the Weibull survival time. Figure 4(d) shows the
influence of n and ρ on CP. The ability in preserving CP increases as n and ρ increases.
In particular, when Methods I and II are used, the ability in preserving CP reduces. The
detailed performance in terms of four indices with respect to n, ρ and P[C ≤ X] assuming
theWeibull survival time is given inTableA2. The performance of other estimates is similar
to that of β1 (data not shown).

4. Application tomedical cost for colorectal cancer

Themedical cost for colorectal cancer extracted fromNHI database is used to illustrate the
feasibility of the proposed model. Hospitals in Taiwan were categorized into the regional
hospital, the teaching hospital and the academic medical center. Normally, in Taiwan, the
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Figure 4. Performance of estimators under ρ = 0.2, 0.5, 0.8, P[C ≤ X] = 0.55 and the Weibull survival
time, where IC2, IC5 and IC8 correspond to estimates for ρ = 0.2, 0.5, 0.8 and the others are defined
similarly.

academicmedical center charges higher and gainsmore support fromNHI. The purpose of
the analysis is to investigate the potential influential factors that would effect the five-year
medical cost for treating a colorectal patient.

The patient diagnosed of having colorectal cancer in 1999–2000 was included in the
study. The inclusion criteria was set to extract patients whose ICD9 codes in inpatient
records contained ‘155’ in 1999–2000. To avoid including the recurrent patients, we
excluded patients whose ICD9 codes in inpatient records contained ‘155’ in 1998, since
clinically, a patient who had colorectal cancer would require inpatient medical care and be
usually followed constantly. Furthermore, since gender was an important factor, subjects
with inconsistent gender informations in the medical records were excluded. In addition,
the mortality data were not available in this study. Nonetheless, since it is required to be
insured with NHI for all residents in Taiwan, when an insured withdraws, the possibility
that the insured decreases is high, especially for the cancer patient. Thus, in this paper, the
date that patients withdrew from NHI was treated as a proxy for patient’s date of death.
Under such an assumption, subjects were also excluded when the medical records existed
after the proxy date of death. Overall, there were 7646 eligible patients.

The medical cost for 7646 eligible patients was extracted from the inpatient and out-
patient medical records from 2001 to 2006. The yearly accumulative medical cost was
computed for 5 consecutive years. The survival time was defined as the time from diag-
nosis to death. The survival time and medical costs were censored for patients who were
still alive at the end of 2006. The censoring was sorely caused by the limited study duration.
The overall censoring proportion was 44.7%.
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Figure 5. Mean response curve for medical cost.

Table 1. AIC and log likelihood values for the fourth degrees of polynomial mean model with various
covariance structures.

Unweighted model Weighted model

df AIC −2 log L G2 AIC −2 log L G2

ANTE(1)a 9 64,846b 64,826 – 60,063b 60,043 –
TOEPHc 9 65,066 65,048 222 60,359 60,339 296
ARH(1)d 6 65,089 65,075 249 60,386 60,372 328
CSHe 6 65,769 65,757 931 X X
Independence 1 72,624 72,622 7796 68,254 68,252 8209

Notes: aANTE(1) is the ante-dependent covariance matrix. bModel has a smaller AIC value. cTOEPH is the heterogeneous
Toeplit covariance matrix. dARH is the heterogeneous AR(1) covariance matrix. eCSH is the heterogeneous compound
symmetry covariance matrix. X, model does not converge.

Three basic demographic variables were considered including sex, age and area of res-
idence. Age was categorized into 6 groups, under 35 years of age, 36–45, 46–55, 56–65,
65–75 and over 76. Areas of residence in Taiwan consist of Taipei city, northern region,
central region, southern region and Kaohsiung. In particular, Taipei is the capital and
Kaohsiung is the main metropolitan area in the southern Taiwan. Three disease-related
information were extracted including the Charlson index (see [5]), stage of cancer and
treatment. Four types of treatment combinations were discussed including without any
treatment, surgery only, surgery with chemotherapy only, and surgery with chemotherapy
and radiotherapy.

Figure 5 displays the mean response curve for the medical cost. Owing to the cost for
the initial treatment, the medical cost for the first-year cost was much higher than that for
the following years. To find an appropriate covariance pattern structure for the mean cost
model, the fourth degrees of polynomial meanmodels with a random intercept controlling
for sex, age group, residential areas, type of hospitals, the level of the hospital, cancer stage
and the type of treatments, was used. Table 1 lists AIC and log likelihood values for mod-
els under various covariance–covariance pattern assumptions. The the ante-dependence
structure (ANTE(1)), whose ijth element is σiσj

∏j−1
k=i ρk, has the smallest AIC value for

both the unweighted and weightedmodel. The ANTE(1) is used to establish the final mean
model. The log likelihood value is obtained and is listed in Table 2. Based on the likelihood
ratio test, the cubic model is selected.
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Table 2. Log likelihood values for various degrees of polynomial mean models under the ante-
dependent covariance structure.

Model Linear Quadratic Cubic Fourth degree

Linear – 610 2057 2073
Quadratic – – 1447 1463
Cubic – – – 16a

Note: aLR test is not rejected at α = 0.05.

Table 3. Parameter estimates for the colorectal cancer data.

Unweighted model Weighted model

Variable β̂ SE p Value β̂ SE p Value

Sex
Female vs. Male −0.0887 0.0179 < .0001 −0.0819 0.0182 < .0001

Age
35 – vs. 76+ −0.0175 0.0573 .7602 0.1236 0.0601 .0396
36 – 45 vs. 76+ 0.0200 0.0398 .6158 0.0888 0.0409 .0299
46 – 55 vs. 76+ −0.0042 0.0314 .8943 0.0515 0.0320 .1075
56 – 65 vs. 76+ −0.0231 0.0270 .3928 0.0195 0.0275 .4771
66 – 75 vs. 76+ −0.0685 0.0239 .0042 −0.0442 0.0242 .0681

Hospital private vs. public −0.0193 0.0206 .3475 −0.0271 0.0208 .1942
Region Central vs. Taipei −0.0860 0.0261 .0010 −0.0826 0.0265 .0018

Kaohsiung vs. Taipei −0.2108 0.0269 < .0001 −0.2067 0.0274 < .0001
Northern vs. Taipei −0.2244 0.0277 < .0001 −0.2314 0.0281 < .0001
Southern vs. Taipei −0.0417 0.0297 .1599 −0.0291 0.0301 .3346

Level regional vs. Medical −0.1490 0.0221 < .0001 −0.1359 0.0224 < .0001
Teaching vs. medical −0.5160 0.0273 < .0001 −0.4717 0.0281 < .0001

Stage II vs. I 0.4054 0.0252 < .0001 0.3702 0.0253 < .0001
III vs. I 0.6191 0.0322 < .0001 0.5639 0.0319 < .0001
IV vs. I 0.7569 0.0274 < .0001 0.7023 0.0273 < .0001

Comorbidity 0.0835 0.0066 < .0001 0.0738 0.0066 < .0001
Treatment

Surgery vs. no 3.7478 0.4727 < .0001 3.7789 0.4010 < .0001
Surgery and chemo vs. no 3.0543 6.7400 < .0001 3.0191 0.3777 < .0001
Chemo and radio vs. no 0.8964 1.7800 .0751 0.8841 0.4387 .0439

Time
Time −4.2170 0.6678 < .0001 −4.2025 0.5419 < .0001
Time2 1.3468 0.2589 < .0001 1.3852 0.2056 < .0001
Time3 −0.1383 0.0293 < .0001 −0.1450 0.0228 < .0001

Time× Treatment
Time× surgery −3.3441 0.7121 < .0001 −3.6238 0.5974 < .0001
Time× surgery and chemo −1.9857 −2.9000 .0037 −2.2035 0.5634 < .0001
Time× chemo and radio −0.0142 −0.0200 .9850 −0.1751 0.6557 .7894

Time2 × Treatment
Time2 × surgery −0.1007 0.0311 .0012 1.1042 0.2266 < .0000
Time2 × surgery and chemo −0.0548 −1.8200 .0680 0.6193 0.2139 .0038
Time2 × chemo and radio −0.0004 −0.0100 .9899 0.0170 0.2504 .9460

Time3 × treatment
Time3 × surgery 1.0183 0.2752 .0002 −0.1085 0.0251 < .0001
Time3 × surgery and chemo 0.5528 2.0900 .0369 −0.0609 0.0237 .0104
Time3 × chemo and radio −0.0126 −0.0400 .9658 −0.0020 0.0279 .9417

Table 3 provides the estimates of coefficients for the unweighted method and the
weighted method. Estimates obtained from both methods for controlling variables except
age were similar. Controlling for other factors, males spend significantly more. Patients
who resided in Taipei city had significantly higher averaged cost than those who resided
in other areas. The largest difference in estimates appeared between Taipei city and the



300 Y. T. HWANG ET AL.

Time (in years)

lo
g(

C
os

t)

1 2 3

20
40

60
80

10
0

12
0

lo
g(

C
os

t)

4 5

Time (in years)

1 2 3 4 5

6
8

10
12

No
Surgery & chemo
Surgery only
Chemo & radio

No
Surgery & chemo
Surgery only
Chemo & radio

(a) (b)

Independent model Weighted model

Figure 6. Predicted medical cost for the reference group.

northern area. As expected, patients who were treated in the medical center would spend
more than those patients who were treated in the regional hospitals and teaching hospi-
tals. Furthermore, patients, whose cancer stage was more advanced and who had more
comorbidity, had higher average medical cost.

The other explanatory variables showed different impact on the cost. The weighted
method showed that as compared to patients with 76 years of age and older, younger
patients (under 35 years old and 36–45 years of age) spend significantly more medical
expenditure, whereas the unweighted method only discovered that patients who were 76
years old and higher would spend significantly more than those who were 66–75 years
of age. A different time trend and time by treatment interaction were found. The esti-
mates of the third degree for the unweighted method were positive, whereas those for the
weightedmethod were negative. Furthermore, the magnitudes for the unweightedmethod
were much larger.

To be more precise, Figure 6(a)–6(b) display the predicted cost derived from both
models for the reference group. The unweighted method provided an increasing trend in
cost, which is very different from the mean response curve shown in Figure 5(b). Fur-
thermore, the cost for patients having only surgery was much higher than that for others
and increased exponentially with time and unexpectedly, the estimated cost for patients
with no further treatment and with chemotherapy and radiotherapy was constant over the
five years. On the contrary, the predicted cost for the weighted method decreased as time
increased, which is much coincide with the mean response curve displayed in Figure 5(a)
and the estimated cost for patients with only surgery or without any further treatment
would be lower than those who have other treatments as expected.

5. Discussion and conclusion

Since censoring in the cost data is not the same as that for the survival data, the usual
methodology for analyzing survival data can not be implemented directly. Taking the
advantage that the cost data are normally sequentially recorded, this paper modifies the
estimating equation in the general linear model for the longitudinal data to analyze the
cost data. This modification takes into account of the sampling bias by considering a



JOURNAL OF APPLIED STATISTICS 301

weight defined as the inverse of the probability of a patient not being censored. Further-
more, we derive the asymptotic properties of model estimators and use simulations to
demonstrate the feasibility of the proposed models. The simulation shows that estimates
with proper covariance data structure and proper adjustment for the selection bias have
better performance.

When cost data can be divided into subintervals, Lin [16,18] specified a set of lin-
ear regression models for the cost in each subinterval and the average of the total cost
is estimated by summing up the regression coefficients. Although the model establish-
ment allows some correlations within the same subject, but the estimating procedures in
Lin [16,18] do not take into account of these correlations. Based on the proposed model,
the relationship between time and cost can be modeled by selecting the appropriate trend
model. By weighting the observations by IPW, Baser et al. [3] proposed using the random
intercept model to model the panel cost data. Under the random intercept model, the vari-
ance of covariance of cost among the panel is the compound symmetric structure. The
estimating procedure for the proposed model adapted from Equation (13) in [16] is more
general and takes into account a more general association structure for the panel.

A parametric models for covariance structure is often preferred when analyzing longi-
tudinal data since it involves fewer parameters and can be estimated more accurately. The
more the complexity of covariance structure, the less the efficiency of estimators. However,
the gains in efficiency may be often modest and well be outweighed by the potential loss
of consistency when the parametric assumption for the covariance structure is wrongly
specified (see [8]).
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Figure 7. Performance of estimators in terms of skewness α = −0.9, 0, 0.9, ρ = 0.5 and n= 250, the
exponential survival time and a skewed normal random intercept, where IC1, IC2 and IC3 correspond to
estimates for P[C ≤ X] = 0.29, 0.40, 0.55 and the others are defined similarly.
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Figure 8. Performance of estimators in terms of skewness α = −0.9, 0, 0.9, ρ = 0.5 and n= 250, the
exponential survival time and a skewed normal random error, where IC1, IC2 and IC3 correspond to
estimates for P[C ≤ X] = 0.29, 0.4, 0.55 and the others are defined similarly.

To understand the robustness of our proposed model in terms of the normal assump-
tion, additional simulations are performed. That is, we assume that the distribution of the
random intercept and random error is the skewed normal distribution (see [1]). Varying
the skewness, Figure 7 provides the performance of β̂ in terms of four indices assuming the
distribution of random intercept is a skewed normal distribution. Bias again is small. when
the correct covariance structure and proper weights are implemented, SSE and SEE are rel-
atively small and are robust with respect to skewness. However, when the distribution is
left-skewed, CP might be slightly away from the desired level as the probability of censor-
ing increases. Figure 8 provides the performance of β̂ in terms of four indices assuming
the distribution of the random error is a skewed normal distribution. Bias again is small.
SSE and SEE are relatively small when proper adjustments are implemented and are robust
with respect to skewness. When the skewness increases, the estimate with an appropriate
adjustment is much closer to the nominal CP level. Depending upon the skewness, CP
for the estimate constructed from the independent situation might be overestimated or
underestimated the nominal level depending upon the probability of censoring.

IPWM is a conceptually simple way to adjust for incomplete data. However, it is inef-
ficient and sensitive to the choice of weighting method. A series of papers that proposed
to improve IPWM over the last decade have been published (see [4,28–30]). Implement-
ing different imputing methods may improve the efficiency of estimators for the proposed
model. In addition, Liu et al. [23] and Liu [21] proposed the joint model for the mixed
model and proportional hazardsmodel that included a shared randomeffect to incorporate
the association between medical costs and survival may be considered.
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Appendix 1. Estimating the censoring distribution

When the censoring time depends on covariates, the proportional hazards model can be used to
formulate the effects of covariates. Define the proportional hazards model as

λ(t |V) = λ0(t) eγ
′V(t), (A1)

where V(t) is a subset of covariates Z, λ0(t) is an unspecified baseline hazard function of C and
λ(t |V) is the conditional hazard function of C given V . To avoid the identifiability problem, we
assume C is independent of all other random variables conditioning on V .

The parameters in Equation (A1) can be estimated by the partial likelihood function [7]. Let the
estimators be denoted as γ̂ and also let δCi = 1 − δi. Furthermore, to ease the representations, we
introduce the notations a⊗0 = 1, a⊗1 = a, a⊗2 = aa′ for any vector a and

S(ρ)(t; γ ) =
n∑
i=1

I[Ti ≥ t] eγ
′V i(t)V⊗ρ

i (t), ρ = 0, 1, 2.

S̄(t, γ ) = S(1)(t, γ )

S(0)(t, γ )
.

Let G(t) = P[Ci ≥ t]. Under Equation (9), an estimator for G is given as

Ĝ(t |V) = exp

⎧⎨
⎩−

n∑
j=1

δCj I[Tj < t] eγ̂
′V(Tj)

S(0)(Tj; γ̂ )

⎫⎬
⎭ . (A2)

Appendix 2. Proofs of asymptotic results

To derive the asymptotic properties of β̂
W
, we first rewrite the ith diagonal element ofW i as

δ∗
ik

Ĝ(t |V)
= δ∗

ik
G(t |V)

+ δ∗
ik(G(t |V) − Ĝ(t |V))

Ĝ(t |V)
. (A3)

Modifying (2.1) in [20], we can show that the second term in the right-hand side of Equation (A3)
is asymptotically equivalent to

δ∗
ik
n

n∑
i=1

∫ t

0

eγ
′V i(t)

s(0)(x)
dMi(x) + h′(t;V)�−1 δ∗

ik
n

n∑
i=1

∫ t

0
V i(x) − s̄(x) dMi(x) + op(1), (A4)
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where s(ρ)(t) = limn→∞ n−1S(ρ)(t; γ ), s̄(t) = s(1)(t)/s(0)(t),

h(t;V) =
∫ t

0
eγ

′V(t)(V(x) − s̄(x))λ0(x) dx,

� = lim
n→∞ n−1

n∑
i=1

δCi

{
s(2)(Ti)

s(0)(Ti)
− s̄⊗2(Ti)

}
,

Mi(t) = δCi I[Ti ≤ t] −
∫ t

0
I[Ti ≥ x] eγ

′V i(x)λ0(x) dx.

By the law of large numbers, when t = T∗
ik, Equation (A4) converges in probability to a well-defined

limits, say w2i,k.
LetW i = W1i + W2i whereW1i andW2i are the diagonalmatrices with the jth diagonal element

being δ∗
ij/G(T∗

ij |V) and w2i,j, respectively. The left-hand side of Equation (7) can be rewritten as
Un(β) = U1n(β) + U2n(β), where

U1n(β) =
n∑

i=1
Z̃

′
iW1i�̃

−1
(ỹi − Z̃iβ),

U2n(β) =
n∑

i=1
Z̃

′
iW2i�̃

−1
(ỹi − Z̃iβ).

Based on the consistence of Ĝ and the Delta method, n−1/2Un(β) has an asymptotic multivariate
normal distribution with zero-mean and covariance matrix

B =
n∑

i=1
Z̃

′
i(W1i + W2i)�̃

−1
(W1i + W2i)

′Z̃i. (A5)

From the Delta method, n1/2(β̂
W − β) = A−1

n n−1/2Un(β), where

An = n−1
n∑

i=1
Z̃

′
iW i�̃

−1
Z̃i, (A6)

has an asymptotic multivariate normal distribution with zero-mean and covariance matrix
A−1BA−1, where An converges in probability to A.
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Appendix 3. Detailed simulation results

Table A1. Performance of adjusted cost estimator under the exponential survival.

P[C ≤ X] = 0.27 P[C ≤ X] = 0.36 P[C ≤ X] = 0.45

n ρ Indices β̂ IC β̂ IW β̂C β̂W β̂ IC β̂ IW β̂C β̂W β̂ IC β̂ IW β̂C β̂W

100 0.8 Bias 0.010 0.011 0.005 0.006 −0.000 −0.001 0.000 −0.001 0.000 0.001 0.001 0.002
SSE 0.514 0.530 0.489 0.498 0.526 0.554 0.498 0.516 0.539 0.582 0.513 0.541
SEE 0.487 0.500 0.467 0.476 0.503 0.524 0.483 0.498 0.524 0.554 0.503 0.526
CP 93.4 93.1 94.1 94.0 93.1 92.8 93.6 93.4 93.9 92.5 94.4 93.6

0.5 Bias 0.008 0.008 0.009 0.008 −0.005 −0.006 −0.006 −0.007 −0.004 −0.005 −0.004 −0.004
SSE 0.278 0.286 0.268 0.274 0.284 0.296 0.275 0.283 0.302 0.325 0.292 0.307
SEE 0.269 0.275 0.262 0.266 0.278 0.288 0.271 0.278 0.291 0.305 0.284 0.295
CP 93.7 93.6 94.3 93.7 94.4 93.9 94.4 94.2 93.9 93.0 94.5 93.4

0.2 Bias −0.009 −0.009 −0.011 −0.010 −0.008 −0.006 −0.009 −0.007 −0.002 0.001 −0.005 −0.001
SSE 0.175 0.179 0.173 0.176 0.190 0.197 0.187 0.192 0.203 0.216 0.201 0.210
SEE 0.182 0.185 0.180 0.182 0.191 0.196 0.189 0.193 0.203 0.211 0.200 0.208
CP 95.6 95.3 95.6 95.4 95.0 94.9 95.4 95.2 94.5 94.3 94.3 95.0

250 0.8 Bias 0.004 0.003 0.003 0.003 0.011 0.013 0.008 0.010 −0.001 −0.005 0.002 −0.001
SSE 0.316 0.327 0.300 0.306 0.322 0.340 0.304 0.315 0.347 0.376 0.328 0.346
SEE 0.312 0.322 0.297 0.304 0.323 0.338 0.307 0.318 0.336 0.360 0.320 0.337
CP 94.9 94.8 95.1 95.3 94.5 94.6 94.8 94.9 94.3 94.3 94.4 94.5

0.5 Bias −0.004 −0.004 −0.004 −0.004 0.006 0.007 0.005 0.006 −0.002 −0.002 −0.002 −0.003
SSE 0.173 0.178 0.168 0.170 0.182 0.191 0.176 0.180 0.186 0.202 0.178 0.189
SEE 0.172 0.176 0.166 0.169 0.178 0.186 0.173 0.178 0.187 0.199 0.181 0.190
CP 94.7 94.7 95.0 94.8 94.4 94.2 94.5 94.8 94.6 94.0 95.1 94.7

0.2 Bias −0.008 −0.007 −0.008 −0.008 −0.001 −0.001 −0.002 −0.002 0.002 0.004 0.001 0.003
SSE 0.114 0.117 0.113 0.115 0.117 0.121 0.116 0.119 0.125 0.132 0.124 0.129
SEE 0.114 0.117 0.113 0.114 0.120 0.123 0.118 0.121 0.126 0.133 0.125 0.131
CP 94.6 94.5 95.0 94.8 95.2 95.0 95.1 95.1 95.3 95.3 95.0 95.9

500 0.8 Bias −0.006 −0.006 −0.006 −0.006 0.001 0.001 0.002 0.001 −0.008 −0.009 −0.005 −0.007
SSE 0.225 0.233 0.212 0.217 0.234 0.246 0.222 0.229 0.233 0.254 0.221 0.234
SEE 0.221 0.228 0.210 0.214 0.228 0.240 0.217 0.224 0.238 0.257 0.226 0.239
CP 94.6 94.7 94.7 94.9 94.0 93.6 93.8 93.9 94.9 94.8 95.0 95.1

0.5 Bias 0.005 0.004 0.004 0.004 0.003 0.004 0.003 0.004 −0.003 −0.004 −0.003 −0.003
SSE 0.123 0.128 0.118 0.120 0.130 0.136 0.126 0.130 0.131 0.141 0.127 0.133
SEE 0.122 0.125 0.118 0.120 0.127 0.132 0.122 0.126 0.133 0.142 0.128 0.135
CP 94.8 94.5 95.2 95.1 94.1 94.1 94.3 94.2 95.3 95.3 95.3 95.5

0.2 Bias −0.005 −0.005 −0.005 −0.005 −0.001 −0.001 −0.001 −0.001 0.001 0.002 −0.000 0.001
SSE 0.082 0.084 0.081 0.082 0.084 0.088 0.083 0.086 0.089 0.095 0.087 0.092
SEE 0.081 0.082 0.080 0.081 0.084 0.087 0.083 0.085 0.089 0.094 0.088 0.092
CP 94.6 94.2 94.7 94.7 94.8 94.7 94.8 94.8 94.8 94.8 94.8 95.1

Notes: SSE is the sampling standard error of estimator. SEE is the sampling mean of standard error estimator. CP is the
coverage probability of the 95% confidence interval.
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Table A2. Performance of adjusted cost estimator under the Weibull survival.

P[C ≤ X] = 0.29 P[C ≤ X] = 0.40 P[C ≤ X] = 0.55

n ρ Indices β̂ IC β̂ IW β̂C β̂W β̂ IC β̂ IW β̂C β̂W β̂ IC β̂ IW β̂C β̂W

100 0.8 Bias 0.003 0.003 −0.004 −0.005 0.003 0.003 −0.000 −0.002 −0.010 −0.013 0.002 0.003
SSE 0.504 0.522 0.490 0.493 0.514 0.550 0.485 0.494 0.551 0.648 0.495 0.527
SEE 0.491 0.506 0.481 0.484 0.507 0.537 0.480 0.489 0.536 0.607 0.490 0.519
CP 93.6 93.7 94.4 94.4 93.9 93.8 94.7 95.0 93.7 92.3 94.9 94.2

0.5 Bias −0.012 −0.012 −0.007 −0.007 −0.006 −0.005 −0.002 0.001 −0.010 −0.012 −0.006 −0.006
SSE 0.260 0.268 0.251 0.252 0.273 0.290 0.255 0.261 0.293 0.342 0.273 0.298
SEE 0.255 0.262 0.247 0.249 0.263 0.277 0.251 0.258 0.282 0.317 0.264 0.287
CP 94.3 94.0 94.4 94.5 94.0 94.1 94.4 94.4 93.9 92.2 93.7 93.4

0.2 Bias 0.008 0.008 0.009 0.009 0.010 0.011 0.007 0.008 −0.000 −0.002 −0.000 −0.002
SSE 0.156 0.161 0.153 0.155 0.161 0.170 0.158 0.162 0.182 0.209 0.176 0.198
SEE 0.152 0.155 0.151 0.152 0.159 0.166 0.156 0.161 0.172 0.190 0.168 0.187
CP 93.9 94.2 94.5 94.5 94.4 93.7 94.7 94.8 93.0 91.8 93.4 92.5

250 0.8 Bias 0.004 0.004 0.006 0.005 0.006 0.007 0.000 0.000 −0.013 −0.018 −0.003 −0.002
SSE 0.332 0.343 0.316 0.318 0.329 0.353 0.306 0.311 0.351 0.416 0.311 0.332
SEE 0.315 0.326 0.306 0.308 0.326 0.347 0.305 0.311 0.344 0.400 0.310 0.329
CP 94.1 94.3 94.2 94.2 93.9 94.3 95.0 94.8 94.2 94.0 94.9 94.2

0.5 Bias −0.002 −0.002 −0.004 −0.005 0.008 0.008 0.009 0.009 −0.003 −0.004 −0.002 −0.001
SSE 0.169 0.174 0.164 0.165 0.172 0.183 0.162 0.166 0.187 0.219 0.172 0.185
SEE 0.164 0.169 0.159 0.160 0.171 0.182 0.162 0.166 0.182 0.210 0.168 0.184
CP 94.7 94.7 93.8 94.1 94.9 95.1 94.6 95.1 94.4 93.8 94.0 94.3

0.2 Bias 0.005 0.005 0.004 0.004 0.008 0.009 0.006 0.006 0.000 0.001 −0.002 −0.001
SSE 0.097 0.099 0.096 0.097 0.106 0.111 0.102 0.105 0.117 0.133 0.112 0.124
SEE 0.097 0.099 0.096 0.097 0.102 0.107 0.099 0.103 0.111 0.126 0.107 0.121
CP 94.6 94.0 94.6 94.4 93.8 93.7 94.5 94.2 93.5 93.6 93.8 94.6

500 0.8 Bias 0.010 0.011 0.007 0.007 0.001 0.001 0.002 0.002 −0.003 −0.004 −0.002 −0.003
SSE 0.224 0.231 0.216 0.218 0.231 0.247 0.220 0.222 0.247 0.289 0.225 0.236
SEE 0.223 0.231 0.217 0.218 0.231 0.246 0.216 0.220 0.245 0.286 0.220 0.233
CP 94.9 95.1 95.6 95.4 94.0 94.3 95.0 95.1 94.8 95.1 94.4 94.4

0.5 Bias −0.003 −0.003 −0.002 −0.002 0.003 0.004 0.002 0.003 0.004 0.003 0.003 0.003
SSE 0.117 0.120 0.113 0.114 0.121 0.129 0.113 0.116 0.131 0.154 0.119 0.130
SEE 0.117 0.120 0.113 0.113 0.122 0.129 0.115 0.117 0.130 0.151 0.119 0.130
CP 94.5 94.2 94.4 94.1 95.2 95.2 95.5 95.8 94.9 94.8 95.2 95.1

0.2 Bias 0.002 0.002 0.001 0.001 0.005 0.005 0.003 0.003 0.001 0.000 0.001 −0.000
SSE 0.071 0.072 0.070 0.071 0.072 0.075 0.071 0.073 0.080 0.092 0.077 0.086
SEE 0.069 0.070 0.068 0.068 0.072 0.076 0.070 0.073 0.079 0.090 0.076 0.086
CP 93.7 94.3 94.2 94.3 94.5 94.5 94.7 94.4 95.1 95.1 94.9 95.2

Notes: SSE is the sampling standard error of estimator. SEE is the sampling mean of standard error estimator. CP is the
coverage probability of the 95% confidence interval.
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