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Abstract
In family-based longitudinal genetic studies, investigators collect repeated measurements on a trait
that changes with time along with genetic markers. Since repeated measurements are nested within
subjects and subjects are nested within families, both the subject-level and measurement-level
correlations must be taken into account in the statistical analysis to achieve more accurate
estimation. In such studies, the primary interests include to test for quantitative trait locus (QTL)
effect, and to estimate age-specific QTL effect and residual polygenic heritability function. We
propose flexible semiparametric models along with their statistical estimation and hypothesis
testing procedures for longitudinal genetic designs. We employ penalized splines to estimate
nonparametric functions in the models. We find that misspecifying the baseline function or the
genetic effect function in a parametric analysis may lead to substantially inflated or highly
conservative type I error rate on testing and large mean squared error on estimation. We apply the
proposed approaches to examine age-specific effects of genetic variants reported in a recent
genome-wide association study of blood pressure collected in the Framingham Heart Study.
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1 Introduction
For quantitative traits that change with age, such as blood pressure and cholesterol level,
longitudinal genetic studies can offer valuable opportunity to detect genes that have a time-
varying effect and examine how genes affect developmental features of these traits. One
example of a longitudinal genetic study is the Framingham Heart Study (FHS) (Dawber et
al. 1951), a large ongoing prospective study of risk factors for cardiovascular disease (CVD)
originated in 1948. Since its initiation, the study has produced many major discoveries that
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have helped scientists understand the development and progression of heart disease and its
risk factors. In the FHS, repeated measurements are collected on subjects’ clinical
characteristics such as cholesterol level, blood pressure, and blood glucose. To understand
genetic underpinning of risk factors for CVD, dense single-nucleotide polymorphism (SNP)
genotyping was performed using approximately 550,000 SNPs in nearly ten thousand
individuals from three generation families in the FHS. The FHS provides an opportunity to
discover not only genes affecting mean value of a risk factor, but also the ones that affect
time-varying features such as rate of change over time in a trait.

Theories and evidences for genetic factors controlling time-varying developmental features
of a phenotype are noted in plant, animal and human genetics literature. For example,
complex biological organisms such as plants and animals have evolved through
accumulation of mutations in genes that control the developmental processes leading to their
mature forms (Rice 2002, Raff 2000, He et al. 2010). Rice (2002) described general
population genetic models which construct differential equations to relate developmental
features of traits to QTLs. From an evolutionary and developmental biology perspective,
Raff et al. (2000) discussed mechanisms of regulatory genes controlling developmental
features of complex organisms. Zhao et al. (2004) mapped genes controlling rice plant
growth which suggested plants with certain genes would manifest faster growth. In human
genetics, Province and Rao (1985) observed temporal trends for familial aggregation and
heritability of systolic blood pressure in a Japanese-American family study, and Jarvik et al.
(1997) demonstrated age-dependent effect of the apo-E genotype on lipid levels.

Despite these evidence, however, interactions among gene and age or age-dependent genetic
effect is routinely ignored in genetic analysis (Lasky-Su et al. 2008). One disadvantage of
such practice is that it may make discovery of individual genes with moderate effects more
difficult due to loss of power (Shi and Rao 2008). Another limitation is that it may
contribute to inconsistent replication of genetic association findings (Lasky-Su et al. 2008).
For example, when there exists gene-age interaction, subjects in a replication sample may be
in a different age range than the initial study sample so that the replication study may fail to
discover a gene that has an effect in the original study age range. Van Steen et al. (2005)
proposed screening and testing algorithms for replication within a single set of family data.

A naive way of analyzing longitudinal genetic data is to perform a set of genetic analyses at
each time point separately (Atwood et al. 2002). However, this approach ignores rich
information in the longitudinal structure and may not detect genes affecting time-varying
features of a trait. Strauch et al. (2003) reviewed several two-step methods: the first step is
either to take the average of trait measurements on a subject or to fit a longitudinal model
without consideration of genetic markers or family structures; the second step is to perform
genetic analysis on one or more summary statistics derived from the first step. This method
may be improved by a joint approach that fits longitudinal and genetic parameters
simultaneously. Shi and Rao (2008) and Zhang and Zhong (2006) used a parametric
function such as exponential or Gaussian to accommodate time-varying genetic effect in
linkage studies. Wu, Ma and Casella (2007) summarized parametric methods on functional
mapping of genes with time-varying effect through a Gaussian mixture model with
controlled population. Shi and Rao (2008) showed that ignoring temporal trends in genetic
effects can reduce power substantially. While the major advantage of parametric models is
its parsimony, they may not be flexible enough to describe the complicated underlying
relationship between the gene and the trait over time. Zhang and Zhong (2006) showed that
when the parametric genetic effect function is misspecified, the power for detecting genetic
effect can be greatly reduced to as low as 35%. It is therefore desirable to consider more
flexible semiparametric models to analyze data from longitudinal genetic studies. To this
end, Wu, Yang and Wu (2007) developed a nonparametric method using B-splines for the
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QTL genotype-specific mean curve through a normal mixture model, and Zhao and Wu
(2008) used a wavelet-based method. These mixture model based approaches may be
difficult to implement in general extended pedigrees.

In this paper, we first present semiparametric regression model for overall polygenic effect
with longitudinal data generated from family-based genetic studies such as the FHS. Next,
we extend the polygenic model to accommodate genetic markers and model age-dependent
associations. For family-based designs, subjects are nested in families and repeated
measurements are nested within subjects. Therefore it is critical to account for both the
subject-level and the measurement-level correlations in the statistical analyses to achieve
more accurate estimation. One of the key features of the family-based longitudinal genetic
studies is that subjects in the same family may not be independent, given any genetic
marker. This is because the marker under consideration may not fully explain familial
aggregation in a family. The residual unexplained genetic information aside from the marker
is termed unspecified residual polygenic effect which is modeled as a random effect.

Mixed effects model naturally lends itself to account for residual polygenic effect between
subjects in a family as well as serial correlation between repeated measurements of the
outcome on the same subject. Meanwhile, it is desirable to model the baseline function and
the genetic-effect function nonparametrically because there is usually limited information
about the parametric forms of these functions. For this purpose, we propose to use penalized
splines (P-spline; Eilers and Marx 1996) to estimate nonparametric functions in the model.
Penalized splines based methods have become popular in the recent literature (Ruppert,
Wand and Carroll 2003). In a penalized splines regression, an unknown smooth function is
estimated by assuming a high-dimensional spline basis and imposing a penalty on the spline
coefficients to control overfitting and achieve smooth fit. The number of knots in penalized
splines regression is usually less than the sample size. Empirical and theoretical work has
shown that the penalized spline as a reduced rank smoother can achieve similar quality of fit
as full rank estimators such as smoothing splines (Ruppert 2002; Li and Ruppert 2008;
Claeskens, Krivobokova, and Opsomer 2009). Another feature of penalized splines which
makes it particularly suitable for analyzing longitudinal genetic data is its mixed model
representation. By this representation, it is easy to handle random polygenic effect and all
approaches developed here can be implemented by standard statistical software packages
such as PROC MIXED in SAS or NLME in R, allowing researchers to use these methods on
routine basis.

The primary interests in this work are to estimate baseline function, age-specific QTL effect
and residual polygenic heritability, and to test for the QTL effect. The remaining of the
paper is organized as follows. In section 2, we propose two semiparametric regression
models for family-based longitudinal genetic studies to estimate baseline function and to test
and estimate time-varying QTL effect and residual polygenic heritability. In section 3, we
develop statistical methods for these two classes of models. In section 4, we perform
simulation studies to investigate properties of the proposed methods. In section 5, we apply
the developed methods to analyze the Framingham Heart Study blood pressure data. In
section 6, we discuss implications of our findings on FHS and possible extensions of the
proposed methods.

2 Models for longitudinal genetic studies
Here we propose semiparametric models for family-based longitudinal genetic studies. In
section 2.1, we introduce partially linear mixed effects models to handle polygenic effect
(overall genetic effect), and in section 2.2, we extend the models in section 2.1 to a semi-
varying coefficient partially linear mixed effects model to incorporate the QTL effect.
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2.1 Partially linear mixed effects model for polygenic effect
The first step in a genetic epidemiological study is to assess polygenic heritability of a trait
by examining similarity of a trait in family members before using any genetic markers. The
polygenic heritability quantifies the overall genetic impact on a trait. If there is no evidence
of polygenic effect or familial aggregation, it may not be necessary to pursue further study
such as linkage or association analysis that aims at locating the underlying loci affecting the
trait. On the contrary, if the evidence for genetic factor predisposing a trait is observed, then
in order to locate this factor along the genome, investigators decompose the polygenic effect
into a major genetic effect at a specific locus and a residual polygenic effect contributed by
other unlinked loci.

In statistical genetics theory, polygenic effect is treated as an unobserved random variable
with covariance matrix specified by relationship between relatives (Lynch and Walsh 1998;
Khoury, Beaty and Cohen 1993). To be specific, let Yijh be the phenotype measurement for
subject j in family i at visit h, and let tijh denote the subject’s age at this visit. A partially
linear mixed effects model for Yij(tijh) is defined to be

(1)

where μ(t) is an unspecified baseline function and xij are environmental exposures such as
sex with effects β, αi are random shared environmental effects such as diet shared among

family members,  are vectors of random polygenic effects, zijh are design
vectors for γij which can be time-dependent to capture an age-related polygenic effect, εij =
(εij1, …, εijnij )

T are random measurement errors with possible serial correlation, and GP(0,
ϑij) is a Gaussian process with covariance matrix ϑij. Inclusion of exposures with time-
varying effects are deferred to the next section where we introduce time-varying QTL
model. We assume that αi, γij and εij are independent. The random polygenic effect reflects
overall genetic information in a trait. Their covariance structure depends on the relationship
among family members (Khoury, Beaty and Cohen 1993, Chapter 7). Specifically,

(2)

where Ki is a known kinship coefficient matrix whose (j, j′)th element is determined by the
relationship between subjects j and j′ in family i, and Ωγ is an unknown covariance of the
polygenic effect. The kinship coefficient is defined as the probability of randomly drawing
an allele in subject j that is identical by descent (IBD) to an allele at the same locus

randomly drawn from subject j′. For example, twice the kinship coefficient, , for a full
sibling pair is 1/2 and for a half-sibling pair is 1/4 (Khoury, Beaty and Cohen 1993, page
211). Parameters in Ωγ represent the unknown polygenic variance which we are interested
in. The heritability is defined as the ratio of the genetic variance to the total variance, that is,

(3)

where  for a linear zijh design vector, ωij is

the (i, j)th element of Ωγ, and  is the variance of the residual random measurement
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error. A test of  based on functional principal components of heritability was proposed
in Fang and Wang (2009).

Although the mixed effects model formulation of penalized splines allows the baseline and
the QTL functions to be fitted by standard statistical softwares, one practical complication in
genetic study is how to impose the correlation structure of polygenic effect predicted by
kinship coefficients as shown in (2). In behavioral genetics, decomposing phenotypic
variance into genetic and environmental components are typically done by structural
equation models and estimated from specialized software such as Mx (Neale et al. 2004).
Guo and Wang (2002) ignored the kinship correlation in order to use standard software to fit
a multilevel model.

Rabe-Hesketh et al. (2008) showed that for most family designs, one can reparametrize the
polygenic effect into a few family-specific and subject-specific random effects allowing for
easy handling of polygenic effect by standard softwares. For example, for nuclear families,
one replaces the polygenic effect γij in model (1) by two family-specific and a subject-
specific random effects as

where Mij is a binary indicator for mother, Fij for father, and Cij for children. The family-
specific random effects ai1 and ai2 induce required correlation between parents and each
child and between the children. However the induced variance for children from these two
random effects is only half of the desirable variance and the other half is induced by the
subject-specific random effects aij. By this reparametrization, we can easily fit a
semiparametric model with polygenic effect by a standard software.

2.2 Semi-varying coefficient partially linear mixed effects model for QTL effect
When genetic markers such as SNPs are available, we add marker genotypes to model (1) to
assess association between a marker and a trait. Due to dense SNP genotyping, we assume
that the QTL is either at the SNP marker under consideration or tightly linked to it.

Let gij denote the SNP marker genotype for subject j in family i coded as the copies of minor
alleles which takes value 0, 1, or 2. Let xij denote time-invariant environmental covariate
such as gender, and let wij(t) denote time-varying exposures with potentially time-varying
effect such as body mass index. A semi-varying coefficient partially linear mixed effects
model for Yijh is

(4)

where γ̃ij is the residual polygenic effect aside from the QTL effect, and θ(t) is the
coefficient vector for covariates wij(t). In this model, in addition to the baseline function μ(t)
and other covariate effects, we are interested in estimating the time-varying genetic function,
βg(t).

The age-specific QTL heritability is then defined as (Falconer 1985)
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(5)

where  and . The QTL
heritability can be interpreted as the proportion of total variation explained by the QTL. The

residual polygenic heritability contributed by other unlinked loci is . The
total heritability in a trait is the sum of the QTL heritability and the residual polygenic
heritability.

To test for association between a genetic marker and a trait, we consider the null hypothesis
H0: βg(t) = 0. To test for constant genetic effect, that is, the genetic effect does not change
over time, we consider the null hypothesis H0: βg(t) = βg.

3 Statistical methods for longitudinal genetic studies
3.1 An estimation procedure for the partially linear mixed effects model

For simplicity, we use truncated polynomial basis in our estimation procedure. Extension to
other basis such as B-splines is discussed in section 6. We approximate the mean function
by a linear combination of spline basis functions

where τm, m = 1, ···, M is a given sequence of knots and q is the order of the splines. We
discuss selection of knots later in this section. For given variance components, we estimate
η and β by maximizing the penalized logarithm of the marginal likelihood defined as

(6)

where Y is a vector of outcome, Σ is the covariance of Y, J = diag(0q+1, 1M ) is a penalty
matrix, X and W are design matrices specified in the Appendix A.1 available at
www.columbia.edu/~yw2016, and λ is a smoothing parameter. When λ goes to infinity, the
spline coefficients are shrunk towards zero and the fit converges to a polynomial function.
When λ goes to zero, the fit converges to a weighted least square. The estimating equations
for β and η are constructed in the Appendix A.1. The solution for η takes the form of a ridge
regression estimate.

It is well known that there is a mixed effects model representation of penalized splines
(Ruppert, Wand and Carroll 2003; Wand 2003). We explore this connection to facilitate
computation using standard software. For penalized splines, Wand (2003) showed that the
solution to maximizing the penalized likelihood in (6) is identical to the best linear unbiased
predictor (BLUP) from a linear mixed effects model with certain choice of smoothing
parameter which we describe in the Appendix A.1. The key is to specify the spline
coefficients ηq+1, ···, ηq+M as random effects with the same variance and construct
appropriate design matrices for the fixed and the random effects.

The tuning parameters for penalized splines include number and placement of knots and
smoothing parameter λ. Once the number of knots has been chosen, we place them at equal
sample quantiles of the observed tijh’s. The smoothness of the fit is controlled by both M
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and λ. Ruppert (2002) and Claeskens, Krivobokova and Opsomer (2009) showed that when
M is adequately large, further increasing M not only does not improve the fit but also can
sometimes deteriorate the fit. For smooth and either monotonic or unimodal functions,
moderate number of knots is usually sufficient (Ruppert 2002; Yu and Ruppert 2002). The
smoothing parameter λ controls overfitting for moderate to large number of knots and plays
a more critical role than M.

For given M, λ can be chosen by generalized cross validation (GCV), minimizing AIC or
estimating by restricted maximum likelihood (REML). Krivobokova and Kauermann (2007)
investigated behavior of several data-driven smoothing parameter selectors including REML
and AIC with correlated data. It is found through theoretical derivation and simulations that
when the correlation structure is misspecified, the AIC-based choice failed to estimate a
function properly and the REML-based choice provides much more satisfactory fit and
exhibits less variability (Krivobokova and Kauermann 2007). To accommodate possible
misspecification of the correlation structure of εij(t), here we use REML to estimate the
smoothing parameters as shown in the appendix.

3.2 An estimation procedure for the semi-varying coefficient linear mixed effects model
For model (4), we also approximate βg(t) by a linear combination of basis functions, that is,

(7)

Varying-coefficients θ(t) for covariates other than genetic marker can be handled in a

similar fashion by the approximation . For
given variance components, the penalized logarithm of the marginal likelihood of β, η and ξ
is

where r = (Y − Xβ − Wη − S1ξ − S2θ), the design matrix S1 and S2 are defined in the
Appendix A.2, and λ1, λ2, and λ3 are smoothing parameters for the baseline, the genetic
effect function and varying coefficient for other covariate, respectively. In the Appendix A.
2, we expand the mixed effects model used to fit (1) to obtain the coefficients for time-
varying genetic effect. As described there, we select λ1, λ2 and λ3 by treating them as extra
variance components and estimating by REML.

3.3 Estimating the total variance

Since the total phenotypic variance function  is involved in the heritability function (3),
a non-parametric estimation is desirable. Fan, Huang and Li (2007) proposed a
semiparametric estimator of the covariance function ϑ(s, t). They assumed that the
correlation function has a parametric form, that is, ϑ(s, t) = Cov(εij(s), εij(t)) = ρε(s, t; ν),
where ρ is a known function, and ν is a vector of parameters. They estimated the variance
function ϑ(t, t) = Var(εij(t)) nonparametrically through local kernel smoothing. Here we
propose a penalized splines based approach.
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To be specific, we estimate the total variance function through a penalized splines regression
based on the residuals from Yijh after subtracting off the fitted mean curves, but not any of
the variance components, therefore they retain the total variability in the outcome. Let let

where η̂, β̂g, and θ̂ are the fitted value of the mean and the QTL genetic function. Similar to

the estimation of η and βg, we express  as a linear combination of basis functions,

We then estimate ρ by fitting a penalized splines regression to . Using the estimated
fixed coefficients and the BLUP of the random effects, the fitted value of the total variance
function will be

(8)

The estimated total variance is then used to calculate heritability in (3) and (5). We evaluate
performance of this procedure through examining MASE, mean bias and variance of
heritability estimates in section 4.

3.4 Testing for association between a marker and a trait
When the QTL genetic effect is time-invariant, the hypothesis of no association between a
marker and a trait is specified by H0: βg = 0 versus Ha: βg ≠ 0, which can be examined by a
standard Wald test. When fitting a time-varying QTL model, the hypothesis of no
association is

(9)

where ξ1, ···, ξq are coefficients for polynomial terms defined in (7) and  is the variance of
the random spline coefficients ξq+1, ···, ξq+M as described in the Appendix A.2. This
hypothesis can be examined by a likelihood ratio test. Crainiceanu and Ruppert (2004)
showed that the distribution of the likelihood ratio test of (9) for penalized splines mixed
model is non-standard due to lack of independence and the variance component parameter is
on the boundary under the null hypothesis. Using a conventional 50:50 mixture of chi-
square distributions may be conservative. For mixed models involving one variance
component, Crainiceanu and Ruppert (2004) derived the finite sample distribution and
asymptotic distribution of the likelihood ratio test. However, the asymptotic distribution of
likelihood ratio test for more complicated models with multilevel random effects is
unknown. Greven et al. (2008) proposed to estimate the mixing proportion of chi-square
distributions by simulation based on pseudo-likelihood ratio test for models with multiple
variance components.
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Here we propose to compute the p value by a permutation procedure. Since under the null
hypothesis the marker genotypes are not associated to the trait, we can permute genotypes
among subjects. However, it is not straightforward to randomize genotypes in a family
sample because simple permutation would not maintain phenotype correlation among
related individuals. The family members are not exchangeable under the null hypothesis
because even there is no major QTL effect, there may exist residual polygenic effect causing
family members to be correlated. Yang et al. (2010) proposed to permute genotypes among
founders and then simulate offspring genotypes conditionally on permuted founders’
genotypes based on Mendelian law while keeping the phenotypes as observed. Specifically,
we first permute the genotypes of founders (subjects who do not have parents) in a pedigree.
Give a set of permuted founders genotypes, we generate an offspring’s genotype by
randomly select an allele from each parent of the offspring following the Mendelian law.
Genotypes of siblings in the same family are assigned independently given their permuted
parental genotypes. For each copy of permuted genotype data, the same model fitting
procedure is carried out. In a genome-wide association study (GWAS), it is computational
challenging to conduct permutation for every SNP. Since the null distribution of the test
statistic is the same for SNPs with the same founder genotype frequency with a given family
data, one can group SNPs into strata that have the same or similar founder genotype
frequency, and only one permutation null distribution is needed for each group (Yang et al.
2010).

4 Simulations
In this section, we investigate performance of our proposed estimation and testing
procedures through Monte Carlo simulations. We simulated 100 nuclear families among
which 50 had two children, 30 had three and 20 had four. The number of observations on
each parent ranged from four to eight, the number of observations for children ranged from
two to four, and each subject was examined every two or four years. The total number of
observations was 1749. Subjects’ age ranged from 10 to 75 with a mean of 39.5. These
settings were close to the assessment schedule in the FHS. For the analysis involving genetic
marker, we simulated a fully linked genetic polymorphism with a dominant effect and a
minor allele frequency of 0.25. We assumed that the transmission of allele from parental
generation to offspring generation follows Mendelian law.

4.1 Time invariant genetic effect
In the first few simulations, the baseline function μ(t) was a logarithm function, −34.2 +
81.7 − log(0.25 − (t + 21.7)), where the parameters were estimated from fitting a logarithm
function to the FHS cholesterol data. Such function was used to simulate the baseline and
the genetic effect function on several traits at the Genetic Analysis Workshop 13 (GAW13,
Daw et al. 2003), where the simulations were designed to mock the actual FHS data
provided at the workshop. The random shared familial environmental factor αi had a
variance of 16, and the polygenic effect γij had a variance of 4. These parameters were
chosen so that the polygenic heritability is in the range of that estimated by the FHS
investigators (Levy et al. 2000). The variance function of residuals was an exponential
function, Var(εij(t)) = exp(0.02 − t). The correlation of the residuals was AR(1) with
autocorrelation parameter 0.6. We also examine other functional forms of μ(t) such as the
Gaussian or the sine function. The baseline function was estimated by cubic truncated
polynomials with 15 knots.

In simulation setting 1, we assumed βg(t) = βg in model (4), where the true values of βg are
shown in table (2). We computed the mean average squared error (MASE) of μ̂(t) as the
mean across the 500 simulations of the average squared error,
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where Tκ is a set of grid points over time and K is the cardinality of Tκ. Define the MASE

of  and  similarly. We summarize the maximal absolute relative bias, the mean bias
and the mean variance averaged over grid points Tκ, and the MASE in the fist five columns
of Table 1 (setting 1), which showed a small relative bias and MASE. The estimated time-
invariant genetic effect was 9.99 (true value: 10), with a mean estimated standard error of
0.26 (empirical standard error: 0.27).

We compare proposed semiparametric analyses where μ(t) was estimated through penalized
splines with a correctly specified nonlinear mixed effects model analysis and a misspecified
parametric analysis where μ(t) was assumed to be a quadratic polynomial function. The
results were recorded in the last six columns of Table 1 (setting 1). As expected, it is evident
that when μ(t) was misspecified its estimation had large bias. It may be of interest to note
that misspecification of the baseline function also affects estimation of the heritabilities. The

mean bias in the marker-specific and the total heritabilities (  and ) increased by
43% and 54%, respectively, when μ(t) was misspecified. In terms of estimating the baseline
function, the semiparametric estimators are less efficient than the parametric analysis under
a correctly specified model. For the heritability estimators, the efficiency loss of the
semiparametric estimators is less notable.

For the variance components, the estimated polygenic variance was 4.06 (true value: 4), and
the family-specific variance component was 15.88 (true value: 16). The asymptotic
distribution of the heritability estimates is not straightforward to derive due to definition of
the heritability being the ratio of two non-independent variance estimators. To compute
confidence interval, we use bootstrap resampling. As seen from Table 1, the maximal
relative bias and MASE of the QTL heritability and the total heritability were small. We
present the estimated marker-specific heritability, the total heritability and their confidence
intervals in the left panel of Figure 1. The empirical and bootstrap standard errors were
compared in the right panel of Figure 1. The bootstrap standard error tracked the empirical
one closely.

Our next simulation experiments examine effects of different baseline function estimators on
testing a genetic effect. We simulated data under the same model (4) with βg(t) = βg, various
effect size of the genetic marker and various functional forms of μ(t) (see Table 2 for these
specifications). The random measurement errors were simulated from a normal distribution
with mean zero and variance 10. We tested the significance of β̂g by a standard Wald test.
We compare performance of the proposed semiparametric analysis where μ(t) is estimated
through penalized splines with three other analyses: (1) Misspecifying μ(t) as a linear
function; (2) Misspecifying μ(t) as a quadratic function; and (3) Correctly specifying μ(t) as
a nonlinear function and estimating through fitting a non-linear mixed effects model. First,
we examine the type I error of all four analyses. From the second, the sixth and the tenth
row of Table 2, we see that the semiparametric analysis and the correctly specified nonlinear
analysis maintains the nominal level of the type I error. However, the two misspecified
analyses reported either substantially inflated or highly conservative type I error rate
depending on the true form of μ(t) and how it is specified. For example, when the true
baseline function is a sine function but misspecified as a linear or a quadratic polynomial,
the type I error rate for a test for βg at 5% level can be as high as 0.99. The erroneous type I
error may be explained by two reasons: First, incorrect estimation of the baseline function
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under a misspecified model may lead to incorrect standard error estimate of β̂g; Second, the
mean of μ(T) across observed time points is not a constant across different genotype groups,
i.e., E(μ(T)|G = g) differs across levels of G in a partially linear model which may lead to
inconsistent estimate of β̂g.

Next we compare power of the test when μ(t) is estimated nonparametrically with the
correctly specified nonlinear analysis. From Table 2, we see that the power for testing
genetic effect is slightly larger with a correctly specified nonlinear baseline function
comparing to the semiparametric analysis, with a difference up to 5%. For the scenarios in
Table 2 where the two misspecified analyses had conservative type I error, we also
examined their power. As expected, the power was greatly reduced with a power loss up to
95% comparing to the semiparametric analysis. For example, when the true μ(t) is a
Gaussian function but misspecified as a linear or a quadratic function, the power for
detecting a genetic effect was zero. In addition to a highly conservative type I error rate, this
may also be due to substantial increase of variability of the estimator β̂g when the baseline
function was misspecified in these cases.

To summarize, the first set of the simulations suggest that misspecification of the baseline
function has a non-ignorable effect on the type I error of testing the genetic effect even when
the genetic effect does not change with time. Furthermore, the power of testing βg when
treating μ(t) as a nonparametric function is comparable to correctly specifying μ(t) as a
nonlinear function.

4.2 Time varying genetic effect
The second simulation setting examines properties of our methods when βg(t) changes with
time. The performance of the baseline function estimator was comparable to the time-
invariant case (Table 1, setting 2). From Table 1 (setting 2), we see that the time-varying
genetic effect β̂g(t) was estimated well with small MASE. We show the true and the
estimated genetic effect and its confidence interval in the left panel of Figure 2. The
bootstrap standard error and the empirical standard error shown in the right panel of Figure 2
were very close. The age-specific QTL heritability and total heritability were estimated well
with the maximal relative bias 0.02 and 0.01, respectively (Table 1, setting 2). The bootstrap
and empirical standard error were close which suggests a satisfactory performance of the
bootstrap procedure on assessing variabilities of heritability estimates (the corresponding
figure is similar to Figure 1 and not shown).

Similar to the previous section, we compare the estimation bias and MASE of β̂g(t) in a
semiparametric analysis with a misspecified parametric analyses where we assumed βg(t) to
be a quadratic polynomial and with a correctly specified nonlinear mixed effects model
analysis. In all analyses, we kept the estimation of μ(t) nonparametric because the analyses
in the previous section showed a profound effect of misspecifying μ(t) on testing βg. From
Table 1 (setting 2), we see that the mean bias of β̂g(t) over time with a misspecified
quadratic model increased from 0.036 in a nonparametric method to 0.23. The mean bias of

the estimated marker specific heritability, , increased from 0.004 to 0.34, which is
substantial. The mean bias of the estimated total heritability increased from 0.006 to 0.37.

The rest of the simulations concern testing of βg(t). The random measurement errors were
simulated from a normal distribution with mean zero and variance six. The hypothesis βg(t)
= 0 was tested by the permutation procedure described in Section 3.5 in the semiparametric
analysis. In all analyses, the baseline function was again estimated nonparametrically. We
examine several functional forms for βg(t) including logarithm, Gaussian and sine. The
Gaussian function was used to model genetic effect on blood pressure in Shi and Rao
(2008).
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We first examine the type I error of the semiparametric analysis and two parametric analyses
under a misspecified model. From Table 3, we see that all three analyses maintain the
correct nominal level of type I error. We then examine power of testing βg(t) = 0. Again as
expected, we see from table 4 that the power is greatest for the nonlinear mixed effects
model analysis with a correctly specified model. However, in the real applications such a
true function is unknown and the computational algorithm in a nonlinear analysis may not
converge in many cases especially when starting values are poor or the sample size is small
or moderate. Comparing the semiparametric approach to the misspecified parametric
approaches, the power loss for the latter ranges from 0% to 55%. The power loss was more
substantial for the Gaussian and the sine function comparing to the logarithm function which
suggests that the power depends on the unknown functional form of the true genetic effect
and the assumed parametric model. For the genetic effect that changes with time but has an

average effect of zero across all time points (i.e., ), the linear or
quadratic analysis has very low power (close to zero) to detect the genetic effect.

To summarize, these simulations suggest that misspecifying βg(t) while estimating μ(t)
nonparametrically does not affect type I error rate of testing βg(t) = 0, but may reduce power
substantially.

5 Application to the Framingham Heart Study
In this section, we apply the proposed methods to analyze the Framingham Heart Study
longitudinal blood pressure (BP) data and SNP genotype data. High blood pressure (BP) is
considered as a major risk factor for stroke and heart disease and it affects about one-third of
the US adult population (Levy et al. 2009). Systolic and diastolic blood pressure (SBP and
DBP) are complex traits that may be influenced by both environmental and genetic factors.
The heritability of systolic blood pressure is estimated to be high (30% to 60%, Levy et al.
2000), which suggests a substantial genetic contribution. Recently, large-scale genome-wide
association studies (GWAS) have emerged as powerful tools to identify genes associated
with complex traits such as BP. Levy et al. (2009) performed a prospective meta-analysis on
six GWAS including the FHS and identified multiple SNPs significantly associated with
SBP and DBP at the genome-wide significance level. However, nonparametric estimation of
age-specific QTL effect or time-varying polygenic of BP has not been examined in the
literature. We analyze a subset of the FHS subjects (about 6000 subjects) and a subset of
SNPs in four candidate regions.

In the FHS, the phenotype and the genotype data are collected from three cohorts. The
Original Framingham Cohort (Cohort 1) was first examined in 1948 and has been examined
every two years thereafter. The Offspring Cohort (Cohort 2), composed primarily of
offspring of the original cohort and the spouses of these offspring, was examined first in
1971 and has been examined approximately every four years using protocols similar to those
used for study of the Original Cohort. Between 2002 and 2005 the study enrolled the Third
generation (Gen3) of the Framingham Heart Study. At each exam, the physician measured
systolic and diastolic blood pressure twice and the average of the two measurements was
used as the phenotype in the analysis.

Although the FHS started at an era when no antihypertensive treatment was available, as the
study progressed, antihypertensive treatment became available and was prescribed to some
of the subjects with hypertension. It is known that the treatment effect is a confounder for
genetic effect which may lead to underestimated genetic effect without any adjustment
(Levy et al. 2000, Tobin et al. 2005). Tobin et al. (2005) examined bias and variance of ten
methods on adjusting for treatment effect and found that one of the best methods is to add a
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reasonable number to observed SBP for subjects on antihypertensive treatment. Following
Tobin et al. (2005) and Levy et al. (2009), we added 10 mm Hg to observed SBP values and
5 mm Hg to observed DBP values for participants who were taking treatment.

We restricted our analysis to observations between age 30 and 75. The total sample size in
our analysis was 6082 from 930 pedigrees (including 2934 nuclear families) and the mean
number of subjects was 6.54 per extended family. There were 14505 records and each
subject had an average of 2.38 measurements of SBP and DBP, respectively. The age of the
participants at the first visit ranged from 25 to 72. The mean age for all subjects at all visits
was 45.7 years. The mean observed SBP was 121.2 mm Hg and the mean observed DBP
was 76.1 mm Hg. There were 11% subjects on antihypertensive treatment in at least one
exam and 12% of observations were taken when subjects were on treatment. The mean body
mass index (BMI) was 23.54.

In all our analyses, we included gender as a covariate with time-invariant effect and BMI as
a time-varying covariate with varying coefficient. We estimated the baseline function by a
cubic truncated polynomial with ten knots. We split pedigrees into nuclear families for easy
handling of familial correlations. We first computed the baseline function and the polygenic
heritability without using SNP markers as in model (1). The estimated age-specific baseline
function and its 95% confidence interval are superimposed on SBP measurements of 300
randomly selected subjects in the left panel of Figure 3. There is an increasing trend of mean
SBP over time. The mean SBP was 123.5 mm Hg (CI: 122.9, 124.2) at age 30 and increased
to 138.6 mm Hg (CI: 134.8, 142. 4) at age 75. The corresponding plot for DBP was shown
in the right panel of Figure 3. The polygenic heritability of SBP and its confidence interval
are shown in the left panel of Figure 4. Heritability was highest at age 35.4 and it then
decreased to 0.44 (CI: 0.40, 0.50) at age 50 and 0.23 at age 65 (CI: 0.18, 0.27). The long
term average heritability was reported to be between 0.3 and 0.6 (Levy et al. 2000, Levy et
al. 2009), which is in the range of our age-specific estimates. The total variance function
increases over time and is presented in the right panel of Figure 4. For DBP, the polygenic
heritability decreases with age. It was 0.44 (CI: 0.37, 0.54) at age 35.4 and then decreased to
0.29 (CI: 0.17, 0.47) at age 75. Theses heritabilities and the variance function of DBP are
presented in Figure 5. Overall, DBP exhibits lower heritability than SBP. The gender effect
was estimated as 1.57 (CI: 0.80, 2.34) with men having higher SBP, on average.

Levy et al. (2009) conducted meta analysis of six GWAS of blood pressure and reported
several promising regions which may harbor genes predisposing BP. We selected four
promising candidate regions containing significant SNPs reported in Levy et al. (2009) to
analyze. There were 265 SNPs in the four regions among which 109 SNPs were from two
regions on chromosome 12 (86 from region 88300Kb to 88800Kb and 23 from region
110200Kb to 110600Kb), 104 were from a region on chromosome 11 (16600Kb to
17100Kb) and 52 were from a region on chromosome 3 (41700Kb to 42100Kb). Each of
these regions spans about 500Kb on a chromosome. We first fit a time-invariant model with
a nonparametric baseline function but a constant genetic effect, that is, βg(t) = βg in model
(4). Since adjusting for multiple comparisons by Bonferroni correction is conservative for
dense SNPs in linkage disequilibrium (LD), we use methods proposed in Gao et al. (2008).
Specifically, we use principal components analysis to compute effective number of SNPs
needed to explain 99.5% of variability of all 234 SNPs and then divide the overall
significance level (0.05) by this number. The resulting effective number of SNPs needed is
104, and the adjusted significance level is 4.81×10−4. There was one SNP on chromosome
12 significant for SBP at this level and none for DBP (Table 5).

In addition to the time-invariant analysis, we also fit a time-varying genetic effect model and
test for the hypothesis (9) on all SNPs. We found four significant SNPs for DBP and five for
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SBP after adjusting for multiple comparisons. None of these SNPs were identified through
the time-invariant analyses. For some SNPs, their p values in the time-invariant model
showed suggestive results for association (for example, the p value for rs1052501 in a time-
invariant analysis was 0.002), however, they did not reach the significance level. Other
SNPs would not have been identified from a time-invariant analysis (for example, the p
value for rs10858911 in a time-invariant analysis was 0.32). As an example, we show the
age-specific effects and their confidence intervals of two SNPs in Figure 6. The SNP
rs1052501 is in LD with three other SNPs in the same region identified through the time-
varying analysis for the DBP. Two SNPs identified for SBP, rs4757448 and rs17700056, are
in LD. The time-varying analysis suggests that there may be genes not only affect the long
term average SBP, but also affect change of SBP with time. We discuss implications of
these findings and compare with the time-invariant analysis in the next section.

6 Discussion
In this work, we propose semiparametric regression analysis of genetic studies with
longitudinal phenotypes by penalized splines. Although the age-specific QTL effect function
is modeled non-parametrically, the test of no association is examined by only a few
parameters in hypothesis (9). Mixed effects model representation of penalized splines
provides a convenient way to handle polygenic effect and shared environmental effect in
genetic studies. Our simulations show that misspecifying the baseline function in a
parametric analysis has a substantial effect on type I error rate and power of testing the
genetic effect regardless of whether it changes with time. Furthermore, when the true genetic
effect is a constant, the semiparametric analysis has comparable power comparing to a
nonlinear analysis under a correctly specified model of the baseline function. It is therefore
beneficial to model the baseline function nonparametrically. Misspecifying the genetic effect
when the true effect varies with time in a parametric analysis can reduce power significantly,
especially when the average genetic effect over time is small. The proposed semiparametric
procedure provide an alternative to existing dominating time-invariant analysis and
parametric linear or quadratic model for longitudinal genetic designs.

Although here the statistical procedures are developed for longitudinal data, they are also
applicable to cross-sectional data when subjects’ age is recorded. Let tij denote the age of the
ith subject in the jth family. A model similar to (4) for cross-sectional data is In addition, for
population based case-control studies, the outcome is a binary variable. Penalized splines
regression introduced here can be extended to generalized outcome through a connection
with generalized mixed effects model as discussed in Ruppert, Wand and Carroll (2003).

Population stratification is a potential confounder in genetic association studies. However,
for FHS all the study subjects are recruited from Framingham, Massachusetts where the
majority of the population is Caucasian and population stratification is found to be
negligible (Wilks et al. 2005). Nevertheless, one approach to adjust for population admixture
is to estimate it by a principal components analysis and include the first few principal
components as covariates in the model (Price et al. 2006), which can be readily incorporated
in the framework of our proposed methods. The principal component weights are computed
from founders in families and projected onto offsprings to create principal components
scores which are then included in a regression analysis. Another method is to incorporate the
permutation procedure implemented in the FBAT (family-based association test, Rabinowitz
and Laird 2000) to the our permutation test of the genetic effect. To be specific, one
permutes offspring’s genotypes given minimal sufficient statistics of the genetic model
under the null. A third strategy to adjust for population admixture in a regression based
analysis with family data is to include expected value of the genotype-related covariates
given the minimal sufficient statistic for the genetic model under the null as additional
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covariates (Yang et al. 2000). This approach is the estimation analogy of the FBAT. Wang
et al. (2010) discussed an improvement of Yang et al. (2000) that computes the optimal
covariate to minimize the estimation variance and include these covariates in a regression
analysis.

We implemented our methods with truncated polynomial basis. Other basis such as B-
splines can also be used. Models based on B-splines are equivalent to truncated polynomials
through a re-parametrization. The penalty matrix in (6) for B-splines, however, does not
have the simple ridge penalty form and needs to be adapted. Eilers and Marx (1996)
proposed a difference-based penalty. Wand and Ormerod (2008) considered a penalty matrix
that is a direct generalization of smoothing splines (O’Sullivan penalized splines) and
provided mixed model representation. These works allow our methods to be extended to B-
splines.

Although the proposed methods are illustrated through a candidate region analysis of the
FHS data, the mixed effects model based semiparametric analysis can be implemented for
analyses at a much larger scale, for instance, a GWAS. In our application of the FHS data
with 6082 subjects and 14505 observations, on average for each SNP the proposed
procedure took 1.5 minutes to run on a Dell desktop with 2.00GHz CPU and 3.25GB
memory using R package “lme”. To complete a GWAS with 500K SNPs, this amounts to
2.6 days on a computing cluster with 200 nodes each with a 2.00GHz CPU or about 10 days
for a cluster of 50 nodes. In our experience, SAS procedure “mixed” appears to improve
computational efficiency in some cases up to 20%.

Our analyses identified six SNPs for SBP and four SNPs for DBP residing in three genes.
The SNP rs11065951 locates within the gene ATXN2, which is a cytoplasmic protein.
Lastres-Becker (2008) found that ATXN2 knock-out mice exhibited reduced fertility,
locomotor hyper-activity, and abdominal obesity and hepatosteatosis at the age of 6 months.
ATXN2 was also reported to associate with neurological disorders (Huynh et al. 1999), renal
functions (Kottgen et ak. 2010) and obesity (Figueroa KP et al. 2009) which may share some
pathway with BP. Four SNPs (rs4757448, rs17700056, rs7943587, and rs7121911) locate in
a protein coding gene, PLEKHA7, which was reported to be linked to blood pressure at
genome-wide level in another joint meta-analysis of GWAS studies for blood pressure
(CHARGE and Global BPgen, Newton-Cheh et al. 2009). Four linked SNPs (rs1052501,
rs7648578, rs2128834 and rs3774372) were located in the gene ULK4, which is an Unc-51-
like kinase. This gene was also identified in CHARGE study as a candidate locus for blood
pressure. However, little is reported on the relationship between function of this gene and
blood pressure. Gene expression analysis has confirmed SNPs in ULK4 alter gene
expression levels in liver and lymphoblastoid cell lines (Levy et al. 2009). Our analysis
showed a potential time-varying effect at this locus which may deserve further functional
research.

Aging is a complex process during which many biological and physiological changes take
place which in turn may change a range of phenotypes, including blood pressure, and may
change the interplay between the environmental and genetic factors. Therefore age may
represent a surrogate of constellations of unmeasured factors. Taking into account of the
gene-age interaction in a genetic association study may help overcome some of
inconsistencies in replicating a genetic finding and boost power (Lasky-Su et al. 2008). Our
time-invariant analysis identifies two SNPs for SBP and the time-varying analysis identifies
a distinct SNP for SBP and four SNPs for DBP. None of the SNPs was identified by both
analyses. Some of the SNPs may be missed if only the time-invariant analysis was carried
out. These results illustrate the complementary feature of the two analyses. When the true
genetic effect does not vary with time, a time-invariant model may identify more SNPs due
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to parsimony of the model. However, when the genetic effect does change with time or
when age acts as a surrogate of unmeasured factors causing varying genetic effect, failure to
acknowledge the time trend may reduce power or lead to irreproducible results (Shi and Rao
2008, Lasky-Su et al. 2008).

Despite large efforts on gene mapping through GWAS, until recently there were few known
genetic variants found to be reproducibly associated with common disease. Part of the
inconsistency may be explained by the dominant time-invariant analyses strategy (Laksy-Su
et al. 2008). The general semiparametric approaches we develop here may be applied to
model age-dependent genetic effects leading to more powerful genetic data analysis and
potentially more consistent results. Our analyses results also suggest new hypothesis of
possible time-varying genetic effect on blood pressure at several loci which needs to be
confirmed by future larger study. In addition, estimating age-specific heritability and
genetic-effect has implications for designing subsequent studies and developing treatment of
a disease: sampling subjects at the age where heritability is at its peak would enhance power
of an association study, which is very important for detecting genes with moderate effects;
designing a future GWAS rests on accurate estimation of potential time-varying effect size
of a gene; and interventions may target different environmental or genetic factor at different
age depending on which factor is dominant.
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Figure 1.
Time-invariant genetic effect model: Estimated marker-specific heritability (top panel) and
total heritability (bottom panel)
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Figure 2.
Time-varying genetic effect model: Estimated age-specific genetic effect (left panel) and the
bootstrap and the empirical standard error (right panel)
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Figure 3.
SBP (left) and DBP (right) over time for 300 randomly selected subjects in the FHS and the
estimated population mean function
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Figure 4.
Age-specific polygenic heritability of SBP (left panel) and total variance function (right
panel)
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Figure 5.
Age-specific polygenic heritability of DBP (left panel) and total variance function (right
panel)
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Figure 6.
Age-specific effects of two significant SNPs identified from the time-varying analysis
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Table 3

Type I error of the permutation test and the misspecified parametric analyses for testing βg(t) = 0 in model (4)

α level Nonparametric§ Misspecified: Linear† Misspecified: Quadratic‡

0.005 0.0054 0.0045 0.0055

0.01 0.0128 0.01 0.008

0.05 0.0488 0.0515 0.0505

0.1 0.0914 0.1 0.1015

§μ(t) estimated nonparametrically by penalized splines.

†μ(t) misspecified as μ(t) = α0 + α1t.

‡μ(t) misspecified as μ(t) = α0 + α1t + α2t2.
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