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Abstract

This paper descirbes how to use the feed forward artificial neural network
method to find the approximate solution of differential equations. Two types of
the trial funcitons are used, and the objective function is minimized by SGD and
ADAM methods respectively.

We test the boundary value problem, eigenvalue problem, initial value problem,
two types of the ecological systems, and three classical types of the partial
differential equations. We illustrate some examples and give some comparison

results in Chapter 4.
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Chapter 1

Introduction

Differential equation is a mathematical model which usually descirbes a phenomenon of
real systems in the world, such as in biology, physics, chemistry, engineering, economics and
so on. In order to observe the behavior of the event, how to find the solution of differential
equations is very important. However, the exact solutions is not easy to get, especially for the
nonlinear problem. The numerical methods are very popular to be used in solving differential
equations, such as finite difference method, finite element method, ...etc [3]. But they need
some discretizations with equal mesh. Some available approximate methods can be found in
the literatures, such as the Tayler series method, variational iteration method, ...etc [6].

In recent years, there are many authors using neural network methods to solve differential
equaitons. We note that the solution via the neural network method is differentiable, mesh free,
and easy to be used in subsequet calculations [14].

In this paper, we consider the neural network method to solve some types of the differential
equations, including the boundary value problem, initial value problem, two ecological systems,
and some three types of the partial differential equations. We illustrate some examples and give
the comparesion result with the analytic solutions or numerical solutions.

We use the feed forward artificial neural network method to find the approximate solution
of differential equations. Two types of the trial funcitons are used, and the objective function is
minimized by SGD and ADAM methods respectively. We use differnent strategies from other
studies [14] to improve the accuracy of the approximate solutions. In Remark 4.1,4.2 and 4.3,
we provide some extra conditions, such as slope or period or symmetry of the solutions, to make

the result better.
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The content of this paper is orginazed as follows. In chapter 2, we introduce the
architectures of the feed forward neural network, including the activation funcion, and some
optimizers, SGD and ADAM. In chapter 3, two types of the trial function and the objective
function are defined. In chapter 4, we consider several examples in boundary value problem,
eigenvalue problem, initial value problem, two types of the ecological systems, and three

classical types of the partial differential equations.
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Chapter 2

Feed Forward Artificial Neural Network

In this chapter, we first introduce the fundamental feed forward artificial neural network,

including architecture, activation function. Next we give algorithms for SGD and ADAM.

2.1 Architecture

Feed forward artificial neural network is a simple type of interconnected neural network.
In this neural network the information from neurons to neurons moves forward in only one
direction. The data flow from the input layer to the hidden layers, and then to the output layer,

as in the following figure.

Input Layer Output Layer

Figure 2.1: The architecture of feed forward neural network
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In this paper, we define the frame of the neural network as:

1, Hy, Hy, Hs...H,,O]. (2.1)

Where [ is the number of neurons in the input layer, H; is the number of neruons in the ith
hidden layers wherel < ¢ < n, n is the number of the hidden layers, O is the number of the

neurons in the output layer.

2.2 Mathematical Model of Artificial Neural Network

The output in the neural network can be written in the following form [14]:

H
N(z) = Z%’U(Zz‘) : (2.2a)
i=1
where
j=1

where w;; is the weight form the neuron j in the input layer to the neuron 7 in the hidden layer,
and b; is the bias in the neuron of the hidden layer, and v; is the weight from the neuron in the
hidden layer to the output layer. The weight of v , w and bias b are random numbers, and z; is
the input data, H is the number of the neurons in the hidden layer, and n is the number of the

neurons in the input layer. In gerneral, the /V is a nonconvex function of the x , v , w and b.

2.3 Activation Function

We define the activation function as:

o(x) = ,reR. (2.3)
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2.4 Optimizers

In this section we introduce two types of optimizer, SGD and ADAM respectly.

2.4.1 Stochastic Gradient Decent(SGD)

Stochastic Gradient Decent [8] is a common optimizer in neural network, we always use
it to update the weights and bias. Ginen a function F as in (2.2). We initialize the random

1,

parameters v, ,wij) and bgl), and ¢ = 1,2,...T is the number of iteration, then we give the

updating formulas as following:

@ _ @1 OF

®_ @1  OF
L oF
i) == — y (2.4)

Where the « is the learning rate which is a small real number.

2.4.2 Adaptive Moment Estimation(ADAM)

Adaptive Moment Estimation [10] is a generalized optimizer. We initialize the following

parameters:

UJ(\})ZO,UR :0,

Bl =0, o) =0, (2.5)

then we difine the first moment estimates:

oF
8’Ui '

vy = Bl + (1 - py)

OF
8wij ’

OF
ob;

wg\? = ﬁlwg\tfl) + (1 — ﬁl)

b0 = bV + (1 - By)

(2.6)
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where 3 € (0, 1), 51 means the importance of the previous values. In this paper, we choose the

B1 = 0.9. Next we compute the second moment estimates:

_ OF 2
o = B (L= B)(5)
®) (t—1) OF 2
wr' = Bawy Hl_ﬁﬂ(aw-) :
ij
2
oF " (2.7)

by = Bably (1= ) ()

We always choose the 35 = 0.99. Next we compute:

o) v
I VA (N S
m 1 _ :tl Y T 1 _ é Y
(t) (t)
w® = M0 YR
b(t) b(t)
bg,';):lMt,bgt):lRt, (2.8)
! — P2
and finally we update the paramerers:
(t=1)
o =gV gt
vﬁt b +e€
(t=1)
o =t _ o Wm
Y Y (t-1) ’
Wy + €
(t=1)
O =D gt 2:9)
b,(at_l) +e

Because at first the denominator may be zero, so we add an small positive € to ensure the

denominator not be zero, and we choose the e = 1076.

DOI:10.6814/NCCU201900919



Chapter 3

Objective Functions and Algorithm

3.1 Trial function method of typel

We consider a boundary value problem:

y' = flz,y,y) (3.1a)

with
y(a)=a, yb) =0 . (3.10)

We define the trial function of typel as the following form [14]:
yr, (x,p) = A(x) + B(z) x N(z,p) , (3.2)

where p denote the parameters of weights v,w and bias b in the neural network, x; is the trianing
data € [a,b], and the A(z) and B(z) are choosen to make the trial function satisfying the
boundary conditions, and the N (z, p) is the output function. Then we start to train the neural

network. Through the optimizer, we minimize the objective function:

2

dy x'up dy (lﬁ,p)
B Y (G g, BT (33)

The tiral functions in ordinary and partial differential equation can be similarly defined as

above.
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3.2 Trial function method of type2

In contrast, we may not use the boundary or initial condition in the trial function [4]. That

means the trial function of type2 is defined as an output function in the neural network. That is:

yT2<x7p) = N(l’,p) : (34)

We define the corresponding objective function:

n

d*yr, (x5, p dyr, (7i,p
E, = Z[% — f(xi, ym,s %)12 + [y, (a,p) — a* + [yr, (b,p) = B> . (3.5)
=0
For all problems in chapter 4, the trial function and objective function can be similarly

defined as above.

3.3 Algorithm

The processes for solving differiential equation by the neural network can be divided into
following steps :
Stepl: Choose the numbers of the layers and its neurons, and initialize the parameters of the
neurons.
Step2: Define the activation function.
Step3: Choose the training-data in the domain.
Step4: Choose the type of the trial function.
Step5: Construct the corresponding objective(error) function.
Step6: Choose the optimizer and the learning rate to minimize the objective function.

Step7: Use the optimal weights to get the approximate solution.
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Chapter 4

Using Neural Network Method to Solve

Differential Equations

In this paper, we use python to construct the neural network environment, and we use

ADAM optimizer to update the weights and bias.

4.1 Boundary Value Problem

Consider a simple two-point boundary value problem as (3.1), which describe the motion

of falling object [14]:

% + 0.15(%) —-982=0, (4.1a)
with the following boundary conditions:
y(0) =0,y(12) =600,0 <t <12 . (4.1b)
We know that the exact solution is given by:
yg(t) = —22.36 + 65.467t + 222.36¢ %15 (4.2)

We are going to find the approximate solutions by neural network method.

DOI:10.6814/NCCU201900919



4.1.1 Construction of the trail function and objective function

We define the trial function of typel as:

yr, (t,p) = 50t + (12 — t) x N(t,p) , (4.3)

and this trial function satisfies the boundary condition:

y7(0,p) =50 x 040 x (12— 0) x N(0,p) =0,

yr(12,p) =50 x 12 + 12 x (12 — 12) x N(12, p) = 600 .

Our objective function is defined by as:

& d2yT1 (tu p) dyTl (tl7 p) 2
By = S 1 Y (44)
where
dy dy
t,—=) = —0.15(—= 82 .
Ft,20) = ~0.15(—7) + 9.8

We choose p in the random number € [—0.5, 0.5] of the weight and bias, and the input data
is:
t; =0.124,0 < ¢ < 100 .

The frame of the neural network is given by[1, 20, 20, 20, 1] as in (2.1). We train ten thousand

times and get the y, in Table 4.1 and Figure 4.1:

10
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YE yn

0 0
34.49402564 | 36.87767655
73.30233955 | 76.23103212
115.82399579 | 118.13553794
161.5417554 162.47970608

210.01042667

209.17609822

260.84682954

258.17708544

313.72115789

309.45867857

R0 Q| N | W N~ O|

368.34954496

363.01177675

424.48766436

418.83658755

481.92522241

476.93823074

540.48121768

537.32368398

599.99986078

600

Table 4.1: The exact solution and y,

600

500

400 4

300 4

¥it)

200 4

100 -

Figure 4.1: The exact solution and yp,

Next we are going to find the approximate solutions by using trial funtion method of type2,

we construct the trial function of type2 as(3.4):

yTQ(t7p) = N(tap) )

11
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and construct the objective function as follows: [4]:

n

B, — Z[deTQ (¢, )

dt?

=0

9 dt

e dyr, (ti, p)

)]2 + [yTQ (0,]?) - 0]2 + [yT2(127p) - 600]2 : (46)

We train this network ten thousand times and get yr».The comparison among y71, yr» and exact

solution are given in the Table 4.2 and the Figure 4.2.

YE

yn

yr,

0

0

0.00105545

34.49402564

36.87767655

34.53372788

73.30233955

76.23103212

73.35689183

115.82399579

118.13553794

115.89744851

161.5417554

162.47970608

161.63417186

210.01042667

209.17609822

210.13845717

260.84682954

258.17708544

260.98877798

313.72115789

309.45867857

313.86614368

R A | N KW N —| O]+

368.34954496

363.01177675

368.49914787

O

424.48766436

418.83658755

424.62671499

—
o

481.92522241

476.93823074

482.02903746

—
—

540.48121768

537.32368398

540.5465305

—
[\

599.99986078

600

600.02594204

Table 4.2: Comparison between y, and yr,

B00 1

500 1

400 1

300 4

¥t

200 4

100 4

-—— - _!’I.E
= ¥,
&®

Figure 4.2: The exact solution and yp, and yr,

12
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In fact, there are too many factors affecting the neural network. They include some
question: how many neurons are used, the choice of optimezers and corresponding learning
rate, the choice of activation funcitons, the number of times of learning. Many problems can
be researched further. Hereafter, we choose two factors to see what happens in selecting the

number of hidden layers and selecting the optimizers of the neural network.

4.1.2 Select the number of hidden layers

In this section, we pick three different hidden layers to compare accuracy of this problem.
We use the trial function method of type 2, and pick the frame [1, 20, 1], [1, 20, 20, 20, 1] and

1,20, 20, 20, 20, 20, 1] respectively. ADAM optimizer is used, the comparison result is given

in Table 4.3:

YE

Hy

Hj

H;

0

0.01143187

0.00105545

0.52811748

34.49402564

44.2236925

34.53372788

41.47485532

73.30233955

91.17735702

73.35689183

87.63065478

115.82399579

140.28145607

115.89744851

137.44697973

161.5417554

190.98798678

161.63417186

189.51250584

210.01042667

242.84318352

210.13845717

243.12585518

260.84682954

295.41405476

260.98877798

297.2290195

313.72115789

348.14807984

313.86614368

351.09760511

0 Q| N B|W DN~ O+

368.34954496

400.56065236

368.49914787

404.62861316

O

424.48766436

452.36956755

424.62671499

457.42985372

—
=]

481.92522241

503.14994806

482.02903746

508.48999901

—
f—

540.48121768

552.14305011

540.5465305

557.87430914

—
[\

599.99986078

599.19396611

600.02594204

604.89085105

Table 4.3: Solutions of different number of hidden layers

From the above result, we observe the error,

error = Z lye(t:;) — yr, ()] (4.7)

In this problem, we find the total error in 1 hidden layer is 277.13217523, the total error in
3 hidden layers is 1.16000653, the total error in 5 hidden layers is 296.37517834.

In fact, the total error of objective function in 1 hidden layer converges to about 7 when
updating about 8000 times. And the total error of objective function in 3 hidden layers converges

13
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to about 0.01 when updating about 9900 times. But the total error of objective function in 5
hidden layers oscillates when updating about 9900 times. To avoid the situation, we can change
the learning rate from 0.01 to 0.001 after 10000 times, we find the total error of objective function
converges to 0.002 in 19800 times.

According to the rule of thumb and time costs, we shall select 3 hidden layers in the

following sections.

4.1.3 Select the optimizers of the neural network

Take the frame [1, 20, 20, 20, 1] of the neural network and use trial function method of type

2, then we trian the model by two optimizers SGD and ADAM respectively, the result is given

in Table 4.4:

YE

SGD

ADAM

0

0.13765461

0.00105545

34.49402564

37.66888042

34.53372788

73.30233955

79.34697674

73.35689183

115.82399579

124.0398045

115.89744851

161.5417554

170.97323445

161.63417186

210.01042667

220.04968199

210.13845717

260.84682954

271.08223258

260.98877798

313.72115789

323.68005656

313.86614368

R0 QNN AW N~ O]

368.34954496

377.39330591

368.49914787

O

424.48766436

431.91223348

424.62671499

10

481.92522241

486.90608549

482.02903746

11

540.48121768

542.19095898

540.5465305

12

599.99986078

600.02594204

600.02594204

Table 4.4: Comparison of the solutions with differnet optimizers

By (4.7), the total error in SGD optimizer is 82.89082303, and the total error in ADAM

optimizer is 1.16000653. In this equation, ADAM is better then SGD.

4.2 The Eigenvalue Problem

We consider an eigenvalue problem [13]

Y '+ X! =0,0<2<1,

14
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with the boundary condition:
y(0) =0,y(1) = 1.23125 . (4.8b)
When A = —2, the exact solution of (4.8) is obtained in [13]:

ye(x) = —2In(coszx) . (4.9)

We choose the frame [1, 20, 20, 20, 1] of the neural network, and ADAM optimizer, and the
input data is:

z; = 0.01i,0 <4 < 100 .

In the following we shall compute the approximate solutions, y; and the y- respectively. First,

we define the trial funciton of typel:
yr1 = 1.23125z + z(x — 1) X N(z,p) , (4.10)

and the corresponding objective function is:

B Z{d YR EP) i g (2 )Y (4.11)

dx?

where

Next we define the trial funciton of type2:

Y, = N(I’,p) ) (4'12)

and the corresponding objective function is:

By = Z[%—f(:ci,yTQ(a:i,p))]er[yTQ(o,p)—O]%r[yTQ(l,p)—1.23125]2 . (4.13)

After training ten thousand times, we obtain the following results given in Table 4.5 and

Figure 4.3:

15
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YE

Yyn

yr,

0

0

-0.000203253706606

0.1

0.01001671

0.03030576

0.00980813880083

0.2

0.04026955

0.07362532

0.0401180320842

0.3

0.09138331

0.12992535

0.0913012420819

0.4

0.16445804

0.19962714

0.164386137519

0.5

0.26116848

0.28401546

0.261066376507

0.6

0.38393034

0.38597206

0.383816870326

0.7

0.53617152

0.5113514

0.536088811958

0.8

0.72278149

0.67159853

0.722733687479

0.9

0.95088489

0.88940052

0.950824422803

1.0

1.23125294

1.23125

1.23119439266

Table 4.5: yp, and yp, of eigenvalue problem

12 { === ye

¥

101 & ¥

0.8 1

= LG 1

04 4

02 1

0.0 4

tﬂ*“iﬂ

0.0 0.2 0.4 0.6 0.8

Figure 4.3: The exact solution and yp, and yr,

140

We observe that the total error of y7, 1s 0.28973505, and the total error of yp, 15 0.00118241,

so yr, 1s better than y7, in this problem.

Now we consider another problem with different boundary conditions from (4.8b) [13]:

y' '+ X! =0,

16
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and

y(0) = 0,y(1) =0 . (4.14b)

We set A = 1, and do the similar process as above and get the result in Table 4.6. Here we

use the solver in python scipy [9] to get the numerical solution :

€ y?’b yTg
0 0 -2.0475e-07

0.1 | 0.049846692471314805 0.04984692
0.2 | 0.08918974460767908 0.08918724
0.3 | 0.11760883045125782 0.11760568
0.4 | 0.13478993851047935 0.13478909
0.5 | 0.14053888143256188 0.14053862
0.6 | 0.13478993851047935 0.13478676
0.7 | 0.11760883045125779 0.11760303
0.8 | 0.08918974460767906 0.08918515
0.9 | 0.04984669247131479 0.04984389
1.0 | -1.8973538018496328e-19 | -4.77829321e-06

Table 4.6: Comparison between the nurerical solution y,, and yr,

From the theoretical result in [2], we see that there are two solutions of problem (4.14). We

shall use shooting method to obtain the following relation between ¢/(0) and y(1) in Figure 4.4:

20 1

15+

10

¥il)

05 4

U7

0 2 4 & B 10 1z
y(0)

Figure 4.4: The relations between slopes 3/(0) and boundary values y(1)
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And from the Figure 4.4, we find two slopes of the solution satisfying y(1) = 0, that is:

Y, (0) = 0.54935272874400598 |, (1)

and

y(0) = 10.846900129979208 . (2)

So we can use the 3'(0) as an extra condition in the objective function:

n

Ey = Z[W—ﬂm}yTg(ﬂfi,p))]QHyTQ(0,p)—0]2+[yT2(1,p)—0}2+[y’T2(0,10)—1/(0)]2 :
= (4.15)
Then we pick the frame [1, 20, 20, 20, 1] in the neural network and use ADAM optimizer.
After training ten thousand times, we obtain the following two approximate solution y(T12 ) and

y%) in Table 4.7 and Figure 4.5:

- @ @ @) )

Yn Yr, Yn Yr,
0 0 -6.73350614e-06 | 0 -0.0003091
0.1 | 0.049846692471314805 0.04983686 1.07727343 1.07679451
0.2 | 0.08918974460767908 0.08918295 2.12239256 2.12178255
0.3 | 0.11760883045125782 0.11761002 3.0773954 3.0766249
0.4 | 0.13478993851047935 0.13479295 3.80615224 3.80540402
0.5 | 0.14053888143256188 0.14053508 4.09146745 4.09104248
0.6 | 0.13478993851047935 0.13477962 3.80615221 3.80625067
0.7 | 0.11760883045125779 0.11760196 3.07739536 3.07788276
0.8 | 0.08918974460767906 0.08919419 2.12239253 2.12332098
0.9 | 0.04984669247131479 0.04985561 1.07727341 1.07838873
1.0 | -1.8973538018496328e-19 | 2.36774456e-06 | -2.42716680e-11 | 0.00138331

Table 4.7: Comparison of two numerical solution and y(le ) and Y

18
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Figure 4.5: Two approximate solutions of y% ) and yg )

On the other hand, we get the following relationship between 3/(0) and ) in Figure 4.6:

20
15 A
=
T 10 -
5 4
o 4
I I ! I I I I
05 10 15 20 25 30 35
A

Figure 4.6: The relation of A and 3/(0)

We find that there exists a A* = 3.51417 such that the equation (4.14) has two solutions as

A < A", has only one solutions as A = \*, has no solution as A > \*
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Finally we consider another type of the eigenvalue problem [2]

y" + el =0 | (4.15a)

and
y(0) =0,y(1) =0, (4.15b)
where a and \ are two parameters.

When a = 0, it is the equation (4.11). We are going to find the relations between A and

y'(0) for @ = 0.1 and o = 1 respectly. By shooting method, we get the result in Figure 4.7:

20 -

15 +

¥io)

10 -

0.0 05 10 15 20 25 30 35
A

Figure 4.7: The relations between A and /'(0)

As o = 0.1, we find that there exists a A\* = 3.20088 such that the equation (4.15) has two

solutions as A < \*, has only one solutions as A = \*, has no solution as A > \*.

As a = 1, we find that there exists a A\* ~ 1.75745 such that the equation (4.15) has two

solutions as A < A\*, has only one solutions as A = \*, has no solution as A > \*.

Similarly, we can use the argument as above to find the approximate solutions.

20
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4.3 Initial Value Problem

We consider the initial value problem as following:

y” = f(ta Y, y,) 5 (416(1)

with the initial conditions

yla) =a, y'(a) =5 . (4.160)

We shall study the particular example on Lnae-Emden equation by neural network method.

4.3.1 Lane-Emden Equation

Lane-Emden equation [7] is a complicated problem which describes a variety of phenomena

in physics and astrophysics. We consider the following simple equation:

o (8) + %u’(t) o 3 0<t <1, (4.17a)

with the initial condition:

u(0) = 1,u'(0) =0 . (4.17b)

The exact solution is given by [7]:

ut) = e . (4.18)

We define the trial function of typel:
ur(t) = (1+1) +t* x N(t,p) , (4.19)

and the corresponding objective function:

Z{d T D) 11,0, 1, ), 22Dy (4.200)
where
f(tu(t),u'(t) = —%u’(t) +2(2t2 + 3)ult) . (4.200)
21
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We use the frame [1, 20, 20, 20, 1] of the neural network and ADAM optimizer. We pick the

input data ¢; € [0.01, 1] as below:

to = 0.01,¢; =ty 4+ 0.0099,1 <4 < 100 .

After training one thousand times, we obtain the following results given in Table 4.8 and Figure

4.8:

315 A

3.0 1

25 1

Ll el

2.0 1

15 1

10 1

Ug

Uy

1

1

1.01005017

1.02318904

1.04081077

1.09315011

1.09417428

1.21047736

1.17351087

1.37576557

1.28402542

1.58960547

1.43332941

1.85257897

1.63231622

2.16525421

1.89648088

2.52818075

2.24790799

2.94188478

=IO 00| A NN KW N — O+

2.71828183

3.40686454

Table 4.8: Comparison between exact solution and ur,
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Figure 4.8: The exact solution and urp,
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We see that the error of approximate solution is not small enough, so we make another
condition to improve the accuracy of the solution. After putting ¢ — 0 in equation (4.17a),

and by L’Hopital’s rule and initial condition, we obtain:

2u'(t 2u”(t
tim 220 i 220 oy
t—0 ¢ t—0 1
than we get
u"(0) =2 .

So in this problem, we have three conditions:

hence we define a new trial function satisfying these condition, that is:
Unr, (1) = (L+ 13 + 13 x N(t,p) , (4.21)
and the corresponding objective function is given by:

d U, Z7p . dun (tz,p)
E 1= Z{ 2;2 f(tlaunTl (tlap)u T(Ij—t>}2 y (422)

where f is given by (4.200).
After trianing one thousand times, we obtain the following results given in Table 4.9 and

Figure 4.9:
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315

3.0 1

25 1

uit)

2.0 +

15 -

10

t UE ur, UnTy

0 1 1 1

1 1.01005017 | 1.02318904 | 1.01105706
2 1.04081077 | 1.09315011 | 1.04851669
3 1.09417428 | 1.21047736 | 1.1189488
4 1.17351087 | 1.37576557 | 1.22910843
5 1.28402542 | 1.58960547 | 1.38593668
6 1.43332941 | 1.85257897 | 1.59655931
7 1.63231622 | 2.16525421 | 1.86828299
8 1.89648088 | 2.52818075 | 2.20858899
9 | 2.24790799 | 2.94188478 | 2.62512426
1 2.71828183 | 3.40686454 | 3.12569002

Table 4.9: Comparison between old up, and new w1,

—  Unr,

—_—

0.0

02

04 0.6

t

0.8

Figure 4.9: The exact solution and up, and w7,

10

Form the Figure 4.9, we see that the result is still not good enough, so we try to use the trial

function method of type2. We define the trial function:

uT2<t7p) = N(t,p) )

24

DOI:10.6814/NCCU201900919



and the corresponding objective function:

n

=0

Z[dQUTz (tla p)

du?

f(ti7 Ur, (ti,p),

duTQ (th p)

du

)+ [ury (0,p) = 17 + [u, (0,p) — 0], (4.23)

where f is given by (4.200). After trianing one thousand times, we get uy,, and we compare it

with wp, and u,,p,. The result is given in Table 4.10 and Figure 4.10:

uit)

Ug

Uy

unTl

Ur,

1

1

1

0.99793039

1.01005017

1.02318904

1.01105706

1.00794369

1.04081077

1.09315011

1.04851669

1.03868652

1.09417428

1.21047736

1.1189488

1.09220259

1.17351087

1.37576557

1.22910843

1.1716522

1.28402542

1.58960547

1.38593668

1.28201534

1.43332941

1.85257897

1.59655931

1.43088164

1.63231622

2.16525421

1.86828299

1.62936526

1.89648088

2.52818075

2.20858899

1.89313269

2.24790799

2.94188478

2.62512426

2.24393207

— O 00| Q| N N KW N —| O

2.71828183

3.40686454

3.12569002

2.7132886
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Table 4.10: Comparision among w7, , U,7, and up,

LiT,
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Figure 4.10: The exact solution and up, , u,,, and up,

Remark 4.1 : When we add one extra condition in trial function of typel, we can improve
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the accuracy of the solution.

We also see that up, 1s more accurate than u,,, in Figure 4.10.

4.4 Systems of Differential Equations

In this section, we consider two types of the ecological systems: Rabbit versus Sheep

problem and Lokta-Volterra model.

4.4.1 Rabbit versus Sheep Problem

Consider two populations competing for the same food source. Let x and y be the
population of rabbits and sheeps respectively [12].

Each species follows logistic growth plus a competition term
o' = f(z,y) =B -x-2) ,

Y =g(z,y) =y2—2—y) . (4.24a)

Then we have four fixed points, (0,0), (1, 1), (0,2) and (3,0). And we can find the Jacobian

matrix J(x,y):

8-N2H 2y —2x
J(z,y) =
—y 2—x—2y

We can find the eigenvalues of the matrix .J. We find the eigenvalues of J(0, 2) are —1 and
—2, and the eigenvalues of .J(3,0) are —3 and —1. Since the eigenvalues are real negative, so
the fixed points (0, 2) and (3, 0) are stable by theory [1]. The eigenvalues of J(0, 0) are 3 and 2,
and the eigenvalue of J(1,1) is —1 & /2. Since one of the eigenvales is positive, so the fixed
points (0, 0) and (1, 1) are unstable.

In this section, we are going to observe the solution’s behavior of the system starting from

some points. First we consider the point:

z(0)=3,y(0)=1. (4.24b)
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We define the trial function of type2:
Ty (t27p> - N1<tz’p) 9

yTg(ti7p> - N2<t1)p) 9

and the corresponding objective function:

n

By = S AP ) 1),y 000 + o 0,) — 3

dyr, (ti, p)

T 9(xmy (t:), yru ()] + [y, (0, p) — 17 . (4.25)

+]

Where the neural network architecture /V, (z, p) and No(x, p) are given in the following Figure

4.11:

Outputl
Network1

Input

Network2
QOutput2

Figure 4.11: The architecture of the reconstruct neural network

We use the same frame [1, 20, 20, 20, 1] in neural networks N, and N,, and choose the input
data. By :
t; =0.032,1 <4 <100 .

After training ten thousand times, we get the result given in Table 4.11:
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t Ln Ty Yn Y1y

0 3 2.99997275 | 1 0.99985524
0.5 | 2.02044466 | 2.02066594 | 0.59070885 | 0.59088628
1 1.99687118 | 1.99689965 | 0.45899089 | 0.45880094
1.5 | 2.12521159 | 2.126161 0.36371409 | 0.36240943
2 2.29197316 | 2.29435994 | 0.27930029 | 0.27822095
2.5 | 2.45936698 | 2.46093313 | 0.20507731 | 0.20499946
3 2.60823506 | 2.6083037 | 0.14385463 | 0.14389316

Table 4.11: Comparison between the exact solution and =, , yp,

Similarly, we do the same computation as above at the other points:

and

and

In conclusion, we obtain the following result in Figure 4.12:

2001 @ % e
175 4 = (Xn.¥n)
150 4
125 1

=, 100 4 »
0.75 4
0.50 4
0.25 1

0004 =

0o 05 10 15 20 25 0

(4.24¢)

(4.24d)

(4.24e)

Figure 4.12: Four neural network solutions and numerical solution with fixed points
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We see that the approximate solution starting at (0.5, 1) approaches the stable point (0, 2).
The approximate solution starting at (1,0.5), (3,1) and (3, 2) approach the stable point (3, 0).

It is in accord with the theoretical result.

4.4.2 Lokta-Volterra Model

Lokta-Voterra model [5] is frequently used to describe the dynamics of biological systems

in which two species, predator and prey, interact. We consider the following model:
o' = flay) =321 -y) ,

Y =gx,y) =ylx—-1), (4.26a)

with the initial condition :
z(0)=12,y0)=11,0<t<10 , (4.26D)

where z(t) is the population the of prey and y(¢) is the population of the predator. z'(¢) and y(t)
represent the instantaneous growth rates of the two populations, and t represents time. We can

obtain the following relations:

1

g(:); —Inzx)=Ilny—y+C (4.27)
where the C is:

C =~ 1.3439159679310235 .

Note that the equation (4.26) shows that it is the periodic orbit in = — y plane.
In the following we shall use the neural network method to solve the equation (4.26). We define

the trial function of type2:
vy (ti, p) = Ni(ts, p)

yT2(tiap) = N2<ti’p) ’
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and the corresponding objective function:

n

Bp = Z[W — flen, (), yn, (6))* + [27,(0,p) — 1.2]

dyTg (tw p)

H=

— 9@, (t:), yn, (8))]” + [yn(0,p) — 1.1)* . (4.28)

We use the same frame [1, 20, 20, 20, 1] in neural networks Ny and N,. And the input data
1s:

t; =0.12,1 <37 <100 .

After training ten thousand times, we get the result is given in Figure 4.13 and Figure 4.14:

115 4 & (¥n, ¥al & L .. . . .
(X7 ¥l s g
110 1 ° ' >
L]
105 ¢ '
; b ® ’ L
e 000G, L ]
= ] ,
100 9 . ‘ : .
s y - .
095 4 [ ] *
" *
090 1 o [ ]
L ]
. -
®* 8 = L
0.85 - T T T T T
0.8 09 10 11 12

Figure 4.13: The numerical solution and (zr,, yr,)
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Figure 4.14: The numerical solution and x1,,yp, with ¢

We see that it is a periodic solution with peroid T' = 3.6275 by [11]. Hence the error of
approximate solution is not small enough from Figure 4.14. In order to improve the accuracy of

the solution, so we add an extra condition in objective function.

E; = By + ([01,(3.6275,p) — 1.2]* + [y1,(3.6275,p) — 1.1]*+
[27,(7.2551, p) — 1.2]* + [yr,(7.2551,p) — 1.1]*+
[27,(10.8827, p) — 1.2]* + [y7,(10.8827, p) — 1.1]%) . (4.29)

We use [1, Hy, Hs, ..., Hyp, 1] with H; = 100,1 < ¢ < 10 in neural networks N; and Ns.

and the input data is:

t:=0.11i,1 < i < 100 .

After training ten thousand times, and the result is given as following in Figure 4.15 and

Figure 4.16:
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Figure 4.16: Numerical solution and z, , yp, with ¢

Remark 4.2 : After adding the peroid condition in the objective function, we obtain a

good approximate solutions.
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4.5 Partial Differential Equations

In this section, we shall consider three different types of partial differential equations in a

bounded domain [14]. We use the neural network method to solve those problem.

4.5.1 Laplace’s Equation

Laplace’s equation is the simplest example of elliptic differential equation, which is
important in physics and fluid dynamics. We shall consider the boundary value problem in
a bounded domain:

Upp+ Uy =0, 0<2<1,0<t<1, (4.30a)

with the boundary conditons:
w(z,0) =0, u(z,1) =sin(rz), 0 <z <1,

w(0,8) =0, u(1,t)=0,0<t<1. (4.300)
By using the method of separation of variables, we obtain the exact solution:

sinhmt

ug(z,t) = X SinTT . (4.31)

sinhm

The graph of the exact solution is given below in Figure 4.17:
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Figure 4.17: The exact solution (4.30)
Hereafter, we use the trial function of typel:
up, (z,t,p) =1t x (sin(rz)) + . x (1 —x) x t(1 —t) x N(z.,t,p) , (4.32)
and the objective function is:

O*ur, (2.t 02u1xi,t-
j{:j{:{ 75t2 fé;Q J)}2 . (4.33)
7=0 =0

Where n and m are the number of the input data in x and ¢ respectively, we use the frame
2,20, 20, 20, 1] of the neural network and ADAM optimizer. We pick the input data z; € [0, 1]
and t; € [0,1] as below:

x; =01, 0<:<10

t;=015,0<;<10 .

After training one thousand times, we obtain the following results given in Table 4.12:
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T t UER ur,

0 0 0 0

0.51] 0.1 | 0.027652588 0.04178677
05104 |0.139797772 0.16957856
04 | 0.6 | 0.264934229 0.25728787
0.8 | 1.0 | 0.58778525 0.58778525
1.0 | 0.3 | 1.15408851401e-17 | 3.67394040¢-1

Table 4.12: Comparison between the uy and up,

00
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0.4
06
C 03

10 00

Figure 4.18: The graph of ur,

We can observe that the error |ug(x,t) — urp, (z,t)| in the region is shown in Figure 4.19:
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t ' 0.8

10 00

Figure 4.19: The error of up,

We see that the maximum error of |ug(x, t)—ur, (x,t)|is 0.192 at(0.5,0.7), and the accuacy

of approximate solution near the boundary is better than in the central part of the domain.

4.5.2 Heat Equation

Heat equation describes the heat distribution in the metal rod. We shall solve an initial

boundary value problem in a region:
1
Up = U, 0<2 <1, >0, (4.34a)
T
with initial and boundary conditons:
u(z,0) =sin(mz), 0<z <1,

w(0,8) =0, u(l,t)=0,t>0 . (4.34b)

By using the method of separation of variables, we obtain the exact solution:

ug(z,t) = sin(rz)e”" . (4.35)
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The graph of the exact solution is given in Figure 4.20:

0o

02
0.4

" 0& 08

i 10 00

Figure 4.20: The exact solution of (4.34)

We define the trial functions of typel:

ur, (z,t,p) = sin(mz) + x x (1 —z) x t x N(x,t,p) , (4.36)

and the corresponding objective function:

N Our, (w4, t;)  O*ug, (4, t5)
_ 2 YUy il 1\lis b\ 2
E, = g E {m T . (4.37)

2
5
=0 i=0 0

Where n and m are the number of the input data in = and ¢ respectly, we use the frame
2,20, 20, 20, 1] of the neural network and ADAM optimizer. We pick the input data z; € [0, 1]
and t; € [0, 1] as below:

2;=01i,0<i<10 ,

t;=01j,0<;<10 .

After training one thousand times, we obtain the following results given in Table 4.13:
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T t UER ur,

0 0 0 0

0.5 ] 0.1 | 0.904837418036 0.91394536
0.5104 | 0.670320046 0.65539701

0.4 | 0.6 | 0.521950882 0.45536706

0.8 | 1.0 | 0.216234110142 0.03419138

1.0 | 0.3 | 9.07240662708¢e-17 | 1.22464680e-16

Table 4.13: Comparison between u g and ur,

00

06
r 03

10 00

Figure 4.21: The graph of up,

We can observe that the error |ug(x,t) — up, (z,t)| in the region is shown in Figure 4.22:
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Figure 4.22: The error of the uy,

From Figure (4.22), the maximum error of the approximate solution is 0.232 at (0.5, 1).

4.5.3 Wave Equation

We shall consider an initial boundary value problem in a bounded domain

Uy = Ugg (4.38a)
with the initial and boundary condition:
u(z,0) = sin(rz) , au(axt’o) =0,0<zx<1,
u(0,t) =u(l,t)=0,0<t<1. (4.380)
By using the method of separation of variables, we obtain the exact solution
(4.39)

u(z,t) = sin(mx)cos(nt) .

The graph of the exact solution is given below in Figure 4.23:
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Figure 4.23: The exact solution of (4.38)
We define the trial functions of typel:

ur(z,t,p) = (1 — %) x sin(rz) + 2 x (1 — ) x t* x N(z,t,p) , (4.40)

and the corresponding objective function:

O*ur, (2, t; 82uT1(xi,t-) )
ZZ{ (%2 o ZACH (4.41)

j=0 i=0
Where n and m are the number of the input data in = and ¢ respectly, we use the frame
2,20, 20, 20, 1] of the neural network and ADAM optimizer. We pick the input data z; € [0, 1]
and ¢; € [0, 1] as below:
x; =01, 0<:<10

t;=015,0<;<10 .

After training one thousand times, we obtain the following results given in Figrue 4.24:
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Figure 4.24: The graph of up,

Because the accuracy of up, is not good, so we add a symmetry condition, u(z, %) = 0and

u(z,1) = —sin(mx) in the trial function of typel:
Unt, (2,1, p) = (1—6t24H4t3) x (sin(r2))+2x (1—2) xt*x (1-t)x (2—t)x N (z,t,p) . (4.42)

and we obtain the result in Table 4.14 and Figure 4.25:

T t UR UnTy

0 0 0 0
0.510.1|0.951056516295 0.95006481

0.5 (0.4 | 0.309016994375 0.30822565

041 0.6 | -0.293892626146 -0.29104359
0.8 | 1.0 | -0.587785252292 -0.58778525

1.0 | 0.3 | 7.19829327806e-17 | 6.95599382¢-17

Table 4.14: Comparison between vy and w7,
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Figure 4.25: The graph of u,,1,

We can observe that the error |ug(z,t) — w,p, (z,t)] in the region is shown in Figure 4.26:

00

0.2
0.4

e 06 g

' 10 00

Figure 4.26: The error of the u,,

From Figure (4.26), the maximum error of the approximate solution is 0.0509 at (0.5, 0.8).
Remark 4.3 : When we add extra conditions from the porperty such as symmetry, we can
improve the accuracy of the approximate solution.
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