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ABSTRACT
Literature on innovation strategy has increasingly highlighted the vital 
role of cross-disciplinary knowledge in the development of important 
inventions. However, a number of recent studies have shown con-
tradicting results. For this reason, this study aims to explore deeper 
into the concept through the use of an extended citation analytical 
approach and a broader data-set of patents granted by US Patent and 
Trademark Office from 1976 to 2016. Taking patent forward citation 
count as a proxy for how technologically important an invention is, the 
study finds a strong positive relationship between cross-disciplinary 
knowledge and the technological value of an invention. In particular, 
cross-disciplinary knowledge, acquired through a recombination of 
prior technological knowledge from more diverse International Patent 
Classification (IPC) sections, tends to have the highest positive impact 
on patent value compared with knowledge sourced from more diverse 
IPC classes or subclasses. The empirical findings of this study provide 
new evidence that important inventions involve recombination of 
technologically diverse knowledge. Based on this finding, certain 
policy and management implications are presented and discussed.

Introduction

Over the past decades, unprecedented growths in some economies, such as China, have 
been results of pragmatic policies aimed at fostering production and innovation systems 
(Gu & Lundvall, 2016). Modern technology, achieved through a series of breakthrough 
innovations, has changed society in many different ways (Utterback, 1994; Castells, 2014; 
Kazmeyer, 2016). In fact, a number of major technological advancements have revolution-
ised ways businesses work (Satell, 2013; Vitez, 2016). Business transactions and processes 
are more digitalised than ever, resulting in dramatic changes in people’s social lifestyles, 
such as changes caused by online shopping (Díaz, Gómez, & Molina, 2017) and a major 
impact upon criminality related to fraud, pornography, and paedophilia (Wall, 2015). The 
adoption of modern technology by firms has provided many significant benefits such as 
lower operational costs, higher revenues, increased productivity and improved customer 
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relationships. It also gives small startup businesses ways to level up their competitive 
advantages and allows big companies to expand their potentials (Vitez, 2016). Moreover, it 
removes business boundaries and makes outstanding inventions appear not only within a 
single technological domain but also between multiple domains (Duysters & Hagedoorn, 
1998; Hacklin, Marxt, & Fahrni, 2009). To stay ahead of the competition and to consistently 
generate increasing revenues, businesses need to continue to develop and adopt advanced 
technologies. To do this, they need to rely heavily on knowledge and information (Roper 
& Hewitt-Dundas, 2015).

As an important driver of successful innovation, knowledge needs to be stocked and 
managed efficiently. Existing knowledge stocks can contribute directly to the novelty or 
complexity of a new innovation (C.-Y. Lee, 2010). Understanding the flow of knowledge 
within or across organisations is imperative to achieving the successful design and devel-
opment of an important invention. Numerous studies have investigated different forms of 
knowledge flows (and diffusions) in order to understand how they can contribute to a firm’s 
productivity or an organisation’s performance (Chang Lee, Lee, & Kang, 2005; Decarolis 
& Deeds, 1999; Erden, Klang, Sydler, & von Krogh, 2014; Jifeng, Peng, & Love, 2008). 
Knowledge sharing between different organisations is one form of knowledge flow that 
has been found to bring huge benefits to organisations (Du, Ai, & Ren, 2007; Hsu, 2008; 
Law & Ngai, 2008; Lin, 2007; Wang & Wang, 2012). Knowledge transfer is a term used to 
encompass a broad range of activities that support innovation through different types of 
beneficial collaborations between organisations such as universities, businesses and the 
public sector (Minshall, 2009), and even between businesses and their clients (He & Wong, 
2009). The choice of collaboration is determined by several factors including public financial 
support, internal and external R&D acquisitions, and the scientific sector or business group 
to which organisations belong (Barzi, Cortelezzi, Marseguerra, & Zoia, 2015). However, 
knowledge transfer is not a sufficient condition for effective knowledge diffusion. Diffusion 
of knowledge is complete only when transferred knowledge is internalised and translated 
into the capability of local suppliers (Ernst & Kim, 2002). Both terms, knowledge flow and 
knowledge transfer, are often used interchangeably.

The term ‘cross-disciplinary knowledge’, as defined in this study, refers to knowledge 
acquired through recombination of prior knowledge from two or more technological 
domains. The higher range of technological domains involved (i.e., the higher diversity of 
technological knowledge), the more cross-disciplinary knowledge is. The perceived impor-
tance of cross-disciplinary knowledge in technological innovation builds upon the notion 
that technologies are developed through combinations of existing components (Usher, 
1954), and that entrepreneurs contribute as a function to the economy through ‘combina-
tions’ (Schumpeter, 1934) of technical, organisational, and market knowledge (Nelson & 
Winter, 1985). Moreover, most important inventions are believed to be shaped by social 
demands from both within and outside product domains (Arthur, 2007), and thus can have 
implications across multiple industries (Mowery & Rosenberg, 1999). Understanding the 
essential role of cross-disciplinary knowledge in technological innovation is imperative for 
industrial firms and innovators alike. Cross-disciplinary knowledge can help firms identify 
the complimentary relationships between different knowledge areas. These relationships, 
in turn, may provide them with directions on internal knowledge investments and external 
knowledge search, so that they can achieve the most efficient combinations and be able to 
maximise their innovation outputs (Arora & Gambardella, 1990; Cassiman & Veugelers, 
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2002). In other words, firms will be equipped with better knowledge on implementing (or 
avoiding) particular technological knowledge fusions (Wu & Shanley, 2009).

Cross-disciplinary knowledge has been one of the hot knowledge flows research topics 
in innovation management over the last decade. However, although a number of previ-
ous related studies have been conducted, the consensus on the role of cross-disciplinary 
knowledge and how it contributes to the developments of important inventions is far from 
being reached. Previous studies (Mowery & Rosenberg, 1999; Arthur, 2007; Nemet, 2012) 
found evidence that important inventions involve the transfer of knowledge across differ-
ent technologies. Yet, similar studies have provided contradicting results. For instance, a 
study by Nemet and Johnson (2012), which used patent forward citation as an indicator 
of the importance of an invention, found that increasing citations to external prior art is 
a significantly less important predictor of forward citation frequency than citing prior art 
that is technologically closer. Note, despite the popular use of patent forward citation as a 
measure of invention value, it indicates the technological importance of an invention rather 
than its economic worth (Squicciarini, Dernis, & Criscuolo, 2013).

Owing to the contradicting findings of prior studies investigating the role of cross-dis-
ciplinary knowledge in innovation, it is essential that further studies be carried out. In fact, 
this present paper is a deeper exploration or extension to previous studies investigating the 
notion that a patent’s value increases if it cites a precedent patent from an outside techno-
logical domain (Nemet, 2012; Nemet & Johnson, 2012). The main difference though, is that 
this study measures the cross-disciplinarity of a patent in terms of the diversity of techno-
logical domains cited, regardless of whether the cited patents are from the same or different 
technological domain as the citing patent. Prior studies, on the other hand, considered cited 
patents from different technological domains only. In particular, they tended to explore the 
effects of knowledge flows across different technological domains on patent value, whereas 
this study examines the effect of the technological diversity of recombined knowledge on 
the value of an invention. However, analysing the flows of knowledge across many fields 
entails the risk of an increased variance in terms of the outcomes and boundaries. This in 
turn could easily lead to overestimating (or underestimating) the effect of cross-disciplinary 
knowledge. For example, failed projects might not receive a patent or are aborted before 
filing for a patent (Ferguson & Carnabuci, 2017). To address this risk, several approaches 
have been proposed in the past such as the use of certain methods to separate the effects on 
the mean and the variance of the forward citations distribution (Fleming, 2001; Verhoeven, 
Bakker, & Veugelers, 2016). Such studies found no positive effects on the mean, but positive 
effects on the variance.

The novelty of this present study lies mainly in its methodological approach, specifically, 
in addressing the aforementioned risk through the use of patent backward and forward 
citation data, and the structure of the International Patent Classification (IPC). Patent 
activity has been proved to be a reliable indicator of technological activity in the past 
and has been used in many previous studies (Wu & Shanley, 2009; Nemet & Johnson, 
2012; Durán-Romero & Urraca-Ruiz, 2015; Su, 2017; Su & Moaniba, 2017; Lee & Kim, 
2010; Tseng & Ting, 2013). Although this study’s methodology was based on Nemet and 
Johnson’s (2012) approach, the measures used in this study are constructed to capture a 
wider range of cross-disciplinarity scenarios, and therefore should reduce the risk of over-
estimation. These cross-disciplinarity measures were analysed to determine their influences 
on a patent’s forward citation count. Taking patent forward citation count as a proxy for how 
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technologically valuable (or important) an invention is and the constructed patent backward 
citation variables as proxies for the different measures of cross-disciplinary knowledge, 
the study finds strong positive relationships between cross-disciplinarity variables and the 
proxy for invention value, forward citation count. In doing so, it provides new empirical 
evidence that cross-disciplinary knowledge is a key contributing factor to the development 
of important inventions.

In summary, this paper aims to contribute to the innovation management and business 
strategy literature by providing empirical evidence on how vital cross-disciplinary knowl-
edge is to the design and development of important inventions. This is done by bringing 
in new insights on the role of cross-disciplinary knowledge in technological innovation 
through the use of patent citation information and some estimation techniques from the 
perspective of knowledge recombination.

The remainder of the paper is organised as follows. The conceptual basis for the analysis 
is discussed, drawing on the literature on the importance of knowledge in the contexts of 
technological innovation, technological fusion through knowledge recombination, knowl-
edge flows analysis using patent citation information and the use of IPC in patent citation 
analyses. Then, the data are described, the methodological framework and statistical meth-
ods employed in this study are discussed, the empirical results are presented, and finally 
conclusions are presented.

Conceptual background

Why knowledge is important for technological innovation

Major developments in the global economy over the past few decades have been largely 
associated with the non-stop technological advancements (Satell, 2013; Vitez, 2016). For 
instance, with the introduction of personal-computers in the 1970s, the outburst adoption 
of the Internet, and the increasing dominance, integration of mobile technology in many 
business processes and governments’ pragmatic policies on innovation systems, economic 
growth in most parts of the world have shown steep rises as a result, e.g., in China (Gu & 
Lundvall, 2016). The new business environments created by these technological changes 
have led to the emergence of new business markets and opportunities as well as the loss 
of some old ones (Vitez, 2016). Technology has been recognised as one of the important 
ingredients to the sustained increases in economic productivity (Romer, 1990, 1994; Solow, 
1956). Firms, through the adoption of new technologies, are able to produce far beyond 
their normal production limits, and within shorter time periods (Solow, 1956). Furthermore, 
business processes have become more efficient than ever leading to dramatic changes in 
social lifestyles (Díaz et al., 2017; Wall, 2015). To keep up with the growing demands from 
the society, businesses need to constantly improve on their productions and performances, 
and therefore their technologies. As one of the important drivers of technology development, 
knowledge needs to be stocked, managed and transformed into an organisational capability.

As defined by the concept of resource-based view, a firm’s knowledge is a unique bundle 
of its idiosyncratic resources and capabilities, and the strategic combinations needed to 
achieve competitive advantage (Barney, 1991; Mahoney & Pandian, 1992; Rumelt, 1997; 
Wernerfelt, 1984). A firm’s knowledge stock accumulates or de-accumulates over time with 
the strategies and choices it made. Therefore, expenditures associated with strategised effort 
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to manage these knowledge stocks should be considered important investments (Hall, 
Griliches, & Hausman, 1986; Telser, 1961). Furthermore, the influential work of Decarolis 
and Deeds (1999) had led to an extension of the resource-based view and the growing aca-
demic interest in the knowledge-based view perspective of the firm. Being a strategically 
important intangible resource, firms should consistently create, transfer and use knowledge 
to improve their performance and ability to compete (Grant, 1996; Nonaka, 1994; Spender, 
1996; Spender & Grant, 1996).

A firm’s ability to create, use and manage knowledge has a huge influence on its perfor-
mance and its competitive advantage (Grant, 1996; Nonaka, 1994; Spender, 1996). The differ-
ences in firms’ abilities to stock, manage and transfer their knowledge efficiently contribute 
largely to the reasons why some firms are successful, while others are not. The relationship 
between transferred knowledge and product innovation can be positively moderated by a 
firm’s macro-institutional environment (Gao, Yang, Gao, Page, & Zhou, 2014). These facts 
signify the imperative role knowledge plays as a firm-specific asset, which is neither easily 
imitated nor tradable in factor markets (Barney, 1986). For this reason, firms must make 
tremendous efforts to accumulate knowledge over time (Dierickx & Cool, 1989).

Technological fusion through knowledge recombination

In a world where the old maxim ‘one technology–one industry’ no longer applies, a singular 
breakthrough strategy is inadequate; companies need to include both the breakthrough 
and fusion approaches in their technology strategies (Kodama, 1992). This implies that 
technological breakthroughs (or major advancements) alone are no longer enough and 
yet are very expensive. From a business point of view, a technological breakthrough tends 
to affect a single market. This in turn can mean limited demands and complete product 
failure. By contrast, technology fusion has been known to be more effective in the sense 
that it widens the use and purpose of an invention by targeting not only one but multiple 
technological domains. In fact, it is increasingly perceived as one of the key contributors to 
the development of an important invention. It is becoming a popular approach to developing 
new inventions (Jin, Park, & Pyon, 2011; Kodama, 1986). According to the findings of prior 
studies investigating knowledge flows and technology fusion (Kodama, 1992; Nemet, 2012; 
Nemet & Johnson, 2012; No & Park, 2010), on which this present study is built, technolog-
ical fusion seems to originate from the flows of knowledge through known mechanisms 
such as knowledge recombination. The key advantage of knowledge recombination is that 
it removes barriers to technological domains by creating outstanding inventions that no 
longer appear within a single technological domain only but also between multiple domains 
(Duysters & Hagedoorn, 1998; Hacklin et al., 2009). Despite this, recombination can be 
counterproductive when local search is needed to identify anomalies (Kaplan & Vakili, 
2015). These advantages and disadvantages indicate that understanding the dynamics of 
technology fusion and the trajectories of knowledge recombination is vital for recognising 
the important emerging trends. Such trends can help provide the direction and map on how 
new important inventions can be developed through converging important technologies 
without restrictions to industrial boundaries. This in turn can bring many benefits and 
opportunities for technological innovations.

Relying on technological innovation requires an effective way of selecting and integrating 
the right technologies. This is necessary to ensure the most successful and cost-effective 
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combinations are achieved. Although it would be easy for firms and innovators to come 
up with a mix of technologies they want, it is important to know that not all combinations 
can lead to outstanding inventions or even profitable ones. This is where prior knowledge 
plays a fundamental role. Technology is built on knowledge and therefore to achieve an 
outstanding invention through technology fusion, firms need knowledge recombination. 
One way to analyse the trajectories of technology fusion is by following the flows of tech-
nological knowledge through knowledge recombination, acquisition or diffusion. Frequent 
flows of knowledge across certain technological fields indicate the presence of technol-
ogy fusion between such technology fields. In this kind of analysis, patent data have been 
widely adopted for such purpose (Hu & Jaffe, 2003; Jaffe, Trajtenberg, & Fogarty, 2000; 
von Wartburg, Teichert, & Rost, 2005). This is because data on patents are often well main-
tained and updated regularly and, in most cases, are provided to the public free of charge. 
Therefore, information on patents is generally considered reliable to reflect the rapidly 
changing technological developments (S. Choi, Park, Kang, Lee, & Kim, 2012; Cong & 
Tong, 2008; Griliches, 1990; J. Yoon & Kim, 2012a). In addition, patent analysis can help 
firms identify essential implications of technology fusion, and thus can be used as a basis 
of establishing a systematic approach towards designing and developing a technological 
fused invention (Park, Ree, & Kim, 2013).

Existing literature on technology trend analysis has heavily focused on identifying major 
important technologies and potential future technologies often within a single technological 
domain (Hullmann & Meyer, 2003; Kajikawa, Yoshikawa, Takeda, & Matsushima, 2008; 
No & Park, 2010). Among these were time-series studies that tried to analyse technological 
trajectories over time (C. Choi & Park, 2009; Hillman & Sandén, 2008; Verspagen, 2007). 
Other studies tried to use text-mining techniques to pick out keywords from patent docu-
ments in order to generate patent maps (Lee, Kim, Cho, & Park, 2009; Lee, Yoon, & Park, 
2009; Son, Suh, Jeon, & Park, 2012; Yoon, 2008; Yoon & Kim, 2012b). Most of these studies 
seemed to focus within single technology industries rather than multiple or cross-indus-
try. This restriction could limit their contributions to facilitating and providing directions 
towards technology fusion.

Knowledge flows analysis using patent citation information

Patent citation information has been used in many knowledge flow studies to illustrate how 
knowledge is transferred across various technology domains (Lai & Wu, 2005; Lee, Kim 
et al., 2009; Lee, Yoon et al., 2009; Stuart & Podolny, 1996). Interest in the importance of 
patent citation information as a fundamental instrument to tracking the flow of knowledge 
has been stimulated by the sharp global increase in patenting activity over the past few 
decades. Patent citation analysis in general is very similar to the more popular literature 
citation analysis in academic writing. In fact, the uses of both in knowledge flows analysis 
have been very similar as well. The reason is that patent bibliometrics and literature bibli-
ometrics have striking similarities (Narin, 1994). Patent citation information such as the 
technological antecedents and descendants of both the citing and cited patents can help 
provide means for analysts to track the flow of knowledge (Trajtenberg, Henderson, & Jaffe, 
1997). Consequently, it has been widely used in analysing the spillover effects of technology 
classes on others through identifying citation links between certain technological sources 
and targets (Narin, 1994; Tseng, 2014).
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Communication of different kinds of knowledge between organisations – through for-
mal and informal ties – creates different knowledge flows that produce different types of 
networks (Xue, 2017). The complex networks of patents are often used to illustrate such 
flows of knowledge by studying the relationships between the citing and the cited patents, 
commonly known as citation pairs. The advantage of using a patent network lies in the fact 
that it not only shows the direction of the flow between a pair of technological classes but 
also can illustrate the strength of such flow. This is done by interpreting the number of times 
a citation pair is counted or frequently appeared as the strength (or density) of a certain 
knowledge flow (Xue, 2017). Once such network is established, it is then easier to analyse 
the flows of knowledge based on the identified trends, directions and densities of each link 
in the network. In addition, patent citation information has also been a key instrument in 
analysing the flow of knowledge across institutions and national boundaries (e.g., Breschi, 
Lissoni, & Malerba, 2003; Ho & Verspagen, 2006; Shin & Park, 2007) and the similarities 
between different technological domains (Nakamura, Suzuki, Sakata, & Kajikawa, 2015). 
Other studies tried to investigate the role of knowledge intermediaries in facilitating the 
flow of knowledge within a given technological domain, as in the role of brokers (e.g., Burt, 
1976; Galaskiewicz & Krohn, 1984; Lim & Park, 2010). However, the main disadvantage of 
this approach is related to the fact that older patents tend to get higher counts of forward 
citations than do newer patents. This is in the sense that older patents have been available 
for much longer than newer patents. In light of this problem, some knowledge-flow studies 
have used restrictions on citation periods (such as the 10-year window in this study) to 
keep the data consistent and minimise truncation bias (e.g., in Mariani, 2004; Nemet, 2009; 
Nemet & Johnson, 2012).

In spite of the popular use of patents citation information, there is still criticism in the 
way they are applied in analyses that involve considerations of legal and economic issues. 
This criticism is based on the argument that citation behaviours for academic journals and 
patents are different, and that citation analysis relies heavily on the use of links in documents 
(Kostoff, 1998; Leydesdorff, 2008; Meyer, 2000; Michel & Bettels, 2001). Furthermore, patent 
citation information does not reflect aspects of how economically valuable a (patented) 
invention is, such as how widely adopted or advanced it is. For example, there are patents for 
some technologies that received few citations even though they have been widely adopted 
or are very advanced in providing state-of-the-art solutions to sophisticated problems such 
as a cure for a very complicated disease. This lack of citation attention does not mean that 
the patented technologies are not valuable. In general, patent citation analysis is often used 
to indicate a technological value of an invention, rather than an economic one (Squicciarini 
et al., 2013). Among other known indicators of patent value, the patent’s private value on 
a real-world auction marketplace, such as Ocean Tomo, offers a more reliable economic 
measure, since it provides a direct observation of the market demands for patents, whereas 
originality index and patent’s family size provide more technology-oriented measures of 
how popular a patent is to inventors. Moreover, a recent study (Fischer & Leidinger, 2014) 
showed that (forward) citation is a reliable predictor of a patent’s private value in the auction 
marketplace. Their empirical findings also provided support for the patent’s family size as 
a good indicator of patent value. However, both forward citation and patent’s family size 
explain only a small variance in patent value.

The bulk of previous knowledge-flow studies that utilised patent citation information 
are in the area of identifying knowledge intermediaries in different domains and the roles 
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they play in facilitating the flow of knowledge. Despite the growing interests in the effects of 
cross-disciplinary knowledge resulting from technological fusions, knowledge recombina-
tion and other forms of knowledge flows, the inconsistency in the results of related studies 
justifies the need for further investigations – with different approaches or from different 
perspectives. On the other hand, knowledge-flow studies based on non-patent data are also 
quite common (Casas, 2005; Dolińska, 2015; Gerke, 2016).

IPC and knowledge flow patent analysis

Patent classifications have been used extensively in scientific studies for many different 
reasons. For instance, Nemet and Johnson (2012) investigated the impacts of knowledge 
transfer across different technological domains on the important inventions. They utilised 
the IPC to construct indicators for different levels of intertechnology knowledge flows. 
Frietsch, Neuhäusler, Jung, and Van Looy (2014) examined the linkage between patent-
ing and export performance for selected countries in different technology fields using the 
classification in the IPC as a way to categorise the different technology fields. Similarly, 
Grimaldi, Cricelli, Di Giovanni, and Rogo (2015) used the IPC to develop a practical and 
reproducible framework for scholars to leverage the value of patents and to extract all possi-
ble strategic information from patent portfolios. Other types of patents classifications such 
as the cooperative patent classification have also been used in past studies.

IPC is a hierarchical patent classification system currently used by more than 100 coun-
tries. It was introduced by the Strasbourg Agreement in 1971 and was designed based on 
the different broad areas of technology (WIPO, 2016). It uses a tree-like structure by which 
patents are categorised in hierarchical levels. The first level, known as a ‘section’, has eight 
groups of broad technical fields. Each section is divided into ‘classes’. Class is the next hier-
archical level in an IPC classification and is subdivided into ‘subclasses’. Many past related 
studies utilised these top three IPC hierarchical classification levels to understand the flows 
of knowledge. These flows are often based on the citation intensities and the links between 
these hierarchical levels. Some of these studies include those by Wu and Shanley (2009) 
and Nemet and Johnson (2012).

Cross-disciplinary knowledge, in the context of this study, is defined as the knowledge 
acquired through recombination of technologically diverse prior art (i.e., cited patents or 
references from a variety of technological domains). Using the three IPC classifications 
(i.e., IPC sections, classes and subclasses) to represent categories for technological domains, 
cross-disciplinary knowledge can therefore be measured or defined as the resulting knowl-
edge from a recombination process that involves one of the following scenarios:

(i)  when a patent cites previous patents from more than one distinct IPC section;
(ii)  when a patent cites previous patents from more than one distinct IPC class;
(iii)  when a patent cites previous patents from more than one distinct IPC subclass.

Note, the higher the number of distinct IPC sections (or IPC classes or IPC subclasses) 
cited the higher the degree of knowledge cross-disciplinarity.
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Data

Patent data used in this empirical study were retrieved from the US Patent and Trademark 
Office (USPTO) database. The data covered all patents granted by the office between 1976 
and 2016. Patent litigation data and International Trade Commission (ITC) data were 
obtained from the LITALERT database (LITALERT, 2015) and US International Trade 
Commission website (US ITC, 2015). The analytical approach undertaken in this study was 
based on analysing the relationships between the constructed indicators of cross-discipli-
nary knowledge and the importance (or value) measure of a patent. The primary objective 
of the analysis is to examine how each of the different indicators of cross-disciplinary 
knowledge contributes to the perceived importance of a technology. Following Nemet and 
Johnson’s (2012) approach, both forward and backward patent citation information are 
used to indicate the flow of knowledge and knowledge recombination. A patent forward 
citation count was used as a measure for how important or valuable a patent is, whereas 
the three constructed measures based on patent backward citation counts were used to 
represent the different levels (or types) of cross-disciplinary knowledge. Forward citation 
count has been considered and used as a good indicator for the quality or value of a patent 
(Nemet & Johnson, 2012) and an excellent measure of technological impact and perfor-
mance (Albert, Avery, Narin, & McAllister, 1991; Y. Lin & Chen, 2014). Similar to Nemet 
and Johnsons’ study, a 10-year window was imposed on both forward and backward citation 
pairs to minimise truncation bias (Nemet & Johnson, 2012). This leaves a period of 1986 
to 2006 for investigation which consists of a total of 2,559,343 patents. The three indicators 
of cross-disciplinary backward citations were constructed based on the IPC classification 
system and patent backward citation information. Before illustrating how these indicators 
are computed, it is important to understand first the IPC classification system.

Variables and the construction of the cross-disciplinary knowledge indicators

Consider this typical patent citation scenario in Figure 1, where patenti is cited by a total of 
r subsequent patentk(s). From patenti’s point of view, this type of citation is called a forward 
citation. A variable called FWDCIT records the total counts of forward citations a patent 
has and is used in this study as the dependent variable. In the example in Figure 1, patenti 

Figure 1. Cross-disciplinary knowledge recombination framework.



10   I. M. MOANIBA ET AL.

has an FWDCIT = r. To avoid truncation bias, forward citation counts are restricted to a 
10-year window (i.e., only citing patents granted within 10 years after the issue year of pat-
enti are counted). And suppose patenti cites a total of n previous patentj(s). These citations 
are called backward citations. In this study, a variable called BCKCIT is used to count and 
record the total number of backward citations a patent has. In the example in Figure 1, 
patenti has a BCKCIT = n1.

In addition, three cross-disciplinary independent variables are constructed to indicate 
the different forms of cross-disciplinary knowledge measures across IPC sections, IPC 
classes and IPC subclasses. First, SECCIT denotes the number of distinct IPC sections 
a patent cites from. For instance, if a patenti backward cites three patentj(s), each from a 
different IPC section, then in this case SECCIT = 3. And suppose another patenti, cites four 
patentj(s) of which two are from one IPC section, and the other two are from another IPC 
section, the total number of different sections cited in this case is 2, and therefore SECCIT 
is now 2. Similarly, the other two disciplinary variables CLSCIT and SBCCIT denote the 
number of distinct IPC classes and IPC subclasses a patent cites from, respectively. The 
calculations for the backward citation counts are again restricted to a 10-year window 
(i.e., counting only cited patents issued within the 10-year prior period to the issue year of 
patenti – see Figure 1).

Table 1 lists all the variables used in this study. The dependent variable is the num-
ber of forward citations a patent has within a 10-year period after it was first published. 
Forward citation has been used in many previous studies to indicate how valuable a patent 
is, i.e., the more a patent is cited, the more value it has. The independent variables are the 
SECCIT, CLSCIT, SBCCIT and BCKCIT. To control for the effects of other major known 
factors of forward citation, five additional independent variables are created: the CLMCNT 
variable, which represents the number of claims a patent has; a dummy binary variable 
USLITG, which indicates whether or not a patent has been litigated at the US court; a 
dummy binary variable ITCCNT, which indicates whether or not a patent has been disputed 
at the International Trade Commission; FATYPE, which denotes the first assignee type; 
and TECSEC, which indicates each of the five types of technology sectors (Figure 2). To 
check that all predictor variables are not highly correlated, a pairwise correlation test was 
conducted. The results are reported in Table 2.

Table 1. Descriptive statistics.

Variable Description N Mean Std. dev. Min Max
YEAR Year of patent issue 2,559,343 – – 1986 2006
FWDCIT Forward citation count within 10-years 2,559,343 8.55788 13.95442 0 1966
ORIG Originality index of a patent 2,559,343 0.5979975 0.2977711 0 0.9866561
SECCIT Number of distinct sections backward 

cited (10-year window)
2,559,343 1.458668 0.8729031 0

8
CLSCIT Number of distinct classes backward 

cited (10-year window)
2,559,343 1.856212 1.408239 0

28
SBCCIT Number of distinct subclasses backward 

Cited (10-year window)
2,559,343 2.216892 1.859954 0

40
REFCNT Number of references per patent 2,559,343 12.71393 14.15038 0 189
CLMCNT Claim count per patent 2,559,343 15.39459 13.03622 0 887
USLIT US litigation dummy 2,559,343 0.01141 0.1062063 0 1
ITC ITC dummy 2,559,343 0.0004333 0.0208117 0 1
FATYPE First assignee type 2,559,343 1.941708 0.5736036 1 7
TECSEC Technology sector 2,559,343 2.845967 1.311777 1 5
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Methodology

Estimation approach

To examine the effect of cross-disciplinary knowledge on invention value (indicated by 
patent value), the relationship between the forward citation variable, FWDCIT (used as a 
proxy for patent value) and each of the three cross-disciplinary variables discussed in the 
previous section, a regression analysis was conducted. In this case, the dependent variable is 
the forward citation count variable (FWDCIT), and the independent variables of interest are 
the three cross-disciplinary measures – SECCT, CLSCIT and SBCCIT. Note, the dependent 
variable has discrete and non-negative values (i.e., of count data). Non-negative discrete 
data are not linear in nature. This is shown graphically by the nonlinear plots of FWDCIT 
in the scatter diagrams when plotted against each of the cross-disciplinary variables in 
Figure 3. In such a case, standard linear regression is not applicable. Instead, the general-
ised linear models that use link functions to transform the nonlinear relationships between 
the dependent and independent variables into linear relationships are more appropriate. 
For count data, this comes in the form of exponential regression models such as Poisson 
(Cameron & Trivedi, 2013).

However, it is important to note that the variance of FWDCIT (equivalent to its squared 
standard deviation) is much larger than its mean, as shown in Table 1, indicating the exist-
ence of over-dispersion. Theoretically, this violates one of the restrictive conditions of the 
Poisson model, which requires the mean and variance of the dependent variable to be 
equal. This violation implies that Poisson regression could be problematic, and therefore 
another count data regression model known as the Negative binomial estimator, which is 
more appropriate in this case, should also be considered. In addition, the number of zeros 
in the FWDCIT dependent variable is quite low (only 9.7%) as shown in Figure 4. This 

19.71%

25.1%

16.77%

27.72%

10.7%

Chemistry
Electrical engineering
Instruments
Mechanical engineering
Other fields

Figure 2. Shares of technology sectors as percentages.
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indicates that problems related to excess zeros are not issues here and thus convey that 
the standard Negative binomial regression model is also more suited for the data than 
the zero-inflated Negative binomial version. This in turn confirms that Negative binomial 

Figure 3. Scatter plots for forward citation against the cross-disciplinary variables.
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regression is a more appropriate method in this case compared with other popular count 
data models – the Poisson and zero-inflated Negative binomial regression. However, to 
ensure robustness and consistency in the results, both Poisson and the Negative binomial 
regressions are used in this study.

Specification models

Based on the reasons stated earlier, a baseline specification model, which is a standard 
functional form for nonlinear count data models such as Poisson and Negative binomial 
model (Greene, 2008), is set as follows:
 

where = exp
(
!i
)
 and !i = exp

(
! + x′i"

)
. x′i is a vector of explanatory variables of interest, 

which in this case represents the three cross-disciplinary indicator variables– SECCIT, 
CLSCIT and SBCCIT; yi denotes the dependent forward citation variable – FWDCIT; 
E
[
yi|xi, !i

]
 is the expected conditional mean of yi for each given value of x′i and ɛi is the 

error term.
Given that the three cross-disciplinarity variables are highly correlated to each other, 

adding all of them to Equation (1) violates one of the important assumptions of Poisson and 
Negative binomial regressions. The standard way around this multicollinearity problem is to 
run estimations for each of these three cross-disciplinarity variables separately. Technically, 
this means having three separate specification models devised based on the baseline spec-
ification in Equation (1). The three separate models are expressed below:

 

(1)E
[
yi|xi, !i

]
= exp

(
" + x′i# + !i

)
= hi$i

(1a)

E
[
yi|xi, !i

]
= exp

(
"1 + TECSECi#1 + z′iΩ1 + TECSECi$1 + FATYPEi%1 + !i

)
= hikilimi&i

0
.0

5
.1
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0 20 40 60 80

forwardCitation

Figure 4. Distribution of values for dependent variable (Forward Citations). Only 1% of the observations 
have forward citations above 80 (not shown in graph). The number of patents in the data with zero forward 
citations within 10-years accounts for only 9.7%.
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where the added parameter: z′i is a vector consisting of the following control variables – 
CLMCNT for claim count per patent i, USLITG dummy for whether patent i has been liti-
gated in the US, and ITCCNT dummy indicating whether patent i has been litigated at ITC; 
TECSECi is the first categorical control variable for the five technology sectors; FATYPEi is 
the second categorical control variable for the seven assignee types; and ki = exp

(
z′iΩ

)
, li = 

exp(TECSECi!) and mi=exp(TECSECi!).
For robustness check, the same set of explanatory variables on the right-hand side of 

Equation 1a to 1c is regressed on a different measure of patent value, the originality index, 
using an ordinary least-squares (OLS) estimator. The originality index was proposed by 
Trajtenberg, Henderson, and Jaffe (Trajtenberg et al., 1997) to indicate how original a pat-
ented technology is and has been considered a good indicator of patent value. The originality 
index is calculated using the formula:

where SBij is the share of previous patents cited by patent i belonging to patent class j out of 
nj = 35 patent classes (see details of the 35 classes in the Appendix). The values of the orig-
inality index range from 0 to 1, where a low value indicates that a patent cites a number of 
prior patents belonging to the same technological field, and a high value indicates that most 
prior patents cited belong to many technological fields. A higher originality index implies 
that the patent in question is more original and not directly derived from prior patents.

The specified models used in estimating the impact of each of the three cross-disciplinary 
variables on patent value, respectively, are shown below:

 

 

 

where oi denotes the new dependent variable, originality index (ORIG); the parameter: 
z′i is a vector consisting of the following control variables – CLMCNT for claim count per 
patent i, USLITG dummy for whether patent i has been litigated in the US, and ITCCNT 
dummy indicating whether patent i has been litigated at ITC; TECSECi is the first categorical 

(1b)

E
[
yi|xi, !i

]
= exp

(
"2 + CLSCITi#2 + z′iΩ2 + TECSECi$2 + FATYPEi%2 + !i

)
= hikilimi&i

(1c)

E
[
yi|xi, !i

]
= exp

(
"3 + SBCCITi#3 + z′iΩ3 + TECSECi$3 + FATYPEi%3 + !i

)
= hikilimi&i

Originality indexi = 1 −
ni∑

j

SB2
ij

(2a)E
[
oi|wi, !i

]
= "1 + TECSECi#1 + z′iΩ1 + TECSECi$1 + FATYPEi%1 + !i

(2b)E
[
oi|w, !i

]
= "2 + CLSCITi#2 + z′iΩ2 + TECSECi$2 + FATYPEi%2 + !i

(2c)E
[
oi|wi, !i

]
= "3 + SBCCITi#3 + z′iΩ3 + TECSECi$3 + FATYPEi%3 + !i
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control variable for the five technology sectors; FATYPEi is the second categorical control 
variable for the seven assignee types. E

[
oi|wi, !i

]
 is the expected mean of oi for given values 

of independent variables on the right-hand side of the equations (denoted by vector w′
i), 

and ɛi is the error term.

Results

In this section, the empirical results of all estimation models are presented and discussed. 
The tables are reported in Tables 3, 4 and 5. The first and second results (Tables 3 and 4) 
show the results of the Poisson regressions and Negative regressions for Equation (1), 
respectively, used to estimate how each of the cross-disciplinary variables influences the 
number of forward citations a patent receives while controlling for major known deter-
minants of forward citation – the number of claims a patent has (CLMCNT), whether 
a patent has been litigated at US court (USLITG) or disputed at the International Trade 
Commission (ITCCNT), the different Technology sectors and the different assignee types. 
Table 5 reports the results of a robustness analysis using a different known measure of 
patent value i.e., originality index.

Note that the lowest level of significance used in all these regressions is 0.001, instead 
of 0.01. This adjustment is required to ensure reliability and reproductivity of the study 
(Benjamin et al., 2018). According to Benjamin et al. (2018), associating statistically sig-
nificant findings with p < 0.05, which is commonly used, results in a high rate of false 
positives even in the absence of other experimental, procedural and reporting problems. 
For this reason, they proposed the use of a much lower significant level of 0.005, instead 

Table 3. (Poisson regression) effects of cross-disciplinary knowledge on forward citations.

All robust standard errors are presented in parentheses.
***Significant at p < 0.001; **Significant at p < 0.01; *Significant at p < 0.05; +Significant at p < 0.1.

(1a) (1b) (1c)

coeff. s.e. coeff. s.e. coeff. s.e.
No. of distinct sections cited 0.1133*** (0.0014)
No. of distinct classes cited 0.0572*** (0.0009)
No. of distinct subclasses cited 0.0593*** (0.0011)
Reference count 0.0068*** (0.0001) 0.0065*** (0.0001) 0.0048*** (0.0001)
Claim count 0.0067*** (0.0004) 0.0067*** (0.0004) 0.0066*** (0.0004)
US litigation 0.6271*** (0.0128) 0.6256*** (0.0126) 0.6198*** (0.0141)
ITC 0.3006*** (0.0378) 0.2968*** (0.0379) 0.3041*** (0.0380)
Technology sectors
Electrical engineering 0.7196*** (0.0033) 0.7147*** (0.0033) 0.7034*** (0.0033)
Instruments 0.5190*** (0.0034) 0.5229*** (0.0034) 0.5113*** (0.0035)
Mechanical engineering 0.0432*** (0.0035) 0.0444*** (0.0035) 0.0457*** (0.0035)
Others 0.0943*** (0.0038) 0.1014*** (0.0038) 0.1102*** (0.0038)
Assignee type
Individual 0.2312*** (0.0032) 0.2345*** (0.0032) 0.2332*** (0.0033)
Company 0.0544*** (0.0106) 0.0549*** (0.0106) 0.0499*** (0.0107)
Government 0.3546*** (0.0074) 0.3569*** (0.0074) 0.3482*** (0.0075)
University 0.2486*** (0.0327) 0.2587*** (0.0327) 0.2497*** (0.0325)
Hospital 0.0765 (0.0563) 0.0742 (0.0580) 0.0836+ (0.0485)
Private non-profit 0.0837*** (0.0223) 0.0868*** (0.0223) 0.0841*** (0.0222)
Country dummies Yes Yes Yes
Year dummies Yes Yes Yes
Constant 1.0268*** (0.0225) 1.0821*** (0.0225) 1.0886*** (0.0224)
N 2,559,343 2,559,343 2,559,343
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Table 4. (Negative binomial) effects of cross-disciplinary knowledge on forward citations.

All robust standard errors are presented in parentheses.
***Significant at p < 0.001; **Significant at p < 0.01; *Significant at p < 0.05; +Significant at p < 0.1.

(1a) (1b) (1c)

coeff. s.e. coeff. s.e. coeff. s.e.
No. of distinct sections cited 0.1298*** (0.0011)
No. of distinct classes cited 0.0723*** (0.0007)
No. of distinct subclasses cited 0.0738*** (0.0006)
Reference count 0.0074*** (0.0001) 0.0070*** (0.0001) 0.0052*** (0.0001)
Claim count 0.0142*** (0.0001) 0.0143*** (0.0001) 0.0141*** (0.0001)
US litigation 0.6319*** (0.0080) 0.6313*** (0.0080) 0.6240*** (0.0080)
ITC 0.3845*** (0.0410) 0.3812*** (0.0407) 0.3923*** (0.0409)
Technology sectors
Electrical engineering 0.6946*** (0.0035) 0.6914*** (0.0035) 0.6776*** (0.0035)
Instruments 0.4989*** (0.0036) 0.4999*** (0.0036) 0.4866*** (0.0036)
Mechanical engineering 0.0626*** (0.0032) 0.0632*** (0.0032) 0.0643*** (0.0032)
Others 0.1184*** (0.0037) 0.1243*** (0.0037) 0.1331*** (0.0037)
Assignee type
Individual 0.2047*** (0.0027) 0.2081*** (0.0027) 0.2069*** (0.0027)
Company 0.0675*** (0.0132) 0.0680*** (0.0134) 0.0649*** (0.0131)
Government 0.3108*** (0.0069) 0.3129*** (0.0069) 0.3049*** (0.0069)
University 0.2297*** (0.0304) 0.2391*** (0.0303) 0.2255*** (0.0300)
Hospital 0.0489+ (0.0276) 0.0489+ (0.0275) 0.0434 (0.0273)
Private non-profit 0.0435* (0.0179) 0.0465** (0.0180) 0.0448* (0.0180)
Country dummies Yes Yes Yes
Year dummies Yes Yes Yes
Constant 0.9630*** (0.0197) 1.0147*** (0.0197) 1.0177*** (0.0197)
lnAlpha (constant) 0.0085*** (0.0015) 0.0109*** (0.0015) 0.0061*** (0.0015)
N 2,559,343 2,559,343 2,559,343

Table 5. (OLS) Effects of cross-disciplinary knowledge on originality index.

All robust standard errors are presented in parentheses.
***Significant at p < 0.001; **Significant at p < 0.01; *Significant at p < 0.05; +Significant at p < 0.1.

(2a) (2b) (2c)

coeff s.e. coeff. s.e. coeff. s.e.
No. of distinct sections cited 0.1467*** (0.0002)
No. of distinct classes cited 0.0897*** (0.0002)
No. of distinct subclasses cited 0.0703*** (0.0001)
Reference count 0.0043*** (0.0000) 0.0035*** (0.0000) 0.0027*** (0.0000)
Claim count 0.0003*** (0.0000) 0.0003*** (0.0000) 0.0003*** (0.0000)
US litigation −0.0088*** (0.0014) −0.0095*** (0.0014) −0.0140*** (0.0014)
ITC −0.0035 (0.0067) −0.0065 (0.0070) −0.0056 (0.0071)
Technology sectors
Electrical engineering 0.1093*** (0.0005) 0.1058*** (0.0005) 0.0969*** (0.0005)
Instruments 0.0620*** (0.0005) 0.0663*** (0.0005) 0.0579*** (0.0005)
Mechanical engineering 0.0416*** (0.0005) 0.0426*** (0.0005) 0.0472*** (0.0005)
Others 0.0024*** (0.0006) 0.0100*** (0.0006) 0.0198*** (0.0006)
Assignee type
Individual 0.0349*** (0.0005) 0.0373*** (0.0005) 0.0385*** (0.0005)
Company 0.0083*** (0.0011) 0.0073*** (0.0012) 0.0065*** (0.0012)
Government −0.0125*** (0.0011) −0.0126*** (0.0012) −0.0174*** (0.0012)
University −0.0572*** (0.0052) −0.0464*** (0.0055) −0.0593*** (0.0054)
Hospital 0.0035 (0.0051) 0.0032 (0.0052) 0.0026 (0.0052)
Private non-profit 0.0149*** (0.0033) 0.0173*** (0.0034) 0.0177*** (0.0034)
Country dummies Yes Yes Yes
Year dummies Yes Yes Yes
Constant 0.1240*** (0.0034) 0.1730*** (0.0034) 0.1962*** (0.0034)
N 2,559,343 2,559,343 2,559,343
Adj. R2 0.378 0.361 0.355
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of 0.05 level. To ensure the regression results in this present study are adjusted for this 
correction, the lowest threshold of significance was changed to 0.001, which is lower than 
the recommended 0.005 level.

Poisson and Negative binomial analysis

Table 3 shows the results of the Poisson regressions for Equations (1a), (1b) and (1c). As 
reported in the table, all three cross-disciplinary variables – SECCIT, CLSCIT and SBCCIT 
– have positive and significant coefficients. These results suggest that the higher the number 
of distinct technological domains (in terms of IPC section, class or subclass) a patent cites 
from, the higher the value it receives. Among these results for the three cross-disciplinary 
variables, the coefficient for the number of distinct IPC sections cited by a patent [i.e., 
the estimated natural log increase in number of forward citations a patent receives owing 
to a one unit increase in the value of a cross-disciplinary variable (0.1133 under column 
1a)] is higher than that for the IPC classes cited (0.0572 under 1b) and for IPC subclasses 
cited (0.593 under 1c). Based on these results, it is clear that cross-disciplinary knowledge 
acquired from a more diverse range of IPC sections produces more valuable patents than 
those obtained through a diverse range of IPC classes or IPC subclasses.

By contrast, the first three control variables (i.e., patent claim count, US litigation and 
ITC) also have positive and significant effects on a patent’s citation value. The magnitudes 
of the coefficients of these control variables seem to be relatively close, though. All coeffi-
cients for the Technology sector dummies and assignee type dummies are also positively 
significant except for the Hospital assignee type in column 1a and 1b. Two additional sets 
of control dummies are included in all regressions to control for the unobserved year and 
country fixed effects.

Next, the results of estimating Equation 1a, 1b and 1c using Negative binomial regression 
are reported in Table 4. Similar to the previous results, all three cross-disciplinary varia-
bles – SECCIT, CLSCIT and SBCCIT – have positive and significant coefficients. These 
results strongly confirm the important finding from Table 3, that is, the higher the number 
of different technological domains a patent cites from, the higher the value it receives. In 
other words, a one unit increase in the number of distinct IPC sections cited by a patent 
will result in an exp(0.1298) increase (under 1a) in its value. This increase in patent value 
per estimated increase in the distinct number of IPC sections cited is higher than that for 
the number of distinct IPC classes cited (=0.0723 under 1b) and for the IPC subclasses cited 
(=0.0738 under 1c). As for the control variables, the first three (i.e., patent claim count, US 
litigation and ITC) again have positive and significant effects on a patent’s citation value 
that are relatively similar in magnitudes. Like the results in Table 3, all coefficients for the 
Technology sector dummies and assignee type dummies are positively significant except 
for the Hospital assignee type in column 1c. The two additional sets of control dummies 
are again added to control for the unobserved year and country fixed effects.

The important thing to note from Tables 3 and 4 is that both the Poisson and Negative 
binomial estimations have very similar and stable results. Therefore, it is conclusive to say 
that, based on these empirical results, cross-disciplinary knowledge (acquired or combined 
from technologically diverse domains) has a positive and significant contribution to the 
quality or value of an invention (proxied by patent value).
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Robustness analysis

To reaffirm the above finding, the same set of regressors and control variables were regressed 
on a different, but also well accepted, measure of patent value (or quality), the originality 
index. Three OLS regressions were run for each of the three Equations 2a, 2b and 2c, respec-
tively. Each regression was employed to estimate the impact of each of the cross-disciplinary 
knowledge variables. The results are reported in Table 5.

Like previous results, all three cross-disciplinary variables – SECCIT, CLSCIT and 
SBCCIT – as shown in Table 5, have positive and significant coefficients. These results 
provide, again, further evidence that the more diverse technological domains a patent cites 
from, the higher the value it receives. Although the coefficients for the three cross-dis-
ciplinary variables are slightly higher than those in the previous two tables (i.e., Tables 3 
and 4), the other consistent finding is that the marginal effect of an increase in the num-
ber of (distinct) IPC sections cited on the number of forward citations a patent receives 
(0.1467 under column 2a in Table 5) is higher than that for IPC classes cited (0.0897 under 
column 2b) or for IPC subclasses cited (0.0703 under column 2c). In other words, these 
results confirm the two key findings from the previous tables that: (1) cross-disciplinary 
knowledge has a positive effect on patent (or invention) value, and (2) cross-disciplinary 
knowledge combined (or acquired) from technologically diverse IPC sections produces 
more valuable inventions than those produced from technologically diverse IPC classes 
or IPC subclasses.

Furthermore, the control variables, patent claim count and ITC again have positive and 
significant effects on a patent’s citation value. US litigation, on the other hand, now has 
significant but negative results. This is the only main difference observed compared with the 
results of US litigation variable in the previous two tables. All coefficients for the Technology 
sector dummies and assignee type dummies are also positively significant except for the 
Hospital assignee type in column 1a and 1b. These results suggest that all technology sectors 
listed in the table have more significant influence on invention value than the reference 
sector, Chemistry. Two additional sets of control dummies are included in all regressions 
to control for the unobserved year and country fixed effects.

In brief, the study finds further empirical evidence that the higher the degree of cross-dis-
ciplinary knowledge a patent has, the higher its value. This finding is robust across three 
different sets of estimations in Tables 3, 4 and 5 – for Poisson regressions, Negative binomial 
regressions and OLS regressions, respectively. Previous findings of studies investigating the 
impacts of cross-disciplinary knowledge acquired through recombination (or other forms 
of knowledge flows) on patent value have been inconsistent. There have been studies that 
found a positive relationship between the flows or combinations of knowledge from various 
technological domains and patent value, whereas a number of other studies have found 
no correlation between the two. The findings of this present study provide new evidence 
in support of the positive and significant role cross-disciplinary knowledge plays in the 
development of important inventions.

Furthermore, the study finds that knowledge acquired (or combined) from a wider range 
of IPC sections tends to bring more positive impacts on the value of a patent (or invention) as 
compared with knowledge acquired from a wider range of IPC classes or IPC subclasses. This 
finding is shown by the fact that the variable SECCIT receives the highest significant coeffi-
cients in all three tables (Tables 3, 4 and 5) compared with the other two cross-disciplinary 
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variables – CLSCIT and SBCCIT. According to the structure of the IPC classification sys-
tem, an IPC section is the highest hierarchical level in the classification system signifying 
the furthest distance between two patents. However, it is important to know that the core 
purpose of this study is to investigate whether cross-disciplinary knowledge contributes 
positively or negatively to a patent value from the technological diversity of prior art (i.e., 
patent references) and knowledge recombination perspectives. Unlike previous studies (e.g., 
Nemet & Johnson, 2012), this study is not designed to examine whether the technological 
distance between the source of the flow and the destination affects the value of a patent.

Conclusion

The empirical results of this paper bring new insights into the concept of cross-disciplinary 
knowledge and its role in technological innovation. They provide the basis for the important 
contribution of the paper to the innovation management and business strategy literature in 
three ways. First, these results show new empirical evidence that knowledge recombination 
across a variety of technological domains contributes positively to the creation of an impor-
tant inventions. Second, the findings of this study contribute to the literature by introducing 
a new methodological framework (or approach) to patent citation knowledge-flow analysis. 
This approach utilises the IPC classification system to construct measures of the intensity of 
cross-disciplinarity in a way that has never been done before. While previous studies (Nemet 
& Johnson, 2012) constructed their measures based on the technological distance between 
the citing and cited prior knowledge (i.e., patents), this present study built its measures based 
on the diversity of prior technological art cited. With this new approach, the study helps 
provide a stable mental framework for analysts to follow cross-disciplinarity trajectories 
and analyse the technological diversity of prior related knowledge across IPC sections, 
classes and subclasses. Lastly, the paper discusses some policy and managerial implications 
that can assist firms and institutions in their decisions related to technology developments.

The data set used in this study consists of data on patent citation information retrieved 
from the USPTO database. The data include forward citation counts, backward citation 
counts, computed cross-disciplinarity measures and other important patent information 
such as litigation and claims. The patents covered in the study were taken from a period of 
1976 to 2016. However, the citation information only covered patents issued between the 
year 1986 and 2004 to allow a 10-year window for both forward and backward citations. 
This is done to ensure consistency in the data as well as to avoid truncation bias. After 
employing some econometric estimation methods on the data, the study found that all the 
constructed cross-disciplinary variables have positive and significant influences on the pat-
ent value (represented in this study by a patent’s forward citation count). The major highlight 
of this finding is the fact that knowledge recombination from multiple IPC sections tends 
to have the highest positive impact on a patent value compared with that from multiple 
IPC classes or subclasses. By contrast, the effect of the number of backward citations on a 
patent value is also positive and significant however quite small compared with those of 
the cross-disciplinary variables. Some of the econometric methods employed in this study 
include the Negative binomial regression and some data tests needed to eliminate common 
bias issues such as those related to the correlations in the explanatory variables and the 
excessive number of zeros in the dependent variable data.
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Furthermore, the study found that patents litigated in the US courts have significant 
and higher value compared with non-litigated patents. Patents that have been disputed at 
the ITC also seem to have a higher value than those that have not. Moreover, patents with 
a higher number of claims turned out to be more valuable. Technologywise, patents in the 
electrical engineering sector tend to receive the highest values, compared with those in 
other sectors. The next highest are those in the Instruments sector, while the lowest and 
second lowest are the Mechanical Engineering and Chemistry sectors respectively. In terms 
of assignees, patents assigned to universities have the highest incremental values, followed 
by those from the companies, and then those from hospitals. The least influential patents 
are those from governments.

Management implications and limitations

Based on the above findings, three important policy implications are drawn. First, the fact 
that strong positive relationships between cross-disciplinary variables and the forward cita-
tion value were found clearly implies that cross-disciplinary knowledge plays a critical role 
in the development of an important technology. A managerial implication from this is that 
firms and innovators should consider giving priority to their R&D projects that guarantee 
the use of knowledge from more technological domains. In particular, when searching for 
prior knowledge, they should refrain from researching patents on technologies similar to 
theirs only. Second, a higher number of claims, litigated patents and ITC disputed patents are 
some of the important characteristics of successful patents suggested by this study; therefore, 
firms should always take into account such information when developing a technology. 
A technology or invention based on these prior art characteristics is likely to get a higher 
value. Third, this study found that some technology sectors receive higher incremental 
patent citation values compared with others. This could indicate that perhaps firms should 
consider knowledge recombination across these technology sectors whenever they can.

Finally, like many other papers, this study has some limitations. First is the use of a patent 
activity as a proxy for the value or importance of an invention. As previously mentioned, 
patent information still receives criticism for its use in a citation analysis. The importance of 
an invention or technology cannot be reflected alone by the search for knowledge related to 
the underlying technology. There are many other factors that can determine the importance 
or value of a technology. For instance, how widely adopted the technology is, even if its 
corresponding patent is not receiving much attention, and how advanced the technology 
is in providing a cure for a very complicated disease. The latter example demonstrates how 
some advanced technologies, which are also very rare, often receive little citation attention 
owing to reasons related to their high costs. This does not mean that the technology is not 
important. Another concern is the use of a 10-year citation window. Despite its obvious 
purpose to prevent a data and analysis bias, there is still a possibility that citations outside 
the 10-year window are significant for some patents. This truncation approach can lead to 
misinterpretations on how active a patent is in both its backward and forward citations, 
and therefore can significantly affect the regression results. Last, it is also important to note 
that references added by the inventors and the USPTO examiners are both considered in 
this study.
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Note
1.  Note that BCKCIT is included in Figure 1 to help demonstrate the concepts of forward and 

backward citations only; however, it is not relevant to this study’s purpose and therefore was 
not used in the analysis.
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